
Type-Preserving Compilation of Featherweight Java

Christopher League, Valery Trifonov, and Zhong Shao∗

{league, trifonov, shao}@cs.yale.edu

Computer Science Department, Yale University
P. O. Box 208285, New Haven, CT 06520 USA

Abstract

We present an efficient encoding of core Java constructs in
a simple, implementable typed intermediate language. The
encoding, after type erasure, has the same operational be-
havior as a standard implementation using vtables and self-
application for method invocation. Classes inherit super-class
methods with no overhead. We support mutually recursive
classes while preserving separate compilation. Our strategy
extends naturally to a significant subset of Java, including
interfaces and privacy. The formal translation using Feath-
erweight Java allows comprehensible type-preservation proofs
and serves as a starting point for extending the translation to
new features.

1 Introduction

Many compilation techniques for functional languages focus
on type-directed compilation [22, 25, 30]. Source-level types
are transformed along with the program and then used to
guide and justify advanced optimizations. More generally,
types preserved throughout compilation can be used to reason
about the safety and security of object code [21, 23, 24].
Recently, several researchers have attempted to bring these
benefits to object-oriented languages [7, 12, 18, 32]. Last
year’s FOOL workshop even featured a panel discussion on
typed intermediate languages.

These intermediate languages are typically based on typed
λ-calculi. There is significant precedent for encoding object-
oriented languages in typed λ-calculi [2, 4, 5, 6, 9], but this
domain—type-preserving compilation—imposes several new
requirements and allows us to reject a few traditional assump-
tions. The intermediate language must provide extremely
simple primitives (that correspond, e.g., to at most several
machine instructions), so that our encodings are amenable to
optimization. We must avoid introducing any dynamic over-
head solely to achieve static typing. In addition, the type
system should be as simple as possible, so that type checking
is efficient in practice. Subsumption is not required—it can

∗This research was sponsored in part by the Defense Advanced Research
Projects Agency ISO under the title “Scaling Proof-Carrying Code to Pro-
duction Compilers and Security Policies,” ARPA Order No. H559, issued
under Contract No. F30602-99-1-0519, and in part by NSF Grant CCR-
9901011. The views and conclusions contained in this document are those
of the authors and should not be interpreted as representing the official poli-
cies, either expressed or implied, of the Defense Advanced Research Projects
Agency or the U.S. Government.

be replaced with explicit coercions, as long as their runtime
cost is nil. In an intermediate language we are not concerned
with syntactic niceties or resemblance to source-level con-
structs. Finally, a type-preserving compiler should preserve
source-level abstractions. Link-time type checking will not
prevent, e.g., one class from accessing the private fields of
another—unless the abstractions are preserved in the object
code.

The main contribution of this paper is an efficient encod-
ing of key Java™ [13] constructs in a simple, implementable
typed intermediate language. After type erasure, our code has
the same operational behavior as a standard implementation
using self-application for method invocation. Our strategy
extends naturally to a significant subset of Java and an imple-
mentation is in progress.

This paper extends and improves our previous work [18]
in four significant ways. First, it supports mutually recursive
classes. Java allows classes to depend on one another’s types
and components in ways that test the limitations of the SML
module system. Our solution maintains separate compilation
of classes. Second, we give a complete implementation of
dynamic casts—another challenge for type theory—without
using an imperative tag generator. Again, our solution is com-
patible with separate compilation. Third, the small source
calculus we use allows comprehensible proofs of interesting
formal properties of the translation, such as type preserva-
tion. Finally, the core translation presented here is an ef-
fective starting point for designing encodings of and proving
properties about interesting source language extensions, such
as privacy, genericity, and reflection.

We describe the syntax and semantics of our source and
target languages in the next two sections. In section 4, we
explain and formalize each aspect of our translation and prove
that it preserves types. Section 5 discusses several extensions,
focusing on a tricky but tractable interaction between mutual
recursion and privacy. We contrast our technique with recent
related work in section 6.

2 Source language

The source language for our translation is Featherweight Java
(FJ), a “minimal core calculus for modeling Java’s type sys-
tem” [16]. The syntax is given in figure 1; for reference, we
reprint the semantics in appendix A.

Class declarations (CL) contain the names of the new class
and its super class, a sequence of field declarations, a con-

CL ::= class C � C {(C f;)∗ K M∗}

K ::= C((C f)∗) {super(f∗); (this.f = f;)∗}

M ::= C m((C x)∗) {ˆe;}

e ::= x | e.f | e.m(e∗) | new C(e∗) | (C)e

Figure 1: Syntax of Featherweight Java: classes, constructors,
methods, and expressions.

structor (K), and a sequence of method declarations (M). We
use letters A through E to range over class names, f and g

to range over field names, m over method names, and x over
other variables. There are five forms of expressions: variables,
field selection, method invocation, object creation, and cast.
A program (CT, e) consists of a fixed class table, CT, mapping
class names to declarations, and a main program expression e.

There are no assignments, interfaces, super calls, excep-
tions, or access control. Constructors always take all the fields
as arguments, in the correct order. FJ permits recursive class
dependencies with the full generality of Java. A class can refer
to types and call constructors of any other class, including its
sub-classes. While this does not complicate the FJ semantics,
it is one of the major challenges of our translation.

The subtype relation <: is the reflexive, transitive closure
of the super class declarations (class C � B). The relation
fields(C) returns the sequence of all the fields found in objects
of class C. The relation mtype(m, C) finds the type signature
for method m in class C by searching up the hierarchy. Type
signatures have the form D1 . . . Dn->D0.

The expression typing rules govern judgments of the form
Γ � e ∈ C, meaning that FJ expression e is of type C in con-
text Γ. The operational semantics are given by three primi-
tive reduction rules and the expected congruence rules. Since
there are no side effects, evaluation order is unspecified. The
FJ type system is sound and decidable. Please see the ap-
pendix for the rules, or [16] for further explanation.

3 Target language

The target language of our translation is the higher-order
polymorphic λ-calculus Fω [11, 29] extended with type tu-
ples, existential types [20], row polymorphism [27], ordered
records, sum types, iso-recursive types, and a term-level fix-
point for constructing recursive records. The syntax appears
in figure 2; typing rules for the non-standard features are
given in figure 3.

Labeled tuples of types are enclosed in braces {l = τ . . .}
and have tuple kinds {τ :: κ . . .}. Their components are se-
lected using a mid-dot: τ ·l. The existential types are stan-
dard: introduced by the package construct 〈α::κ = τ , e : τ ′〉
and eliminated (within some restricted scope) by open; see
rules (1) and (2).

Following Rémy [27] we introduce a kind of rows RL,
where L is the set of labels banned from the row. AbsL is
an empty row of kind RL, and l : τ ; τ ′ prepends field l of
type τ onto the row τ ′. The row formation rules (3) and (4)
prohibit duplicate labels: ∀α::R{x}. τ cannot be instantiated
with a row in which x is already bound. Boldface braces

Kinds κ ::= Type | RL | κ→κ′ | {(l::κ)∗}
Types τ ::= α | λα::κ. τ | τ τ ′ | {(l = τ)∗} | τ ·l

| τ→τ ′ | AbsL | l : τ ; τ ′ | {τ} | [[τ]]
| µα::κ. τ | ∀α::κ. τ | ∃α::κ. τ

Terms e ::= x | λx : τ . e | e e′ | {(l = e)∗} | e.l | fix [τ] e
| injτl | case e of (l x ⇒ e)∗ else e
| fold e as τ at l | unfold e as τ at l
| Λα::κ. e | e [τ] | 〈α::κ = τ , e : τ ′〉
| open e as 〈α::κ, x : τ〉 in e′

Derived forms:

l1 : τ1, . . . , ln : τn ≡ l1 : τ1 ; . . . ln : τn ; Abs{l1 ...ln}

1 ≡ {Abs∅}
maybe ≡ λα::Type. [[some : α, none : 1]]

some ≡ Λα::Type. injmaybe α
some

none ≡ Λα::Type. injmaybe α
none {}

let x : τ = e in e′ ≡ (λx : τ . e′) e

Figure 2: Syntax of the target language.

