
CSE399: Advanced Programming

Handout 2



Higher-Order Programming



Functions as Data

In Haskell (and other functional languages), functions can be
treated as “ordinary data”—they can be passed as arguments to
other functions, returned as results, stored in lists, etc., etc.

Taking a function as an argument:

thrice :: (Int->Int) -> Int -> Int
thrice f x = f (f (f x))

plus2 :: Int -> Int
plus2 x = x+2

foo :: Int
foo = thrice plus2 10 -- foo = 16



Functions as Data

Returning a function as a result:

plusn :: Int -> (Int->Int)
plusn n = f

where f x = n + x

plus5 :: Int -> Int
plus5 = plusn 5

bar1 = plus5 10 -- bar1 = 15

-- Or just...
bar2 = (plusn 5) 10 -- bar2 = 15



Functions as Data

The type constructor -> is right-associative — i.e.,

Int -> Int -> Int

means the same as

Int -> (Int->Int)

That is, a function of type Int -> Int -> Int can be thought of as
a function that takes an integer and returns a function from integers
to integers!

So we can write plusn in a simpler way:

plusn’ :: Int -> (Int->Int) -- i.e., Int->Int->Int
plusn’ n x = n + x -- i.e., plusn’ = (+)

Each time we use plusn, we can choose whether to apply it to
two integers to get an integer or to “partially apply” it to just one
integer, yielding a function.



Functions as Data

Putting these together...

thriceplus2 :: Int->Int
thriceplus2 = thrice plus2 -- partial application!

baz :: Int -> Int
baz = thrice thriceplus2 -- again!!

-- Check: What is (baz 0)??



Polymorphism



The Length Function is Polymorphic

length :: [a] -> Int
length [] = 0
length (x:xs) = 1 + length xs

The “a” in the type of length is a placeholder that can be replaced
with any type when length is applied.

length [1,2,3] ⇒ 3
length ["a","b","c"] ⇒ 3
length [[1],[],[2,3]] ⇒ 3



Polymorphism

Many of Haskell’s predefined functions are polymorphic

(++) :: [a] -> [a] -> [a]
id :: a -> a
head :: [a] -> a
tail :: [a] -> [a]
[] :: [a] -- interesting!

Quick check: what is the type of tag1?

tag1 x = (1,x)



Polymorphic Data Structures

Polymorphic functions — functions that can operate on any type of
data — are often associated with polymorphic data structures —
structures that can contain any type of data.

The previous examples involved lists and tuples. In particular, here
are the types of the list and tuple constructors:

(:) :: a -> [a] -> [a]
(,) :: a -> b -> (a,b)

We can also define new polymorphic data structures...



A User-Defined Polymorphic Data Structure

The type variable a on the left-hand-side of the = tells Haskell that
Maybe is a polymorphic data type:

data Maybe a = Nothing | Just a

Note the types of the constructors:

Nothing :: Maybe a
Just :: a -> Maybe a

Thus:

Just 3 :: Maybe Int
Just "x" :: Maybe String
Just (3,True) :: Maybe (Int,Bool)
Just (Just 1) :: Maybe (Maybe Int)



Maybe May Be Useful

The most common use of Maybe is with a function that “may”
return a useful value, but may also fail.

For example, the division operator div in Haskell will cause a
run-time error if its second argument is zero. Thus we may wish to
define a safe division function, as follows:

safeDivide :: Int -> Int -> Maybe Int
safeDivide x 0 = Nothing
safeDivide x y = Just (x ‘div‘ y)



Polymorphic Higher-Order Functions



Abstraction Over Recursive Definitions

Recall from Section 4.1:

transList :: [Vertex] -> [Point]
transList [] = []
transList (p:ps) = trans p : transList ps

(where trans converts ordinary cartesian coordinates into screen
coordinates).

Also, from Chapter 3:

putCharList :: [Char] -> [IO ()]
putCharList [] = []
putCharList (c:cs) = putChar c : putCharList cs

These definitions are very similar. Indeed, the only thing different
about them (besides the variable names) is the function trans vs.
the function putChar.

We can use the abstraction principle to take advantage of this
regularity.



Abstraction Yields map

Since trans and putChar are the differing elements, they should
be arguments to the abstraction. In other words, we would like to
define a function — let’s call it map — such that map trans behaves
like transList and map putChar behaves like putCharList.

