What are the types of these functions?

\[
f(x) = [x] \\
g(x) = [x+1] \\
h([]) = 0 \\
h(y:ys) = h(ys) + 1
\]
Review

How about these?

\[f_1 \ x \ y = \ [x] : \ [y] \]

\[f_2 \ x \ [] = x \]

\[f_2 \ x \ (y:ys) = f_2 \ y \ ys \]

\[f_3 \ [] \ ys = ys \]

\[f_3 \ xs \ [] = xs \]

\[f_3 \ (x:xs) \ (y:ys) = f_3 \ ys \ xs \]
How about these?

foo x y = x (x (x y))
bar x y z = x (y z)

baz x (x1:x2:xs) = (x1 `x` x2) : baz xs
baz x _ = []

What does baz do?
Recall that `map` is defined as:

\[
\text{map} :: (a \rightarrow b) \rightarrow [a] \rightarrow [b] \\
\text{map } f \ [] = [] \\
\text{map } f \ (x:xs) = f \ x : \text{map } f \ xs
\]

What does this function do?

\[
\text{mystery } f \ l = \text{map } (\text{map } f) \ l
\]
Trees

- Trees are used all over the place in programming.
- Trees have interesting properties:
 - They are (usually!) finite, but potentially unbounded in size.
 - They often contain other types of data (ints, strings, lists) within.
 - They can be polymorphic.
 - They may have differing “branching factors”.
 - They may have different flavors of leaves and branching nodes.
- Lots of interesting data structures are tree-like:
 - lists (linear branching)
 - arithmetic expressions (see SOE)
 - parse trees (for programming or natural languages)
 - etc., etc.
- In a lazy language like Haskell, we can even build infinite trees!
Examples

data List a = Nil
 | MkList a (List a)

data Tree a = Leaf a
 | Branch (Tree a) (Tree a)

data IntegerTree = IntLeaf Integer
 | IntBranch IntegerTree IntegerTree

data SimpleTree = SLeaf
 | SBranch SimpleTree SimpleTree

data InternalTree a = ILeaf
 | IBranch a (InternalTree a) (InternalTree a)

data FancyTree a b = FLeaf a
 | FBranch b (FancyTree a b) (FancyTree a b)

Note that this type declaration is recursive: List is mentioned on its right-hand side
Match up the Trees

- IntegerTree
- Tree
- SimpleTree
- List
- InternalTree
- FancyTree
Functions on Trees

- Transforming a tree of \texttt{a}s into a tree of \texttt{b}s:
 \[
 \text{mapTree} :: (\texttt{a}\rightarrow\texttt{b}) \rightarrow \text{Tree}\ \texttt{a} \rightarrow \text{Tree}\ \texttt{b}
 \]
 \[
 \text{mapTree}\ f\ (\text{Leaf}\ \texttt{x}) = \text{Leaf}\ (f\ \texttt{x})
 \]
 \[
 \text{mapTree}\ f\ (\text{Branch}\ \texttt{t1}\ \texttt{t2}) = \text{Branch}\ (\text{mapTree}\ f\ \texttt{t1})\ (\text{mapTree}\ f\ \texttt{t2})
 \]

- Collecting the items in a tree:
 \[
 \text{fringe} :: \text{Tree}\ \texttt{a} \rightarrow [\texttt{a}]
 \]
 \[
 \text{fringe}\ (\text{Leaf}\ \texttt{x}) = [\texttt{x}]
 \]
 \[
 \text{fringe}\ (\text{Branch}\ \texttt{t1}\ \texttt{t2}) = \text{fringe}\ \texttt{t1}++\text{fringe}\ \texttt{t2}
 \]
More Functions on Trees

\[
\text{treeSize} \quad :: \quad \text{Tree}\ a \rightarrow \text{Integer}
\]
\[
\text{treeSize} \ (\text{Leaf}\ x) \quad = \quad 1
\]
\[
\text{treeSize} \ (\text{Branch}\ t1\ t2) \quad = \quad \text{treeSize}\ t1 \ + \ \text{treeSize}\ t2
\]

