
OO languages late-binding signature

Antoine Beugnard
ENST Bretagne, BP 832, 29285 BREST CEDEX, FRANCE

Antoine.Beugnard@enst-bretagne.fr

Abstract

Most comparisons among OO languages focus on
structural or philosophical features but rarely on dy-
namic ones. Beyond all these structural properties,
late-binding is, in our opinion, the key property of the
OO paradigm: the operational consequence of inheri-
tance use. All OO languages use late-binding, but do
they all have the same interpretation? We show that
the answer is no, and more surprisingly that almost
each language has its own interpretation.

We propose a simple procedure to compare the
late-binding interpretation of OO languages and in-
troduce a late-binding signature of OO programming
languages. This procedure can be used to study lan-
guage interactions as we will show for the Microsoft
.NET framework.

1 Introduction

Most comparisons among OO languages [Sei87,
HZ93, SO91, ISE01, Bro97, Wol89] focus on struc-
tural or philosophical features but rarely on dynamic
ones. For instance, comparison criteria are the abil-
ity to distinguish types and classes, to offer single or
multiple inheritance, to accept assertions or not, to
manage exceptions or not, to accept covariant redef-
inition or not, the nature of late-binding: simple or
multiple, etc. Late-binding is, in our opinion, the
key property of the OO paradigm: the operational
consequence of inheritance use. All OO languages
use late-binding, but do they all have the same in-
terpretation? To answer this question we propose a
simple procedure that produces a table for each lan-

guage that can be considered as its signature. More-
over, this procedure can be used to study language
interactions as we will show for the Microsoft .NET
framework.

The paper is organized as follows. The next section
introduces the procedure to compare late-binding op-
erational variants. Section 3 gives the results ob-
tained with 9 different programming languages and
section 4 the results obtained when languages interact
via the Microsoft .NET framework. Section 5 begins
a short attempt at an analysis and we conclude with
perspectives for this work.

2 The test procedure

The comparison technique relies on a simple sce-
nario. We first define a small package containing
four classes. The Up class offers two services, cv and
ctv. cv and ctv methods require one parameter each.
Parameters are instances of the classes Top, Middle
or Bottom with the inheritance relationships Bottom
−→ Middle −→ Top (where A −→ B means A is a
subclass of B). The method body triggers a print-out
of the class where it is defined (Up).

class Top

class Middle subclass of Top

class Bottom subclass of Middle

class Up

method cv(Top t)

print Up

method ctv(Bottom b)

print Up

1



procedure main
– receiving objects

Up u, ud;
Down d;

– possible parameters
Top t = new Top();
Middle m = new Middle();
Bottom b = new Bottom();

– First test – Second test – Third test
u := new Up(); d := new Down(); ud := new Down();

u.cv(t); d.cv(t); ud.cv(t);
u.cv(m); d.cv(m); ud.cv(m);
u.cv(b); d.cv(b); ud.cv(b);
u.ctv(t); d.ctv(t); ud.ctv(t);
u.ctv(m); d.ctv(m); ud.ctv(m);
u.ctv(b); d.ctv(b); ud.ctv(b);

Table 1: The three tests

Then we specialize class Up with a Down subclass
that redefines the two services as follows:

class Down subclass of Up

-- a covariant redefinition of cv

method cv(Middle m)

print Down

-- a contravariant redefinition of ctv

method ctv(Middle m)

print Down

In order to observe the behavior of late-binding, a
client calls all (18) possible parameter combinations
as shown in table 1. Note that the results of columns
2 and 3 are identical for languages that do not require
object declaration.

In order to avoid any attempt at class or method
name interpretation, and to concentrate on runs only,
we have chosen names with only mnemonic connota-
tions.

The scenario proposes both covariant and con-
travariant method redefinitions. Covariant redefi-
nition means that the argument type varies in the
same way as the inheritance hierarchy, i.e. Down −→
Up and Middle −→ Top. Contravariant redefinition
means that the argument varies in the opposite way,
i.e. Down −→ Up and Middle ←− Bottom. A long

calls u d ud
cv(t) Up Up Up
cv(m) Up Down Down
cv(b) Up Down Down
ctv(t) Error Error Error
ctv(m) Error Down Error
ctv(b) Up Down Down

Table 2: An example of results

controversy opposed computer scientists in order to
decide which redefinition is the correct one. Theoriz-
ers were in favor of contravariance since it is semanti-
cally sound and simple. Practitioners observed that
concrete programs often use covariance. In [Cas95]
G. Castagna unifies the two points of view showing
that they can be used together for different purposes;
the contravariance rule captures code substitutivity
(always replace) while the covariant rule characterizes
code specialization (replace in some special cases).

