
Lazy functional programming for real 1

1

Lazy functional
programming for real

Tackling the Awkward Squad
Adapted by BCP from original slides by

Simon Peyton Jones, Microsoft Research

2

Beauty and the Beast

  Functional programming is beautiful, and many
books tell us why

  But to write real applications, we must deal with
un-beautiful issues “around the edges”:

o Input/output

o Concurrency

o Error recovery

o Foreign-language interfaces

The
Awkward

Squad

3

The direct approach

Do everything in “the usual way” (as in ML,
Scheme, etc.)

  I/O via “functions” with side effects
 putchar ‘x’ + putchar ‘y’

  Concurrency via operating system threads; OS
calls mapped to “functions”

  Error recovery via exceptions

  Foreign language procedures mapped to
“functions”

But…
4

The lazy hair shirt

In a lazy functional language like
Haskell, order of evaluation is

deliberately undefined.

 putchar ‘x’ + putchar ‘y’
Output depends on evaluation order of (+)

 [putchar ‘x’, putchar ‘y’]
Output (if any) depends on how the
consumer evaluates the list

5

Tackling the awkward squad

  So lazy languages force us to take a different,
more principled, approach to the Awkward
Squad.

  These lectures and the accompanying notes
describe that approach in detail for Haskell.

6

A web server
 We’ll use a web server as the motivating example

  Lots of I/O, lots of concurrency, need for error
recovery, need to call external libraries

Web server

Client 1 Client 2 Client 3 Client 4

1500 lines of Haskell
700 connections/sec

Lazy functional programming for real 2

7

Monadic
input and output

(review)

8

The problem

A functional
program defines
a pure function,

with no side
effects

The whole point
of running a
program is to

have some side
effect

Tension

9

Functional I/O
main :: [Response] -> [Request]

data Request = ReadFile Filename
 | WriteFile FileName String
 | …

data Response = RequestFailed
 | ReadOK String
 | WriteOk
 | …

  “Wrapper program” interprets requests, and
adds responses to input

10

Functional I/O is awkward

 Hard to extend (new I/O operations ⇒
new constructors)

 No direct connection between Request
and corresponding Response

 Easy to get “out of step” (⇒ deadlock)

11

Monadic I/O: the key idea

A value of type (IO t) is an
“action” that, when performed, may

do some input/output before
delivering a result of type t.

12

A helpful picture
A value of type (IO t) is an “action” that, when

performed, may do some input/output before delivering a
result of type t.

type IO a = World -> (a, World)

IO a
World out World in

result::a

Lazy functional programming for real 3

13

Actions are first class
A value of type (IO t) is an “action” that, when

performed, may do some input/output before delivering a
result of type t.

type IO a = World -> (a, World)

  “Actions” are sometimes called “computations”

 An action is a first class value

  Evaluating an action expression has no effect;
performing the resulting action has an effect

14

Simple I/O

putChar

()

getChar

Char Char

getChar :: IO Char
putChar :: Char -> IO ()

main :: IO ()
main = putChar ‘x’

Main program is an
action of type IO ()

15

Connecting actions up

putChar

()

getChar
Char

Goal: read a character and then write it back out

16

The (>>=) combinator

putChar

()

getChar
Char

 We have connected two actions to make a new,
bigger action.

 echo :: IO ()
 echo = getChar >>= putChar

(>>=) :: IO a -> (a -> IO b) -> IO b

17

Printing a character twice

echoDup :: IO ()

echoDup = getChar >>= (\c ->
 putChar c >>= (\() ->
 putChar c))

This is
just noise…

18

The (>>) combinator

echoDup :: IO ()
echoDup = getChar >>= \c ->
 putChar c >>
 putChar c

(>>) :: IO a -> IO b -> IO b

m >> n = m >>= (_ -> n)