\[
\text{treeHeight} \quad :: \quad \text{Tree}\ a \rightarrow \text{Integer}
\]
\[
\text{treeHeight} \ (\text{Leaf}\ x) \quad = \quad 0
\]
\[
\text{treeHeight} \ (\text{Branch}\ t1\ t2) \quad = \quad 1 \ + \ \max \ (\text{treeHeight}\ t1) \ (\text{treeHeight}\ t2)
\]
Capturing a Pattern of Recursion

Many of our functions on trees have similar structure. Can we apply the abstraction principle?

Of course we can!

```
foldTree :: (a -> a -> a) -> (b -> a) -> Tree b -> a
foldTree combineFn leafFn (Leaf x) =
  leafFn x
foldTree combineFn leafFn (Branch t1 t2) =
  combineFn (foldTree combineFn leafFn t1)
  (foldTree combineFn leafFn t2)
```
Using `foldTree`

With `foldTree` we can redefine the previous functions like this:

```haskell
mapTree f = foldTree Branch fun
    where fun x = Leaf (f x)

fringe    = foldTree (++) fun
    where fun x = [x]

treeSize  = foldTree (+) (const 1)
    where const x y = x

treeHeight = foldTree fun (const 0)
    where const x y = x
        fun x y = 1 + max x y
```

Partial application again!
Arithmetic Expressions

data Expr = C Float
 | Add Expr Expr
 | Sub Expr Expr
 | Mul Expr Expr
 | Div Expr Expr

Or, using infix constructor names:

data Expr = C Float
 | Expr :+ Expr
 | Expr :- Expr
 | Expr :* Expr
 | Expr :/ Expr
Example

e1 = (C 10 :+ (C 8 :/ C 2)) :* (C 7 :- C 4)

evaluate :: Expr -> Float
evaluate (C x) = x
evaluate (e1 :+ e2) = evaluate e1 + evaluate e2
evaluate (e1 :- e2) = evaluate e1 - evaluate e2
evaluate (e1 :* e2) = evaluate e1 * evaluate e2
evaluate (e1 :/ e2) = evaluate e1 / evaluate e2

Main> evaluate e1
42.0
A Taste of Infinity
Infinite Lists

Lists in Haskell need not be finite. E.g.:

```haskell
list1 = [1..]       -- [1,2,3,4,5,6,...]
f x = x : (f (x+1))
list2 = f 1         -- [1,2,3,4,5,6,...]
list3 = 1:2:list3   -- [1,2,1,2,1,2,...]
```
Working with Infinite Lists

- Of course, if we try to perform an operation that requires consuming *all* of an infinite list (such as printing it or finding its length), our program will loop.

- However, a program that only consumes a *finite part* of an infinite list will work just fine.

\[
\text{take 5 } [10..] \rightarrow [10,11,12,13,14]
\]
The feature of Haskell that makes this possible is *lazy evaluation*.

Only the portion of a list that is actually needed by other parts of the program will actually be constructed at run time.

We will discuss the mechanics of lazy evaluation in much more detail later in the course. Today, let’s look at a real-life example of its use...
Shapes III: Perimeters of Shapes (Chapter 6)
The Perimeter of a Shape

- To compute the perimeter we need a function with four equations (1 for each Shape constructor).

