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Abstract

Though Haskell’s module language is quite weak, its core
language is highly expressive. Indeed, it is tantalisingly close
to being able to express much of the structure traditionally
delegated to a seperate module language. However, the en-
codings are awkward, and some situations can’t be encoded
at all.

In this paper we refine Haskell’s core language to support
first-class modules with many of the features of ML-style
modules. Our proposal cleanly encodes signatures, struc-
tures and functors with the appropriate type abstraction and
type sharing, and supports recursive modules. All of these
features work across compilation units, and interact harmo-
niously with Haskell’s class system. Coupled with support
for staged computation, we believe our proposal would be an
elegant approach to run-time dynamic linking of structured
code.

Our work builds directly upon Jones’ work on parameterised
signatures, Odersky and Läufer’s system of higher-ranked
type annotations, Russo’s semantics of ML modules using
ordinary existential and universal quantification, and Oder-
sky and Zenger’s work on nested types. We motivate the
system by examples. A more formal presentation is avail-
able in an accompanying technical report.

1 Introduction

There are two competing techniques for expressing the large-
scale structure of programs. The “brand leader” is the two-
level approach, in which the language has two layers: a core
language, and a module language. The most sophisticated
example of this structure is ML and its variants, but many
other languages, such as Haskell or Modula, take the same
form, only with weaker module languages.

In the last few years, however, the core language of (extended
versions of) Haskell has become very rich, to the point where
it is tantalisingly close to being able to compete in the large-
scale-structure league. If that were possible, it would of
course be highly desirable: it would remove the need for
a second language; and it would automatically mean that
modules were first-class citizens, so that functors become
ordinary functions.

The purpose of this paper is to show that, by bringing to-
gether several separate pieces of existing work, we can indeed
bridge this final gap. More specifically, we propose several
more-or-less orthogonal extensions to Haskell that work to-

gether towards this goal.

• Record types, with fields of polymorphic type, dot no-
tation, and the ability to use a single field name in
distinct record types (Section 2.1).

• Nested type declarations inside such records (Sec-
tion 2.3). These nested declarations are purely syn-
tactic sugar; there is nothing complicated.

• First-class universal and existential quantification (Sec-
tion 4.1). Together with record types, this allows us
conveniently to express the types of (generative) func-
tors.

• A declaration-oriented construct for opening an
existentially-quantified value (Section 4.2), together
with a notation to allow opened types to appear in
type annotations (Section 4.3). The standard approach
is expression-oriented, which is unbearably clumsy in
practice, whereas our construct works fine at the top
level (Section 4.4).

Taken individually, all of these ideas have been proposed
before. Our contribution is to put them all together in
a coherent design for a core language that can reasonably
claim to compete with, and in some ways improve on, the
ML brand leader. In particular, our system treats module
structures as first-class values, supports type inference, and
interacts harmoniously with Haskell’s constrained polymor-
phism. From the module point of view, it separates signa-
tures from structures, and offers type abstraction, generative
functors, type sharing, separate compilation, and recursive
and nested signatures and structures. Our proposal is, at the
top-level, fairly compatible with Haskell’s existing module
system (though for clarity we shall bend the syntax some-
what in this paper).

We present our system by a series of worked examples. A
more formal presentation may be found in the technical re-
port version of this paper [18]. At the time of writing we
have only just begun to establish the formal properties of
our system. We have, however, implemented a prototype
compiler, and hope to merge these extensions into GHC, a
production Haskell compiler.

2 Concrete Modules as Records

Following Jones [5], we encode interfaces as parameterised
record types, and implementations as records. Haskell al-
ready has some record-like syntax for data constructors with
named arguments, and many Haskell implementations allow
these fields to be assigned a polymorphic type. However, our



requirements are more demanding, as we wish to share field
names between records, and allow nested type declarations.
So we begin by introducing a new form of type declaration.

2.1 Parameterised Records

Record types are introduced (only) by explicit declaration,
and may be parameterised:

record Set a f = {

empty :: f a

add :: a -> f a -> f a

union :: f a -> f a -> f a

asList :: f a -> [a]

}

(Note that f has kind Type -> Type.) Equality between
record types is nominal rather than structural. Unlike
Haskell, a single field name may be re-used in different record
types.

Record terms are constructed by applying a record construc-
tor to a set of (possibly mutually recursive1) bindings:

intListSet :: Set Int [] {- inferred -}

intListSet = Set {

empty = []

add = \(x :: Int) xs -> x : filter (/= x) xs

union = foldr add

asList = id

}

Record terms may be used within patterns, but we also sup-
port the usual “dot notation” for field projection:

one :: [Int] {- inferred -}

one = intListSet.asList

(intListSet.add 1 intListSet.empty)

As in Haskell, the type signature on a binding — such as
one :: [Int] — is optional; the system will infer a type for
one, but the programmer may constrain the type with a type
signature.

Regarding a module as a record allows an ML functor to be
replaced by an ordinary function. For example:

record EqR a = { eq :: a -> a -> Bool }

mkListSet :: forall a . EqR a -> Set a []

mkListSet eq = Set {

empty = []

add = \x xs ->

x : filter (\y -> not (eq.eq x y)) xs

asList = id

}

Since “functors” are ordinary functions, they integrate
smoothly with Haskell’s type class mechanism:

1This is another (cosmetic, but important) difference
from Haskell 98 records.

mkListSet’ :: forall a . Eq a => Set a []

mkListSet’ = Set {

empty = []

add = \x xs -> x : filter ((/=) x) xs

asList = id

}

By using the overloaded operator (/=) we have replaced the
explicit parameterisation over the record EqR a with implicit
parameterisation over the class Eq a.