{ ·} denote the record constructor, which lifts a complete
row type (of kind R∅) to kind Type. Permutations of rows
are not considered equivalent, so record selection e.l can be
compiled using fixed offsets. We sometimes use commas and
omit AbsL when specifying complete rows (see the derived
forms in figure 2). We let 1 (read ‘unit’) denote the empty
record type.

Labeled sum types are constructed by enclosing a com-
plete row within boldface brackets: [[·]]. Sum types are intro-
duced by a term-level injection and eliminated by an ML-like
case statement; see rules (8) and (9). Figure 2 defines a pa-
rameterized type maybe with constructors some and none.

We use iso-recursive types at higher kinds. The rules for
folding and unfolding them are unconventional, and deserve
further explanation. Suppose we wish to encode the following
mutually recursive type abbreviations:

type even = maybe {hd : int, tl : odd}
type odd = {hd : int, tl : even}

The solution is expressed as the fixpoint over a tuple:

t = µα::{even :: Type, odd :: Type}.
{even = maybe {hd : int, tl : α·odd},

odd = {hd : int, tl : α·even}}
Now, the two recursive types are expressed as t·even and
t·odd. There are, however, no type equivalence rules for re-
ducing t·even; a term having this type must first be unfolded.
We allow unfolding of recursive types within a tuple by speci-
fying a label after the at keyword. If e has type t·odd, then the
expression unfold e as t at odd has type {hd : int, tl : t·even}.
For recursive types of kind Type, we simply omit the at
clause. To conserve space, we sometimes omit type annota-
tions that can be readily inferred, writing, e.g., unfold e for
unfold e as τ when e has type τ .

2

Pack and open for existential types:

Φ, α :: κ � τ :: Type Φ � τ ′ :: κ
Φ; ∆ � e : τ[α := τ ′]
Φ; ∆ � 〈α::κ = τ ′, e : τ〉 : ∃α::κ. τ

(1)

Φ; ∆ � e : ∃α::κ. τ Φ � τ ′ :: Type
Φ, α :: κ; ∆, x : τ � e′ : τ ′

Φ; ∆ � open e as 〈α::κ, x : τ〉 in e′ : τ ′ (2)

Row and record types:

�Φ kind env
Φ � AbsL :: RL (3)

Φ � τ :: Type Φ � τ ′ :: RL∪{l}

Φ � l : τ ; τ ′ :: RL−{l} (4)

Φ � τ :: R∅

Φ � {τ} :: Type
(5)

Recursive record term:

Φ; ∆ � e : {τ}→{τ}
Φ; ∆ � fix [τ] e : {τ} (6)

Sum type, its introduction and elimination:

Φ � τ :: R∅

Φ � [[τ]] :: Type
(7)

Φ � [[l1 : τ1 ; . . . ln : τn ; τ]] :: Type

Φ; ∆ � inj[[l1 : τ1 ; ...ln : τn ; τ]]
ln

: τn→[[l1 : τ1 ; . . . ln : τn ; τ]]
(8)

l′j = l′j′ ⇒ j = j′ (∀j, j′ ∈ {1 . . . m})
Φ; ∆ � e : [[l1 : τ1 ; . . . ln : τn ; τ]] Φ; ∆ � e′ : τ ′

∃i ∈ {1 . . . n} : li = l′j
and Φ; ∆, xj : τi � ej : τ ′ (∀j ∈ {1 . . . m})

Φ; ∆ � case e of (l′j xj ⇒ ej)j∈{1...m} else e′ : τ ′ (9)

Fold and unfold for recursive types:

Φ, α :: κ � τ :: κ κ ≡ {l1 :: κ1 . . . ln :: κn}
Φ; ∆ � e : τ ·li[α := µα::κ. τ]
Φ; ∆ � fold e as µα::κ. τ at li : (µα::κ. τ)·li

(10)

Φ, α :: κ � τ :: κ κ ≡ {l1 :: κ1 . . . ln :: κn}
Φ; ∆ � e : (µα::κ. τ)·li

Φ; ∆ � unfold e as µα::κ. τ at li
: τ ·li[α := µα::κ. τ]

(11)

Figure 3: Selected typing rules for the target language. The judgments represented are type formation Φ � τ :: κ and term
formation Φ; ∆ � e : τ , where Φ maps type variables to their kinds and ∆ maps term variables to their types.

In addition to the rules in figure 3, the static semantics
includes formation rules for all other syntactic forms and
judgments for environment formation and type equivalence.
All static judgments are decidable. The type system is sound
with respect to a structured operational semantics. The target
language also enjoys a type erasure property: type manipula-
tions (e.g., type abstractions, folds, pack/open) can be erased
before runtime without affecting the result. Complete details
will be available in a companion technical report. The imple-
mentation of the target language should be quite practical; it
is but a minor extension of FLINT, the intermediate language
already in wide use in the SML/NJ compiler [31].

4 Translation

Each FJ class is separately compiled into a closed Fω term
which imports the types, method tables, and constructors of
other classes and produces its own method table and con-
structor. The compilation units are then instantiated and
linked together with a term-level fixpoint constructor.

We begin this section by describing and formalizing our
basic object encoding. In section 4.2, we give a type-directed
translation of FJ expressions. Inheritance, overriding, and
constructors are examined as part of the class encoding in
section 4.3. Finally, section 4.4 covers linking. Many aspects
of the translation are mutually dependent, but we believe this
ordering yields a reasonably coherent explanation.

4.1 Object encoding

The standard explanation of method invocation in terms
of records and fields is called self application [17]. In a
class-based language, the object record contains values for
all the fields plus a pointer to a record of methods, called
the vtable. The vtable is created once and shared among
all objects of the same class. The methods in the vtable
expect the object itself as an argument. Suppose class
Point has one integer field x and one method getx to re-
trieve it. Ignoring types for the moment, the term p0 =
{vtab = {getx = λself. (self.x)}, x = 42} could be an instance
of class Point. The self-application term p0.vtab.getx p0 in-
vokes the method.

What type can we assign to the self argument? The
typing derivation for the self application term forces it to
match the type of the object record itself. That is, well-
typed self application requires that p0 have type τ where τ
= {vtab : {getx : τ→int}, x : int}. Because τ appears in its
own definition, the solution must involve a fixpoint. The re-
cursive types in our target language will suffice if augmenting
the code with fold and unfold annotations allows for a proper
typing derivation. Let the type of self be

τpt = µself. {vtab : {getx : self→int}, x : int}
Happily, the folded object term

p1 = fold {vtab = {getx = λself : τpt . (unfold self).x},
x = 42}

as τpt

3

is well-typed, as is the augmented self-application term:
(unfold p1).vtab.getx p1.