- The first three are easy ...

```haskell
perimeter :: Shape -> Float
perimeter (Rectangle s1 s2) = 2*(s1+s2)
perimeter (RtTriangle s1 s2) = s1 + s2 + sqrt (s1^2+s2^2)
perimeter (Polygon pts) = foldl (+) 0 (sides pts)
  -- or: sumList (sides pts)
```

- This assumes that we can compute the lengths of the sides of a polygon. This shouldn’t be too difficult since we can compute the distance between two points with distBetween.
Recursive Def’n of \textbf{Sides}

\begin{verbatim}
sides :: [Vertex] -> [Side]
sides [] = []
sides (v:vs) = aux v vs
 where
 aux v1 (v2:vs') = distBetween v1 v2 : aux v2 vs'
 aux vn [] = distBetween vn v : []
-- i.e. aux vn [] = [distBetween vn v]
\end{verbatim}

- But can we do better? Can we remove the direct recursion, as a seasoned functional programmer might?
The list of vertices is: \(vs = [A, B, C, D, E] \)

We need to compute the distances between the pairs of points \((A, B), (B, C), (C, D), (D, E), \) and \((E, A)\).

Can we compute these pairs as a list?

\[
[(A, B), (B, C), (C, D), (D, E), (E, A)]
\]

Yes, by “zipping” the two lists:

\[
[A, B, C, D, E] \text{ and } [B, C, D, E, A]
\]
as follows:

\[
\text{zip vs (tail vs ++ [head vs])}
\]
New Version of `sides`

This leads to:

```haskell
sides :: [Vertex] -> [Side]
sides vs = zipWith distBetween vs
            (tail vs ++ [head vs])
```
There is one remaining case: the *ellipse*. The perimeter of an ellipse is given by the summation of an infinite series. For an ellipse with radii r_1 and r_2:

$$p = 2\pi r_1 (1 - \sum s_i)$$

where $s_1 = \frac{1}{4} e^2$

$$s_i = s_{i-1} \frac{(2i-1)(2i-3)}{4i^2} e^2 \quad \text{for} \quad i > 1$$

$$e = \sqrt{\frac{r_1^2 - r_2^2}{r_1}}$$

Given s_i, it is easy to compute s_{i+1}.

\[n.b.: \text{not } \geq \text{ as in handout} \]
Computing the Series

nextEl :: Float -> Float -> Float -> Float
nextEl e s i = s*(2*i-1)*(2*i-3)*(e^2) / (4*i^2)

Now we want to compute \([s_1, s_2, s_3, \ldots]\). To fix \(e\), let’s define:

\[\text{aux } s \ i = \text{nextEl } e \ s \ i\]

So, we would like to compute:

\[
\begin{align*}
 & [s_1, s_2, s_3, s_4, \ldots] \\
 s_1 &= \text{aux } s_1 \ 2, \\
 s_2 &= \text{aux } s_2 \ 3 = \text{aux } (\text{aux } s_1 \ 2) \ 3, \\
 s_3 &= \text{aux } s_3 \ 4 = \text{aux } (\text{aux } s_2 \ 3) \ 4, \\
 s_4 &= \text{aux } s_4 \ 5 = \text{aux } (\text{aux } s_3 \ 4) \ 5,
\end{align*}
\]

Can we capture this pattern?
Scanl (scan from the left)

- Yes, using the predefined function \texttt{scanl}:
 \[
 \text{scanl} :: (a \to b \to b) \to b \to [a] \to [b] \\
 \text{scanl}\ f\ seed\ [] = seed : [] \\
 \text{scanl}\ f\ seed\ (x:xs) = seed : \text{scanl}\ f\ newseed\ xs \\
 \text{where}\ newseed = f\ x\ seed
 \]

- For example:
 \[
 \text{scanl}\ (+)\ 0\ [1,2,3] \\
 \Rightarrow [0,1 = (+) 0 1,3 = (+) 1 2,6 = (+) 3 3] \\
 \Rightarrow [0,1,3,6]
 \]

- Using \texttt{scanl}, the result we want is:
 \[
 \text{scanl}\ aux\ s1\ [2\ ..]
 \]
Sample Series Values

\[
\begin{align*}
 s_1 &= 0.122449, \\
 s_2 &= 0.0112453, \\
 s_3 &= 0.00229496, \\
 s_4 &= 0.000614721, \\
 s_5 &= 0.000189685, \\
 &\vdots
\end{align*}
\]