No problem:

map f [] = []
map f (x:xs) = f x : map f xs

Now it is easy to redefine transList and putCharList in terms of
map:

transList xs = map trans xs
putCharList cs = map putChar cs



map is Polymorphic

The great thing about map is that it is polymorphic. Its most general
(or principal) type is:

map :: (a->b) -> [a] -> [b]

Whatever type is instantiated for the type variable a must be the
same at both instances of a, and similarly for b.

For example, since trans :: Vertex -> Point, we have

map trans :: [Vertex] -> [Point]

and since putChar :: Char -> IO (),

map putChar :: [Char] -> [IO ()]



Digression: Arithmetic Sequences

Haskell provides a convenient special syntax for lists of numbers
obeying simple rules:

[1 .. 6] ⇒ [1,2,3,4,5,6]
[1,3 .. 9] ⇒ [1,3,5,7,9]
[5,4 .. 1] ⇒ [5,4,3,2,1]
[2.4, 2.1 .. 0.3] ⇒ [2.4, 2.1, 1.8, 1.5, etc.]



Another Example of Map

circles :: [Shape]
circles = map circle [2.4, 2.1 .. 0.3]

Now let’s draw them...



Digression: zipping

Another useful higher-order function:

zip :: [a] -> [b] -> [(a,b)]

zip (a:as) (b:bs) = (a,b) : zip as bs
zip _ _ = []

For example:
zip [1,2,3] [True,False,False]

⇒ [(1,True), (2,False), (3,False)]

Quick check: What does zip [1..3] [1..5] yield?



Coloring Our Circles

colCircles :: [(Color,Shape)]
colCircles = zip [Red,Blue,Green,

Cyan,Red,Magenta,
Yellow,White]
circles



Drawing Colored Shapes

drawShapes :: Window -> [(Color,Shape)] -> IO ()

drawShapes w css =
sequence_ (map aux css)
where aux (c,s) =

drawInWindow w
(withColor c

(shapeToGraphic s))

Recall from Chapter 3 that sequence_ takes a list of IO() actions
and returns an IO() action that performs all the actions in the list in
sequence.



The Main Action

g = do w <- openWindow "Bulls eye" (600,600)
drawShapes w colCircles
k <- getKey w
closeWindow w

main = runGraphics g



The Result



When to Define Higher-Order Functions

Recognizing repeating patterns is the key, as we did for map. As
another example, consider:

listSum [] = 0
listSum (x:xs) = x + listSum xs

listProd [] = 1
listProd (x:xs) = x * listProd xs

Note the similarities. Also note the differences (0 vs. 1 and + vs. *):
it is these that will become parameters to the abstracted function.



Fold

Abstracting out the differences (op and init) leaves this common
part:

fold op init [] = init
fold op init (x:xs) = x ‘op‘ fold op init xs

We recover listSum and listProd by instantiating fold with the
appropriate parameters:

listSum xs = fold (+) 0 xs
listProd xs = fold (*) 1 xs

Note that fold is polymorphic:

fold :: (a -> b -> b) -> b -> [a] -> b



Two Folds Are Better Than One

The fold function is predefined in Haskell, but it is actually called
foldr, because it “folds from the right.” That is:

foldr op init (x1 : x2 : ... : xn : [])
⇒ x1 ‘op‘ (x2 ‘op‘ (...(xn ‘op‘ init)...))

There is another predefined function foldl that “folds from the left”:
foldl op init (x1 : x2 : ... : xn : [])

⇒ (...((init ‘op‘ x1) ‘op‘ x2)...) ‘op‘ xn



Two Folds Are Better Than One

Why two folds? Because sometimes using one can be more
efficient than the other. For example:

foldr (++) [] [x,y,z] ⇒ x ++ (y ++ z)
foldl (++) [] [x,y,z] ⇒ (x ++ y) ++ z

The former is considerably more efficient than the latter (as
discussed in the book); but this is not always the case —
sometimes foldl is more efficient than foldr. Choose wisely!



Another Application of Fold

We have seen the function sequence_, which takes a list of actions
of type IO() and produces a single action of type IO().

We can define sequence_ in terms of >> and foldl as follows:

sequence_ :: [IO ()] -> IO ()
sequence_ acts = foldl (>>) (return ()) acts



Reversing a List

Obvious but inefficient (why?):

reverse [] = []
reverse (x::xs) = reverse xs ++ [x]

Much better (why?):

reverse xs = rev [] xs
where rev acc [] = acc

rev acc (x:xs) = rev (x:acc) xs

This looks a lot like foldl. Indeed, we can redefine reverse as:

reverse xs = foldl revOp [] xs
where revOp a b = b : a