Record fields may have polymorphic types:

record Monad f = {

fmap :: forall a b . (a -> b) -> f a -> f b

unit :: forall a . a -> f a

bind :: forall a b . f a -> (a -> f b) -> f b

}

Such records may be constructed and taken apart in the
same way as before:

listMonad :: Monad [] {- inferred -}

listMonad = Monad {

fmap = map

unit = \a -> [a]

bind = \ma f -> concat (map f ma)

}

singleton :: a -> [a]

singleton x = listMonad.unit x

We do not permit subtyping or extensibility for records, de-
ferring such extensions to future work.

2.2 Type inference

Type inference in this system is problematic. For example,
consider:

g = \m f x -> m.fmap f (m.unit x)

Since fmap may be a field name in many records, the type of
m.fmap depends on the type of m — which we do not know.
We avoid this, and other difficulties relating to higher-ranked
polymorphism, by placing imposing the binder rule: the pro-
grammer must supply a type annotation for every lambda-
bound, or letrec-bound, variable whose type mentions a record
type constructor. With the binder rule in place, it becomes
easy to share field names between distinct record types. The
binder rule is somewhat conservative — a clever inference
engine could sometimes do without such an annotation —
but it ensures that the typability of a program does not
depend on the inference algorithm. We discuss alternative
approaches in Section 6.

In practice, it may be tricky to give such a type annotation.
In our example, the type of m is Monad α, where α is the
type in which g is polymorphic. We provide two ways to
solve this, both of which have been validated by practical
experience in GHC. First, we can suppply a type signature

2



for g rather than m:

g :: forall m a b .

Monad m -> (a -> b) -> a -> m b

g = \m f x -> m.fmap f (m.unit x)

Here, we rely on the type checker to propagate the type
annotation for g to an annotation for m, in the “obvious”
way — this statement can be made precise, but we do not
do so here.

Alternatively, g’s argument m may be annotated directly:

g = free t in \(m :: Monad t) f x ->

m.fmap f (m.unit x)

Here the term free t in ... introduces a fresh type variable
t standing for any type within the scope of a term. During
type checking of g, t may be instantiated to any well-kinded
type. Thus g’s first argument may be assigned any type of
the form Monad τ for some type τ . (Notice that t does not
stand for a type argument to g!). During type inference, t
is simply replaced by a fresh unification variable. Thus g’s
inferred principal type is as given above.

2.3 Nested Type Declarations

Modules typically contain a mix of term-level and type-level
declarations. Following Odersky and Zenger [12], we allow
record declarations to contain nested type declarations:

record BTSet a = {

data BinTree = Leaf | Node BinTree a BinTree

empty :: BinTree

add :: a -> BinTree -> BinTree

}

A nested type may be projected from a type in much the
same way as a field may be projected from a term. For
various syntactical reasons, we write ^ instead of the usual
. to denote type projection. For example, we may write:

unitSet :: BTSet a -> a -> (Set a)^BinTree

unitSet set a = set.add a set.empty

(^ binds stonger than type application.) Notice that there
is another way of writing the signature for add in the above
record declaration:

add :: a -> (Set a)^BinTree -> (Set a)^BinTree

Indeed, all four ways of writing add’s type signature are
equivalent: referring to a type relatively (by relying on the
type declarations currently in scope) is equivalent to refer-
ring to it absolutely (by following a path from some top-level
record type).

Since records are just another type declaration, they may
also be nested within other records:

record Graph ver = {

record Edge = { from :: ver; to :: ver }

data Rep = Rep [ver] [Edge]

mkGraph :: [ver] -> [edge] -> Rep

transClosure :: Rep -> Rep

}

Wemay reference nested data and record constructors within
terms by a similar projection syntax:

leaf :: forall a . (Set a)^BinTree {- inferred -}

leaf = Set^Leaf

edge :: (Graph Int)^Edge {- inferred -}

edge = Graph^Edge { from = 1; to = 2 }

Notice that type inference supplies the necessary type argu-
ments for Set and Graph.

Record terms whose types contain nested types are con-
structed in the usual way:

trivGraph :: Graph () {- inferred -}

trivGraph = Graph {

mkGraph = \vs es ->

Rep [()] [Edge { from = (); to = () }]

transClosure = \r -> r

}

As for types, data and record constructors may be referred
to relatively or absolutely.

Our approach to nested types diverges from the usual treat-
ment of ML-style nested modules in two critical ways.
Firstly, we never allow record terms to contain type dec-
larations. (Later we will allow type declarations within top-
level implementations, but this is merely a syntactical con-
venience.) As a consequence, our system avoids entirely the
need for any dependent types, and manifestly respects the
phase distinction [3] between type checking and evaluation.
The work of Odersky and Zenger [12] takes a similar ap-
proach. Secondly, we never allow record types to contain
abstract types, i.e., types which are named but whose def-
inition is hidden. (Again, we will later allow abstract type
declarations within top-level interfaces, but again this is a
syntactical convenience.)

Together, these restrictions mean that nested type declara-
tions may always be flattened into a non-nested declarations.
For example, our BTSet declaration may be rewritten:

data BTSet_BinTree a

= BTSet_Leaf

| BTSet_Node (BTSet_BinTree a) a

(BTSet_BinTree a)

record BTSet a = {

empty :: BTSet_BinTree a

cmp :: a -> a -> BTSet_Cmp

add :: a -> BTSet_BinTree a -> BTSet_BinTree a

}
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Jones [5] advocates not supporting nested types on the
grounds that they may always be translated away in this
manner. We support them in our system because they are
convenient, they subsume the usual namespace mechanism,
and they turn out to be easily implemented.

