
Advanced Programming

Homework Assignment 4

Due Wednesday, February 13, at 3PM

Preminimaries

1. Read chapters 4, 6, 8, 10, and 13 of SOE. (It’s fine to skim 4, 6, 8, and 10, but read 13 carefully: it’s
more challenging. The details of the kaleidoscope example at the end of 13 are not important, but you
may want to try to figure it out as a test of comprehension.)

2. Find a partner, if you don’t already have one. The rest of the assignment should be done “shoulder to
shoulder,” with both of you working at the same screen at the same time.

Warm-up

1. The code in the file hw4template.hs on the course web site constructs a very simple planetary system
containing just a single object called sun. Put this code in a file Main.hs and make sure you can
execute it.

2. Use the provided function translateB to write a function

orbit :: Behavior Picture -- the satellite
-> Behavior Picture -- the fixed body
-> Float -- the frequency of the orbit
-> Float -- the x-radius of the orbit
-> Float -- the y-radius of the orbit
-> Behavior Picture

that takes two picture behaviors and makes the first orbit around the second at the specified distance
and with the specified radii. That is, the two pictures will be overlayed (using over) and, at each time
t, the position of the satellite will be translated by xradius× cos(t× frequency) in the x dimension
and by yradius× sin(t× frequency) in the y dimension.

Test your function by creating another circle, mercury, colored red and with radius 0.1, and making
it orbit around the sun with a frequency of 2.0, and with radii of 2.0 and 0.2 in the x and y axes,
respectively.

3. Use your orbit function again to create an earth with a moon orbiting around it. The earth should
be a blue circle of radius 0.2. The moon should be a white circle of radius 0.08. The orbit of the moon
around the earth should be characterized by a frequency of 2.5 and radii of 0.5 and 0.15. Use orbit
once again to make this whole system orbit around the sun (in addition to mercury).

4. A problem you might have noticed is the overlay behavior of planets. For this part modify orbit to put
planets over or under each other. Hint: you might find the lifted conditional cond from SOE useful for
this part.



5. Modify your functions (and write any support functions that you find necessary) to make the orbital
distances and planet sizes shrink and grow by some factor (you can pass this factor as parameter to
the orbit function), according to how far the planets are from the observer. For example, the earth
and moon should look a little smaller when they are going behind the sun, and the orbital distance of
the moon from the earth should be less.

Choose the scaling factor so that the solar system simulation looks good to you.

6. Optional: Add some other planets, perhaps with their own moons. If you like, feel free to adjust the
parameters we gave above to suit your own aesthetic or astronomical tastes. Make sure, though, that
the features requested in parts (c) and (d) — growing, shrinking, occlusion, etc. — remain clearly
visible.

Main assignment

Design and implement your own Haskell animation.

Submission instructions

• The warm-up exercise does not need to be handed in.

• Put all of your code in a file Main.hs. We will build this file in the SOE/src directory, so you can
assume that the SOE library is available.

(I’m sure there are going to be teams that want to modify the SOE code. In this case, please submit a
single tar file containing both your Main.hs and all of the SOE/src files—both modified and unmodified
ones.)

• Put both of your names in a comment at the top of Main.hs.

Also, please put the approximate number of hours that you spent on this assignment. Give separate
numbers for time spent reading (individually) and time spent programming (together).

• Email the file to both jschorr@seas.upenn.edu and bcpierce@cis.upenn.edu.

2


