Advanced Programming
Handout 6

Functional Animation
The main part of this week’s homework assignment will be to write your own animation based on SOE chapter 13.

There will also be a more structured warm-up exercise.

Make sure that you can run the SOE graphics demos.
Teams

- This assignment, and most likely all the rest, will be carried out in teams of two.
- We’ll finalize teams in class on Wednesday. (Pair up sooner if you like.)
- Team members can work together on at most one weekly assignment and one of the two larger projects.
Pair programming

- Programming in teams of two is strongly advocated by proponents of “Extreme Programming” (and its many variants)

- Rules:
 - All programming sessions are “shoulder to shoulder”: two people at one screen
 - Both must understand and agree with every line of code
 - Switch drivers from time to time
Disadvantages of Pair Programming

- Coordination overhead
 - Have to get two people physically together to do anything
- Slower
 - Uses two people to do one person’s job
Advantages of Pair Programming

- Dramatic increase in code quality
- Verbalizing ideas leads to deeper understanding
- Discourages quick hacks
- Result is often better than either programmer could have achieved even by spending twice as long!
Advantages of Pair Programming

- Not that much slower
 - Fewer thinkos ---> much less time spent in debugging
 - Earlier detection of design errors ---> much less time spent in massive reorganizations
 - People’s energy levels have different cycles

- Continual opportunities to hone skills and learn new tricks
Perimeters of Shapes

(SOE Chapter 6)
Shapes

data Shape = Rectangle Side Side | Ellipse Radius Radius | RtTriangle Side Side | Polygon [Vertex]
 deriving Show

type Radius = Float
type Side = Float
type Vertex = (Float,Float)
To compute the perimeter we need a function with four equations (1 for each Shape constructor).

The first three are easy ...

perimeter :: Shape -> Float
perimeter (Rectangle s1 s2) = 2*(s1+s2)
perimeter (RtTriangle s1 s2) = s1 + s2 + sqrt (s1^2+s2^2)
perimeter (Polygon pts) = foldl (+) 0 (sides pts)
 -- or: sumList (sides pts)

This assumes that we can compute the lengths of the sides of a polygon. This shouldn’t be too difficult since we can compute the distance between two points with distBetween.
Recursive Def’n of *Sides*

```haskell
sides       :: [Vertex] -> [Side]
sides  []    = []
sides (v:vs) = aux v vs
  where
    aux v1  (v2:vs') = distBetween v1 v2 : aux v2 vs'
    aux vn []       = distBetween vn v : []

-- i.e. aux vn [] = [distBetween vn v]
```

But can we do better? Can we remove the direct recursion, as a seasoned functional programmer might?
The list of vertices is: \(\text{vs} = [A,B,C,D,E] \)

We need to compute the distances between the pairs of points \((A,B), (B,C), (C,D), (D,E),\) and \((E,A)\).

Can we compute these pairs as a list?

\[[(A,B), (B,C), (C,D), (D,E), (E,A)] \]

Yes, by “zipping” the two lists:

\[[A,B,C,D,E] \text{ and } [B,C,D,E,A] \]

as follows:

\(\text{zip vs (tail vs ++ [head vs])} \)
New Version of \texttt{sides}

This leads to:

\begin{verbatim}
\texttt{sides} ::= \texttt{[Vertex]} -> \texttt{[Side]}
sides \texttt{vs} = \texttt{zipWith distBetween vs}
 \texttt{(tail vs ++ [head vs])}
\end{verbatim}
Perimeter of an Ellipse

There is one remaining case: the ellipse. The perimeter of an ellipse is given by the summation of an infinite series. For an ellipse with radii r_1 and r_2:

$$p = 2\pi r_1 (1 - \sum s_i)$$

where

$$s_1 = \frac{1}{4} e^2$$
$$s_i = \frac{s_{i-1} (2i-1)(2i-3) e^2}{4i^2} \quad \text{for } i > 1$$

$$e = \sqrt{r_1^2 - r_2^2} / r_1$$

Given s_i, it is easy to compute s_{i+1}.
Computing the Series

nextEl :: Float -> Float -> Float -> Float
nextEl e s i = s*(2*i-1)*(2*i-3)*(e^2) / (4*i^2)

Now we want to compute \([s_1, s_2, s_3, ...]\). To fix \(e\), let’s define:

\[
\text{aux } s \ i = \text{nextEl } e \ s \ i
\]

So, we would like to compute:

\[
\begin{align*}
s_1' &= s_1^2, \\
s_2 &= \text{aux } s_1^2 2, \\
s_3 &= \text{aux } s_2 3 = \text{aux } (\text{aux } s_1^2 2) 3, \\
s_4 &= \text{aux } s_3 4 = \text{aux } (\text{aux } (\text{aux } s_1^2 2) 3) 4, \\
&\ldots
\end{align*}
\]

