
Advanced Programming
Handout 4 A Taste of Infinity

Infinite Lists

 Lists in Haskell need not be finite.  E.g.:
list1 = [1..]       -- [1,2,3,4,5,6,...]

f x = x : (f (x+1))
list2 = f 1         -- [1,2,3,4,5,6,...]

list3 = 1:2:list3   -- [1,2,1,2,1,2,...]

Working with Infinite Lists

 Of course, if we try to perform an operation
that requires consuming all of an infinite list
(such as printing it or finding its length), our
program will never yield a result.

 However, a program that only consumes a
finite part of an infinite list will work just fine.
      take 5 [10..]   [10,11,12,13,14]

Lazy Evaluation

 The feature of Haskell that makes this possible
is lazy evaluation.

 Only the portion of a list that is actually needed
by other parts of the program will actually be
constructed at run time.

 We will discuss the mechanics of lazy
evaluation in much more detail later in the
course.

More About
Higher-Order Functions

(SOE Chapter 9)



Multi-Arg Functions in Haskell
 What is the difference between

f x y = x*y+5

and
f (x,y) = x*y+5

?

Multi-Arg Functions in Haskell
f :: Integer -> Integer -> Integer
f x y = x*y+5

f :: (Integer,Integer) -> Integer
f (x,y) = x*y+5

Multi-Arg Functions in Haskell

f :: Integer -> Integer -> Integer

When we write

f :: Integer -> (Integer -> Integer)

what we really mean is:

Multi-Arg Functions in Haskell
 The observation that an n-argument

function can equivalently be considered
as a 1-argument function that returns an
(n-1)-argument function is called Currying
(after the great early-20th-century logician
Haskell B. Curry!)

Use of Currying
listSum, listProd :: [Integer] -> Integer
listSum  xs        = foldr (+) 0 xs
listProd xs        = foldr (*) 1 xs

listSum            = foldr (+) 0
listProd           = foldr (*) 1

and, or :: [Bool] -> Bool
and xs   = foldr (&&) True  xs
or  xs   = foldr (||) False xs

and      = foldr (&&) True
or       = foldr (||) False

Be Careful Though ...
Consider:

f x = g (x+2) y x
This is not the same as:

f = g (x+2) y
because the remaining occurrence of x becomes unbound.  (Or, in

fact, it might be bound by some outer definition!)

In general:
f x = e x

is the same as
f = e

only if x does not appear free in e.



Simplifying Definitions
Recall:
  reverse xs = foldl revOp [] xs
    where revOp acc x = x : acc

In the prelude we have:  flip f x y = f y x.
(what is its type?)  Thus:

  revOp acc x = flip (:) acc x

or even better:
  revOp = flip (:)

And thus:
  reverse xs = foldl (flip (:)) [] xs

or even better:
  reverse = foldl (flip (:)) []

Anonymous Functions

 So far, all of our functions have been defined using an equation,
such as the function succ defined by:
  succ x = x+1

 This raises the question: Is it possible to define a value that
behaves just like succ, but has no name?  Much in the same way
that 3.14159 is a value that behaves like pi?

 The answer is yes, and it is written \x -> x+1.  Indeed, we
could rewrite the previous definition of succ as:
  succ = \x -> x+1.

Sections

 Sections are like currying for infix operators.  For example:
  (+5) = \x -> x + 5
  (4-) = \y -> 4 – y
So in fact succ is just (+1) !

 Note the section notation is consistent with the fact that (+), for
example, is equivalent to \x -> \y -> x+y.

 Although convenient in many situations, sections are less
expressive than anonymous functions.  For example, it’s hard to
represent
\x -> (x+1)/2 as a section.

 You can also pattern match using an anonymous function, as in
\(x:xs) -> x, which is the head function.

Function Composition
 Very often we would like to combine the effect of one function with

that of another.  Function composition accomplishes this for us, and
is easily defined as the infix operator (.):
  (f . g) x = f (g x)
          -- i.e.: (.) f g x = f (g x)

 So f.g means the same thing as \x -> f (g x).

 Function composition can be used to simplify some of the previous
definitions:
  totalSquareArea sides
    = sumList (map squareArea sides)
    = (sumList . map squareArea) sides

Combining this with currying simplification yields:
  totalSquareArea = sumList . map squareArea

Qualified Types
(SOE Chapter 12)

Motivation
 What should the principal type of (+) be?

 Int -> Int -> Int -- too specific
 a -> a -> a              -- too general

 It seems like we need something “in between”, that restricts “a” to
be from the set of all number types, say Num = {Int, Integer, Float,
Double, etc.}.

 The type a -> a -> a
is really shorthand for     (∀ a) a -> a -> a

 Qualified types generalize this by qualifying the type variable, as
in       (∀ a ∈ Num) a -> a -> a,
which in Haskell we write as  Num a => a -> a -> a



Type Classes

 “Num” in the previous example is called a type class,
and should not be confused with a type constructor or
a value constructor.

 “Num T” should be read “T is a member of (or an
instance of) the type class Num”.

 Haskell’s type classes are one of its most innovative
features.

 This capability is also called “overloading”, because
one function name is used for potentially very different
purposes.

 There are many pre-defined type classes, but you can
also define your own.

Example: Equality

 Like addition, equality is not defined on all types (how would we
test the equality of two functions, for example?).

 So the equality operator (==) in Haskell has type
Eq a => a -> a -> Bool.  For example:

42 == 42   True
‘a’ == ‘a’   True
‘a’ == 42   << type error! >>

     (types don’t match)
(+1) == (\x->x+1)   << type error! >>

     ((->) is not an instance of Eq)
 Note: the type errors occur at compile time!