Another common OO semantics used is invariance.
We could have added an inv(Middle m) method in Up
and Down with exactly the same declaration in both
classes. For the sake of brevity, we ignore this case
in the following tests since all languages deal with it
in the same way1.

When neither covariance nor contravariance are ac-
cepted by a language, one uses method overloading,
i.e. the capacity to use the same method name with
different parameter types (signature). This approach
is strongly criticized by B.Meyer [Mey97] who argues
that if programmers want to change the signature of
a service, it is much better to change the name of the
service than to use the same name with a different
type or number of arguments.

The result of a test consists of a 3x6 slot table
with one column per receiver object (u, d, ud Down
declared as Up). The content of the slot names the
class where the code has actually been found. When
a compilation error occurs the result is ”Error” and
when a runtime error occurs the result is ”Run. Er-
ror”. Table 2 shows an example of results.

1but for compilation error detection.

2



This kind of table shows the expected results for a
language. It also gives some information about the
compiler’s features. For instance, slot (5,3)2 triggers
an error in table 2. The reason is that when calling
ctv(m) we imagine the programmer expects to find
only services declared in Up class, even if s/he knows
that a more specialized object can actually be used.
If an error is not detected, this means that the Up
class and its clients should be recompiled each time a
subclass redefines some of its methods. That means
it is impossible to build an incremental safe compiler.

3 Single language signatures

Tables 3 to 10 show results found with 9 popular
OO languages where all parts of the scenario are pro-
grammed in the same language. We used the fol-
lowing languages: C++ [Str97], C# [Lib01], CLOS
[Ste90], Dylan [Cra96], Eiffel [Mey92], Java [AGH00],
OCaml [RV98], Smalltalk [GR83] and VisualBa-
sic [Cor99]. We compiled the same program (in the
syntax of each language) with gcc from Cygnus cyg-
win beta 20 and Microsoft Visual C++ 6.0 for C++,
the GNU smalleiffel [CC01] and the Eiffel workbench
4.5 from ISE [Mey01] for Eiffel, JDK1.3 from SUN for
Java and Squeak [IKM+97] for Smalltalk, and Visual
Studio .NET beta 2 [Mic01] for C# and VisualBasic
respectively.

The interesting point is that they are almost all
different! The case of Smalltalk (table 9) and OCaml
(table 8) is interesting since they seem identical, but
for more complex type relationships the OCaml com-
piler would reject some calls.

OO semantics does not have a single interpreta-
tion, so does OO really exist? It is disappointing
to observe so many differences some seeming gratu-
itous. For instance, Java (table 7) rejects slot (6,2)
while C++ (table 3) accepts it, and C++ rejects slot
(1,2) while Java accepts it! Eiffel (table 6) rejects
contravariant redefinition rules on principle. Visual-
Basic (table 10) prefers the most specialized param-
eter rather than the most specialized receiver on slot
(6,2). OCaml rejects method overloading making it
impossible to mix methods found in Up and Down in

2Results are referenced by (line, column) in [1..6]x[1..3].

calls u d ud
cv(t) Up Error Up
cv(m) Up Down Up
cv(b) Up Down Up
ctv(t) Error Error Error
ctv(m) Error Down Error
ctv(b) Up Down Up

Table 3: C++ results

appels u d ud

cv(t) Up Up Up

cv(m) Up Down Up

cv(b) Up Down Up

ctv(t) Error Error Error

ctv(m) Error Down Error

ctv(b) Up Down Up

Table 4: C# results

column 3. Dylan, CLOS, Smalltalk, Eiffel (slot (1,3))
accept runtime errors.