Can we capture this pattern?
Yes, using the predefined function `scanl`:

\[
\text{scanl} :: (a \rightarrow b \rightarrow b) \rightarrow b \rightarrow [a] \rightarrow [b]
\]

\[
\text{scanl } f \text{ seed } [] = \text{seed : []}
\]

\[
\text{scanl } f \text{ seed } (x:xs) = \text{seed : scanl } f \text{ newseed } xs
\]

\[
\text{where newseed } = f \text{ x seed}
\]

For example:

\[
\text{scanl } (+) 0 [1,2,3]
\]

\[
\Rightarrow [0,
1 = (+) 0 1,
3 = (+) 1 2,
6 = (+) 3 3]
\]

\[
\Rightarrow [0, 1, 3, 6]
\]

Using `scanl`, the result we want is:

\[
\text{scanl aux s1 } [2 \ldots]
\]
Sample Series Values

[s1 = 0.122449,
s2 = 0.0112453,
s3 = 0.00229496,
s4 = 0.000614721,
s5 = 0.000189685,
...]

Note how quickly the values in the series get smaller ...
Putting it all Together

perimeter (Ellipse r1 r2)
 | r1 > r2 = ellipsePerim r1 r2
 | otherwise = ellipsePerim r2 r1
where ellipsePerim r1 r2
 = let e = sqrt (r1^2 - r2^2) / r1
 s = scanl aux (0.25*e^2)
 (map intToFloat [2..])
 aux s i = nextEl e s i
 test x = x > epsilon
 sSum = foldl (+) 0 (takeWhile test s)
in 2*r1*pi*(1 - sSum)
A Module of Regions

SOE Chapter 8
The Region Data Type

- A region is an area on the two-dimensional Cartesian plane.
- It is represented by a tree-like data structure.

```
data Region =
  Shape Shape               -- primitive shape
| Translate Vector Region   -- translated region
| Scale Vector Region       -- scaled region
| Complement Region         -- inverse of a region
| Region `Union` Region     -- union of regions
| Region `Intersect` Region -- intersection of regions
| Empty

type Vector = (Float, Float)
```
Questions about Regions

- What is the strategy for writing functions operating on regions?
- Is there a fold-function for regions?
 - How many parameters does it have?
 - What is its type?
- Can one define infinite regions?
- What does a region mean?
Sets and Characteristic Functions

- How can we represent an infinite set in Haskell? E.g.:
 - the set of all even numbers
 - the set of all prime numbers

- We could use an infinite list, but then searching it might take a long time! (Membership becomes semi-decidable.)

- The *characteristic function* for a set containing elements of type \(z \) is a function of type \(z \rightarrow \text{Bool} \) that indicates whether or not a given element is in the set. Since that information completely characterizes a set, we can use it to represent a set:

  ```haskell
  type Set a = a -> Bool
  ```

- For example:
  ```haskell
  even :: Set Integer       -- i.e., Integer -> Bool
  even x = (x `mod` 2) == 0
  ```
Combining Sets

- If sets are represented by characteristic functions, then how do we represent the:
 - union of two sets?
 - intersection of two sets?
 - complement of a set?

- In-class exercise – define the following Haskell functions:

```haskell
union s1 s2 =
intersect s1 s2 =
complement s =
```

- We will use these later to define similar operations on regions.
Semantics of Regions

The “meaning” (or “denotation”) of a region can be expressed as its characteristic function -- i.e.,

* a region denotes the set of points contained within it.
We define the meaning of regions by a function:

\[
\text{containsR :: Region } \to \text{ Coordinate } \to \text{ Bool}
\]

\[
\text{type Coordinate = (Float, Float)}
\]

Note that \text{containsR r :: Coordinate } \to \text{ Bool}, which is a characteristic function. So \text{containsR} “gives meaning to” regions.

Another way to see this:

\[
\text{containsR :: Region } \to \text{ Set Coordinate}
\]

We can define \text{containsR} recursively, using pattern matching over the structure of a \text{Region}.

Since the base cases of the recursion are primitive shapes, we also need a function that gives meaning to primitive shapes; we will call this function \text{containsS}.