3 Abstract Modules and Existentials

We now turn our attention to one of the essential properties
of a module language: the ability to hide implementation
types. As we mentioned in the Introduction there are two
main approaches to implementation hiding, which we briefly
review in this Section. The classic approach is to use exis-
tential types (Section 3.1), but the approach that has so far
been more successful in practice, exemplified by ML, uses
dependent sums (Section 3.2).

3.1 Type Abstraction in Haskell

In the intListSet example of Section 2.1 the representation
type of sets as lists was exposed. This is bad, because a
client of the module could pass any list to the add operation,
whereas the implementation of add will expect the set it is
passed to obey invariants maintained by the module (e.g.
the list has no duplicates).

It has long been recognised that existential quantification
provides an appropriate mechanism for hiding such a repre-
sentation type [10]. Many Haskell implementations already
support existential types, allowing us to write:2

data AbsSet a = exists f . MkAbsSet (Set a f)

intSet :: AbsSet Int {- inferred -}

intSet = MkAbsSet intListSet

Consider typing the binding of intSet. Within the body
of the MkAbsSet data constructor, f is bound to [], and so
the application MkAbsSet intListSet is well-typed. Outside
of the AbsSet constructor, the existential quantifier over f

hides this binding3.

Programs wishing to use the operations of intSet must first
“open” the existential quantification using a case expres-
sion:

one :: [Int] {- inferred -}

one = case intSet of

MkAbsSet s -> s.asList (s.add 1 s.empty)

Typing the arm of the case involves checking that
the term s.asList (s.add 1 s.empty) is well-typed un-

2Somewhat confusingly, these implementations require
the keyword forall to be used in this situation rather than
exists.

3The alert reader may be alarmed by our use of ex-
istential quantification over higher-kinded type variables.
Haskell uses a simple but incomplete unification algorithm
for higher-kinded types which turns out to work very well in
practice [4].

der the assumption s :: Set Int F for any type con-
structor F . Equivalently, we must check the term
\s -> s.asList (s.add 1 s.empty) has the polymorphic
type forall f . Set Int f -> υ, for υ a type not containing
f.

Often we wish to manipulate implementations containing ab-
stract, but equal types, known as the “diamond import prob-
lem” [8] in the literature. For example, assume we have a
function which, given any implementation of sets, generates
some additional “helper” functions:

record SetHelp a f = {

unionAll :: [f a] -> f a

}

mkSetHelp :: forall a f . Set a f -> SetHelp a f

mkSetHelp set = SetHelp {

unionAll = foldr set.union set.empty

}

Now consider constructing some set helpers for our abstract
intSet. Clearly we cannot simply write:

intSetHelp = mkSetHelp intSet

error: Type "AbsSet Int" is incompatible with

type "Set Int f"

One way to avoid this mismatch between AbsSet and Set

is to write a version of mkSetHelp which works on abstract
sets directly:

data AbsSetHelp a

= exists f . MkAbsSetHelp (SetHelp a f)

mkAbsSetHelp :: forall a .

AbsSet a -> AbsSetHelp a

mkAbsSetHelp absset

= case absset of

MkAbsSet set ->

MkAbsSetHelp (mkSetHelp set)

Notice that we had to introduce (another) datatype,
AbsSetHelp, to hide the representation of sets in SetHelp.
Using this function, we may now write:

intSetHelp :: AbsSetHelp Int {- inferred -}

intSetHelp = mkAbsSetHelp intSet

However, intSet and intSetHelp may never be mixed, de-
feating the whole purpose of mkAbsSetHelp:

main = case (intSet, intSetHelp) of

(MkAbsSet s, MkAbsSetHelp h) ->

s.asList (h.unionAll

[s.add 1 s.empty, s.add 2 s.empty])

error: arm of case is insufficiently polymorphic

Somehow we must convey the information that a particular
set and its helpers share the same representation, without
exposing the representation itself.
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The only solution to this problem within Haskell is to care-
fully structure our program so that intSet is opened in a
scope containing both the definition of intSetHelp, and all
uses of these two terms which need to share their represen-
tation types:

intSet = MkAbsSet intListSet

two :: forall f .

Set Int f -> SetHelp Int f -> [Int]

two s h = s.asList (h.unionAll [s.add 1 s.empty,

s.add 2 s.empty])

main = case intSet of

MkAbsSet s -> let h = mkSetHelp s

in two s h

These examples illustrate two serious drawbacks to the
existential-type approach to type abstraction within Haskell:

(i) We are forced to introduce an entirely spurious
datatype (e.g., AbsSet) for every instance of type ab-
straction. This datatype is simply there to tell the type
inference system where to expect existential types.

(ii) More seriously, this spurious datatype must be stripped
away within a scope which covers all of the terms which
need to share a particular implementation type. This
is awkward in large programs, and impossible if uses
of an abstract type must be split between compilation
units.

3.2 Type Abstraction in ML/OCaml

These drawbacks have led most module language designers
to abandon the simple-minded approach to type abstraction
through existential quantification in preference for strong or
translucent (dependent) sums [2] (the later are also known
as manifest types [6]). For example, in OCaml our abstract
set would be described by the signature:

module type SET =

sig

type a

type ’a f

val empty : a f

val add : a -> a f -> a f

val union : a f -> a f -> a f

val asList : a f -> a list

end

Here the type constructor f is a nested type of SET which
is left abstract. In ML-based module languages, signatures
are not parameterised, and nested types are abstract by de-
fault. A binding for f must be supplied in any structure
implementing signature SET:

module IntListSet : SET =

struct

type a = int

type ’a f = ’a list

let empty = []

let add = fun x xs ->

x :: filter (fun y -> y <> x) xs

let union = fun xs ys -> fold_right add xs ys

let asList = fun xs -> xs

end

The binding of f to list in IntListSet is hidden by the
explicit signature coercion. Of course, the binding of a to
int is also hidden, even though this is probably not intended.