4 Language interaction

To go deeper into OO dynamic understanding we
used the Microsoft .NET framework to make inter-
language cooperation tests. We played the previous
scenario using the three languages offered by Visual
Studio .NET (VisualBasic, C++ and C#). Struc-
tural interactions are resolved via the use of an inter-

appels u d ud

cv(t) Up Up Up

cv(m) Up Down Down

cv(b) Up Down Down

ctv(t) Run. Error Run. Error Run. Error

ctv(m) Run. Error Down Down

ctv(b) Up Down Down

Table 5: CLOS or Dylan results

3



calls u d ud
cv(t) Up Error Down
cv(m) Up Down Down
cv(b) Up Down Down
ctv(t) Error Error Error
ctv(m) Error Error Error
ctv(b) Up Up Up

Table 6: Eiffel results

calls u d ud
cv(t) Up Up Up
cv(m) Up Down Up
cv(b) Up Down Up
ctv(t) Error Error Error
ctv(m) Error Down Error
ctv(b) Up Error Up

Table 7: Java results

appels u d ud

cv(t) Up Down Down

cv(m) Up Down Down

cv(b) Up Down Down

ctv(t) Up Down Down

ctv(m) Up Down Down

ctv(b) Up Down Down

Table 8: OCaml results

calls u d ud
cv(t) Up Down Down
cv(m) Up Down Down
cv(b) Up Down Down
ctv(t) Up Down Down
ctv(m) Up Down Down
ctv(b) Up Down Down

Table 9: Smalltalk/Squeak results

appels u d ud

cv(t) Up Up Up

cv(m) Up Down Up

cv(b) Up Down Up

ctv(t) Error Error Error

ctv(m) Error Down Error

ctv(b) Up Up Up

Table 10: VisualBasic results

appels u d ud

cv(t) Up Up Up

cv(m) Up Down Up

cv(b) Up Down Up

ctv(t) Error Error Error

ctv(m) Error Down Error

ctv(b) Up Up Up

Table 11: VisualBasic, C#, C++ results

mediate language; method calls, inter-language in-
heritance, parameter transfers, data representation
are efficiently treated. But, the method lookup re-
mains language dependent. Dynamic properties of
languages are not taken into account very well. Ta-
bles 11, 12 and 13 show results of the scenario where
Up, Top, Middle and Bottom are programmed with
C++, Down with C#, VisualBasic and C++ respec-
tively, and the client with VisualBasic3.

Column 2 is the most significant since all 3 are dif-
ferent, see slot (1,2) and (6,2). Columns 1 and 3 are
identical since all languages tested use an invariant
redefinition semantics. This means that the choice
of a programming language to define the Down class
is not neutral, in other words, the Down component
cannot be replaced by another Down component pro-
grammed in another language without changing the
global behavior.

3see http://perso-info.enst-bretagne.fr/˜ beugnard/papiers/lb-
sem.shtml for all other results.

4



appels u d ud

cv(t) Up Up Up

cv(m) Up Down Up

cv(b) Up Down Up

ctv(t) Error Error Error

ctv(m) Error Down Error

ctv(b) Up Down Up

Table 12: VisualBasic, VisualBasic, C++ results

appels u d ud

cv(t) Up Error Up

cv(m) Up Down Up

cv(b) Up Down Up

ctv(t) Error Error Error

ctv(m) Error Down Error

ctv(b) Up Down Up

Table 13: VisualBasic, C++, C++ results

5 Analysis

The proposed tables enable us to observe the lookup
procedure behavior. The differences have many
causes. The first one is the definition of rules for over-
riding. Does the language accept co, contra, or in-
variance? The second one is acceptance of overload-
ing (OCaml, Smalltalk, Eiffel?). The third occurs
when the inheritance rules are treated badly (C++
slot(1,2) says that in this case a Down rejects the
inherited behavior normally inherited from Up). Fi-
nally, the precedence rules of specialization may be
different between the receiver and the argument (Vi-
sualBasic and C++ slot(6,2)) leading to indecision in
Java slot(6,2).

We propose to consider the lookup as being decom-
posed into two steps each of them defining the real
semantics of late-binding. The first step is dedicated
to the ”eligibility” of a method for a call, where in-
heritance and variance rules apply. The second step
is the ”election” itself, where precedence applies. The
eligibility step defines the meaning of words like redef-
inition, overriding, overloading including invariant,

covariant or contravariant acceptation choices. The
election step defines the way the actual method is
selected among those eligible.

6 Conclusion

We have presented an original and pragmatic process
for comparing OO languages. The test could be im-
proved by the association of a class specific method
associated with each parameter class. Such an im-
provement would detect safer compilers and show
more runtime errors for the Eiffel and Smalltalk lan-
guages.

We propose here a kind of language signature rep-
resented by a 3x6 table. This signature reveals the
operational behavior of a language and may be used
to better understand language interaction. For in-
stance, one can imagine an operator on signatures in
order to forecast language interaction behavior.