Let’s define \text{containsS} first...
```haskell
Rectangle s1 s2 `containsS` (x,y)
  = let t1 = s1/2
      t2 = s2/2
      in -t1<=x && x<=t1 && -t2<=y && y<=t2
```
Ellipse

$$\text{Ellipse } r_1 \ r_2 \ \text{`containsS`} \ (x, y)$$

$$= (x/r_1)^2 + (y/r_2)^2 \leq 1$$
The Left Side of a Line

A point \(p \) is to the left of a ray directed from point \(a \) to point \(b \) (facing from \(a \) to \(b \)) when...

\[
\text{isLeftOf} :: \text{Coordinate} \rightarrow \text{Ray} \rightarrow \text{Bool}
\]

\[
\text{isLeftOf} \ (p \cdot x, p \cdot y) \ (a \cdot x, a \cdot y, b \cdot x, b \cdot y)
\]

\[
= \text{let } (s, t) = (p \cdot x - a \cdot x, p \cdot y - a \cdot y)
\]

\[
(u, v) = (p \cdot x - b \cdot x, p \cdot y - b \cdot y)
\]

\[
in \quad s \cdot v \geq t \cdot u
\]

Type \(\text{Ray} = (\text{Coordinate}, \text{Coordinate}) \)
A point \(p \) is contained within a (convex) polygon if it is to the left of every side, when the vertices are oriented in counter-clockwise order.

```
Polygon pts `containsS` p
= let shiftpts = tail pts ++ [head pts]
    leftOfList = map (isLeftOf p) (zip pts shiftpts)
in and leftOfList
```
Right Triangle

\[
\text{RtTriangle } s_1 \ s_2 \ `\text{containsS} \ ` \ p \\
= \text{Polygon } [(0,0),(s_1,0),(0,s_2)] \ `\text{containsS} \ ` \ p
\]
Putting it all Together

\[
\text{containsS} :: \text{Shape} \to \text{Vertex} \to \text{Bool}
\]

\[
\text{Rectangle } s1 \ s2 \ \text{`containsS` } (x,y)
= \begin{cases}
& \text{let } t1 = s1/2; \ t2 = s2/2 \\
& \text{in } -t1 <= x \land x <= t1 \land -t2 <= y \land y <= t2
\end{cases}
\]

\[
\text{Ellipse } r1 \ r2 \ \text{`containsS` } (x,y)
= (x/r1)^2 + (y/r2)^2 <= 1
\]

\[
\text{Polygon } pts \ \text{`containsS` } p
= \begin{cases}
& \text{let } \text{shiftpts} = \text{tail } pts ++ [\text{head } pts] \\
& \text{leftOfList} = \text{map } \text{isLeftOfp} (\text{zip } pts \ \text{shiftpts}) \\
& \text{isLeftOfp } p' = \text{isLeftOf } p \ p' \\
& \text{in } \text{and } \text{leftOfList}
\end{cases}
\]

\[
\text{RtTriangle } s1 \ s2 \ \text{`containsS` } p
= \text{Polygon } [(0,0),(s1,0),(0,s2)] \ \text{`containsS` } p
\]
Defining `containsR`

`containsR :: Region -> Vertex -> Bool`

`Shape s `containsR` p`

```haskell```
    = s `containsS` p
```

`Translate (u,v) r `containsR` (x,y)`

```haskell```
    = r `containsR` (x-u,y-v)
```

`Scale (u,v) r `containsR` (x,y)`

```haskell```
    = r `containsR` (x/u,y/v)
```

`Complement r `containsR` p`

```haskell```
    = not (r `containsR` p)
```

`r1 `Union` r2 `containsR` p`

```haskell```
    = r1 `containsR` p || r2 `containsR` p
```

`r1 `Intersect` r2 `containsR` p`

```haskell```
    = r1 `containsR` p && r2 `containsR` p
```

`Empty `containsR` p = False`
Applying the Semantics

Having defined the meanings of regions, what can we use them for?

- In Chapter 10, we use the `containsR` function to test whether a mouse click falls within a region.

- We can also use the interpretation of regions as characteristic functions to reason about abstract properties of regions. E.g., we can show (by calculation) that `Union` is commutative, in the sense that:

 ![Formula](https://via.placeholder.com/150)

 This is very cool: Instead of having a separate “program logic” for reasoning about properties of programs, we can prove many interesting properties directly by *calculation* on Haskell program texts.

Unfortunately, we will not have time to pursue this topic further this semester.
Drawing Regions

(SOE Chapter 10)
Pictures

- Drawing Pictures
 - Pictures are composed of Regions (which are composed of Shapes)
 - Pictures add **color** and **layering**

```haskell
data Picture = Region Color Region
  | Picture `Over` Picture
  | EmptyPic

deriving Show
```
Digression on Importing

- We need to use SOE for drawing things on the screen, but SOE has its own Region datatype, leading to a name clash when we try to import both SOE and our Region module.