Sharing of abstract types is expressed using manifest types:

module type SETHELP =

sig

type a

type ’a f

unionAll : (a f) list -> a f

end

module type MKSETHELP =

functor (S : SET) ->

(SETHELP with type a = S.a

type ’a f = ’a S.f)

module MkSetHelp : MKSETHELP =

functor (S : SET) ->

struct

type a = S.a

type ’a f = ’a S.f

let unionAll = fold_right S.union

end

Here the sharing of types a and f in the argument and result
of the MkSetHelp functor is made explicit by the with clause
in the functor’s type.

To sum up: In OCaml, all nested types are abstract un-
less explicitly made manifest, while in Haskell all type pa-
rameters are concrete unless explicitly hidden by existential
quantification.

4 Putting Existentials to Work

The dependent-sum approach to modular structure has
proved to be very fruitful in practice. Nevertheless, there
are strong reasons for continuing to search for alternatives.
ML-style module systems can be extended to support both
first-class and recursive modules but, although the details
for these extensions have been worked out [16, 17], the re-
sulting system is dauntingly complicated. Furthermore, it
would be difficult to adopt such a system for Haskell, be-
cause the interaction with Haskell’s system of type classes is
entirely unclear. Indeed, no one has even attempted to work
out the details for an ML-style module system supporting
type classes. Lastly, there is an uncomfortable duplication
of functionality between a rich core language and a rich mod-
ule language; other things being equal, it would clearly be
better to have a single layer.

So, instead of abandoning existentials for dependent sums,
we shall tackle head-on the two problems we identified with
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existentials: the need for spurious datatypes (Section 4.1),
and the need to open existentials in a common scope (Sec-
tion 4.4).

4.1 Type Inference for Higher-ranked Polymorphism

We would like to get rid of the spurious data type AbsSet

that we were forced to introduce in Section 3.1. The
data type served to tell the type inference engine where
to introduce existential quantification (at occurrences of the
MkAbsSet constructor) and where to eliminate it (at case

expressions that match MkAbsSet).

Instead, we would like to be able to use existential quantifi-
cation freely within type schemes, without a mediating data
type. For example, we’d like to write the intSet example
directly, thus:

intSet :: exists f . Set Int f

intSet = Set {

empty = []

add = \x xs -> x : filter ((/=) x) xs

asList = id

}

Existential quantifiers must now be able to occur in the re-
sult of a function type. For example, here are the types we
would like for mkListSet and mkListSet’, which we saw in
Section 2.1:

mkListSet :: forall a .

EqR a -> exists f . Set a f

mkListSet’ :: forall a . Eq a =>

exists f . Set a f

The type signature for mkListSet expresses both that we can
construct a set implementation from any equality on type a,
and that for each such equality the representation type of
the result is abstract. That is to say, this type signature
mimics the generative functor application of ML. (We shall
see in Section 4.2 that our system cannot mimic OCaml’s
applicative functors [7], and instead requires all type sharing
to be made manifest.)

Our system supports higher-ranked signatures such as these
by adopting the system of type annotations of Odersky
and Läufer [11]. We extend the binder rule of Section 2.2
by requiring a type annotation on every lambda-bound, or
letrec-bound, variable whose type uses existential or univer-
sal quantification. (Exception: in the case of letrec, when
the universal quantification is at the top level, the anno-
tation may be omitted, using the standard Hindley-Milner
trick for recursive definitions.)

The Odersky/Läufer system strictly generalises the type in-
ference algorithm used by those Haskell implementations al-
ready supporting rank-two polymorphism. Type inference
reduces to solving a set of subsumption constraints over
types with mixed prefix. For example, consider inferring
the type of:

(\(f :: forall a . a -> Int -> a) -> f 1 2)

(\x y -> x)

The system discovers that \x y -> x has most general type
forall b c . b -> c -> b. Type checking the outer applica-
tion reduces to checking

forall b c . b -> c -> b ≤ forall a . a -> Int -> a

where we write ≤ to denote “subsumes.” The check proceeds
by skolemizing the right-hand side quantified variables:

forall b c . b -> c -> b ≤ a’ -> Int -> a’

where a’ skolem constant

then freshening the left-hand-side quantifier variables:

b’ -> c’ -> b’ ≤ a’ -> Int -> a’

where a’ skolem constant

and, finally, unifying the result. Since [b’ 7→ a’, c’ 7→ Int]
is a most general unifier, the subsumption check succeeds.

We must extend the system of Odersky and Läufer in two
ways. Firstly, we allow type schemes to arbitrarily mix uni-
versal and existential quantifiers. Though this adds no ex-
pressive power4, it is a great aid when reporting type errors!
The subsumption of existentials is exactly dual to that of
universals.

Secondly, we must account for Haskell’s class constraints. In
particular, any quantifier may introduce a constraint, and we
may need to decide constraint entailment during subsump-
tion checking. Consider our previous example amended to
include class constraints:

(\(f :: forall a . Num a => a -> Int -> a) ->

f 1 2)

(\x y -> if x == x then x else undefined)

To type check the outer application, the system must decide
the subsumption:

forall b c . Eq b => b -> c -> b ≤

forall a . Num a => a -> Int -> a

The Eq b constraint arises from the use of ==, and Num a

from the type annotation on f. The check proceeds as be-
fore, skolemizing the right-hand side quantified variables,
and freshening the left, to yield:

Eq b’ => b’ -> c’ -> b’ ≤ Num a’ => a’ -> Int -> a’

where a’ skolem constant

Then the constraint Num a’ is added to the set of “known”
constraints:

Eq b’ => b’ -> c’ -> b’ ≤ a’ -> Int -> a’

assuming Num a’, and a’ skolem constant

For the moment, the Eq b’ constraint is ignored, and the
left- and right-hand side types are unified to yield the most

4E.g. the rank-one existential exists a . τ(a)

may be replaced by the rank-two universal
forall b . (forall a . τ(a) -> b) -> b.
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general unifier [b’ 7→ a’, c’ 7→ Int]. Finally, the system
must check that

Num a’ `
e

Eq a’

where `e denotes the constraint entailment relation. This is
true, since Eq is a superclass of Num. Hence the term is well
typed.