Note how quickly the values in the series get smaller ...
Putting it all Together

perimeter (Ellipse r1 r2)
| r1 > r2 = ellipsePerim r1 r2
| otherwise = ellipsePerim r2 r1
where ellipsePerim r1 r2
 = let e = sqrt (r1^2 - r2^2) / r1
 s = scanl aux (0.25*e^2) (map intToFloat [2..])
 aux s i = nextEl e s i
 test x = x > epsilon
 sSum = foldl (+) 0 (takeWhile test s)
 in 2*r1*pi*(1 - sSum)
Case Study:
A Module of Regions
The Region Data Type

- A *region* represents an area on the two-dimensional Cartesian plane.
- It is represented by a tree-like data structure.

```haskell
data Region =
  Shape Shape               -- primitive shape
| Translate Vector Region   -- translated region
| Scale Vector Region       -- scaled region
| Complement Region         -- inverse of region
| Region `Union` Region     -- union of regions
| Region `Intersect` Region -- intersection of regions
| Empty

type Vector = (Float, Float)
```
Questions about Regions

- What is the strategy for writing functions over regions?

- Is there a fold-function for regions?
 - How many parameters does it have?
 - What is its type?

- Can one define infinite regions?

- What does a region mean?
Sets and Characteristic Functions

- How can we represent an infinite set in Haskell? E.g.:
 - the set of all even numbers
 - the set of all prime numbers

- We could use an infinite list, but then searching it might take a very long time! (Membership becomes semi-decidable.)

- The characteristic function for a set containing elements of type \(z \) is a function of type \(z \rightarrow \text{Bool} \) that indicates whether or not a given element is in the set. Since that information completely characterizes a set, we can use it to represent a set:

  ```haskell
  type Set a = a -> Bool
  ```

- For example:

  ```haskell
  even :: Set Integer       -- i.e., Integer -> Bool
  even x = (x `mod` 2) == 0
  ```
Combining Sets

- If sets are represented by characteristic functions, then how do we represent the:
 - *union* of two sets?
 - *intersection* of two sets?
 - *complement* of a set?

- In-class exercise – define the following Haskell functions:

  ```haskell
  union s1 s2 = 
  intersect s1 s2 = 
  complement s = 
  ```

- We will use these later to define similar operations on regions.
Semantics of Regions

The “meaning” (or “denotation”) of a region can be expressed as its characteristic function -- i.e.,

\[\text{a region denotes the set of points contained within it.} \]
Characteristic Functions for Regions

- We define the meaning of regions by a function:

 \[
 \text{containsR} :: \text{Region} \rightarrow \text{Coordinate} \rightarrow \text{Bool}
 \]

 \[
 \text{type Coordinate} = (\text{Float}, \text{Float})
 \]

- Note that \(\text{containsR} r :: \text{Coordinate} \rightarrow \text{Bool} \), which is a characteristic function. So \(\text{containsR} \) “gives meaning to” regions.

- Another way to see this:

 \[
 \text{containsR} :: \text{Region} \rightarrow \text{Set Coordinate}
 \]

- We can define \(\text{containsR} \) recursively, using pattern matching over the structure of a \text{Region}.

- Since the base cases of the recursion are primitive shapes, we also need a function that gives meaning to primitive shapes; we will call this function \(\text{containsS} \).
Rectangle

\[
\text{Rectangle s1 s2 `containsS` (x,y)} = \begin{align*}
&\text{let t1 = s1/2} \\
&t2 = s2/2 \\
&\text{in } -t1<x \land x<t1 \land -t2<y \land y<t2
\end{align*}
\]
Ellipse

$\text{Ellipse } r_1 \ r_2 \ \`\text{containsS}\` \ (x,y) \ = \ (x/r_1)^2 + (y/r_2)^2 \leq 1$
The Left Side of a Line