- We can work around this as follows:

```
import SOE hiding (Region)
import qualified SOE as G (Region)
```

- The effect of these declarations is that all the names from SOE except Region can be used in unqualified form, and we can say G.Region to refer to the one from SOE.
Recall the **Region** Datatype

```haskell
data Region =
    Shape Shape                -- primitive shape
  | Translate Vector Region    -- translated region
  | Scale Vector Region        -- scaled region
  | Complement Region          -- inverse of a region
  | Region `Union` Region      -- union of regions
  | Region `Intersect` Region  -- intersection of regions
  | Empty
```

- How do we draw things like the intersection of two regions, or the complement of a region? These are hard to do efficiently. Fortunately, the **G.Region** interface uses lower-level support to do this for us.
G.Region

- The **G.Region** datatype interfaces more directly to the underlying hardware. It is essentially a two-dimensional array or “bit-map”, storing a binary value for each pixel in the window.
Efficient Bit-Map Operations

- There is efficient low-level support for combining bit-maps using a variety of operators. For example, for union:

Making these operations fast requires detailed control over data layout in memory -- a job for a lower-level language. This part of the SOE module is therefore just a “wrapper” for an external library (probably written in C or C++).
G.Region Interface

createRectangle :: Point -> Point -> IO G.Region
createEllipse :: Point -> Point -> IO G.Region
createPolygon :: [Point] -> IO G.Region
andRegion :: G.Region -> G.Region -> IO G.Region
orRegion :: G.Region -> G.Region -> IO G.Region
xorRegion :: G.Region -> G.Region -> IO G.Region
diffRegion :: G.Region -> G.Region -> IO G.Region
deleteRegion :: G.Region -> IO ()
drawRegion :: G.Region -> Graphic

These functions are defined in the SOE library module.
To render things involving intersections and unions quickly, we perform these calculations in a `G.Region`, then turn the `G.Region` into a graphic object, and then use the machinery we have seen in earlier chapters to display the object.

```haskell
drawRegionInWindow :: Window -> Color -> Region -> IO ()
drawRegionInWindow w c r =
  drawInWindow w
  (withColor c (drawRegion (regionToGRegion r)))
```

To finish this off, we still need to define `regionToGRegion`.

But first let’s complete the big picture by writing the (straightforward) function that uses `drawRegionInWindow` to draw Pictures.
Drawing Pictures

- Pictures combine multiple regions into one big picture. They provide a mechanism for placing one sub-picture on top of another.

```haskell
drawPic :: Window -> Picture -> IO ()
drawPic w (Region c r)   = drawRegionInWindow w c r
drawPic w (p1 `Over` p2) = do drawPic w p2
                                drawPic w p1

drawPic w EmptyPic        = return ()
```

- Note that \(p_2 \) is drawn before \(p_1 \), since we want \(p_1 \) to appear “over” \(p_2 \).

Now back to the code for rendering Regions as G.Regions...
Turning a Region into a G.Region

Let’s first experiment with a simplified variant of the problem to illustrate an efficiency issue...

data NewRegion = Rect Side Side

regToNReg :: Region -> NewRegion
regToNReg (Shape (Rectangle sx sy))
 = Rect sx sy
regToNReg (Scale (x,y) r)
 = regToNReg (scaleReg (x,y) r)

 where scaleReg (x,y) (Shape (Rectangle sx sy))
 = Shape (Rectangle (x*sx) (y*sy))
 scaleReg (x,y) (Scale s r)
 = Scale s (scaleReg (x,y) r)
A Problem

- Consider

\[(\text{Scale } (x_1, y_1))\]
\[(\text{Scale } (x_2, y_2))\]
\[(\text{Scale } (x_3, y_3))\]
\[... (\text{Shape } (\text{Rectangle } sx sy))\]
\[...)\)]

- If the scaling is n levels deep, how many traversals does \texttt{regToNReg} perform over the \texttt{Region} tree?
We’ve Seen This Before

- We have encountered this problem before in a different setting. Recall the naive definition of \texttt{reverse}:

 \[
 \begin{align*}
 \text{reverse} \ [\] &= [] \\
 \text{reverse} \ (x:xs) &= (\text{reverse} \ xs) ++ [x]
 \end{align*}
 \]

 \[
 \begin{align*}
 \text{where} \ [\] ++ zs &= zs \\
 (y:ys) ++ zs &= y : (ys ++ zs)
 \end{align*}
 \]

- How did we solve this? We used an extra accumulating parameter:

 \[
 \begin{align*}
 \text{reverse} \ xs &= \text{loop} \ xs \ [] \\
 \text{where} \ \text{loop} \ [] \ zs &= zs \\
 \text{loop} \ (x:xs) \ zs &= \text{loop} \ xs \ (x:zs)
 \end{align*}
 \]

- We can do the same thing for \texttt{Regions}.