We have given only illustrative examples here, but the Ap-
pendix gives the technical details. This type inference algo-
rithm is potentially more expensive than that used by ex-
isting Haskell implementations. In particular, the expensive
operations of constraint simplification and generalisation oc-
cur, by default, for every step of type inference rather than
just once per let-bound term. We plan to investigate re-
fining the inference algorithm to avoid these operations as
much as possible.

4.2 Opening Existentials

Now that we allow existentials to appear without a medi-
ating data constructor, we must find a replacement for the
rôle previously played by case. For example, recall from the
previous section that:

intSet :: exists f . Set Int f

Attempting to project from intSet directly would lead to a
type error:

one = intSet.asList (intSet.add 1 intSet.empty)

error: cannot project "empty" from term of

non-record type "exists f . Set Int f"

Motivated by Russo’s semantics for ML modules [15], we
introduce a variation of let which explicitly “opens” any
existential quantified type variables of the let-bound term:

one :: [Int] {- inferred -}

one = let open s = intSet

in s.asList (s.add 1 s.empty)

The keyword open indicates that the let-body
s.asList (s.add 1 s.empty) should be type checked
assuming s :: Set Int f’, where f’ is a fresh (skolem) type
constant replacing the existentially quantified f in the type
of intSet5. By opening intSet explicitly we eliminate the
existential quantifier on its type without compromising its
type abstraction:

bad = let open s = intSet

in s.add 2 [1]

error: Incompatible types "f’" and "[]", where

type variable "f’" arises from open of

"absIntSet"

Writing Γ to range over type and kind contexts, and ∆ to
range over kind contexts, we may write the typing rule for

5Haskell’s existing monadic do notation also uses a bind-
ing construct whose left-hand and right-hand side types dif-
fer.

let open as follows6:

Γ ` u : exists ∆ . σ

dom(∆) ∩ dom(Γ) = ∅
Γ ++∆, x : σ ` t : σ′

Γ ` σ
′ : scheme

openlet

Γ ` let open x = u in t : σ′

Notice how the existentially quantified type variables ∆ aris-
ing from u are “lifted over” the binding for x , and become
free (skolemized) type variables when checking the type of t .
The side condition on ∆ ensures each existentially quantified
type variable is indeed free—alpha-conversion may always be
used to satisfy this condition. The check that σ′ is a well-
formed type scheme prevents any type variable in ∆ from
escaping the scope of x . For example, this term is ill-typed:

let open s = intSet

in s.empty

error: Skolemized type "f’" introduced in open of

"s" escapes scope of binding in type

"f’ Int"

Without this restriction our system would be unsound:

let f = \x -> let open y =

((x, (== x)) :: exists a . (a, a -> Bool)) in y

in (snd (f 1)) (fst (f True)) -- Crash!

An alternative design would be to modify the typing rule
for projection instead of that for let; in other words, make
existential quantifiers transparent to projection. We prefer
the present design because it makes explicit the generative
nature of existential types. For example, the following term
is (rightly) ill-typed, because it attempts to mix sets created
from different equalities on Int:

inEq :: EqR Int -- Normal equality on integers

z2Eq :: EqR Int -- Equality mod 2

let open s1 = mkListSet intEq

in let open s2 = mkListSet z2Eq

in s1.asList s2.empty

error: Incompatible types "Set Int f1" and

"Set Int f2", where type variable "f1"

arises from open of "s1", and type

variable "f2" arises from open of "s2"

A limitation of our approach is that we cannot mimic the
applicative functors of OCaml:

let open s1 = mkListSet intEq

in let open s2 = mkListSet intEq

in s1.asList s2.empty

error: ...

Even though (thanks to the absence of side effects) s1 and
s2 are observationally equivalent, the type system considers

6See Figure ?? for the actual rule, which this only ap-
proximates.
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their implementation types to be distinct. All type sharing
in our system must be manifest; even this extreme case is
rejected:

let open s1 = intSet

in let open s2 = intSet

in s1.asList s2.empty

error: ...

4.3 Type Annotations for Opened Bindings

Recall again our running example:

intSet :: exists f . Set Int f

one :: [Int] {- inferred -}

one = let open s = intSet

in s.asList (s.add 1 s.empty)

Is it possible for the programmer to give a type signature
for s? The trouble is that, in the body of the let, s has
type Set Int f’, where f’ is a fresh (skolem) type constant,
and the programmer has no way to write such a thing. Yet
such annotations are desirable for documentation reasons,
and will be absolutely essential when we come to top-level
bindings (see Section 4.5).

Our solution is to add a new open form of type signature,
dual to the open form of term binding:

one = let open s :: exists f. Set Int f

open s = intSet

in s.asList (s.add 1 s.empty)

The open type signature simply declares that s has
the type obtained by opening (skolemizing) the type
exists f. Set Int f. The type signature for s behaves ex-
actly like any other type signature: it is optional, and may
constrain the type to be less polymorphic than the inferred
type.