Lazy functional programming for real 4

20

The return combinator

getTwoChars :: IO (Char,Char)
getTwoChars = getChar >>= \c1 ->
 getChar >>= \c2 ->
 return (c1,c2)

return :: a -> IO a

return

21

Notational convenience

getTwoChars :: IO (Char,Char)
getTwoChars = getChar >>= \c1 ->
 getChar >>= \c2 ->
 return (c1,c2)

 By design, the layout looks imperative
 c1 = getchar();
 c2 = getchar();
 return (c1,c2);

22

Notational convenience

getTwoChars :: IO (Char,Char)
getTwoChars = do { c1 <-
getChar ; c2 <-
getChar ; return (c1,c2) }

do notation adds only “syntactic sugar”

23

Desugaring do notation

do { x<-e; s } = e >>= \x -> do { s }

do { e; s } = e >> do { s }

do { e } = e

26

Loops

Values of type (IO t) are first class

So we can define our own “control structures”

for :: [a] -> (a -> IO b) -> IO ()
for [] fa = return ()
for (x:xs) fa = fa x >> for xs fa

e.g. for [1..10] (\x -> putStr (show x))

28

First class actions

Slogan: first-class actions
let us write application-

specific control structures

Lazy functional programming for real 5

32

What does it all mean?

33

What does “mean” mean?

 In linguistics, the structure of natural languages
is described and studied at many levels…

Phonetics What basic sounds
(phonemes) are possible in a
given language

Morphology How phonemes fit together
to make words

Syntax How words are arranged into
grammatical sentences

Semantics What these sentences mean

34

What does “mean” mean?

 Programming languages can be described in
pretty much the same way…

Phonetics What basic sounds
(phonemes) are possible in a
given language

Character set
(ASCII)

Morphology How phonemes fit together
to make words

Lexing

Syntax How words are arranged into
grammatical sentences

Parsing

Semantics What these sentences mean Semantics

35

Semantics of programs

  Denotational semantics: The meaning of a
program is a mathematical function from inputs
to outputs.

  Operational semantics: The meaning of a
program is the sequence of states that some
”abstract machine” goes through when
executing it.

The meaning of programs can be described
rigorously (i.e., mathematically) in different ways…

36

Denotational Semantics

 The meaning of an expression of type Int->Int
is a function on the set of integers.

foo x = x*2+1 means foo = { …,
 (-2,-3),
 (-1,-1),
 (0,1),
 (1,3),
 (2,5),
 … }

37

Denotational Semantics

 This gives us a very natural way to talk about
program equivalence

foo x = x*2+1

means the same as

 { …, (-2,-3), (-1,-1), (0,1),
 (1,3), (2,5), … }

foo’ x = 1+((1+1)*x)

because both mean

Lazy functional programming for real 6

38

Denotational Semantics

 The meaning of an expression of type Int->Int
is a partial function on the set of integers.

fact x =
 if x=0
 then 1
 else x * fact (x-1)

means foo = { …,
 (-2,⊥),
 (-1,⊥),
 (0,1),
 (1,1),
 (2,2),
 (3,6),
 … }

pronounced
“bottom”

39

Denotational Semantics

So the meaning of (fact -2) is ⊥.

I.e., all non-terminating programs mean the
same thing.

Intuitively, this makes good sense…
(All we can “observe” about a non-terminating
program is that it doesn’t terminate!)

…as long as we are only talking about purely
functional expressions.

But…

40

Denotational semantics of IO?

type IO a = World -> (a, World)

  A program that loops forever has meaning
⊥.
A program that prints ‘x’ forever also has
meaning ⊥!

  What is the meaning of two Haskell
programs running in parallel?

  Denotational semantics does not scale well
to concurrency, non-determinism, etc.

42

Operational semantics

Instead of saying what the meaning of a program is,
say how the program behaves

Equivalance of programs becomes similarity of
behaviour instead of identity of meaning

43

Operational semantics

P → Q α

Program state P can move to program state Q,
exchanging event α with the environment

General form:

44

Program states

 A program state represents the current internal
state of the program.