N.b.: A good compiler (like GHC) really will implement this function call as a jump!
Accumulating the Scaling Factor

```haskell
regToNReg2 :: Region -> NewRegion
regToNReg2 r = rToNR (1,1) r
  where rToNR :: (Float,Float) -> Region -> NewRegion
        rToNR (x1,y1) (Shape (Rectangle sx sy))
            = Rect (x1* sx) (y1* sy)
        rToNR (x1,y1) (Scale (x2,y2) r)
            = rToNR (x1*x2, y1*y2) r
```

- To solve our original problem, repeat this for all the constructors of Region (not just Shape and Scale) and use G.Region instead of NewRegion. We also need to handle translation as well as scaling.
Final Version

```
regToGReg :: Vector -> Vector -> Region -> G.Region
regToGReg loc sca (Shape s)
    = shapeToGRegion loc sca s
regToGReg loc (sx,sy) (Scale (u,v) r)
    = regToGReg loc (sx*u, sy*v) r
regToGReg (lx,ly) (sx,sy) (Translate (u,v) r)
    = regToGReg (lx+u*sx, ly+v*sy) sca r
regToGReg loc sca Empty
    = createRectangle (0,0) (0,0)
regToGReg loc sca (r1 `Union` r2)
    = let gr1 = regToGReg loc sca r1
        gr2 = regToGReg loc sca r2
        in orRegion gr1 gr2
```

To finish, we need to write similar clauses for **Intersect**, **Complement** etc. and define

```
shapeToGRegion :: Vector -> Vector -> Shape -> G.Region
```
While the function on the previous page does the job correctly, there are several stylistic issues that could make it more readable and understandable.

For one thing, the style of defining a function by patterns becomes cluttered when there are many parameters (other than the one which has the patterns).

For another, the pattern of explicitly allocating and deallocating (bit-map) G.Region’s will be repeated in cases for intersection and for complement, so we should abstract it, and give it a name.
Abstracting Out a Common Pattern

\[
\text{primGReg loc sca r1 r2 op} = \text{let gr1 = regToGReg loc sca r1} \\
\quad \text{gr2 = regToGReg loc sca r2} \\
\quad \text{in op gr1 gr2}
\]
Case Expressions

\[
\text{regToGReg} :: \text{Vector} \to \text{Vector} \to \text{Region} \to \text{G.Region}
\]
\[
\text{regToGReg} \ (\text{loc@}(l_x, l_y)) \ (\text{sca@}(s_x, s_y)) \ \text{shape} =
\]
\[
\begin{align*}
\text{case} \ \text{shape} \ \text{of} \\
\text{Shape} \ s & \rightarrow \ \text{shapeToGRegion} \ \text{loc} \ \text{sca} \ s \\
\text{Translate} \ (u,v) \ r & \rightarrow \ \text{regToGReg} \ (l_x+u*s_x, l_y+u*s_y) \ \text{sca} \ r \\
\text{Scale} \ (u,v) \ r & \rightarrow \ \text{regToGReg} \ \text{loc} \ (s_x*u, s_y*v) \ r \\
\text{Empty} & \rightarrow \ \text{createRectangle} \ (0,0) \ (0,0) \\
\text{r1 `Union` r2} & \rightarrow \ \text{primGReg} \ \text{loc} \ \text{sca} \ \text{r1} \ \text{r2} \ \text{orRegion} \\
\text{r1 `Intersect` r2} & \rightarrow \ \text{primGReg} \ \text{loc} \ \text{sca} \ \text{r1} \ \text{r2} \ \text{andRegion} \\
\text{Complement} \ r & \rightarrow \ \text{primGReg} \ \text{loc} \ \text{sca} \ \text{winRect} \ \text{r} \ \text{diffRegion}
\end{align*}
\]

\[
\text{regionToGRegion} :: \text{Region} \to \text{G.Region}
\]
\[
\text{regionToGRegion} \ r = \ \text{regToGReg} \ (0,0) \ (1,1) \ r
\]
Drawing Pictures

draw :: Picture -> IO ()
draw p = runGraphics (
 do w <- openWindow "Region Test" (xWin,yWin)
 drawPic w p
 spaceClose w
)
A Better Definition

($) :: (a->b) -> a -> b
f ($) x = f x

draw :: Picture -> IO ()
draw p = runGraphics $
 do w <- openWindow "Region Test" (xWin,yWin)
 drawPic w p
 spaceClose w

In effect, we’ve introduced a second syntax for application, with lower precedence than the standard one
Some Sample Regions

\[\text{r1} = \text{Shape \ (Rectangle 3 2)} \]
\[\text{r2} = \text{Shape \ (Ellipse 1 1.5)} \]
\[\text{r3} = \text{Shape \ (RtTriangle 3 2)} \]
\[\text{r4} = \text{Shape \ (Polygon \ [(-2.5,2.5), (-3.0,0), (-1.7,-1.0), (-1.1,0.2), (-1.5,2.0)])} \]
Sample Pictures

\[
\text{reg} = \text{r3} \ `\text{Union}` \\
(r1 `\text{Intersect}` \\
\text{Complement} \text{r2} `\text{Union}` \\
r4)
\]