However, we are not done yet. Suppose we write (rather
artificially):

let open s :: exists f. Set Int f

open s = intSet

in let t = s

in s.asList (t.add 1 t.empty)

How can we give a type signature to t? We cannot say:

open t :: exists f. Int -> f Int

t = s

because that would introduce a fresh skolemized type f, dis-
tinct from the one introduced by the type signature for s.
Instead, we want to say “t has the same type as s”. Follow-
ing some preliminary work of Odersky and Zenger [12], we
allow the programmer to say precisely that:

t :: s!

t = s

The type “x!” where x is an in-scope term variable, denotes
the type of x 7. This new type form can occur in any type.
For example,

\x (y :: x!) . (x, y)

has type forall a . a -> a -> (a, a), since the annotation
on y forces it to have the same type as x. It is illegal to take
the type of a variable of scheme type:

id :: forall a . a -> a {- inferred -}

id = \x -> x

\(f :: id!) . f 1

error: "id" has a type scheme as its type, and

cannot be dereferenced

Even this is not quite enough, however. Consider yet another
version of our example:

let open s :: exists f. Set Int f

open s = intSet

in let unit = \x -> s.add x s.empty

in s.asList (unit 1)

How can we write the type of unit? If s has type Set Int f ,
unit has type Int -> f Int. So we need to be able to refer
to a component of s’s type. We add another new type form,
thus:

unit :: Int -> s!^f Int

unit = \x -> s.add x s.empty

The “^f” projects the f-component out of the type appli-
cation s!. As a syntactical convenience we allow the type-
variable names from the original definition of Set (back in
Section 2.1) to be used as the “field names” for these type
projections.

These two new type forms give rise to a small algebra over
types. For example, the following three types are all equal
to Int:

(Set Int [])^a (1)

(Int, Set Int [])^t2^a (2)

(Set Int [] -> Int)^arg^a (3)

In (1) we know record Set has a type parameter named
a, and this parameter is bound to Int in the application
Set Int [] (recall type application binds tighter than ^). In
(2), we rely on the built-in type parameters t1, t2 etc. to
refer to the successive type arguments of the tuple type con-
structor. Similarly, in (3) we rely on the built-in type pa-
rameters arg and res to refer to the argument and result
types respectively of the function type constructor.

7Though this notation involves term variables in type ex-
pressions, the type does not depend on the value of the term
variable, only on its type.
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We also allow a record field to be dereferenced. For example:

unit :: Int -> s!^empty! Int

unit = \x -> s.add x s.empty

Here we say the result of unit has the same type as the
empty field in the record type denoted by s!.

4.4 Opening Top-Level Bindings

So far we have not tackled the second of the two problems
we identified in Section 3.1, namely that an existential must
be opened over a scope that contains all terms that must
share an implementation type. Indeed, we identified it as
the more serious of the two problems.

The design we have presented so far was carefully chosen to
solve this problem as well. All that is needed is to allow open

to be used for top-level bindings.

Consider again the intSet and intSetHelp example of Sec-
tion 3.1. Our improved support for existential quantification
eliminates the need for any spurious AbsSet and AbsSetHelp

datatypes. By using open, we may also both open and bind
intSet in a single top-level declaration:

open intSet :: exists f . Set Int f

open intSet = intListSet

In the rest of the program, intSet has type Set Int f’,
where f’ is a fresh skolem type constant.

The mkSetHelp and two functions remain unchanged:

mkSetHelp :: forall a f . Set a f -> SetHelp a f

mkSetHelp set = SetHelp { ... }

two :: forall f . Set Int f ->

SetHelp Int f -> [Int]

two s h = ...

With these definitions, we may now create setHelp directly:

setHelp = mkSetHelp intSet

main = two intSet setHelp

Looking at the type of mkHelpSet we see setHelp has type
Set Int f’, and thus the application of two is well-typed.

In Section 4.2 we mentioned that, to preserve soundness,
skolemized type variables cannot escape the scope of the
term variable which introduced them. Since the scope of a
top-level binding is the entire program, this check is unnec-
essary for opened top-level signatures. This is indeed fortu-
nate, since separate compilation means that we may not be
able to “see” the entire scope of the binding.

4.5 Top-level Interfaces and Implementations

Haskell’s existing module system combines the implementa-
tion of a module and its interface specification into a sin-
gle compilation unit. In our system we split these notions.

Roughly speaking, we take a top-level interface to be the
body of a parameterless record type declaration, and a top-
level implementation to be the body of a record, both ap-
pearing in a notional “cosmic” global scope.

Top-level interfaces appear in “hsi” files. For example, file
Lists.hsi could look something like:

module Lists where

data List a = Nil | Cons a (List a)

map :: forall a b . (a -> b) -> List a -> List b

... etc ...

Such a file induces the type declaration in the “cosmic”
scope:

record Lists = {

data List a = Nil | Cons a (List a)

map :: forall a b . (a -> b) -> List a-> List b

... etc ...

}

Top-level implementations appear in “hs” files. Continuing
the above example, file Lists.hs could resemble:

module Lists where

map = ...

... etc ...

This induces the “cosmic” term declaration:

Lists :: Lists

Lists = Lists {

map = ...

... etc ...

}

In effect, we simply introduce a term variable, Lists, into
the initial type context with type Lists.

Both interfaces and implementations may import other in-
terfaces. Interfaces supply enough type information to be
able to type check implementations independently and in
any order. Interfaces may be mutually recursive in their
type declarations, subject to the usual rule that all recur-
sion passes through a data or record constructor. Using type
dereferencing, it is also possible to write mutually recursive
type signatures (see Section 5.1).

We must be a little more generous with “cosmic” record
type declarations and record terms in order to support open
in signatures and bindings, and instance declarations.8

For example, we may have within Lists.hsi the declara-

8Neither of these constructs make sense within arbitrary
records. Allowing open anywhere leads to unsoundness for
the same reason given in Section 4.2. Allowing instance

declarations anywhere leads to local instance declarations
[19] and would be a profound change to Haskell’s type class
system.
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tions:

record LazyLength a = {

length :: forall b . List b -> a

isGT :: Int -> a -> Bool

}

open lazyLength :: exists a . LazyLength a

instance eqList :: Eq a => Eq (List a)

Here we declare a record lazyLength containing functions
to calculate and test an abstract representation of a list’s
length. We also have an instance declaration which is named
eqList so that it may later be reconciled against its defini-
tion.