Efforts made to unify OO approaches like UML
face a real problem. Should we accept all variants
and define specialized version of UML (UML4java,
UML4C++, etc.) or could we also define a unified
late-binding semantics? We propose to adopt a uni-
fied signature (table 2 for instance proposes a ”most
specialized receiver choice”) and to develop language
transformation (to be defined) that will generate the
selected behavior using the one implemented in the
language.

Another unified semantics could be table 4 that
presents results obtained by C#. This is interest-
ing since an incremental change in C++ and Java
compilers could give a common semantics to these
three languages ; C++ would have to accept Up in
slot(1,2) and Java Down in slot(6,2). We call this se-
mantics ”pragmatic” since it covers a large spectrum
of industrial needs.

We have defined a very pragmatic approach to bet-
ter understand late-binding operational semantics.
These tables are tools that allow us to concretely dis-
cuss OO language design decisions.

5



References

[AGH00] Ken Arnold, James Gosling, and David
Holmes. The Java Programming Lan-
guage. Addison-Wesley, 2000.

[Bro97] Benjamin M. Brosgol. A comparison of
the object-oriented features of Ada 95 and
Java. ACM, pages 213–229, 1997.

[Cas95] Guiseppe Castagna. Covariance and
contravariance: Conflict without a cause.
ACM Transactions on Programming
Languages and Systems, 17(3):431–447,
March 1995.

[CC01] Dominique Colnet and Suzanne Collin.
SmallEiffel the GNU eiffel compiler.
http://www.loria.fr/projets/SmallEiffel/,
2001.

[Cor99] Microsoft Corporation. Microsoft Master-
ing : Microsoft Visualbasic 6.0 Develop-
ment (Dv-Dlt Mastering). Microsoft Cor-
poration, August, 1999.

[Cra96] Iain D. Craig. Programming in Dylan.
Springer, 1996.

[GR83] Adele Goldberg and David Robson.
Smalltalk-80: The Language and Its Im-
plementation. Addison-Wesley, 1983.

[HZ93] Robert Henderson and Benjamin Zorn.
A comparison of object-oriented program-
ming in four modern languages. Tech-
nical Report CU-CS-641-93, Department
of Computer Science, University of Col-
orado, Boulder, Colorado, July, 1993.

[IKM+97] Dan Ingalls, Ted Kaehler, John Maloney,
Scott Wallace, and Alan Kay. Back to the
future: The story of Squeak, A practical
Smalltalk written in itself. In Conference
Proceedings of OOPSLA ’97, Atlanta, vol-
ume 32(10) of ACM SIGPLAN Notices,
pages 318–326. ACM, October 1997.

[ISE01] ISE. Object-orient lan-
guages: A comparison, 2001.
http://www.eiffel.com/doc/manuals/tech
nology/oo comparison/page.html.

[Lib01] Jesse Liberty. Programming C#. O’Reilly,
2001.

[Mey92] Bertrand Meyer. Eiffel: The Lan-
guage. Object-Oriented Series. Prentice
Hall, New York, NY, 1992.

[Mey97] Bertrand Meyer. Object Oriented Software
Construction, Second Edition. Prentice
Hall, 1997.

[Mey01] Bertrand Meyer. Interactive software en-
gineering. http://eiffel.com/, 2001.

[Mic01] Microsoft. Visual studio .NET beta, 2001.
http://msdn.microsoft.com/vstudio/next
gen/beta.asp.

[RV98] D. Remy and J. Vouillon. Objective ML:
An effective object-oriented extension to
ML. Theory and Practice of Object Sys-
tems, 4(1):27–50, 1998.

[Sei87] Ed Seidewitz. Object-oriented program-
ming in Smalltalk and ADA. In Object-
Oriented Programming Systems, Lan-
guages and Applications, pages 202–213,
1987.

[SO91] Heinz W. Schmidt and Stephen M. Omo-
hundro. CLOS, Eiffel and Sather: A com-
parison. Technical Report TR-91-047, In-
ternational Computer Science Institute,
September, 1991.

[Ste90] G.L. Steele. Common Lisp - The Lan-
guage. Digital Press, 1990.

[Str97] Bjarne Stroustrup. The C++ Program-
ming Language. Addison-Wesley, 1997.

[Wol89] Wayne Wolf. A practical comparison of
two object-oriented languages. IEEE Soft-
ware, pages 61–68, September, 1989.

6