-- RtTriangle
-- Rectangle
-- Ellipse
-- Polygon

\[
\text{pic1} = \text{Region Cyan} \ \text{reg} \\
\text{Main1} = \text{draw} \ \text{pic1}
\]
More Pictures

```
reg2 = let circle = Shape (Ellipse 0.5 0.5)
      square = Shape (Rectangle 1 1)
      in (Scale (2,2) circle)
         `Union` (Translate (2,1) square)
         `Union` (Translate (-2,0) square)
pic2 = Region Yellow reg2
main2 = draw pic2
```
Another Picture

pic3 = pic2 `Over` pic1
main3 = draw pic3
Separating Computation From Action

oneCircle = Shape (Ellipse 1 1)
manyCircles = [Translate (x,0) oneCircle | x <- [0,2..]]
fiveCircles = foldr Union Empty (take 5 manyCircles)
pic4 = Region Magenta
 (Scale (0.25,0.25)
 fiveCircles)
main4 = draw pic4
Ordering Pictures

\[
pictToList :: \text{Picture} \rightarrow [(\text{Color},\text{Region})]
\]

\[
pictToList \ \text{EmptyPic} \quad = \quad []
\]
\[
pictToList \ (\text{Region } c \ r) \quad = \quad [(c,r)]
\]
\[
pictToList \ (p1 \ `\text{Over}` \ p2)
\quad = \quad pictToList \ p1 \ ++ \ pictToList \ p2
\]

Lists the Regions in a Picture from top to bottom.

(Note that this is possible because Picture is a datatype that can be analyzed. Would not work with, e.g., a characteristic function representation.)
A Suggestive Analogy

\[\text{pictToList\ EmptyPic} = []\]
\[\text{pictToList\ (Region\ c\ r)} = [(c, r)]\]
\[\text{pictToList\ (p1 \text{ `Over` \ } p2)} = \text{pictToList\ p1} +\text{pictToList\ p2}\]

\[\text{drawPic\ w\ EmptyPic} = \text{return\ ()}\]
\[\text{drawPic\ w\ (Region\ c\ r)} = \text{drawRegionInWindow\ w\ c\ r}\]
\[\text{drawPic\ w\ (p1 \text{ `Over` \ } p2)} = \text{do}\ \text{drawPic\ w\ p2}\]
\[\phantom{\text{drawPic\ w\ (p1 \text{ `Over` \ } p2)}} +\text{drawPic\ w\ p1}\]

We’ll have (much) more to say about this next week...
Pictures that React

- Goal: Find the topmost Region in a Picture that “covers” the position of the mouse when the left button is clicked.
- Implementation: Search the picture (represented as a list) for the first Region that contains the mouse position.
- Then (just for fun) re-arrange the list, bringing that one to the top.

```haskell
adjust :: [(Color, Region)] -> Vertex ->
    (Maybe (Color, Region), [(Color, Region)])

adjust [] p = (Nothing, [])
adjust ((c,r):regs) p =
    if r `containsR` p
    then (Just (c,r), regs)
    else let (hit, rs) = adjust regs p
        in  (hit, (c,r) : rs)
```
Doing it Non-recursively

From the Prelude:
\texttt{break:: (a -> Bool) -> [a] -> ([a],[a])}

For example:
\texttt{break even [1,3,5,4,7,6,12] \rightarrow ([1,3,5],[4,7,6,12])}

So:
\texttt{adjust2\ regs\ p = case (break \((_,r) -> r `containsR` p\)\ regs)}
of\texttt{(top,\text{hit:rest}) -> (Just\ hit,\ top++\text{rest})}
\texttt{(_,[\]) \rightarrow (Nothing,\ regs)}
Putting it all Together

```haskell
loop :: Window -> [(Color,Region)] -> IO ()
loop w regs =
  do clearWindow w
     sequence [ drawRegionInWindow w c r |
               (c,r) <- reverse regs ]
     (x,y) <- getLBP w
     case (adjust regs (pixelToInch (x - xWin2),
                        pixelToInch (yWin2 - y) )) of
       (Nothing,  _      ) -> closeWindow w
       (Just hit, newRegs) -> loop w (hit : newRegs)

draw2 :: Picture -> IO ()
draw2 pic = runGraphics $
  do w <- openWindow "Picture demo" (xWin,yWin)
     loop w (pictToList pic)
```
loop2 w regs
 = do clearWindow w
 sequence [drawRegionInWindow w c r | (c,r) <- reverse regs]
 (x,y) <- getLBP w
 let (px,py) = (pixelToInch (x-xWin2), pixelToInch (yWin2-y))
 let testHit (_,r) = r `containsR` (px,py)
 case (break testHit regs) of
 (_,[]) -> closeWindow w
 (top,hit:bot) -> loop w (hit:(top++bot))

 draw3 pic = runGraphics $
 do w <- openWindow "Picture demo" (xWin,yWin)
 loop2 w (pictToList pic)
Try it Out

\[\text{pic} :: \text{Picture} \]
\[\text{pic} = \text{foldl Over EmptyPic} [p1,p2,p3,p4] \]
\[\text{main} = \text{draw3 pic} \]

\begin{align*}
p1, p2, p3, p4 & :: \text{Picture} \\
p1 = \text{Region Magenta} r1 \\
p2 = \text{Region Cyan} r2 \\
p3 = \text{Region Green} r3 \\
p4 = \text{Region Yellow} r4
\end{align*}
A Module of Simple Animations

SOE Chapter 13
Motivation

- In the abstract, an animation is a continuous, time-varying image.
- In practice, it is a sequence of static images displayed in succession so rapidly that it looks continuous.
- Our goal is to present to the programmer an abstract view of animations that hides the practical details.
- In addition, we will generalize animations to be continuous, time-varying quantities of any value, not just images.
Representing Animations

- As usual, we will use our most powerful tool, *functions*, to represent animations:

  ```haskell
  type Animation a = Time -> a
  type Time = Float
  ```

- Examples:

  ```haskell
  rubberBall :: Animation Shape
  rubberBall t = Ellipse (sin t) (cos t)

  revolvingBall :: Animation Region
  revolvingBall t = let ball = Shape (Ellipse 0.2 0.2)
                   in Translate (sin t, cos t) ball

  planets :: Animation Picture
  planets t = let p1 = Region Red (Shape (rubberBall t))
              p2 = Region Yellow (revolvingBall t)
                  in p1 `Over` p2

  tellTime :: Animation String
  tellTime t = "The time is: " ++ show t
  ```
An Animator

- Suppose we had a function:

 \[
 \text{animate} :: \text{String} \rightarrow \text{Animation Graphic} \rightarrow \text{IO ()}
 \]

- We could then execute (display) the previous animations. For example:

 \[
 \begin{align*}
 \text{main1} :: \text{IO ()} \\
 \text{main1} &= \text{animate} \ "\text{Animated Shape}"
 \quad \text{(withColor Blue . shapeToGraphic . rubberBall)}
 \\
 \text{main2} :: \text{IO ()} \\
 \text{main2} &= \text{animate} \ "\text{Animated Text}"
 \quad \text{(text (100,200) . tellTime)}
 \end{align*}
 \]
Definition of “animate”

animate :: String -> Animation Graphic -> IO ()

animate title anim = runGraphics $
 do w <- openWindowEx title (Just (0,0)) (Just (xWin,yWin))
 drawBufferedGraphic (Just 30)
 t0 <- timeGetTime
 let loop =
 do t <- timeGetTime
 let ft = intToFloat (word32ToInt (t-t0)) / 1000
 setGraphic w (anim ft)
 getWindowTick w
 loop
 loop

See text for details...
Common Operations

- We can define many operations on animations based on the underlying type. For example, for Pictures:

  ```
  emptyA :: Animation Picture
  emptyA t = EmptyPic
  overA :: Animation Picture
  \rightarrow Animation Picture
  \rightarrow Animation Picture
  overA a1 a2 t = a1 t `Over` a2 t
  overManyA :: [Animation Picture] \rightarrow Animation Picture
  overManyA = foldr overA emptyA
  ```

- We can do a similar thing for Shapes, etc.
- Also, for numeric animations, we could define functions like `addA`, `multA`, and so on.
- But there is a better way...
Behaviors

Preliminary definition:

\[
\text{newtype Behavior a} \ = \ \text{Beh (Time -> a)}
\]

Here `newtype` creates a single-argument datatype with (time and space) efficiency the same as a simple `type` declaration.

(So what is the difference??)
Behaviors

- We need to use `newtype` here because type synonyms are not allowed in type class instance declarations.
Numeric Animations

instance Num a =>
 Num (Behavior a) where
 (+) = lift2 (+)
 (*) = lift2 (*)
 negate = lift1 negate
 abs = lift1 abs
 signum = lift1 signum
 fromInteger = lift0 . fromInteger

instance Fractional a =>
 Fractional (Behavior a)
where
 (/) = lift2 (/)
 fromRational = lift0 . fromRational

instance Floating a =>
 Floating (Behavior a)
where
 pi = lift0 pi
 sqrt = lift1 sqrt
 exp = lift1 exp
 log = lift1 log
 sin = lift1 sin
 cos = lift1 cos
 tan = lift1 tan
 etc.