These declarations must have matching bindings within
Lists.hs:

open lazyLength = LazyLength {

length = \xs -> map (\_ -> ()) xs

isGT = \n xs -> case xs of

Nil -> n > 0

Cons _ xs’ ->

if n > 0 then

isGT (n - 1) xs’

else False

}

instance eqList where ...

Haskell’s existing module system allows top-level term and
type bindings to be hidden. Our system supports a similar
mechanism, though for brevity we do not consider it here.

5 Working Out The Details

In this section we complete our exposition by describing how
existentials interact with recursion and type classes.

5.1 Recursive Abstract Types

Being a lazy language, Haskell allows top-level definitions to
be arbitrarily mutually recursive. In this section we consider
how mutual recursion interacts with our type abstraction
mechanism.

Consider the recursive top-level definitions:

record Pair a b = { fst :: a; snd :: b }

x :: Pair Int Bool

x = Pair { fst = 1; snd = y.snd }

y :: Pair Int Bool

y = Pair { fst = x.fst; snd = True }

We now wish to hide the implementation types Int and Bool.
Of course, for this example its easy to collapse the recursion
into a single term:

open xy :: exists a b . (Pair a b, Pair a b)

open xy = let x = Pair { fst = 1; snd = y.snd }

y = Pair { fst = x.fst; snd= True }

in (x, y)

x :: xy!^t1

x = fst xy

y :: xy!^t2

y = snd xy

However, this may be awkward in practice, and impossible
if x and y must be defined in separate compilation units.

A better solution is to allow type dereferences to be mutually
recursive:

open x :: exists a . Pair a (y!^b)

x = Pair { fst = 1; snd = y.snd }

open y :: exists b . Pair (x!^a) b

y = Pair { fst = x.fst; snd = True }

Notice the type-level recursion of x! and y! exactly mir-
rors the term-level recursion of x and y. Furthermore, even
if x and y were defined in separate implementation files,
both their signatures would be visible to the compiler within
their respective interface files. Thus these mutually recursive
bindings may be type checked in isolation.

We must be a little more restrictive on type-level recursion
than term-level recursion. For example, all of the following
bindings are rejected:

undefined :: undefined!

undefined = undefined

error: "undefined" has a cyclically defined type

pair :: Pair (pair!^b) (pair!^a)

pair = Pair { fst = pair.snd; snd = pair.fst }

error: "pair" has a cyclicly defined type

They must instead be annotated in the usual way:

undefined :: forall a . a

undefined = undefined

pair :: forall a . Pair a a

pair = Pair { fst = pair.snd; snd = pair.fst }

Why are the bindings for x and y accepted, while those for
undefined and pair rejected? Roughly speaking, though x

and y are mutually recursive, their resulting values are fully
defined, and similarly their types. However, undefined and
pair contain undefined elements, and hence their types in
those positions remain undetermined.

To deal with this, we typecheck a recursive binding group in
five phases; we illustrate using the x, y example of above.

1 The first phase skolemizes the existentially quantified type
variables of all opened definitions, producing an environ-
ment that gives the types of x and y:

10



x :: Pair a’ (y!^b)

y :: Pair (x!^a) b’

Here, a’ and b’ are the skolem types introduced to instan-
tiate a and b respectively.

2 In phase 2, all types are rewritten to avoid any use of type
dereference, type variable projection, and field projection.
Furthermore, relative types are rewritten to a canonical
absolute form. We use a normal-order (call-by-name) eval-
uation strategy so as to accept as many recursively defined
types as possible. A type of the form x! is rewritten to the
type of x already in the environment (though care must
be taken to detect cycles.)

In our example, we rewrite the type of x as follows:

Pair a’ (y!^b)

−→ Pair a’ ((Pair (x!^a) b’)^b)

−→ Pair a’ b’

After rewriting our environment, we have:

x :: Pair a’ b’

y :: Pair a’ b’

3 Next, we perform standard kind inference for the types in
the new environment, which for Haskell reduces to type
inference for a simply-typed lambda-calculus.

4 Next, we carry out standard type inference for the right-
hand side of each binding, in the type environment com-
puted by the earlier phases. In Haskell, type inference
involves a weak form of higher-kinded kind-preserving uni-
fication. Since all relative types have been normalized to
an absolute form, the equality theory on types is free.

Pair { fst = 1; snd = y.snd } :: Pair Int b’

Pair { fst = x.fst; snd = True} :: Pair a’ Bool

5 Lastly, we check that each right-hand side does indeed
have the claimed existentially quantified type:

Pair { fst = 1; snd = y.snd }

:: exists a. Pair a b’

Pair { fst = x.fst; snd = True}

:: exists b. Pair a’ b

(Notice that we must, of course, rewrite the original exis-
tential type signatures, just as in phase 2, to obtain the
claimed types.)

A consequence of rewriting types (phase 2) before kind infer-
ence (phase 3) is that our system admits some very dubious
looking type annotations. For example:

record Pair a b = { fst :: a; snd :: b }

strange :: (Pair, Int)^t1 Int Pair^a

strange = 1

In phase 2, the type annotation for strange is rewritten:

(Pair, Int)^t1 Int Pair^a

−→ (Pair Int Pair)^a

−→ Int

Hence, kind inference finds nothing amiss here! We could
perform kind inference before rewriting by augmenting the
kind system with record kinds, but the additional complexity
does not seem justified. Though confusing, these types are
harmless.