Equality, cont’d
 Eq is defined by this type class declaration:

class Eq a  where
(==), (/=)       :: a -> a -> Bool
x /= y           =  not (x == y)
x == y           =  not (x /= y)

 The last two lines are default methods for the operators defined to be
in this class.

 A type is made an instance of a class by an instance declaration.  For
example:

instance Eq Int where
    x == y = intEq x y   -- primitive equality for Ints
instance Eq Float where
    x == y = floatEq x y -- primitive equality for Floats

Equality, cont’d

 User-defined data types can also be made instances of Eq.  For
example:
  data Tree a = Leaf a | Branch (Tree a) (Tree a)
  instance         Eq (Tree a) where
      Leaf a1      == Leaf a2      = a1 == a2
      Branch l1 r1 == Branch l2 r2 = l1==l2 && r1==r2
      _            == _            = False

 But something is strange here: is “a1 == a2” on the right-hand
side correct?  How do we know that equality is defined on the
type “a”???

Equality, cont’d

 User-defined data types can also be made instances of Eq.  For
example:
  data Tree a = Leaf a | Branch (Tree a) (Tree a)
  instance Eq a => Eq (Tree a) where
      Leaf a1      == Leaf a2      = a1 == a2
      Branch l1 r1 == Branch l2 r2 = l1==l2 && r1==r2
      _            == _            = False

 But something is strange here: is “a1 == a2” on the right-hand
side correct?  How do we know that equality is defined on the
type “a”???

 Answer: Add a constraint that requires a to be an equality type.

Constraints / Contexts are
Propagated

 Consider this function:
x `elem`  []   =  False
x `elem` (y:ys)   =  x==y || x `elem` ys

 Note the use of (==) on the right-hand side of the
second equation.  So the principal type for elem is:

elem :: Eq a => a -> [a] -> Bool

 This is inferred automatically by Haskell, but, as
always, it is recommended that you provide your own
type signature for all top-level functions.



Classes for Regions

 Useful slogan:

 For a simple example, recall from Chapter 8:
containsS :: Shape -> Point -> Bool
containsR :: Region -> Point -> Bool

 These are similar ops over different structures.  So:
class PC t where

contains :: t -> Point -> Bool
instance PC Shape where

contains = containsS
instance PC Region where

contains = containsR

“polymorphism captures similar structure over different values,
while type classes capture similar operations over different
structures.”

Numeric Classes

 Haskell’s numeric types are embedded in a very rich,
hierarchical set of type classes.

 For example, the Num class is defined by:
class  (Eq a, Show a) => Num a  where

(+), (-), (*) :: a -> a -> a
negate :: a -> a
abs, signum :: a -> a
fromInteger :: Integer -> a

 ...where Show is a type class whose main operator is
show :: Show a => a -> String

 See the Numeric Class Hierarchy in the Haskell Report
on the next slide.

Haskell’s Standard
Class Hierarchy

Coercions
 Note this method in the class Num:

fromInteger :: Num a => Integer -> a

 Also, in the class Integral:
toInteger :: Integral a => a -> Integer

 This explains the definition of intToFloat:
intToFloat :: Int -> Float
intToFloat n = fromInteger (toInteger n)

 These generic coercion functions avoid a quadratic
blowup in the number of coercion functions.

 Also, every integer literal, say “42”, is really shorthand
for “fromInteger 42”, thus allowing that number to be
typed as any member of Num.

Derived Instances

 Instances of the following type classes may be automatically
derived:

Eq, Ord, Enum, Bounded, Ix, Read, and Show
 This is done by adding a deriving clause to the data declaration.

For example:
data Tree a = Leaf a | Branch (Tree a) (Tree a)

deriving (Show, Eq)

 This will automatically create an instance for
Show (Tree a) as well as one for Eq (Tree a) that is precisely
equivalent to the one we defined earlier.

Derived vs. User-Defined
 Suppose we define an implementation of

finite sets in terms of lists, like this:
data Set a = Set [a]

insert (Set s) x = Set (x:s)

member (Set s) x = elem x s

union (Set s) (Set t) = Set (s++t)



Derived vs. User-Defined
 We can automatically derive an equality

function just by adding “deriving Eq” to
the declaration.

data Set a = Set [a]
   deriving Eq

insert (Set s) x = Set (x:s)

member (Set s) x = elem x s

union (Set s) (Set t) = Set (s++t)

But is this really what we want??

Derived vs. User-Defined
 No!
 E.g.,

(Set [1,2,3]) == (Set [1,1,2,2,3,3])    False

A Better Way

data Set a = Set [a]

instance Eq a => Eq (Set a) where
  s == t  =  subset s t && subset t s

subset (Set ss) t = all (member t) ss

Haskell Classes <> OO Classes
 Warning…

 The terminology used in Haskell (classes,
instances, inheritance, etc.) is obviously
intended to have something to do with
Object-Oriented Programming.

 However, the exact correspondence is a bit
tricky.

 I recommend not trying to think about this for
the time being.

Reasoning About Type Classes
 Most type classes implicitly carry a set of laws.
 For example, the Eq class is expected to obey:

(a /= b)  =  not (a == b)
(a == b) && (b == c)  ⊇  (a == c)

 Similarly, for the Ord class:
a <= a
(a <= b) && (b <= c)  ⊇  (a <= c)
(a <= b) && (b <= a)  ⊇  (a == b)
(a /= b)  ⊇  (a < b) || (b < a)

 These laws capture the properties of an equivalence
class and a total order, respectively.

 Unfortunately, there is nothing in Haskell that enforces
the laws – its up to the programmer!


