Advanced Programming
Handout 7

Monads and Friends
(SOE Chapter 18)
The Type of a Type

- In previous chapters we discussed:
 - Monomorphic types such as `Int`, `Bool`, etc.
 - Polymorphic types such as `[a]`, `Tree a`, etc.
 - Monomorphic instances of polymorphic types such as `[Int]`, `Tree Bool`, etc.

- `Int`, `Bool`, etc. are nullary type constructors, whereas `[]`, `Tree`, etc. are unary type constructors. `FiniteMap` is a binary type constructor.

- The “type of a type” is called a kind. The kind of all monomorphic types is written “*:"

  ```haskell
  Int, Bool, [Int], Tree Bool :: * 
  ```

- Therefore the type of unary type constructors is:

  ```haskell
  [], Tree :: * -> *
  ```

- These “higher-order types” can be useful in various ways, especially with type classes.
The Functor Class

- The Functor class demonstrates the use of high-order types:

  ```haskell
  class Functor f where
    fmap :: (a -> b) -> f a -> f b
  ```

- Note that `f` is applied here to one (type) argument, so should have kind “* -> *”.

- For example:

  ```haskell
  instance Functor Tree where
    fmap f (Leaf x) = Leaf (f x)
    fmap f (Branch t1 t2) = Branch (fmap f t1) (fmap f t2)
  ```

- Or, using the function mapTree previously defined:

  ```haskell
  instance Functor Tree where
    fmap = mapTree
  ```

- Exercise: Write the instance declaration for lists.
The Monad Class

- *Monads* are perhaps the most famous (infamous?) feature in Haskell.
- They are captured in a type class:

```haskell
class Monad m where
  (>>=) :: m a -> (a -> m b) -> m b  -- "bind"
  (>>) :: m a -> m b -> m b        -- "sequence"
  return :: a -> m a
  fail   :: String -> m a

  -- default implementations:
  m >>= k = m >>= (\_ -> k)
  fail s   = error s
```

- The key operations are `(>>=)` and `return`.
The “do” syntax in Haskell is shorthand for Monad operations, as captured by these rules:

- \(\text{do } e \rightarrow e \)
- \(\text{do } e_1; e_2; \ldots; e_n \rightarrow e_1 >> (\text{do } e_2 ; \ldots; e_n) \)
- \(\text{do } \text{pat} <- e_1 ; e_2 ; \ldots; e_n \rightarrow \)
 \[
 \begin{align*}
 &\text{let } \text{ok pat } = \text{do } e_2 ; \ldots; e_n \\
 &\quad \text{ok } __ = \text{fail } "\ldots" \\
 &\quad \text{in } e_1 >>= \text{ok}
 \end{align*}
\]
- \(\text{do let dec11ist ; e2 ; \ldots; e_n } \rightarrow \)
 \[
 \begin{align*}
 &\text{let dec11ist in (do e2 ; \ldots; e_n)}
 \end{align*}
\]

Note special case of rule 3:

3a. \(\text{do } x <- e_1 ; e_2 ; \ldots; e_n \rightarrow \) \(e_1 >>= \lambda x \rightarrow \text{do } e_2 ; \ldots; e_n \)
Example Involving IO

“do” syntax can be completely eliminated using these rules:

```
do putStr "Hello"
c <- getChar
return c

⇒ putStr "Hello" >>
do c <- getChar
return c          -- by rule (2)

⇒ putStr "Hello" >>
getChar >>= \c ->
do return c

⇒ putStr "Hello" >>
getChar >>= \c ->
return c          -- by rule (1)

⇒ putStr "Hello" >>
getChar >>= return
```

-- by currying
Functor and Monad Laws

- **Functor laws:**
 \[
 \begin{align*}
 \text{fmap id} & = \text{id} \\
 \text{fmap (f . g)} & = \text{fmap f . fmap g}
 \end{align*}
 \]

- **Monad laws:**
 \[
 \begin{align*}
 \text{return a >>= k} & = k a \\
 m >>= \text{return} & = m \\
 m >>= (\lambda x \rightarrow k x >>= h) & = (m >>= k) >>= h
 \end{align*}
 \]

 Note special case of last law:
 \[
 m1 >>= (m2 >>= m3) = (m1 >>= m2) >>= m3
 \]

- **Connecting law:**
 \[
 \text{fmap f xs} = xs >>= (\text{return . f})
 \]
Monad Laws Expressed using “do” Syntax

- \(\text{do } x \leftarrow \text{return } a \ ; \ k \ x \) = \(k \ a \)
- \(\text{do } x \leftarrow m \ ; \ \text{return } x \) = \(m \)
- \(\text{do } x \leftarrow m \ ; \ y \leftarrow k \ x \ ; \ h \ y \) = \(\text{do } y \leftarrow (\text{do } x \leftarrow m \ ; \ k \ x) \ ; \ h \ y \)
- \(\text{do } m1 \ ; \ m2 \ ; \ m3 \)
- \(\text{fmap } f \ xs \)

For example, using the second rule above, the example given earlier can be simplified to just:

\[
\text{do putStr "Hello" getChar}
\]

or, after desugaring: \(\text{putStr "Hello" } \gg \text{getChar} \)
The Maybe Monad