 Initially, it is just a term, {M}

 e.g. {putChar ‘x’ >> putChar ‘y’}

Notation:
Curly braces = “here is a

program state”

Lazy functional programming for real 7

45

Events

 Events describe how the program interacts with
the external world: i.e. what I/O it performs

  P → Q P can move to Q, writing c to stdout

  P → Q P can move to Q, reading c from stdin

!c

?c

46

Our first two rules

 Now, what about this?

 {getChar >>= \c-> putChar c} → ???

 Want to say “look at the action in the
leftmost position...”

47

Evaluation contexts

 E ::= [.] | E >>= M
An evaluation context E is a term with a “hole” in it.
For example:
 E1 = [.] >>= M
 E2 = ([.] >>= M1) >>= M2

E[M] is the evaluation context E with the hole filled
in by M. So

 E1[getChar] = getChar >>= M
 E2[getChar] = (getChar >>= M1) >>= M2

48

Revised rules for put/get

 E ::= [.] | E >>= M

{getChar >>= \c-> putChar c}

 → {return ch >>= \c-> putChar c}
?ch

49

The return/bind rule

{getChar >>= \c-> putChar c}

→ {return ch >>= \c-> putChar c}

→ {(\c-> putChar c) ch}

?ch

Now we need to do some “ordinary evaluation”

“Silent
transition”
(no IO)

50

The evaluation rule

V is the
value of M

“Inference rule”
notation:

If the things
above the line are
true, then we can
deduce the thing

below the line

M wasn’t
already

evaluated

Lazy functional programming for real 8

51

The evaluation rule

→  {(\c-> putChar c) ch}

→  {putChar ch}

→  {return ()}
!ch

Treat primitive IO actions as
“constructors”;

so (putChar ch) is a value

52

Semantics of Mutable State

With these basic tools in-hand, we can think
about how to describe the semantics of
other members of the “awkward squad.”

Let’s start with mutable state...

53

int x = 3;
x = x+1;

Mutable variables in C

x is a location,
initalised with 3

read x, add 1, store
back into x

54

do { x <- newIORef 3;
 v <- readIORef x;
 writeIORef x (v+1) }

Mutable variables in Haskell
x is a location,

initialised with 3

read x

newIORef :: a -> IO (IORef a)
readIORef :: IORef a -> IO a
writeIORef :: IORef a -> a -> IO ()

add 1, store back
into x

55

Semantics for variables

Step 1: elaborate the program state

e.g. νr,s. ({M} | <3>r | <89>s)

The main program

An IORef named r, holding 3
Current set of names

(“νr,s. ...” is shorthand for
“νr. νs. ...”)

Another IORef

56

Semantics for variables

do { x <- newIORef 3;
 v <- readIORef x;
 writeIORef x (v+1) }

Live demo – evaluation of

Lazy functional programming for real 9

57

Semantics for variables

Step 2: add rules for reading, writing IORefs

58

Semantics for variables

Step 2: add rules for reading, writing IORefs

But what if the main program is not
“sitting next to” the relevant
variable? We might need to

rearrange the program state so that
the rules above can apply...

Intuition: A
program state is a

“soup” consisting of
many IORefs and
one main program

59

“Structural rules”

Step 3: add rules to bring “reagents” together

Can look under “|”

Stirring the soup

Can perform any
transitions that

could be performed
on a stirred soup

60

Restriction

Step 4: creation of fresh IORef names

{E[newIORef M]} → {E[return ?]} | <M>?

What can we use
as the IORef

name???

61

Restriction

Step 4: deal with fresh IORef names

Add r to the current set of names

Choose a name r that is
not used already

Put M in a new cell named r

Yield r as the result of newIORef

62

More “Structural rules”

Step 5: structural rules for restriction

Can look under “ν”

Can float “ν”
outwards

(towards the
top of the soup)

Lazy functional programming for real 10

63

Phew!

 Quite a lot of technical
machinery!

 But:

  It’s standard, widely-used machinery
(esp. in process calculi), so it’s worth
getting used to

  It scales to handle non-determinism
and concurrency (as we will see next!)