...where the lifting functions are defined by:

lift0 :: a -> Behavior a
lift0 x = Beh (\t -> x)

lift1 :: (a -> b) -> (Behavior a -> Behavior b)
lift1 f (Beh a) = Beh (\t -> f (a t))

lift2 :: (a -> b -> c) -> (Behavior a -> Behavior b -> Behavior c)
lift2 g (Beh a) (Beh b) = Beh (\t -> g (a t) (b t))
Furthermore, define \textit{time} by:
\begin{verbatim}
time :: Behavior Time
\textbf{time} = \textbf{Beh} (\lambda t \rightarrow t)
\end{verbatim}

For example, consider \textit{“time + 42”}:
\begin{verbatim}
time + 42
\rightarrow \text{unfold overloaded defs of time, (+), and 42}
(lift2 (+)) (\textbf{Beh} (\lambda t \rightarrow t)) (\textbf{Beh} (\lambda t \rightarrow 42))
\rightarrow \text{unfold lift2}
(\lambda (\textbf{Beh} a) (\textbf{Beh} b) \rightarrow \textbf{Beh} (\lambda t \rightarrow a t + b t))
(\textbf{Beh} (\lambda t \rightarrow t))
(\textbf{Beh} (\lambda t \rightarrow 42))
\rightarrow \text{unfold anonymous function}
\textbf{Beh} (\lambda t \rightarrow (\lambda t \rightarrow t) t + (\lambda t \rightarrow 42) t)
\rightarrow \text{unfold two anonymous functions}
\textbf{Beh} (\lambda t \rightarrow t + 42)
\end{verbatim}

The magic of type classes!!
New Type Classes

- In addition to using existing type classes such as `Num`, we can define new ones. For example:

```haskell
class Combine a where
    empty :: a
    over :: a -> a -> a

instance Combine Picture where
    empty = EmptyPic
    over = Over

instance Combine a => Combine (Behavior a) where
    empty = lift0 empty
    over = lift2 over

overMany :: Combine a => [a] -> a
overMany = foldr over empty
```
Hiding More Detail

- We have not yet hidden all the “practical” detail – in particular, *time* itself.
- But through more aggressive lifting...

```plaintext
reg   = lift2 Region
shape = lift1 Shape
ell   = lift2 Ellipse
red   = lift0 Red
yellow = lift0 Yellow
translate (Beh a1, Beh a2) (Beh r) = Beh (\t -> Translate (a1 t, a2 t) (r t))
```

we can redefine the red revolving ball as follows:

```plaintext
revolvingBallB :: Behavior Picture
revolvingBallB =
    let ball = shape (ell 0.2 0.2)
    in reg red (translate (sin time, cos time) ball)
```
More Liftings

- Comparison operators:

 \((>*) :: \text{Ord}\ a \implies \text{Behavior}\ a \implies \text{Behavior}\ a \implies \text{Behavior}\ \text{Bool} \)

 \((>*) = \text{lift2}\ (>) \)

- Conditional behaviors:

 \[\text{ifFun} :: \text{Bool} \implies a \implies a \implies a \]

 \[\text{ifFun}\ p\ c\ a = \text{if}\ p\ \text{then}\ c\ \text{else}\ a \]

 \[\text{cond} :: \text{Behavior}\ \text{Bool} \implies \text{Behavior}\ a \implies \text{Behavior}\ a \implies \text{Behavior}\ a \]

 \[\text{cond} = \text{lift3}\ \text{ifFun} \]

- For example, a flashing color:

 \[\text{flash} :: \text{Behavior}\ \text{Color} \]

 \[\text{flash} = \text{cond}\ (\sin\ \text{time} >*\ 0)\ \text{red}\ \text{yellow} \]
Time Travel

- A function for translating a behavior through time:

 \[
 \text{timeTrans} :: \text{Behavior Time} \rightarrow \text{Behavior a} \rightarrow \text{Behavior a}
 \]

 \[
 \text{timeTrans (Beh f) (Beh a) = Beh (a . f)}
 \]

- For example:

 \[
 \text{timeTrans (2*time) anim}
 \quad -- \text{double speed}
 \]

 \[
 \text{timeTrans (5+time) anim `over` anim}
 \quad -- \text{one anim 5 sec behind another}
 \]

 \[
 \text{timeTrans (negate time) anim}
 \quad -- \text{go backwards}
 \]

- Any kind of animation can be time transformed:

 \[
 \text{flashingBall :: Behavior Picture}
 \]

 \[
 \text{flashingBall =}
 \]

 \[
 \begin{align*}
 &\text{let ball = shape (ell 0.2 0.2)} \\
 &\text{in reg (timeTrans (8*time) flash)} \\
 &\text{(translate (sin time, cos time) ball)}
 \end{align*}
 \]
Final Example

revolvingBalls :: Behavior Picture
 revolvingBalls
 = overMany [timeTrans (time + t*pi/4) flashingBall
 | t <- map lift0 [0..7]]

See the text for one other example:
 a kaleidoscope program.