Suppose class ColorPoint extends Point with an additional
field and method: The type of an object of class ColorPoint
would be:

τcp = µself. {vtab : {getx : self→int, getc : self→color},
x : int, c : color}

How do we relate these two types? That is, how does a
function expecting a Point accept a ColorPoint? Traditional
models employ subsumption—in F≤

ω extended with recursive
types and a ‘top’ subtyping rule, τcp ≤ τpt . We favor explicit
(but erasable) type manipulations over subsumption. While
it may be possible to implement the necessary subtyping re-
lationships in a calculus of coercions [8], we have meanwhile
developed an effective, efficient encoding using more stan-
dard, conservative extensions to Fω .

Java programmers distinguish the static and dynamic
classes of an object—declared types indicate static classes;
constructors provide dynamic classes. Static classes of a given
object differ at different program points; dynamic classes are
unchanging. Static classes are known at compile-time; dy-
namic classes are revealed at run-time only by reflection and
dynamic casts.

We implement this distinction via a pair of existentially-
quantified rows. Some prefix of the object record is known;
the rest is hidden, abstract. Consider this static type of a
Point object:

τ ′
pt = ∃tail::{f :: R{vtab,x}, m :: Type→R{getx}}.

µself. {vtab : {getx : self→int ; tail·m self} ;
x : int ;
tail·f}

The f component of the tuple tail denotes a hidden row miss-
ing the labels vtab and x. Subclasses of Point append new
fields by packaging non-trivial rows into the witness type.
Similarly, tail contains a component m for appending new
methods onto the vtable. This component is a type operator
expecting the recursive self type, so that it can be propagated
to method types in the dynamic class. The Point object p1

can be packaged into a term of τ ′
pt using the trivial witness

type {f = Abs{vtab,x}, m = λs::Type. Abs{getx}}. A ColorPoint
object would include a non-trivial witness type to append the
new field and method:

{f = (c : color ; Abs{vtab,x,c}),
m = λs::Type. (getc : s→color ; Abs{getx,getc})}

Now, objects of different dynamic classes can be repackaged
into the type of a common super class.

This is, in essence, the object encoding we use to compile
Java. Before embarking on the formal translation, we must
explore one more aspect: recursive references. Suppose the
Point class has also a method bump which returns a new
Point. The type of objects of class Point must then refer to
the type of objects of class Point. This recursive reference
calls for another fixpoint, outside the existential:

µtwin. ∃tail. µself. {vtab : {getx : self→int ;
bump : self→twin ; tail·m self};

x : int ; tail·f}

Using self as the return type would overly constrain imple-
mentations of bump, forcing them to return objects of the
same dynamic class as the receiver. In Java, type signatures
constrain static classes only. Because twin is outside the exis-
tential, its witness type is distinct from that of self.

We used this technique in [18] to explain self-references,
but Java supports mutually recursive references as well. Sup-
pose class A defines a method returning an object of class B,
and vice-versa; ignoring fields entirely for a moment, define
the type

AB ≡ µw::{A :: Type, B :: Type}.
{A = ∃tail::Type→R{getb}.

µself::Type. {getb : self→w·B ; tail self},
B = ∃tail::Type→R{geta}.

µself::Type. {geta : self→w·A ; tail self}}
Using the contextual fold/unfold described earlier, objects of
class A can be folded into the type AB·A. This is the natural
generalization of the twin fixpoint. In the most general case,
any class can refer to any other; thus, w must expand to in-
clude all classes. This is the technique we use in the formal
translation. In a real compiler, we would analyze the reference
graph and cluster the strongly-connected classes only. Note
that this only addresses the typing aspect; mutual recursion
also has term-level implications (any class can construct ob-
jects of or downcast to any other—see section 4.3) as well as
interactions with privacy—see section 5.

This completes our informal account of the object en-
coding; we now turn to a formal translation of FJ types.
Figure 4 defines several functions which govern the layout of
fields and methods in object types. Square brackets [·] de-
note sequences. The sequence s1 ++ s2 is the concatenation of
sequences s1 and s2. |s| denotes the number of elements in s.
The domain of a sequence of pairs dom(s) is a set consisting
of the first elements of each pair in s.

The function fieldvec maps a class name C to a sequence
of tuples of the form (f, D), indicating a field of type D named
f—except for the first tuple in the sequence, which is always
(vtab, vt), a placeholder for the vtable. Each class simply
appends its own fields onto the sequence of fields from its
super class. (In FJ, the fields of a class are assumed to be
distinct from those of its super classes.)

The layout of methods in an object type is somewhat
trickier. Methods that appear in a class definition are either
new or they override methods in the super class. Overriding
methods do not deserve a new slot in the vtable. The function
methvec maps a class name C to a sequence of tuples of the
form (m, T), indicating a method named m with signature T.
Signatures have the form D1 . . . Dn->D. The helper function
addmeth iterates through all the methods defined in the class
C, adding only those methods that are new. The first tuple
in methvec is always (dyncast, dc), a pseudo-method used to
implement dynamic casts.

Let cn denote the set of class names in the program of
interest, including Obj. We abbreviate the kind of a tuple of
all object types as kcn. The tuple of row kinds for class C is
abbreviated ktail[C].

kcn ≡{(E :: Type) E∈cn}
ktail[C]≡{m :: Type→Rdom(methvec(C)), f :: Rdom(fieldvec(C))}

For brevity, we sometimes omit kind annotations. By con-
vention, certain named type variables are bound by particular

4

fieldvec(Obj) = [(vtab, vt)]

CT(C) = class C � B {D1 f1; . . . Dm fm; K . . . }
fieldvec(C) = fieldvec(B) ++ [(f1, D1) . . . (fm, Dm)]

methvec(Obj) = [(dyncast, dc)]

CT(C) = class C � B { . . . K M1 . . . Mm}

methvec(C) = methvec(B) ++ addmeth(B, [M1 . . . Mm])

(m,) ∈ methvec(B)
addmeth(B, [D m(D1 x1 . . . Dk xk) { . . . } M2 . . . Mm]) =

addmeth(B, [M2 . . . Mm])

(m,) ∈ methvec(B)
addmeth(B, [D m(D1 x1 . . . Dk xk) { . . . } M2 . . . Mm]) =

[(m, D1 . . . Dk->D)] ++ addmeth(B, [M2 . . . Mm])

addmeth(B, []) = []

Figure 4: Field and method layouts for object types.

kinds—w has kind kcn, self and u have kind Type, and tail
has kind ktail[C], where C should be evident from the context.

In figure 5 we define Rows, a type operator that produces
rows containing the fields and methods introduced between
two classes in a subclass relationship. Intuitively, Rows[C, A]
includes fields and methods in class C but not in its ancestor
class A. Earlier we described how to package dynamic classes
into static classes; the witness type was a tuple of rows con-
taining the fields and methods in the dynamic class but not
in the static class. This is just one use of the Rows operator.

The type operator Rows[C, A] expects three arguments: w,
the tuple containing object types for all classes; u, a universal
type used to implement dynamic casts; and tail, a tuple of
rows containing members of subclasses. The implementation
of dynamic cast will be explained in section 4.3. For now, we
only observe that the macros in figure 5 simply propagate u so
that it can appear in the type of the dyncast pseudo-method.

Rows[C, A] is defined by three cases. First, if C and A are
the same class, then the result is just the tail—those members
in subclasses of C. Second, if C is Obj (the root of the class
hierarchy) and A is the special symbol � then the result is
the members declared in Obj. Treating � as the trivial su-
per class of Obj permits more uniform specifications (since
Obj contains members of its own). Finally, in the inductive
case (where C <: A) we look to C’s super class—let’s call it
B. Rows[B, A] produces a type operator for the members be-
tween B and A; we need only append the new members of C.
Conveniently, Rows[B, A] has a tail parameter specifically for
appending new members.

The new fields in C are precisely those listed in the dec-
laration of C; we fetch their types from w and append tail·f.

Rows[C, C] = λw. λu. λtail::ktail[C]. tail

Rows[Obj,�] = λw. λu. λtail::ktail[Obj].
{m = λself. (dyncast : self→

∀α. (u→maybe α)→maybe α ;
tail·m self)

f = tail·f}

CT(C) = class C � B {D1 f1 . . . Dn fn K M1 . . . Mm}

addmeth(B, [M1 . . . Mm]) = [(l1, T1) . . . (lm, Tm)]
Rows[B, A] = τ

Rows[C, A] = λw. λu. λtail::ktail[C].
τ w u {m = λself. (l1 : Ty[self; w; T1] ; . . .

lm : Ty[self; w; Tm] ; tail·m self),
f = (f1 : w·D1 ; . . . fn : w·Dn ; tail·f)}

Ty[self; w; D1 . . . Dn->D] = self→w·D1→ . . . w·Dn→w·D

Empty[C] ≡ {m = λself. Absdom(methvec(C)),
f = Absdom(fieldvec(C))}

ObjRcd[C] ≡ λw. λu. λtail. λself.
{vtab : {(Rows[C,�] w u tail)·m self} ;

(Rows[C,�] w u tail)·f }
SelfTy[C] ≡ λw. λu. λtail. µself. ObjRcd[C] w u tail self
ObjTy[C] ≡ λw. λu. ∃tail. SelfTy[C] w u tail
World ≡ λu. µw. {(E= ObjTy[E] w u) E∈cn }

Figure 5: Macros for object types.

The new methods in C are found using addmeth, and their
type signatures D1 . . . Dn->D are translated to arrow types
self→w·D1→ . . . w·Dn→w·D. We use curried arguments for
convenience; an implementation would use multi-argument
functions instead. As shown in the informal examples, the
row for methods is parameterized by the type of self.

Also in figure 5, we use the Rows operator to de-
fine macros for several variants of the object type for any
given class. Empty[C] denotes the tuple of empty field and
method rows of kind ktail[C]. ObjRcd[C] assembles the rows
into records, leaving the subclass rows and self type open.
SelfTy[C] closes self with a fixpoint, and ObjTy[C] hides the
sublass rows with an existential. Each of these variants is
used in our term translation. All of them remain abstracted
over both w (the types of other objects) and u (the universal
type, which is simply propagated into the type of dyncast).
Finally, World constructs a package of the types of objects of
all classes, given the universal type u; as we will see later, the
actual universal type is a labeled sum of object types, and is
defined recursively using World.

4.2 Expression translation

Equipped with an efficient object encoding and several type
operators for describing it, we now examine the type-directed
translation of FJ expressions. Figure 6 contains term macros

5

exp[Γ; u; classes; x] = x (var)

(f,) ∈ fieldvec(C)
Γ � e ∈ C exp[Γ; u; classes; e] = e

exp[Γ; u; classes; e.f] =
open unfold e as World u at C

as 〈tail, x : SelfTy[C] (World u) u tail〉
in (unfold x).f

(field)

(m, B1 . . . Bn->B) ∈ methvec(C)
Γ � e ∈ C exp[Γ; u; classes; e] = e
Γ � ei ∈ Di
Di <: Bi

exp[Γ; u; classes; ei] = ei
upcast[Di; Bi; u; ei] = e′i

}
i∈{1...n}

exp[Γ; u; classes; e.m(e1 . . . en)] =
open unfold e as World u at C

as 〈tail, x : SelfTy[C] (World u) u tail〉
in (unfold x).vtab.m x e′1 . . . e′n

(invoke)

fields(C) = B1 f1 . . . Bn fn

Γ � ei ∈ Di
Di <: Bi

exp[Γ; u; classes; ei] = ei
upcast[Di; Bi; u; ei] = e′i

}
i∈{1...n}

exp[Γ; u; classes; new C(e1 . . . en)] =
(classes.C {}).new e′1 . . . e′n

(new)

Γ � e ∈ D exp[Γ; u; classes; e] = e
D <: C upcast[D; C; u; e] = e′

exp[Γ; u; classes; (C)e] = e′
(upcast)

Γ � e ∈ D C <: D exp[Γ; u; classes; e] = e
exp[Γ; u; classes; (C)e] =

open unfold e as World u at C
as 〈tail, x : SelfTy[C] (World u) u tail〉
in case (unfold x).vtab.dyncast x

[(World u)·C]
(classes.C {}).proj

of some y ⇒ y
else ¡ClassCast error!

(dncast)

Macros for pack and upcast transformations:

pack[C; u; tail; e] =
fold 〈tail′::ktail[C] = tail,

e : SelfTy[C] (World u) u tail′〉
as World u at C

upcast[C; A; u; e] =
open unfold e as World u at C

as 〈tail, x : SelfTy[C] (World u) u tail〉
in pack[A; u; Rows[C, A] (World u) u tail; x]

Figure 6: Type-directed translation of FJ expressions.

pack and upcast and six rules governing the judgment
exp[Γ; u; classes; e] = e for term translation. Γ is the FJ type
environment, u is the universal sum type, classes is a record
containing the runtime representations of each class, e is an
FJ expression, and e is its corresponding term in the target
language. If e has type C, then its translation e should have
type (World u)·C.

The pack macro packages and folds an open-self term
into a closed, complete object type in mutual fixpoint with
all others. Supposing that tail is some row tuple in ktail[C]
and e has type (SelfTy[C] w u tail), the term pack[C; u; tail; e]
has type w·C. The upcast macro unfolds and repackages an
object term to a term of some super class. When C <: A and e
has type w·C, the term upcast[C; A; u; e] has type w·A. These
macros simply and effectively formalize the encoding tech-
niques demonstrated in the previous section. They employ
erasable type manipulations only. Note the use of Rows[C, A]
as the new witness type in upcast.

We now explain each of the translation rules in figure 6,
beginning with (var). Variables in FJ are bound as method
arguments. Methods are translated as curried abstractions
binding the same variable names. Therefore, variable trans-
lation (var) is trivial. An upcast expression (C)e (where
Γ � e ∈ D and D <: C) is also trivial; the rule (upcast)
delegates its task to the macro of the same name.

The field selection expression e.f translates to an unfold-
open-unfold-select idiom in the target language (field). In
this sequence, the select alone has runtime effect. Method in-

vocation e.m(e1 . . . en) augments the idiom with applications
to self and the other arguments, but there is one complica-
tion. The FJ typing rule permits the actual arguments to have
types that are subclasses of the types in the method signature.
Since our encoding does not utilize subtyping, the function
selected from the vtable expects arguments of precisely the
types in the method signature. Therefore, we must explic-
itly upcast all arguments. Rule (invoke) formalizes the self
application technique demonstrated earlier.

The code to create a new object of class C essentially se-
lects and applies C’s constructor from the classes record. Un-
til we explain class encoding and linking, the type of classes
will be difficult to justify. Presently it will suffice to say that
classes.C applied to the unit value {} returns a record which
contains a function new—the constructor for class C. The
translation (new) upcasts all the arguments, then fetches and
applies the constructor.

The final case, dynamic casts, may appear quite mag-
ical until we reveal the implementation of the dyncast
pseudo-method in the next section. For now it is enough
to treat dyncast as a black box—a polymorphic function
with type ∀α. (u→maybe α)→maybe α. The argument of
dyncast [ObjTy[C] w u] is a projection function, attempting to
convert a value of type u to an object of type ObjTy[C] w u.
In addition to the new function, the classes record contains a
proj field for each class C, of type u→maybe (ObjTy[C] w u).
Thus if we select the dyncast method from an object, instan-
tiate it with the object type for some class C, then pass it the

6

projection for class C, it will return some C object if the cast
succeeds, or none if it fails. In case of failure, evaluation gets
stuck—just as it does in FJ. In full Java, we would throw a
ClassCast exception.

The expression translation judgment exp preserves types.
Informally, if e has type C then its translation has type
(World u)·C (for some type u). To state this property for-
mally, we must first translate all the types in the FJ typing
environment Γ:

Env[u; Γ, x : D] = Env[u; Γ], x : (World u)·D
Env[u; ◦] = ◦

By inspection, it is easy to show that Env[u; Γ] is a well-
formed environment, assuming that the range of Γ is a subset
of cn. The type preservation theorem and a proof sketch fol-
low; for more detail, please consult the companion technical
report.

Theorem 1 (type preservation) If Φ � u :: Type,
Φ; ∆ � classes : {Classes (World u)} and Γ � e ∈ C then
Φ; ∆, Env[u; Γ] � exp[Γ; u; classes; e] : (World u)·C.

Proof: by induction on the structure of e. All cases are
straightforward if we factor out and prove several proper-
ties as lemmas. First, we must establish a correspondence
between the fields used in the FJ semantics and the fieldvec
relation used for object layout (likewise between mtype and
methvec). Second, we must establish the correspondence be-
tween pairs in fieldvec (or methvec) and elements in Rows. All
these correspondences are proved by induction on the class
hierarchy. Finally, we must show that the pack and upcast

macros return expressions of the expected type. These can be
proved by inspection, but the latter argument requires a non-
trivial coherence property for Rows. Specifically, the compo-
sition Rows[A,�] w u (Rows[C, A] w u tail) must be equivalent
to Rows[C,�] w u tail. This is proved by induction on the
derivation of C <: A. ✷

4.3 Class encoding

Apart from defining types, classes in FJ serve three other
roles: they are extended, invoked to create new objects, and
specified as targets of dynamic casts. In our translation, each
class declaration is separately compiled into a module export-
ing a record with three elements—one to address each of
these roles. We informally explain our techniques for imple-
menting inheritance, constructors, and dynamic casts, then
give the formal translation of class declarations.

In a class-based language, each vtable is constructed once
and shared among all objects of the same class. In addition,
methods inherited by subclasses should be shared. How might
we implement the Point methods so that they can be packaged
with a ColorPoint? We make the method record polymorphic
over the tail of the self type:

dictPT = Λtail::ktail[PT].
{getx = λself : spt . (unfold self).x}

where spt = µα. {vtab : {getx : α→int ; tail·m α} ;
x : int ; tail·f}

We call this polymorphic record a dictionary. By instantiating
it with different tails, we can directly package its contents

Dict[C] ≡ λw. λu. λself.
{(Rows[C,�] w u Empty[C])·m self}

Ctor[C] ≡ λw. w·D1→ . . . w·Dn→w·C
where fields(C) = D1 f1 . . . Dn fn

Proj[C] ≡ λw. λu. u→maybe w·C
Inj[C] ≡ λw. λu. w·C→u
Class[C] ≡ λw. λu.

{dict : ∀tail. Dict[C] w u (SelfTy[C] w u tail),
proj : Proj[C] w u,
new : Ctor[C] w}

Classes ≡ λw. λu. ((E : 1→Class[E] w u ;) E∈cn Abscn)
ClassF[C] ≡ ∀u. Inj[C] (World u) u→Proj[C] (World u) u→

{Classes (World u) u}→
1→Class[C] (World u) u

Tagged ≡ λu. [[(C : ObjTy[C] (World u) u) C∈cn]]

Figure 7: Macros for dictionary, constructor, and class types.

into objects of subclasses. Instantiated with empty tails (e.g.,
Empty[PT]), this dictionary becomes a vtable for class Point.
Suppose the ColorPoint subclass inherits getx and adds a
method of its own. Its dictionary would be:

dictCP = Λtail::ktail[CP].
{getx = (dictPT [rcp]).getx,
getc = λself : scp. (unfold self).c}

where rcp = Rows[CP, PT] (World u) u Empty[CP]
and scp = µα. {vtab : {getx : α→int ;

getc : α→color ; tail·m α} ;
x : int ; c : color ; tail·f}

Again, this dictionary can be instantiated with empty tails
to produce the ColorPoint vtable. With other instantiations,
further subclasses can inherit either of these methods. The
dictionary is labeled dict in the record exported by the class
translation.

Constructors in FJ are quite simple; they take all the fields
as arguments in the correct order. Fields declared in the su-
per class are immediately passed to the super initializer. We
translate the constructor as a function which takes the fields as
curried arguments, places them directly into a record with the
vtable, and then folds and packages the object. The construc-
tor function is labeled new in the class record. In section 5,
we describe how to implement more realistic constructors.

Implementing dynamic cast in a strongly-typed language
is challenging. Somehow we must determine whether an arbi-
trary, abstractly-typed object belongs to a particular class. If
it does belong, we must somehow refine its type to reflect this
new information. Exception matching in SML poses a simi-
lar problem. To address these issues, Harper and Stone [15]
introduce tags—values which track type information at run-
time. If a tag of abstract type Tag α equals another tag of
known type Tag τ , then we update the context to reflect that
α = τ . Note that this differs from intensional type analy-
sis [14], which performs structural comparison and does not
distinguish named types.

Tags work well with our encoding; in an implementation

7

Class declaration translation:

cdec[C] =
Λu::Type. λinj : Inj[C] (World u) u. λproj : Proj[C] (World u) u.
λclasses : {Classes (World u) u}. λ : 1.
let dict : ∀tail::ktail[C]. Dict[C] (World u) u

(SelfTy[C] (World u) u tail)
= dict[C; u; inj; classes]

in let vtab = dict [Empty[C]]
in {dict = dict, proj = proj, new = new[C; u; vtab]}

Dictionary construction:

dict[Obj; u; inj; classes] =
Λtail::ktail[Obj]. {dyncast =

λself : SelfTy[C] (World u) u tail.
Λα::Type. λproj : u→maybe α.
proj (inj pack[Obj; u; tail; self])}

CT(C) = class C � B { . . . }
dom(methvec(C)) = [l1 . . . ln]

dict[C; u; inj; classes] =
Λtail::ktail[C].
let super : Dict[B] (World u) u

(SelfTy[C] (World u) u tail)
= (classes.B {}).dict

[Rows[C, B] (World u) u tail]
in {l1 = meth[C; l1; u; tail; inj; classes; super], . . . ,

ln = meth[C; ln; u; tail; inj; classes; super]}

Constructor code:

fields(C) = D1 f1 . . . Dn fn

new[C; u; vtab] =
λf1 : (World u)·D1. . . . λfn : (World u)·Dn.
let x = fold {vtab = vtab, f1 = f1, . . . ,fn = fn}

as SelfTy[C] (World u) u Empty[C]
in pack[C; u; Empty[C]; x]}

Method code:

meth[C; dyncast; u; tail; inj; classes; super] =
λself : SelfTy[C] (World u) u tail.
Λα::Type. λproj : u→maybe α.

case proj (inj pack[C; u; tail; self])
of some x ⇒ some [α] x,

else super.dyncast self [α] proj

CT(C) = class C � B { . . . K M1 . . . Mn}

m not defined in M1 . . . Mn

meth[C; m; u; tail; inj; classes; super] = super.m

CT(C) = class C � B { . . . K M1 . . . Mn}

∃j : Mj = A m(A1 x1 . . . Am xm) {ˆe;}
Γ = x1:A1, . . . , xm:Am, this:C
Γ � e ∈ D D <: A

exp[Γ; u; classes; e] = e
meth[C; m; u; tail; inj; classes; super] =

λself : SelfTy[C] (World u) u tail.
λx1 : (World u)·A1. . . . λxm : (World u)·Am.

let this : (World u)·C= pack[C; u; tail; self]
in upcast[D; A; u; e]

Figure 8: Translation of class declarations.

that supports assignment and an SML front-end, it may be
a good choice. In this formal presentation, however, type
refinement complicates the soundness proof and the impera-
tive nature of maketag constrains the operational semantics,
which is otherwise free of side effects. maketag implements a
dynamically extensible sum, which is needed for SML excep-
tions, but is overkill for classes in FJ.

We propose a simpler approach, which co-opts the dy-
namic dispatch mechanism. The vtable itself provides a kind
of runtime class information. A designated method, if over-
ridden in every class, could return the receiver at its dynamic
class or any super class. We just need a runtime representa-
tion of the target class of the cast, and some way to connect
that representation to the corresponding object type. For this,
we can use the standard sum type and a ‘one-armed’ case.
Let u be a sum type with a variant for each class in the class
table. The function

λx : u. case x of C y ⇒ some [ObjTy[C] w u] y
else none [ObjTy[C] w u]

could dynamically represent class C. To connect it to the
object type, we make the dyncast method polymorphic, with
the type

self→∀α. (u→maybe α)→maybe α

This method can check its own class against the target class
by injecting self and applying the function argument. If the
result is none, then it tries again by injecting as the super
class, and so on up the hierarchy.

With this solution, we must be careful to preserve sepa-
rate compilation—the universal type u includes a variant for
every class in the program. Fortunately, in a particular class
declaration we need only inject objects of that class. Class
declarations can treat u as an abstract type and take the in-
jection function as an argument. Then only the linker needs
to know the concrete u type.

We now explore the formal translation of class declarations
and construction of their method dictionaries. In figure 7
we define several macros for describing dictionary and class
types. Figure 8 gives translations for each component of the
class declaration.

Each class is separately compiled to code that resembles
an SML functor—a set of definitions parameterized by both
types and terms. Linking—the process of instantiating the
separate functors and combining them into single coherent
program—will be addressed in the next section.

cdec[C] produces the functor corresponding to class C;
see the definition in the top left of figure 8. The code has
one type parameter: u, the universal type used for dynamic

8

prog[e] =
let xcn = link {(C= cdec[C]) C∈cn}
in exp[◦; u; xcn; e]

where u = µu::Type. Tagged u

link = λx : {(C : ClassF[C]) C∈cn}.
fix [Classes (World u) u]

(λclasses : {Classes (World u) u}.
{(C= x.C [u] injC projC classes) C∈cn})

where u = µu::Type. Tagged u

injC = λx : ObjTy[C] (World u) u. fold inj
Tagged u
C x as u

projC = λx : u. case unfold x
of C y ⇒ some [ObjTy[C] (World u) u] y

else none [ObjTy[C] (World u) u]

Figure 9: Program translation and linking.

casts. Following it are two function parameters for injecting
and projecting objects of class C. The next parameter is
classes, a record containing definitions for other classes that
are mutually recursive with C (for convenience, we assume
that each class refers to all the others). The final parameter
is of unit type; it simply delays references to classes so that
linking terminates.

In the functor body, we define dict (using the macro dict)
and vtab (the trivial instantiation of dict). dict is placed in the
class record (so subclasses can inherit its methods); vtab is
passed to the new macro which creates the constructor code.
The constructor is exported so that other classes can create
C objects; and, finally, the projection function proj (a functor
parameter) is exported so other classes can dynamically cast
to C.

The dictionary for class Obj is hard-coded as
dict[Obj; . . .]. Its dyncast method injects self at class Obj,
passes this to the proj argument and returns the result. If the
class tags do not match, dyncast indicates failure by returning
none; there is no super class to test. For all other classes,
dict fetches the super class dictionary from classes and in-
stantiates it as super. It then uses meth to construct code for
each method label in methvec.

meth supports three cases: it (1) produces the dyncast
method (which must be overridden in every class), (2) inher-
its a method from the super class, or (3) constructs a new
method body by translating FJ code.

Theorem 2 (Well-typed class declaration)
Φ; ∆ � cdec[C] : ClassF[C]

Proof: by inspection. ✷

4.4 Linking

The final task: instantiate and link the separate class modules
together into a single program. Figure 9 gives the translation
for a complete FJ program. The link function creates a
record of classes from a record of the class functors. The
result is bound to xcn and used as the classes parameter in
translating the main program expression e.

link uses fix to create a fixpoint of the record of classes.
Each class functor in x has one type parameter and three

value parameters. Tagged was defined in figure 7 as a param-
eterized sum type with a variant for the object type of each
class in the class table. We instantiate each x.C with the fixed
point of Tagged. Next we pass the injection and projection
functions, injC and projC. The final argument to x.C is the
classes record itself.

Theorem 3 (Well-typed linkage)
Φ; ∆ � link : {(E : ClassF[E]) E∈cn}→{Classes (World u) u}
where u = µu::Type. Tagged u

Proof: by inspection. ✷

5 Extensions

Our encoding and translation strategy extend to support a
significant subset of Java. Features which require little ad-
ditional effort include null references (with maybe types),
assignment (with mutable records), multiple parameterized
constructors (by adding them to the class record), super calls
(as used in dyncast), and exceptions (as in SML).

In [18] we ambitiously supported Java interfaces using
views. To cast an object to an interface type, we fetch a pre-
computed view from the vtable and pair the object with it.
Thereafter, interface method calls are no more expensive than
virtual method calls. This technique works well with mutual
recursion and dynamic casts (even dynamic casts to interface
types), but we omit it because interfaces significantly com-
plicate the formal presentation, including the source language
semantics and type preservation proofs.

Another feature we supported in [18] is privacy—each
class used an existential to hide the types of its own private
fields. Thus privacy is preserved by the translation: link-time
type checking will prevent any other module from accessing
the private fields of a class—even if the module was translated
from a different source language.

Unfortunately, privacy interacts badly with mutual recur-
sion. Suppose that A has a private field b of class B and that
B has a method geta that returns an object of class A. From
within class A, accessing this.b is allowed, as is invoking
this.b.geta(). It is more difficult to design an encoding
that also allows this.b.geta().b. Using the existential in-
terpretation of privacy from [18], each class has its own view
of the types of all other objects. From within class A, private
fields of other objects of class A are visible. Private fields of
objects of other classes are hidden, represented by type vari-
ables. In our example, this.b would have a type something
like “B with private fields β” where β is the abstract type.
Likewise, from within class B, the type of method geta might
be self→(“A with private fields α”). The challenge is to allow
class A to see that the α in the type of geta is actually the
known type of its own private fields.

Propagating this information is especially tricky given the
weaknesses of the iso-recursive types used in our target cal-
culus. We have developed a solution which does not require
extending the target calculus. Briefly, we need to parameter-
ize everything (including the hidden type itself) by the types
of objects of other classes. Then, each class can instantiate
the types of the rest of the world using concrete types for its
own private fields (wherever they may lurk in other classes)
and abstract types for the rest. Unfortunately, the issues are

9

subtle and a detailed explanation would go out of the scope
of the current paper. We are considering extending FJ itself
with privacy in order to formalize our argument.

We are also actively working on other extensions. In the
original Featherweight Java paper, for example, Igarashi et
al. formalize Generic Java (GJ) [3] and translate it back
to FJ by erasing type parameters and adding dynamic casts.
With at most a minor extension to our target language type
system, we should be able to translate GJ without resorting
to dynamic casts.

6 Related work

Fisher and Mitchell [10] use extensible objects to model Java-
like class constructs. Our encoding does not rely on exten-
sible objects as primitives, but it may be viewed as an im-
plementation of some of their properties in terms of simpler
constructs. Rémy and Vouillon [28] use row polymorphism
in Objective ML for both class types and type inference on
unordered records. Our calculus is explicitly typed, but we
use ordered rows to represent the open type of self.

Our object representation is superficially similar to several
of the classic encodings in Fω-based languages [5, 26]. As in
the Abadi, Cardelli, and Viswanathan encoding [2], method
invocation uses self-application; however, we hide the actual
class of the receiver using existential quantification over row
variables instead of splitting the object into a known interface
and a hidden implementation. This allows reuse of methods
in subclasses without any overhead. We use an analog of the
recursive-existential encoding due to Bruce [4] to give types
to other arguments or results belonging to the same class or a
subclass, as needed in Java, without over-restricting the type
to be the same as the receiver’s.

Several other researchers have described type-preserving
compilation of object-oriented languages. Wright, et al. [32]
compile a Java subset to a typed intermediate language, but
they use unordered records and resort to dynamic type
checks because their system is too weak to type self appli-
cation. Crary [7] encodes the object calculus of Abadi and
Cardelli [1] using existential and intersection types in a cal-
culus of coercions. His object encoding has some of the same
benefits as ours, though the coercion calculus is a significant
departure from Fω. Glew [12] translates a simple class-based
object calculus into an intermediate language with F-bounded
polymorphism [6, 9] and a special ‘self ’ quantifier: a more
complex and ad-hoc target calculus. The present work is
a significant extension and simplification of the preliminary
results we reported in [18].

We present a more detailed comparison of Glew, Crary,
and our own encoding in a forthcoming technical report [19].
Briefly, Glew’s self quantifier self α.I(α) is equivalent to an
encoding based on an F-bounded existential: ∃α ≤ I(α). α,
where I(α) is the type of a record of methods, with α as the
type of each method’s first argument. This connection was
independently discovered by Glew and ourselves [personal
communication, August 2000]. Self application is typable in
this encoding because the object, via subsumption, enjoys two
types: the interface type I(α) and the abstract type α. Crary
encodes precisely the same property as an intersection type:
∃α. α ∧ I(α). Similarly, our encoding is derived by replac-
ing the F-bound with a higher-order bound and a recursive

type, implementing the bound as a coercion function, and
then eliminating the coercion using row polymorphism. All
three of these encodings are efficient and, we conjecture, fully
abstract. (Crary’s informal argument [7] seems to apply to
all three encodings, though no proof has been given for any
of them.) The primary differences between these encodings
are in the complexity required of the target calculi. In scal-
ing them to realistic compilers and source languages, other
differences may emerge.

7 Conclusion

We have developed an efficient encoding of key Java con-
structs in a simple, implementable typed intermediate lan-
guage. The encoding, after type erasure, has the same
operational behavior as a standard implementation of self-
application. Our strategy extends naturally to a significant
subset of Java. In comparison to our earlier work, we now
support mutual recursion and dynamic cast while retaining
separate compilation. The formal translation using Feather-
weight Java allows comprehensible type-preservation proofs
and serves as a starting point for extending the translation
to new features. We have already started implementing this
translation as a new front-end to the SML/NJ compiler.

Acknowledgment

We wish to thank the anonymous referees for their many
useful comments.

References

[1] Mart́ın Abadi and Luca Cardelli. A Theory of Objects.
Springer, New York, 1996.

[2] Mart́ın Abadi, Luca Cardelli, and Ramesh Viswanathan.
An interpretation of objects and object types. In Proc.
ACM Symp. on Principles of Programming Languages
(POPL), pages 396–409, St. Petersburg, January 1996.
ACM.

[3] Gilad Bracha, Martin Odersky, David Stoutamire, and
Philip Wadler. Making the future safe for the past:
Adding genericity to the Java programming language. In
Proc. ACM SIGPLAN Conf. on Object-Oriented Program-
ming Systems, Languages, and Applications (OOPSLA),
pages 183–200, Vancouver, October 1998. ACM.

[4] Kim Bruce. A paradigmatic object-oriented program-
ming language: Design, static typing and semantics.
Journal of Functional Programming, 4(2):127–206, 1994.

[5] Kim Bruce, Luca Cardelli, and Benjamin Pierce. Com-
paring object encodings. In Proc. Int’l Symp. on The-
oretical Aspects of Computer Software (TACS), Sendai,
Japan, September 1997. To appear in Information and
Computation.

[6] Peter Canning, William Cook, Walter Hill, Walter
Olthoff, and John C. Mitchell. F-bounded polymor-
phism for object-oriented programming. In Proc. Int’l

10

Conf. on Functional Programming Languages and Com-
puter Architecture, pages 273–280, London, September
1989. ACM.

[7] Karl Crary. Simple, efficient object encoding using in-
tersection types. Technical Report CMU-CS-99-100,
School of Computer Science, Carnegie Mellon Univer-
sity, Pittsburgh, January 1999.

[8] Karl Crary. Typed compilation of inclusive subtyping.
In Proc. Int’l Conf. on Functional Programming (ICFP),
Montréal, September 2000. ACM.

[9] Jonathan Eifrig, Scott Smith, Valery Trifonov, and Amy
Zwarico. An interpretation of typed OOP in a language
with state. Lisp and Symbolic Computation, 8(4):357–
397, 1995.

[10] Kathleen Fisher and John Mitchell. On the relationship
between classes, objects and data abstraction. Theory
and Practice of Object Systems, 4(1):3–25, 1998.

[11] J. Y. Girard. Interpretation Fonctionnelle et Elimina-
tion des Coupures dans l’Arithmetique d’Ordre Superieur.
PhD thesis, University of Paris VII, 1972.

[12] Neal Glew. Low-Level Type Systems for Modularity and
Object-Oriented Constructs. PhD thesis, Cornell Univer-
sity, January 2000.

[13] James Gosling, Bill Joy, and Guy Steele. The Java Lan-
guage Specification. Addison-Wesley, 1996.

[14] Robert Harper and Greg Morrisett. Compiling poly-
morphism using intensional type analysis. In Proc. ACM
Symp. on Principles of Programming Languages (POPL),
pages 130–141, San Francisco, January 1995. ACM.

[15] Robert Harper and Chris Stone. A type-theoretic in-
terpretation of Standard ML. In Gordon Plotkin, Colin
Stirling, and Mads Tofte, editors, Proof, Language, and
Interaction: Essays in Honour of Robin Milner. MIT
Press, 1998.

[16] Atsushi Igarashi, Benjamin Pierce, and Philip Wadler.
Featherweight Java—A minimal core calculus for Java
and GJ. In Proc. ACM SIGPLAN Conf. on Object-
Oriented Programming Systems, Languages, and Appli-
cations (OOPSLA99), Denver, November 1999. ACM.

[17] Samuel Kamin. Inheritance in Smalltalk-80: A deno-
tational definition. In Proc. ACM Symp. on Principles
of Programming Languages (POPL), pages 80–87, San
Diego, January 1988. ACM.

[18] Christopher League, Zhong Shao, and Valery Trifonov.
Representing Java classes in a typed intermediate lan-
guage. In Proc. Int’l Conf. on Functional Programming
(ICFP), pages 183–196, Paris, September 1999. ACM.

[19] Christopher League and Valery Trifonov. Comparing ob-
ject encodings for typed intermediate languages. Tech-
nical report, Yale University, 2000. In preparation.

[20] John C. Mitchell and Gordon D. Plotkin. Abstract types
have existential type. ACM Transactions on Programming
Languages and Systems, 10(3):470–502, July 1988.

[21] Greg Morrisett, Karl Crary, Neal Glew, Dan Gross-
man, Richard Samuels, Frederick Smith, David Walker,
Stephanie Weirich, and Steve Zdancewic. TALx86: A
realistic typed assembly language. In Proc. ACM SIG-
PLAN Workshop on Compiler Support for System Soft-
ware, pages 25–35, Atlanta, May 1999. ACM.

[22] Greg Morrisett, David Tarditi, Perry Cheng, Chris Stone,
Robert Harper, and Peter Lee. The TIL/ML compiler:
Performance and safety through types. In Proc. 1996
Workshop on Compiler Support for System Software (WC-
SSS), 1996.

[23] Greg Morrisett, David Walker, Karl Crary, and Neal
Glew. From System F to typed assembly language. ACM
Transactions on Programming Languages and Systems,
21(3):528–569, May 1999.

[24] George C. Necula and Peter Lee. Safe kernel extensions
without run-time checking. In Proc. Second USENIX
Symp. on Operating Systems Design and Implementation
(OSDI), pages 229–243, Seattle, October 1996.

[25] Simon L. Peyton Jones, Cordy Hall, Kevin Hammond,
Will Partain, and Philip Wadler. The Glasgow Haskell
Compiler: A technical overview. In Proc. UK Joint
Framework for Information Technology (JFIT), Keele, De-
cember 1992.

[26] Benjamin C. Pierce and David N. Turner. Simple type-
theoretic foundations for object-oriented programming.
Journal of Functional Programming, 4(2):207–247, April
1994.

[27] Didier Rémy. Syntactic theories and the algebra of
record terms. Technical Report 1869, INRIA, 1993.

[28] Didier Rémy and Jérôme Vouillon. Objective ML: A
simple object-oriented extension of ML. In Proc. ACM
Symp. on Principles of Programming Languages (POPL),
pages 40–53, Paris, January 1997. ACM.

[29] John C. Reynolds. Towards a theory of type structure. In
Proc., Colloque sur la Programmation, Lecture Notes in
Computer Science, volume 19, pages 408–425. Springer-
Verlag, Berlin, 1974.

[30] Zhong Shao and Andrew W. Appel. A type-based com-
piler for Standard ML. In Proc. ACM SIGPLAN Conf.
on Programming Language Design and Implementation
(PLDI), pages 116–129, La Jolla, June 1995. ACM.

[31] Zhong Shao, Christopher League, and Stefan Monnier.
Implementing typed intermediate languages. In Proc.
Int’l Conf. on Functional Programming (ICFP), pages
313–323, Baltimore, September 1998. ACM.

[32] Andrew Wright, Suresh Jagannathan, Cristian Ungure-
anu, and Aaron Hertzmann. Compiling Java to a typed
lambda-calculus: A preliminary report. In Proc. Second
Int’l Workshop on Types in Compilation (TIC98), volume
1473 of Lecture Notes in Computer Science, pages 1–14.
Springer, March 1998.

11

A Featherweight Java semantics

Syntax:

CL ::= class C � C {(C f;)∗ K M∗}

K ::= C((C f)∗) {super(f∗); (this.f = f;)∗}

M ::= C m((C x)∗) {ˆe;}

e ::= x | e.f | e.m(e∗) | new C(e∗) | (C)e
Field lookup:

fields(Obj) = •

CT(C) = class C � B {C1 f1; . . . Cn fn; K . . . }
fields(B) = B1 g1 . . . Bm gm

fields(C) = B1 g1 . . . Bm gm, C1 f1 . . . Cn fn

Method lookup:

CT(C) = class C � B { . . . K M1 . . . Mn}

∃j : Mj = D m(D1 x1 . . . Dm xm) {ˆe;}
mtype(m, C) = D1 . . . Dm->D

mbody(m, C) = (x1 . . . xm, e)

CT(C) = class C � B { . . . K M1 . . . Mn}

m not defined in M1 . . . Mn

mtype(m, C) = mtype(m, B)
mbody(m, C) = mbody(m, B)

Valid method overriding:

mtype(m, B) = C1 . . . Cn->C0

override(m, B, C1 . . . Cn->C0)

/∃T such that mtype(m, B) = T
override(m, B, C1 . . . Cn->C0)

Computation:

fields(C) = D1 f1 . . . Dn fn

(new C(e1 . . . en)).fi −→ ei
(R-Field)

mbody(m, C) = (x1 . . . xn, e0)
(new C(e1 . . . em)).m(d1 . . . dn) −→
[d1/x1, . . . , dn/xn, new C(e1 . . . em)/this] e0

(R-Invk)

C <: D

(D)new C(e1 . . . en) −→ new C(e1 . . . en)
(R-Cast)

Subtyping:

C <: C

CT(C) = class C � B { . . . } B <: A

C <: A

Class typing:

K = C(B1 g1 . . . Bn gn, C1 f1 . . . Cm fm)

{super(g1 . . . gn);

this.f1 = f1; . . . this.fm = fm;}

fields(B) = B1 g1 . . . Bn gn
Mi ok in C ∀i ∈ {1 . . . k}

class C � B {C1 f1; . . . Cm fm; K M1 . . . Mk} ok

Method typing:

x1 : D1, . . . , xn : Dn, this : C � e ∈ E E <: D

CT(C) = class C � B { . . . }
D m(D1 x1 . . . Dn xn) {ˆe;} ok in C

Expression typing:

Γ � x ∈ Γ(x) (T-Var)

Γ � e ∈ C fields(C) = D1 f1 . . . Dn fn

Γ � e.fi ∈ Di
(T-Field)

Γ � e ∈ C mtype(m, C) = D1 . . . Dn->D

Γ � ei ∈ Ci Ci <: Di (∀i ∈ {1 . . . n})
Γ � e.m(e1 . . . en) ∈ D

(T-Invk)

fields(C) = D1 f1 . . . Dn fn
Γ � ei ∈ Ci Ci <: Di (∀i ∈ {1 . . . n})

Γ � new C(e1 . . . en) ∈ C
(T-New)

Γ � e ∈ D D <: C

Γ � (C)e ∈ C
(T-UCast)

Γ � e ∈ D C <: D C = D

Γ � (C)e ∈ C
(T-DCast)

Γ � e ∈ D C </: D D </: C

Γ � (C)e ∈ C
(T-SCast)

Figure 10: Semantics of Featherweight Java (reprinted from [16], with a few adaptations).

12