Recall the Maybe data type:

```haskell
data Maybe a = Just a | Nothing
```

It is both a Functor and a Monad:

```haskell
instance Monad Maybe where
  Just x >>= k = k x
  Nothing >>= k = Nothing
  return x = Just x
  fail s = Nothing

instance Functor Maybe where
  fmap f Nothing = Nothing
  fmap f (Just x) = Just (f x)
```

These instances are indeed “law abiding”.
Using the Maybe Monad

Consider the expression “\(g \ (f \ x)\)”. Suppose that both \(f\) and \(g\) could return errors that are encoded as “\(Nothing\)”. We might do:

```haskell
case f x of
    Nothing -> Nothing
    Just y  -> case g y of
                Nothing -> Nothing
                Just z  -> …proper result using z…
```

But since Maybe is a Monad, we could instead do:

```haskell
do y <- f x
  z <- g y
return …proper result using z…
```
Simplifying Further

- Note that the last expression can be desugared and simplified as follows:

\[
\begin{align*}
 f \ x \ \triangleright\triangleright= \ & \ \lambda \ y \ \rightarrow \\
 g \ y \ \triangleright\triangleright= \ & \ \lambda \ z \ \rightarrow \ \text{return } \ z \\
\end{align*}
\]

\[
\begin{align*}
 \rightarrow \ f \ x \ \triangleright\triangleright= \ & \ \lambda \ y \ \rightarrow \\
 g \ y \ \rightarrow \ \rightarrow \ f \ x \ \triangleright\triangleright= \ & \ g \\
\end{align*}
\]

- So we started with \(g \ (f \ x) \) and ended with \(f \ x \ \triangleright\triangleright= \ g \).
The List Monad

- The **List** data type is also a Monad:

  ```haskell
  instance Monad [] where
    m >>= k = concat (map k m)
    return x = [x]
    fail x = []
  ```

- For example:

  ```haskell
  do x <- [1,2,3]
     y <- [4,5]
     return (x,y)
  ```

  ```haskell
  ➝ [(1,4), (1,5), (2,4), (2,5), (3,4), (3,5)]
  ```

- Note that this is the same as:

  ```haskell
  [(x,y) | x <- [1,2,3], y <- [4,5]]
  ```

Indeed, list comprehension syntax is an alternative to **do** syntax, for the special case of lists.
Useful Monad Operations

```haskell
sequence :: Monad m => [m a] -> m [a]
sequence = foldr mcons (return [])
    where mcons p q = do x <- p
                        xs <- q
                        return (x:xs)

sequence_ :: Monad m => [m a] -> m ()
sequence_ = foldr (>>) (return ())

mapM :: Monad m => (a -> m b) -> [a] -> m [b]
mapM f as = sequence (map f as)

mapM_ :: Monad m => (a -> m b) -> [a] -> m ()
mapM_ f as = sequence_ (map f as)

f >>= x = x >>>= f
```
State Monads

State monads are perhaps the most common kind of monad: they involve updating and threading state through a computation. Abstractly:

```haskell
data SM a = SM (State -> (State, a))

instance Monad SM where
  return a = SM $ \s -> (s, a)
  SM sm0 >>= fsm1 = SM $ \s0 ->
    let (s1, a1) = sm0 s0
        SM sm1 = fsm1 a1
    in (s2, a2)
```

Haskell’s IO monad is a state monad, where State corresponds to the “state of the world”.

But state monads are also commonly user defined. (For example, tree labeling – see text.)
IO is a State Monad

- Suppose we have these operations that implement an association list:

  ```haskell
  lookup :: a -> [(a,b)] -> Maybe b
  update :: a -> b -> [(a,b)] -> [(a,b)]
  exists :: a [(a,b)] -> Bool
  ```

- A file system is just an association list mapping file names (strings) to file contents (strings):

  ```haskell
  type State = [(String, String)]
  ```

- Then an extremely simplified IO monad is:

  ```haskell
  data IO a = IO (State -> (State, a))
  ```

 whose instance in `Monad` is exactly as on the preceding slide, replacing “SM” with “IO”.
State Monad Operations

- All that remains is defining the domain-specific operations, such as:

 readFile :: String -> IO (Maybe String)
 readFile s = IO (\fs -> (fs, lookup s fs))

 writeFile :: String -> String -> IO ()
 writeFile s c = IO (\fs -> (update s c fs, ()))

 fileExists :: String -> IO Bool
 fileExists s = IO (\fs -> (fs, exists s fs))

- Variations include generating an error when readFile fails instead of using the Maybe type, etc.
Polymorphic State Monad

- The state monad can be made polymorphic in the state, in the following way:

```haskell
data SM s a = SM (s -> (s, a))

instance Monad (SM s) where
  return a = SM $ \s -> (s, a)
  SM sm0 >>= fsm1 = SM $ \s0 ->
    let (s1, a1) = sm0 s0
        SM sm1 = fsm1 a1
        (s2, a2) = sm1 s1
    in (s2, a2)
```

- Note the partial application of the type constructor SM in the instance declaration. This works because SM has kind \(* \rightarrow \ast \rightarrow \ast\), so “SM \(s\)” has kind \(* \rightarrow \ast\).