The above exposition also applies to recursive let bindings.
The only difference is that we must ensure no skolemized
type variables escape the scope of the term as a whole. To
ensure type inference remains complete in the presence of
recursive bindings, we require that all letrec-bound vari-
ables be type annotated if any single letrec-bound variable
is opened.

5.2 Type Classes and Existentials

So far we have used existential quantification to hide every-
thing about a type parameter:

open intSet :: exists f . Set Int f

However, by exploiting Haskell’s type class system we can
selectively expose information about abstract types. For ex-
ample, we can expose that f is a functor:

open intSet :: exists f . Functor f => Set Int f

intSet = intListSet

With this signature for intSet we have two interfaces for
sets of integers. We have already been using the first ex-
plicit interface, which is simply the fields of Set reached via
projection from intSet. The second implicit interface is pro-
vided by the overloaded operators of class Functor. These
operations may be used directly. For example, the following
term has type [Int]:

intSet.asList (fmap (+ 2)

(intSet.add 1 intSet.empty))

Notice the use of the overloaded operator from the Functor

class:

fmap :: forall f a b . Functor f =>

(a -> b) -> f a -> f b

When type checking the binding of intSet, the system
checks that Functor [] is satisfiable, then extends the
known constraint context with Functor f’, where f’ is the
skolemized type corresponding to f in the signature for
intSet. Hence the function fmap may be instantiated at
type (Int -> Int) -> f’ Int -> f’ Int.
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In Haskell, an instance declaration allows the programmer
to make a new data type into an instance of a given class.
For example:

data Age = MkAge Int

instance Eq Age where

(==) (MkAge i) (MkAge j) = i == j

Our open mechanism also introduces a new data type, the
skolemized type constant, so it makes sense to allow it, too,
to be an instance of a class. For example:

open absEq :: exists a . (a -> a -> Bool)

absEq = ((==) :: Int -> Int -> Bool)

instance Eq (absEq!^arg) where

(==) = absEq

(Recall arg projects the argument type from a function
type.)

We allow class declarations to appear within record declara-
tions. However, as mentioned in Section 4.5, we only allow
instance declarations to appear at the top-level of module
implementations.

6 Related work

Our system draws together the work of four separate sys-
tems. Firstly, from Jones [5] work on Parameterised Sig-
natures we took the idea that, at heart, a module imple-
mentation is just a record, and a module interface is just
a record type with polymorphic fields parameterised over
all its abstract types. The problems of type abstraction
and type sharing then became almost trivial: we used or-
dinary existential quantification to hide types, and ordinary
parametric polymorphism to capture type sharing. This ap-
proach avoided the need for dependent types, and thus au-
tomatically respected a phase distinction between types and
terms. To further simplify matters, we disallowed anony-
mous records, and thus type equality for record types in our
system is nominal.

Secondly, we adopted the annotations-based type system of
Odersky and Läufer [11] to allow higher-ranked polymorphic
types to be used in conjunction with type inference of rank-
one types. In particular, this system allowed us to write ex-
istential quantifiers within the result type of functions, and
thus write Haskell functions which mimic ML functors. This
system also allowed us to share field names of polymorphic
type between records without further complicating type in-
ference. A little care had be taken to extend this system
with support for Haskell’s constrained polymorphism. Some
existing Haskell implementations support rank-two polymor-
phism. Our extension of Odersky and Läufer’s system can be
seen as a natural generalisation of the existing type inference
algorithm to arbitrary-ranked polymorphism. Another pos-
sibility would have been to abandon Hindley/Damas/Milner-
style type inference in preference for local type inference
[14, 13]. However, we felt that would have been too great a

change for Haskell.

Thirdly, we examined Russo’s semantics for ML signatures
and structures [15] in order to understand how the dot
notation of ML modules interacts with ordinary existen-
tial and universal polymorphism. As a result, we refined
Haskell’s let construct so as to be able to optionally open
an existentially-quantified type within the scope of the let-
binding. This new construct made it possible to access
records of existential type using the dot notation, which in
turn allowed records of abstract type to be used across com-
pilation units. With this refinement in place, we may view
our research agenda as one of refining Haskell to be as ex-
pressive as ML’s language of semantic objects [9], and argue
this is almost as convenient as programming in ML’s module
language directly.

Finally, we borrowed some notation (but, as it turns out,
not the underlying type-theoretic machinery) from the work
of Odersky and Zenger on Nested Types [12]. This notation
allowed type annotations to capture type sharing of abstract
types by refering to the type of other term variables in scope.
This aspect of our system is probably the most unusual.

7 Conclusions

We tried to make each of our refinements as orthogonal
as possible. That is to say, our proposal is not to add a
monolithic module language to Haskell, but rather to refine
Haskell’s core language with a number of features which,
taken together, capture the desired expressiveness.

The biggest deficiency of our system is that programs are
subject to non-local changes when making a previously con-
crete types abstract. Not only must record types be changed
to parameterise over such types, but all uses of those record
types must be similarly changed to encode the appropriate
propagation of type information. This has long been used as
a justification for the move to dependent sum-based module
systems [3, 1].

Most of our effort to date has been invested in experiment-
ing with a prototype compiler, which we have found to be an
invaluable design tool. We hope to transfer these ideas into
GHC, an industrial-strength Haskell compiler, over the next
few months. At the time of writing we have only just begun
to establish the usual soundness and completeness proper-
ties.

We have also begun to explore an extension of our system
withmethod constraints [19], and believe this provides an ex-
pressive framework for interface-oriented programming. Un-
der this approach, the interface subtyping of object-oriented
programming is emulated by the constraint entailment of
method constraints, and the virtual-method dispatch of oop
is emulated by terms of existential type capturing all the
methods of their interface.
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