For a ray directed from point a to point b, a point p is to the left of the ray (facing from a to b) when:

$$\text{isLeftOf} :: \text{Coordinate} \rightarrow \text{Ray} \rightarrow \text{Bool}$$

$$\text{isLeftOf} \ (px,py) \ ((ax,ay),(bx,by)) = \text{let} \ ((s,t) = (px-ax, py-ay)) \ ((u,v) = (px-bx, py-by)) \ \text{in} \ s*v \geq t*u$$

Type $\text{Ray} = (\text{Coordinate}, \text{Coordinate})$
A point \(p \) is contained within a (convex) polygon if it is to the left of every side, when they are followed in counterclockwise order.

```plaintext
Polygon pts `containsS` p
  = let shiftpts = tail pts ++ [head pts]
  leftOfList = map isLeftOfp (zip pts shiftpts)
  isLeftOfp p' = isLeftOf p p'
  in and leftOfList
```
Right Triangle

\[
\text{RtTriangle } s1 \text{ s2 `containsS` p} \\
\quad = \text{Polygon } [(0,0),(s1,0),(0,s2)] \text{ `containsS` p}
\]
Putting it all Together

\[\text{containsS} :: \text{Shape} \rightarrow \text{Vertex} \rightarrow \text{Bool} \]

\[
\text{Rectangle } s1 \text{ } s2 \text{ `containsS` } (x,y) = \text{let } t1 = s1/2; \text{ } t2 = s2/2 \\
\quad \text{in } -t1<=x \&\& x<=t1 \&\& -t2<=y \&\& y<=t2
\]

\[
\text{Ellipse } r1 \text{ } r2 \text{ `containsS` } (x,y) = (x/r1)^2 + (y/r2)^2 \leq 1
\]

\[
\text{Polygon } pts \text{ `containsS` } p = \text{let } \text{shiftpts} = \text{tail} \text{ pts ++ [head} \text{ pts]} \\
\quad \text{leftOfList} = \text{map isLeftOfp} (\text{zip} \text{ pts shiftpts}) \\
\quad \text{isLeftOfp} \text{ } p' = \text{isLeftOf} \text{ } p \text{ } p' \\
\quad \text{in } \text{and} \text{ leftOfList}
\]

\[
\text{RtTriangle } s1 \text{ } s2 \text{ `containsS` } p = \text{Polygon} \ [(0,0),(s1,0),(0,s2)] \text{ `containsS` } p
\]
Defining \texttt{containsR}

\begin{verbatim}
containsR :: Region -> Vertex -> Bool
Shape s `containsR` p = s `containsS` p
Translate (u,v) r `containsR` (x,y)
 = r `containsR` (x-u,y-v)
Scale (u,v) r `containsR` (x,y)
 = r `containsR` (x/u,y/v)
Complement r `containsR` p
 = not (r `containsR` p)
r1 `Union` r2 `containsR` p
 = r1 `containsR` p || r2 `containsR` p
r1 `Intersect` r2 `containsR` p
 = r1 `containsR` p && r2 `containsR` p
Empty `containsR` p = False
\end{verbatim}
Applying the Semantics

Having defined the meanings of regions, what can we use them for?

- In Chapter 10, we will use the `containsR` function to test whether a mouse click falls within a region.
- We can also use the interpretation of regions as characteristic functions to reason about abstract properties of regions. E.g., we can show (by calculation) that `Union` is commutative, in the sense that:

\[
(r_1 \ `\text{Union}` \ r_2) \ `\text{containsR}` \ p \Rightarrow (r_2 \ `\text{Union}` \ r_1) \ `\text{containsR}` \ p
\]

(and vice versa)

This is cool: Instead of having a separate “program logic” for reasoning about properties of programs, we can prove many interesting properties directly by calculation on Haskell program texts.

Unfortunately, we will not have time to pursue this topic further in this class.