CSE399: Advanced Programming Handout 2

Higher-Order Programming

Functions as Data

Functions as Data

In Haskell (and other functional languages), functions can be treated as "ordinary data"—they can be passed as arguments to other functions, returned as results, stored in lists, etc., etc.

Taking a function as an argument:

Returning a function as a result:

Functions as Data

Functions as Data

The type constructor -> is right-associative — i.e.,

```
Int -> Int -> Int
means the same as
Int -> (Int->Int)
```

That is, a function of type Int -> Int -> Int can be thought of as a function that takes an integer and returns a function from integers

So we can write plusn in a simpler way:

to integers!

Each time we use plusn, we can choose whether to apply it to two integers to get an integer or to "partially apply" it to just one integer, yielding a function.

Putting these together...

```
thriceplus2 :: Int->Int
thriceplus2 = thrice plus2 -- partial application!
baz :: Int -> Int
baz = thrice thriceplus2 -- again!!
-- Check: What is (baz 0)??
```

Polymorphism

The Length Function is Polymorphic

```
length :: [a] -> Int
length [] = 0
length (x:xs) = 1 + length xs
```

The "a" in the type of length is a placeholder that can be replaced with any type when length is applied.

```
length [1,2,3] \Rightarrow 3
length ["a","b","c"] \Rightarrow 3
length [[1],[],[2,3]] \Rightarrow 3
```

Polymorphism

Polymorphic Data Structures

Many of Haskell's predefined functions are polymorphic

```
(++) :: [a] -> [a] -> [a]
id :: a -> a
head :: [a] -> a
tail :: [a] -> [a]
[] :: [a] -- interesting!
```

Quick check: what is the type of tag1?

```
tag1 x = (1,x)
```

Polymorphic functions — functions that can operate on any type of data — are often associated with polymorphic data structures — structures that can contain any type of data.

The previous examples involved lists and tuples. In particular, here are the types of the list and tuple constructors:

```
(:) :: a -> [a] -> [a]
(,) :: a -> b -> (a,b)
```

We can also define new polymorphic data structures...

A User-Defined Polymorphic Data Structure

Maybe May Be Useful

The type variable a on the left-hand-side of the = tells Haskell that Maybe is a polymorphic data type:

```
data Maybe a = Nothing | Just a
```

Note the types of the constructors:

```
Nothing :: Maybe a
Just :: a -> Maybe a
```

Thus:

```
Just 3 :: Maybe Int

Just "x" :: Maybe String

Just (3,True) :: Maybe (Int,Bool)

Just (Just 1) :: Maybe (Maybe Int)
```

The most common use of Maybe is with a function that "may" return a useful value, but may also fail.

For example, the division operator div in Haskell will cause a run-time error if its second argument is zero. Thus we may wish to define a safe division function, as follows:

```
safeDivide :: Int -> Int -> Maybe Int
safeDivide x 0 = Nothing
safeDivide x y = Just (x 'div' y)
```

Polymorphic Higher-Order Functions

Abstraction Over Recursive Definitions

Recall from Section 4.1:

```
transList :: [Vertex] -> [Point]
transList [] = []
transList (p:ps) = trans p : transList ps
```

(where trans converts ordinary cartesian coordinates into screen coordinates).

Also, from Chapter 3:

```
putCharList :: [Char] -> [IO ()]
putCharList [] = []
putCharList (c:cs) = putChar c : putCharList cs
```

These definitions are very similar. Indeed, the only thing different about them (besides the variable names) is the function trans vs. the function putChar.

Abstraction Yields map

Since trans and putChar are the differing elements, they should be arguments to the abstraction. In other words, we would like to define a function — let's call it map — such that map trans behaves like transList and map putChar behaves like putCharList.

No problem:

```
map f [] = []
map f (x:xs) = f x : map f xs
```

Now it is easy to redefine transList and putCharList in terms of map:

map is Polymorphic

The great thing about map is that it is polymorphic. Its most general (or principal) type is:

```
map :: (a->b) -> [a] -> [b]
```

Whatever type is instantiated for the type variable a must be the same at both instances of a, and similarly for b.

```
For example, since trans :: Vertex -> Point, we have
```

map trans :: [Vertex] -> [Point]

```
and since putChar :: Char -> IO (),
    map putChar :: [Char] -> [IO ()]
```

Digression: Arithmetic Sequences

Haskell provides a convenient special syntax for lists of numbers obeying simple rules:

Another Example of Map

```
circles :: [Shape]
circles = map circle [2.4, 2.1 .. 0.3]
```

Now let's draw them...

Digression: zipping

Coloring Our Circles

Another useful higher-order function:

```
zip :: [a] -> [b] -> [(a,b)]

zip (a:as) (b:bs) = (a,b) : zip as bs

zip _ _ = []
```

For example:

```
zip [1,2,3] [True,False,False]
⇒ [(1,True), (2,False), (3,False)]
```

Quick check: What does zip [1..3] [1..5] yield?

Drawing Colored Shapes

The Main Action

Recall from Chapter 3 that sequence_ takes a list of IO() actions and returns an IO() action that performs all the actions in the list in sequence.

The Result

When to Define Higher-Order Functions

Recognizing repeating patterns is the key, as we did for map. As another example, consider:

```
listSum [] = 0
listSum (x:xs) = x + listSum xs

listProd [] = 1
listProd (x:xs) = x * listProd xs
```

Note the similarities. Also note the differences (0 vs. 1 and + vs. *): it is these that will become parameters to the abstracted function.

Fold

Two Folds Are Better Than One

Abstracting out the differences (op and init) leaves this common part:

```
fold op init [] = init
fold op init (x:xs) = x 'op' fold op init xs
```

We recover <u>listSum</u> and <u>listProd</u> by instantiating <u>fold</u> with the appropriate parameters:

```
listSum xs = fold (+) 0 xs
listProd xs = fold (*) 1 xs
```

Note that fold is polymorphic:

```
fold :: (a -> b -> b) -> b -> [a] -> b
```

The fold function is predefined in Haskell, but it is actually called foldr, because it "folds from the right." That is:

```
foldr op init (x1 : x2 : ... : xn : [])

⇒ x1 'op' (x2 'op' (...(xn 'op' init)...))
```

There is another predefined function fold1 that "folds from the left":

```
foldl op init (x1 : x2 : ... : xn : [])

⇒ (...((init 'op' x1) 'op' x2)...) 'op' xn
```

Two Folds Are Better Than One

Why two folds? Because sometimes using one can be more efficient than the other. For example:

```
foldr (++) [] [x,y,z] \Rightarrow x ++ (y ++ z)
foldl (++) [] [x,y,z] \Rightarrow (x ++ y) ++ z
```

The former is considerably more efficient than the latter (as discussed in the book); but this is not always the case — sometimes fold! is more efficient than foldr. Choose wisely!

Another Application of Fold

We have seen the function sequence, which takes a list of actions of type IO() and produces a single action of type IO().

We can define sequence_ in terms of >> and foldl as follows:

```
sequence_ :: [IO ()] -> IO ()
sequence_ acts = foldl (>>) (return ()) acts
```

Reversing a List

Obvious but inefficient (why?):

```
reverse [] = []
reverse (x::xs) = reverse xs ++ [x]
```

Much better (why?):

```
reverse xs = rev [] xs
where rev acc [] = acc
rev acc (x:xs) = rev (x:acc) xs
```

This looks a lot like foldl. Indeed, we can redefine reverse as: