INTERACTIVE 3D GRAPHICS %

e o

MULTI-DIMENSIONAL INPUT TECHNIQUES
AND ARTICULATED FIGURE
POSITIONING BY MULTIPLE CONSTRAINTS

Norman 1. Badler
Kamran H. Manoochehri
David Baraff

Department of Computer and Information Science
University of Pennsylvania
Philadelphia, PA 19104-6389

4

Abstract

A six degree-of-freedom input device presents some novel possibilities for manipulating and
positioning three-dimensional objects. Some experiments in using such a device in conjunction with a
real-time display are described. A particular problem which arises in positioning an articulated figure is
the solution of three-dimensional kinematics subject to multiple joint position goals. A method using
such an input device to interactively determine positions and a constraint satisfaction algorithm which
simultaneously achieves those constraints is described. Examples which show the power and efficiency
of this method for key-frame animation positioning are demonstrated.

Introduction

Now that suitable multi-dimensional sensors are becoming generally available (from Polhemus
Navigation Sciences, Science Research Associates, GTCO, for example), research into how to efficiently
and effectively utilize them in interactive graphics applications is needed. Previous efforts in multi-

dimensional input include the work by Britton [6], Burton [7], Roberts [19], Schmandt[20] and
Herot [11]. ,

We tried various experimental applications of a 6 degree-of-freedom sensor, a 3SPACE™ Digitizer
systeml, hereafter simply called the Polhemus. The Polhemus senses six degrees of freedom within a
cubic meter region of space at a sample rate of approximately 40Hz. A real-time three-dimensional
graphics workstation, a Silicon Graphics Iris™?2, is used to supply visual feedback to the positioner of the
sensor. From these experiments we can generalize which interactive tasks are well suited to using a 3D
sensor, and which are not. In addition, the Polhemus input encouraged the examination of new ways of
looking at old problems, in particular, the problem of positioning an articulated three-dimensional figure.

The Polhemus technology is based on a low frequency magnetic field and a wand housing three
orthogonal coils which interact with the magnetic field. The wand, which may be freely translated or
rotated in space, senses its position and orientation relative to the magnetic source and transmits this data
to a host computer. This data consists of two triples of numbers; the first triple specifies the position of

13SPACE is a trademark of Polhemus Navigation Sciences Division, McDonnell Douglas Electronics Company -

2ris is a trademark of Silicon Graphics Corporation

OCTOBER 23-24,1986 151

@ 1986 WORKSHOP ON

the tip of the wand and the second triple is the three Euler angles which describe the azimuth, elevation
and twist of the wand (fig. 1). (We found it more useful to convert the Euler angles to a system of three
mutually orthogonal unit vectors which described the rotated coordinate system of the wand, so that the
first vector was always parallel to the long axis of the wand and the other vectors had some arbitrary
initial direction relative to the other axes of the wand). The wand reports its position accurately with a
resolution of under a tenth of an inch. Rotation angles are reported accurately to within half a degree.

Figure 1: The data transmitted by the Polhemus wand.

Z
A

=Y

X,Y,2 = Model Table Coordinate Frame
,%.¥,2 = Rotated Stylus Coordinate Frame
¥ = Azimuth
O = Elavation
¢ = Roll

A number of experiments were designed and implemented which used the Polhemus and Iris
workstation to examine the possible uses, advantages, and disadvantages of multi-dimensional inputs.
The experiments are described elsewhere [5], but a few are summarized here as they provide a natural
evolutionary path to the articulated figure positioning problem.

152 CHAPEL HILL.NC

INTERACTIVE 3D GRAPHICS Q
Multi-Dimensional Input Experiments

Many complex pictures are tedious 10 produce becavse of the trial and error process that goes into the
3D positioning and orienting of even a few objects. Animations are even more difficult: indicating where
ohbjects are 1o move over the course of an animation can be awkward to describe or specify, and subject w
much trial and error. Moving simulated objects about in a 3D environment seems a natural use of the
Polhemus. To do this, the operator would have o indicate which object in a 3D environment (scenc) was
to be moved. The Polhemus would then be "affixed” to that object so that subsequent movement of the
Polhemus would cause the object to move in the scene in a commensurate fashion. The orientation of the
object (rigid rotation) would correspond to the orientation of the wand. The Iris would display and
constantly update an image of the scene. As in a rypical mouse-controlled system, a cursor in the scene
would move about according to the movements of the wand.

We let the wand control the cursor’s position in the scene in two different modes: absolute motioning
and relative motioning. With absolute motioning, the position of the cursor can be computed directly
from the wand's position. Any motion of the wand causes the cursor in the scene o move. A problem
with this was that when moving the cursor o & specific position in the scene (e.g. near an object), the
operator's hand would quickly become tired from the effort o position and maintain the wand at an
arbitrary location in space. To overcome this difficulty, we mied 1o use the wand in a manner similar to &
mouse. In relative motioning, the position of the cursor changed only when the wand was moved and a
bution in the operator’s free hand (the one not holding the wand) was depressed. When the wand was
moved to an uncomfortable position (e.g. too high for comfortable reach) the operator could let go of the
button, move the wand back to a comfortable position and then depress the button again. The orientation
data was always calculated absclutely from the wand to keep it consistent with the user's frame of
reference, Relative orentation motioning could be applied if desired, though we did not do so.

Tao test interactive positioning, we created a rather simple scene. The scene consisted of a large level
mesh grid and some small number (10 w 20) of rectangular blocks, initally resting on the grid. We
oriented the Polhemus between the operator and the Iris display monitor, The coordinate systems of the
wand and the imaginary objects were aligned so that a motion of the wand orthogonal to the Iris display
monitor translated to a motion in the scene orthogonal to the viewer's line of sight. Vertical and right/left
motions of the wand also translated respectively to vertical and right/left motions on the screen. In this
way, the operator should be able to move objects about in the scene in an intuitive manner.

We quickly learned that this was not oue, Because the image displayed on the Iris is inherently two
dimensional, the lack of depth perception makes it very difficult for the operator to correctly position the
cursor 1o grab a block, or subsequently move the block to a desired position. Although the 2D position of
an object on the Iris display was obvious to the operator, the lack of depth perception failed to give the
operator an immediate awareness of the 3D position of the object in the scene. Trying to position and
arient an object at the same time was very hard, Allowing the orientation of the object 1o be changed
while freezing the position of the object worked adequately; using the wand, however, to orient the object
was not significantly bener than using a device such as a 3-axis joystick to orient the object [1].

Owr major conclusion from this was that this arrangement was difficult to use because the lack of

adequate spatial feedback caused the operator to consciously calculate how to move the cursor to an
object, instead of intuitively performing the movement.

One consequence of having six degrees of freedom is the difficulty of controlling all of them
simulataneously. It appeared advantageous to “decouple” the data dimensions; that is, use two or mare

OCTOBER 23-24. 1986 153

@ 1986 WORKSHOP ON

axes of the data from the wand as separate inputs, The problem of decoupled data with a wand is
exacerbated by two factors:

s it i5 exceedingly difficult to move the wand in one axis at a time, that is, move the wand so
only one coordinate changes;

e it is almost as difficult to simply keep the wand fixed at a given point in space (not resting on
the base) because the hand quickly becomes tired.

All applications of the wand we tried that involve decoupled data could have been done betier with a
different choice of (distunct) input devices. Any applicatons trying o use decoupled data from the
position and orientation dats from the wand (i.e, all six degrees of freedom) are very difficult o control.
For example, in the articulated figure positioning system described below, environmental objects are
positioned and oriented with the Polhemus. To make the process controllable, switches were added o the
interactive menu to allow the user to selectively toggle each wand dimension on or off. The result is that
the wand is typically and effectively used one dimension at a time, though the user retains the natural
association between the directionality of motion in the wand and the rransformational response on the real
time display feedback.

In addition to positioning objects in a scene, it is usually necessary to position the viewer, and the
direction the viewer is gazing. We may think of "positioning the view" as positioning a TV camera
whose image is displayed on the Iris monitor, The position of the wand controls the position of the
camera; the orientation of the wand controls the direction the camera is pointing. Using the same scene
(blocks) we experimented with controlling the view via the wand. In this case we found that absolute
motioning worked better than relative motioning, but neither was really good enough. Again the lack of
adequate spatial feedback made positioning the view a very consciously calculated activity instead of a
simple and effortless process.

These experiments revealed that feedback to the operator is one of the most crucial issues in effective
use of the wand. Current display devices do not offer sufficient visual feedback into the actual operator
space to enable the operator to easily use the wand. Short of some sort of true depth information such as
stereoscopic projection [20] which is difficult to calibrate and difficult 10 use, there is not sufficient 3D
feedback to enable the operator to easily do certain 3D manipulations of a virtual scene.

The digitizing process is frequently a bottleneck in CAD. As an application that requires little dynamic
visual feedback, digitizing simply uses the wand as a measuring device by reporting its position on
demand. Using the Polhemus simply as a measuring device, we spent less than fifteen minutes finding
the eoordinates of various features of a plastic spaceship model. From this data we were able to quickly
construct a crude mathematical description of the ship which could be used to display wireframes in real
time on the Iris.

Interacting with a real (as opposed to imaginary) object seemed feasible so we decided to repeat some
of our earlier experiments using the real object. To interact with the model, it was necessary to determine
the wand's position relative to the model. If we move the wand 1o touch a specific point on the spaceship,
we want the position of the wand to be reported in terms of the coordinate system of the model, and the
orientation of the wand reported relative to the orientation of the ship, Since the model was a rigid body,
we could use the model's position and orientation to construct the linear transform that took a point in the
wand's coordinate system to the coordinate system of the model.

First we controlled the view of the model using the wand. As the model is rendered in real time as a
wireframe on the Iris, the image is updated according to the wand position and orentation. Since the

= T

154 CHAPEL HILL. NC

INTERACTIVE 3D GRAPHICS @

model’s coordinate system and the wand’s coordinate system are now the same, the wand becomes a
camera. The position and orientation of the wand are used as the view position and direction; the view on
the Iris display screen is exactly what an observer sitting in the wand and looking down its long axis
would see. The operator can now control the view (and subsequently the image on the display) in a
natural and effortless manner. By using a real object instead of a simulated one, we provide a simple
spatial reference for the wand.

Using the object itself as feedback was an important concept. The calibration of the wand into the
model’s coordinate system meant that the operator could indicate any point or region on or near the model
with total ease; instead of forcing an operator to interact with an imaginary environment controlled by the
computer we allow the computer to interact with the real environment controlled by the operator. This
makes previously difficult and/or tedious tasks quite simple. For instance, after we had digitized the
model and displayed it, we noticed some slight imperfections in the data that were apparent only from a
certain view direction. Without the wand ‘we would be forced to keep altering the position and view
direction (by guessing) until a suitable view was chosen that allowed us to view the defective data. Using
the wand as a camera, we were quickly able to focus in on the defects and determine their extent by
simply pointing the wand at the region in question from the desired view direction.

Key Positioning

Key positioning is a common method of animation. Animating objects through this method is done by
placing objects in different positions and interpolating [12, 21] between these key positions. To animate
articulated figures, in addition to translating the object in space the joints must also be rotated to achieve

the desired positions. The joint angles and the object positions are then interpolated to establish inbetween
parameter values. '

The task of positioning has always been a source of difficulty for animators and this problem is even
more apparent when done on a highly articulated figure such as a human body. For example, the model of
the human body used by TEMPUS [3] has 18 joints and about 48 degrees of freedom (fig. 2). Use of
input devices such as a mouse (with two degrees of freedom), dials, or keyboard are not of great help
since many joints of the body have higher degrees of freedom than that of the input devices. Much work
has been done to facilitate this task through some algorithmic assistance.

The two major approaches to algorithmic assistance are kirematically-controlled, and
dynamically-controlled positioning. Wilhelms has described a system Virya [22, 23], which controls
animation using dynamics.- Armstrong and Green [2] have also discussed the dynamics of rigid bodies for
animation. Girard and Maciejewski [10] have designed a system that facilitates animation of a walking
multi-legged animal. This system is novel since the user defines the path and type of the walk and it uses
a combination of dynamics and kinematics to achieve the key positions. A different approach taken by
Zeltzer [24] has been to simulate walking of a human figure by a finite state machine; in this case no
motion interpolation is necessary. We will discuss a new method for positioning using multiple
constraints and kinematic control.

Positioning can be done manually, meaning the user has to specify the angle of each joint of the figure
one at a time, or it can be done through some kinematic assistance. Inverse kinematics finds, given an
arbitrary chain of joints and a position in space, the joint angles such that the distal end of the chain
reaches that position in space. The solution of this problem has been a source of difficulty when dealing
with articulated figures, especially with the presence of redundant degrees of freedom (as in a human
figure). One solution is the inverse or pseudo-inverse jacobian matrix, used in the field of robotics [17]

OCTOBER 23-24. 1986 ' 15

wn

@ 1986 WORKSHOP ON

Figure2: A model of the human body used by TEMPUS.

and lately used in the control of animation of legged figures [10]. Another solution is described by
Korein [13], who defines the work space of each joint as a spherical polygon: the intersection of the
polyhedra created by sweeping the segments through the spherical polygon joint limits leads to a
recursive formulation of the solution. Another approach to solve for a position is by f‘l}lsing a set of
constraints. O’Rourke and Badler [16] and Marion, Fleischer and Vickers [15] have done some studies
using constraints for positioning though only the former have worked with a complete three dimensional
figure. There has also been a method suggested by Coblentz, Gueneau, and Bonjour [8] for finding the
optimal posture in a sitting position. This method, however, is limited to a two-dimensional figure with 8
degrees of freedom. Our method of positioning is a mixture of multiple -constraints and inverse
kinematics. ‘ : :

The "reach” problem may be described as the achievement of a goal position (and possibly an
orientation) by some "end effector” [13, 10). Typical solutions arise from considering the articulated
figure as a robot arm or abstract chain of links. ‘Unfortunately, positioning tasks often involve several
simultaneous and even approximate constraints. For example the task of sitting in a chair involves
multiple constraints between the subject’s body segments and joints with the back, legs, and seat of the
chair. We would like for the body’s lower end to be located on the chair, his thighs to lie parallel to the
seat and the center of his back to lie against the back of the chair, but the exact position of these
respective goals are only known approximately, not exactly. Since in solving for a single reach we have to
know the position of the goals exactly, it would be very difficult for the animator to formulate the
"sitting” process as a series of single reaches. The only recourse would be to repeatedly try various
reaches, a task further complicated if the display is slow or the image not easily manipulable.

To find a solution to the problem of creating one goal at a time, we instead create many goals for
different points on the figure and try to solve for the best position that satisfies these goals. Each goal can
have a different strength value (not physical strength) which is interpreted as an "importance" measure: if
it is not possible for each point to reach its goal, the algorithm uses the strength values to decide which
points must be closer to the goal and which can be permitted to reside further away. Another way of
looking at these goals is imagining that for each goal on a segment there exists a spring such that one end
of it is connected to the distal joint of the segment and the other end is located at the position of the goal,

156 CHAPEL HILL. NC

INTERACTIVE 3D GRAPHICS@

and each spring is of a different spring censtant (strength). To let these springs act on the body and
change its joint angles and its position in space is to solve for the desired position. Since the connectivity
and segment lengths of the figure must remain constant, the main consequence of this approach is that the

changes induced by the spring forces must be reflected by changing joint angles or the whole body
position.

Figure 3: 'When moving the joints, each segment is marked by its
coordinate system.

We designed and implemented a system called POSIT to investigate articulated figure positioning by
the method of multiple constraints [14]. POSIT is implemented on a Silicon Graphics Iris workstation
with Polhemus and mouse input. A constraint satisfaction algorithm, outlined above, is used to improve
the user’s ability to achieve a desired configuration. Each joint of the articulated figure can be oriented
using the Polhemus. By providing the user with three orientation degrees of freedom, a segment direction
can be established by direct user input. The Polhemus is also used to set a goal for a joint using only the
positional information (x,y,z). To make the task of positioning goals for joints easier for the user, POSIT
provides the user with four different views of the body and the goal (fig. 4). To get a better feeling for the
position of the body and goals in space the Polhemus can, as before, be used to look at the body and goals
from different points of view. Unfortunately there is no direct physical analog for spatial reference as we
might have desired based on our earlier experiments.

Some examples will show how the multiple constraint algorithm works. When the user sets only one
goal for the figure the algorithm acts as a single reach algorithm and will move the body until the
specified segment reaches its desired goal (figs. 5 and 6). When there are two goals and they are both
reachable it will act as if two single reaches have been executed on the body (fig. 7). When there is more
than one goal and not all of them are reachable, the algorithm has to decide which segments are to be
closer to their goals and which goals can be further away. This decision is made by using the goal strength
values. For example, if the decision is being made between two goal of values G,=40 and G,=10, the
distance d(S;, G,) (between segment 1 and goal 1) will be 4 times smaller than the distance a(S,, Gy)
(figs. 8 and 9) Returning to the sitting problem, we see that it can be solved by setting four constraints or
goals. The first and strongest goal must be from the lower end of the figure to the back of the seat; this
goal is the strongest since it is the most important part of sitting down on a chair (for example,

OCTOBER 23-24. 1986 157

@ 1986 WORKSHOP ON

Figure 4: Four simultaneous views: three orthogonal and one perspective. The -
perspective view is defined by the user with the Polhemus as the camera.

Front - Top

Side

7

Figure S: Goals for each segment are represented by a cube and they are
connected to their respective segments by a line.

value=100). Next we need a goal for the back of the figure to the back of the chair (for example,
value=10). To make the thighs parallel to the seat we need two goals from the knees to the front of the
seat (for example, value=10). Figs. 10 and 11 show the possible position of goals and the solved position
- of the figure. There are two points to be noticed in this example. One is the difference in the values of the

158 CHAPEL HILL, NC

INTERACTIVE 3D GRAPHICS @

Figure 6: Solution to a single goal set for the right hand.

Figure 7: A solution to two reachable goals.

goals: the value of the goal at the lower torso is much higher than the others summed together to insure
that the position of the other goals will not effect the position of the lower torso. The goals for the upper
torso and the knees are not positioned exactly, but they are set in the desired direction of that segment,
Even though these goals are impossible to achieve, they are set such that they will effect the orientation
and direction of their relative segments.

~ There is no specified or preferred range for the value of goals; they can even be negative numbers. A
negative strength value will avoid a point. What is important in determining these values is their relation
to each other. If there is a decision to be made between two different goals of values 1 and 10000, the
goal with the value 1 will be totally ignored and the goal with the value 10000 will precisely achieve itg

position in space. | o '

OCTOBER 23-24, 1986 159

& 195 worksHoP ON

A

Figure 8: Two unreachable goals set for the right hand and upper arm.

R

Value 40

Value 10

Figure 9: A possible solution. Notice the difference between di “

and d,.
L e
a2 b
di

d2=4=dl

To fully understand the flexibility of this method of positioning we show some more examples.
Assuming a situation where a person is restrained in a chair and we would like to see if he can reach an
instrument in front of him, we can set a goal with a high value for the lower torso of the body (such as
100) and a smaller value for the hand (such as 10). The goal of the lower torso should be the position of
the lower torso itself and the goal of the hand should be the instrument (fig. 12). Another typical situation
is a person sitting on a chair strapped down with a seat belt around his waist and a shoulder strap, trying
to reach for some object in space. This case can be simulated by setting two goals with large values for
shoulder and waist and a goal with a smaller value for the hand. Fig. 13 shows this case, where we have
set goals of values 100 for the lower torso and the shoulder, and a goal with value 10 for the right hand.
As shown in the figure, the body will try to reach for the object, but it in doing so it will not move the

- Q9

160 CHAPEL HILL, NC

INTERACTIVE 3D GRaPHICs S

Figure 10: Goals for sitting position. Arms have been moved up for clarity.

L

value 1 =100
value 23,4 =10

Figure 11: Solution for sitting goals.

lower torso or the shoulder position.

Though not illustrated, the algorithm permits positions that are difficult to achieve by other means. For
example, a two-handed reach goal can be specified by giving each hand segment the same spatial goal.
Once the goals are achieved, moving other joint goals will leave the two-handed reach intact up to the
interpretation of the strength values. If the ankles are pulled in the opposite direction, the body will
straighten out and maintain the goals as well as possible.

OCTOBER 23-24. 1986 161

‘@ 1936 WORKSHOP ON

Figure 12: A large value goal is set for the lower torso and a small value goaiw
for the hand. S

value2=10

Body Representation

The body is represented by a hierarchial tree. It can be defined recursively, where the body root is the
root of the tree. Each node has segments connected to it as its children. Connected segments are defined
by traversing through the body tree going in the direction away from (distal to) the body root. The body
root can be any segment of the body, though preferably it should be the center of gravity. In POSIT the
- lower torso is chosen as the body root and the root of the tree. This representation will simplify the task
of drawing the body and finding the position and orientation of each segment in the world coordinate
system. A simple recursive procedure is sufficient for drawing the body [9].

In POSIT the body hierarchy is defined by an ASCII input file. This file is modifiable by the user. This
option makes POSIT a more flexible program. Since the hierarchy does not have to be a human figure,
the user can position other hierarchical form objects such as an animal figure or even an object made out
of other objects. :

Automatic Kinematic Positioning Algorithm

If we call the hierarchical tree where every node can have a goal a reach tree, then we can define a new
data structure called balanced reach tree. A reach tree is balanced when all nodes in the tree are
balanced. A node is balanced when it has reached its weighted goal. A weighted goal of node k is defined
as weighted average of all goals in the subtree rooted at node k.

When solving for a position in POSIT, we try to turn the body hierarchy tree into a balanced reach tree.
The following algorithm describes how the body tree is balanced. To speed the algorithm we preprocess
the tree and for each node, that has a goal we will mark all its ancestors with a flag named
marked-to-be-solved, the reason for this will be apparent later.

Main procedure for solving the multiple constraint position:

162 CHAPEL HILL, NC

INTERACTIVE 3D GRaPHICS S

solve(y -~

{
1. initialize

2. vhile (moved(ROOT) or first tima) {

3. mark-not-moved (ROOT)
4. for all nodes clear-forces(node)
5. for i1=0 to Tree [ROOT] .number-of-sons {
6. if (Tree[Tree [ROOT] .next-son[i]].
L marked-to-be-solved) {

7. j-tind-ond—ot-chain(T:eo[ROOT] ncxt-son[i])
8. solvo-rocurnivo(noor J)

S |

}
9. solve-xoot ()
-}
10. Done. '
} | |
find-end-of-chain (1) ;
{)

while ((NOT Tree[i].exist-goal) AND
(Tree[i] .num-sons == 1)) {(
i = Tree[i].next[0]:
}
return(i):

}

OCTOBER 23-24, 1986 ‘ 163

@ 198 WORKSHOP ON

solve-recursive (b, k)

{
1.

W N

N

o o~

lo0.
11.

12.
13l

14.

15.

solve-root()

{if chain is null stop }
if (kx b) return ' ,
{check to see if any of this node’s children need to be
solved; if so set found to true}
for i=0 to Tree[k].num-sons { ‘
if(Tree[Tree[k].next-son[i]] .marked-to-be-solved)
: found = TRUE;
}. ‘
{if any children of node k have been
marked-to-be-solved then the solution of chain (bk)
is not a simple reach. :
Solve all children which have been marked.}
if (found) ¢ ‘
while (moved(k) OR first-time) {
for i=0 to Tree[k].num-sons {
- 1f£(Tree[Treelk].next-son[i]]. ,
marked-to-be-solved) {
J=find-end-of-chain (Tree[k] .next~son[i])
solve-recursive(k, j); C
} . j
}
mark-not-moved (k) :
solve-simple-reach (b, k)
}
}
else {none of the children had to be solved, do a
simple reach}
solve-simple-reach(b,k);
}

} end of solve recursive

When solving for a segment we change the joint angles and when solving for the body root we change
its orientation and position in space. Because of the additional position requirement the body root has to
be treated differently from the other podes. The procedure of solve-root(), will translate the body root so
- that it reaches its weighted goal.

solve-simple-reach(first,last)

Given an arbitrary chain of joints starting at segment first and ending at segment last, this procedure
will try to achieve the position of the weighted goal of the distal joint of last, Here, given a position in
space we need to find the joint angles of the joints in the chain that achieve this position, this is, compute
the inverse kinematics. Any of the several possible solutions could be applied here. To solve this problem
in POSIT we use an iterative procedure. Assuming we are solving for the chain (0, i) this procedure works
in the following way:

164

CHAPEL HILL, NC

INTERACTIVE 3D GRAPHICS @

J = | e -
orient segment j toward the goal
new g'oal = (old goal position) - (length of the segment j)
i=j-1 ,
oxient segmnnt J toward the new goal
if segment j was oriented toward the goal OR orientation is
beyond joint limits then goto step 4.
7. if (j is equal to 0) OR (distal joint of segment i
has reached its goal) stop
8. else goto step 1.

oUW

This procedure is not meant to be an efficient or clever solution to the inverse kinematics problem. It

was written to allow testing of the higher level routines. Alternatlve kinematic positioning methods could
be substituted.

Figure 13: Two large value goals set for the lower torso and the shoulder,
and a small value goal set for the hand.

find-end-of-chain

The purpose of this function is to find the longest chain of joints that can be solved all at once. Given
the start of a chain it will traverse the body tree and will stop when it finds a joint which has a goal or a
joint which has multiple children.” For example, in fig. 14, there are two actual goals set for the joints C
and D. Assuming we start with node A, the first call to find-end-of-chain will return node B, then the next
two calls to this function starting at node B will return nodes C and D. Notice nodes C and D were
returned since they had actual goals associated with them, while node B was returned because it had more
than one child. The reason for returning nodes with more than one child is the following: chains (B,C) and
(B.D) can be solved without affecting any other nodes that may have a goal, while the chain (A,C) can not
be solved in one step because in the process of solving for (4,C) we may move the position of the node B
which will undeniably effect node D. This procedure is related to the scope trees described in Badler,
O’Rourke, and Kaufman [4] to handle overlapping positioning instructions.

The algorithm works from the bottom up, first solving for the children of a node and then solving for
the node. It will stop in two cases: the first case is when all the segments have reached their goals. If it is

OCTOBER 23-24, 1986 165

&P 195 worksHOPON

Figure 14: Part of a hierarchical body tree.

=0 D

A

Figure 15: Goals set for the right hand, left upper arm, and upper torso.

upper torso

left upper arm

right hand

not possible for all segments to reach their goals then it terminates when the root of the tree reaches i
goal. The following example will demonstrate how the algorithm works. ' ‘

In fig. 15 there are goals for the right hand, left ﬁpper arm, and the upper torso. The following is the
order of the calls made:

solve-recursive (body-root, upper-torso); (step 8 in solve) -
solve-recursive (uppexr-torso, right-hand); (step 12 in solve-racursive)
solve-simple-reach (upper-torso, right-hand); (step 16 in solve-recursiva)
solve-recursive (upper-torso, left-upper-arm) ; (step 12 in solve-recursive)
solve-simple-reach (upper-torso, left-upper-arm); (step 16 in solve-recursive)
solve-simple-reach (body-root, upper-torso): (step 14 in solve-recursive)
solve-root () ; (step 9 in solve)

Since this is an iterative algorithm it will execute this sequence of calls many times until it terminates.
Notice the solve-recursive function will not move any parts of the body; it will only distribute the calls to
other functions. The only two functions that can move the body are the solve-simple-reach which changes
the joint angles and the solve-root which changes the position of the body in space.

- B

166 CHAPEL HILL, NC

INTERACTIVE 3D GRaPHICS <@

Extensions

There are numerous extensions to POSIT that we are interested in investigating. The elegance of the
constraint satisfaction algorithm itself makes the addition of other kinds of constraints poss:ble In
particular;

¢ Joint angle limits and orientation constraints must be added.

* The user interface must be improved to take better advantage of the experiences we gained in
using the Polhemus as the principal input device, for example, to use decoupled data and
relative motioning better,

* Solve the simple reach by a method such as pseudo-inverse jacobian.
* Constraint goals must be specifiable from environment objects or other parts of the figure.
* Points internal to a segment (that is, not just the distal joint) should be subject to constraints.

¢ Constraints should be allowed to have degrees of freedom so that, for example, a positional
constraint can indicate contact w1th the floor plane but not care where on the floor the contact
is actually made.

o Constraints should be specified with respect to arbltrary coordinate systems, not just the
global world space

In addition, the spring-like formulation of the constraint satisfaction procedure leads to a simple
interface for a true force-based dynamics simulation [18]. We are in the process of connecting a dynamics
simulation into the POSIT interface which will permit the interactive specification of constrained
kinematics as well as individual joint torques and moments. :

Conclusion

The combination of fast.display, six-axis input device and the multiple constraint positioning assistance
has proved to make the task of positioning faster, easier and more natural than possible before. The
method used for solve-simple-reach is not a very efficient model and it does not guarantee the best
solution, especially in the presence of joint limits. POSIT has demonstrated, however that the task of
positioning an articulated fiugre need not be as tedious as manually adjusting joint angles; rather, it can be
as easy as visually establishing multiple goals and letting a su'mghtforward tree-traversal algorithm

achieve simultaneous satisfaction of all constraints.
Acknowledgements

Graham Walters interfaced the Polhemus directly to the Iris and provided much of the system software

support for this configuration. Special thanks to Jeri Brown of NASA who posed the two-handed reach
problem and had the patience to wait for the general solution. .

This research is partially supported by NASA Contract NAS9-17239, NSF CER Grant MCS-82-19196,
and ARO Grant DAAG29-84-K-0061 including participation by the U.S. Army Human Engineering
Laboratory.

References

1. Alles, H. G. "An animation processor for action oriented three-dimensional color graphics". IEEE
GlobeCom 3 (1982).

2. Armstrong, W. W. and Mark Green. "The dynamics of articulated ngld bodies for purposes of .
animation". The Visual Computer 1, 4 (1985), 231-240. : -

OCTOBER 23-24, 1986 ‘ 167

@1986 WORKSHOP ON

3. Badler, Norman I, Jonathan D. Korein, James U. Korein, Gerald Radack, and Lynne S. Brotmﬁn.
"Positioning and animating human figures in a task-oriented environment". The Visual Computer: The
International Journal of Computer Graphics 1,3 (1985). ‘

" 4. Badler, Norman I, Joseph O’Rourke, and Bruce Kaufman. "Special problems in human movement
simulation". Computer Graphics 14,3 (1980), 189-197.

S. Baraff, David and Norman I. Badler. Handwaving in computer graphics: Efficient methods for
interactive input using a six-axis digitizer. Dept. of Computer and Information Science, Univ. of
Pennsylvania, Philadelphia, PA, 1986. ‘ ‘

6. Britton, E.G., J.S. Lipscomb and M.E. Pique. "Making nested rotations convenient for the user”,
Computer Graphics 12,3 (August 1978), 222-227. /

7. R.P. Burton and LE. Sutherland. Twinkle box: a three-dimensional computer input device. Proc. of
the NCC, 1974, pp. 513-520. :

8. Coblentz J. F., P. Gueneau and N. Bonjour. Computerized determination of optimal posture.
Biostereometrics Proceedings, Bellingham, WA, 1985.

9. Foley, James, and Andries van Dam. Fundamentals of Interactive Computer Graphics. Addison-
Wesley, Reading, MA, 1982. -

10. Girard, Michael and A. A. Maciejewski. "Computational modeling for the computer animation of
legged figures". Computer Graphics 19, 3 (1985), 263-270.

11. Herot, C.F. and G. Weinzapfel. "One-point touch input of vector information for computer displays".
Computer Graphics 12, 3 (August 1978), 210-216. :

12, Kochanek, Doris H. U. and Richard H. Bartels. "Interpolating splihes with local tension, continuity,
and bias control". Computer Graphics 18, 3 (1984), 33-41.

13. Korein, James U.. A Geometric Investigation of Reach. MIT Press, Cambridge, MA, 1985,

14. Manoochehri, Kamran H. Articulated figure positioning by multiple constraints and 6-axis input.
Master Th., Dept. of Computer and Information Science, Univ. of Pennsylvania,August 1986.

1S. Marion, A., K. Fleischer and M. Vickers. Toward expressive animation for interactive characters.
Proc. Graphics Interface *84, 1984, pp. 17-20. - :

16. O’Rourke, Joseph and Norman I. Badler. "Model-based image analysis of human motion using
constraint propagation”. IEEE Trans. PAMI 2, 6 (Nov. 1980), 522-536. '

17. Paul, Richard. Robot Manipulators: Mathematics, Programming, and Control. MIT Press,
Cambridge, MA, 1981.

18. Paul, Burton and Ronald Schaffa. DYSPAM User’s Manual, Department of Mechanical
Engineering and Applied Mechanics, University of Pennsylvania.

19. Roberts, L.G. The Lincoln Wand. Proc. Fall Joint Computer Conference, Washington, DC, 1966,
pp. 223-228. : : '

20. Schmandt, C. "Spatial input/display correspondence in a stereoscopic computer graphic work
station". Computer Graphics 17, 3 (July 1983), 253-261.

21. kaewe, Scott and Norman I. Badler. "Parametric keyframe interpolation incorporating kinetic -
adjustment and phrasing control". Computer Graphics 19, 3 (1985), 255-262.

22. Wilhelms, Jane and Brian A. Barsky. Using dynamics for the animation of articulated bodies such as
humans and robots. Proc. Graphics Interface 85, Montreal, 1985, Pp. 97-104, '

168 CHAPEL HILL. NC

