
Temporal Reasoning for Procedural Programs ?

Rajeev Alur1 and Swarat Chaudhuri2

1 University of Pennsylvania, USA
2 Pennsylvania State University, USA

Abstract. While temporal verification of programs is a topic with a long
history, its traditional basis—semantics based on word languages—is ill-
suited for modular reasoning about procedural programs. We address
this issue by defining the semantics of procedural (potentially recursive)
programs using languages of nested words and developing a framework
for temporal reasoning around it. This generalization has two benefits.
First, this style of reasoning naturally unifies Manna-Pnueli-style tem-
poral reasoning with Hoare-style reasoning about structured programs.
Second, it allows verification of “non-regular” properties of specific proce-
dural contexts—e.g., “If a lock is acquired in a context, then it is released
in the same context.” We present proof rules for a variety of properties
such as local safety, local response, and staircase reactivity; our rules are
sufficient to prove all temporal properties over nested words. We show
that our rules are sound and relatively complete.

1 Introduction

A prominent approach to program verification relies on identifying pre and post-
conditions for every block. For example, the Hoare triple {ϕ}P{ψ} for partial
correctness means that if we execute the program P starting from a state sat-
isfying the state predicate ϕ, then if the program terminates, the final state
satisfies ψ [12, 4, 7]. The corresponding proof system contains a rule for each of
the syntactic constructs for building complex programs, allowing modular proofs
of structured programs. The last few years have seen renewed interest in such
proofs, largely due to the coming-of-age of powerful decision procedures.

While Hoare-style reasoning can establish functional correctness of programs,
it is not well-suited for reasoning about reactive programs. The most widely ac-
cepted formalism for verification of reactive programs is temporal logic [17]. In
temporal reasoning, the semantics of a program P is defined to be a set of execu-
tions, where each execution is a sequence of program states; the specification is
a formula ϕ of linear temporal logic (LTL); and P satisfies ϕ if all its executions
are satisfying models of ϕ. Manna-Pnueli-style proof systems for temporal logics
show how to establish temporal properties of programs by reasoning about state
formulas [15, 16]. A limitation of these rules, however, is that they do not ex-
ploit the modularity offered by the procedural structure of programs. Also, the
temporal properties that they prove cannot refer to specific procedural contexts.
? This research was partially supported by NSF award CCF-0905464.

For example, the property “If a lock is acquired in a procedural context, then it
is released before the context ends,” which refers to the non-regular nesting of
procedural contexts, is inexpressible in temporal logic.

There has been, of late, a resurgence of interest in program verification due to
the success of model checking tools like Slam [6]. In most of these settings, even
though the analyzed program is sequential, the requirements are temporal (e.g.,
“Lock A must be acquired after lock B”); thus, temporal reasoning is needed.
Yet, any verification method that does not exploit the modularity afforded by
procedures will not scale to large programs. As a result, a form of procedure-
modular temporal reasoning seems important to develop. Also, as properties of
specific procedural contexts arise naturally in procedural programs, it seems
natural to ask for proofs for these. This paper offers a framework for temporal
reasoning that satisfies both these criteria.

Here, the execution of a program is modeled as a nested word [3]. Nested
words are a model of data with both a linear ordering and a hierarchically nested
matching of items. In nested-word modeling of program executions, we augment
the linear sequencing of program states with markup tags matching procedure
calls with returns. The benefits of this modeling have already been shown for
software model checking: when all variables are boolean, viewing the program
as a finite-state nested-word-automaton generating a regular language of nested
words allows model checking of non-regular temporal properties [2, 1, 5].

In this paper, we first define a simple procedural language, then define its
intensional semantics using nested words. Here, each state has information only
about the variables currently in scope, and the procedure stack is not made ex-
plicit. Then we use it to develop a framework of modular reasoning for procedural
programs. State formulas here can refer to the values of variables in scope as
well as to their values when the procedure was invoked. We use them to capture
local invariants (properties that hold at each reachable state of a procedure)
and summaries (properties that hold when the procedure returns). The classical
notion of inductive invariants is now extended to local invariants. Establishing
such invariants requires mutually inductive reasoning using summaries—e.g., to
establish a local invariant of a procedure p that calls a procedure q, we use a
summary of q, establishing which may require the use of a summary of p.

Based on these ideas, we develop proof rules for several safety and liveness
properties of procedural programs. In a nested word, there are many notions
of paths such as global, local, and staircase [2, 1, 13]—temporal logics for nested
words contain modalities such as “always” and “eventually” parameterized by
the path type. This makes these logics more expressive than LTL—e.g., we can
now express local safety properties such as “At all points in the top-level proce-
dural context, ϕ holds” and local liveness properties such as “ϕ holds eventually
in the top-level context.”

We show that the classical rules proving safety and liveness using inductive
invariants and ranking functions can be generalized to these properties. For
example, to prove the local safety property above, we use a local invariant for
the top-level procedure p that implies ϕ. Proving local liveness requires us to

2

combine reasoning using local invariants and summaries with ranking-function-
based techniques. Along with known expressiveness results for nested words [13,
5], they ensure that we have a proof system for all temporal logic properties of
nested words.

We address soundness and completeness of our proof rules. For example, for
local safety , we show that our rule is sound; that it is complete provided the set
of locally reachable states is definable within the underlying assertion language
for writing state properties; and that this set is definable provided the assertion
language is first-order and can specify a tree data structure. This establishes
relative completeness of this rule in the style of Manna and Pnueli [14]. Sim-
ilar results hold for local liveness, as well as for safety and liveness properties
interpreted on the global and staircase paths.

The paper is organized as follows. Section 2 recapitulates nested words. Sec. 3
fixes a procedural language, and Section 4 defines local invariants and summaries.
Section 5, our main technical section, uses these in temporal verification.

Related Work. Hoare-style assertional reasoning [12, 4] for sequential pro-
grams is inherently procedure-modular; local invariants and summaries also show
up in this setting [7]. Analysis using summaries is also key to interprocedural
program analysis [22, 20, 21, 9] and software model checking [6, 11]. The stan-
dard references for temporal logic are by Manna and Pnueli [15, 16]; see [14] for
completeness proofs. The theory of nested words is due to Alur and Madhusu-
dan [3]. There have been many papers on nested words and associated logics
recently [13, 2, 1, 5]—while most of these focus on model checking (of pushdown
models) and expressiveness, a recent paper uses the theory of nested words in
Craig-interpolant-based verification of general recursive programs [10].

The paper most relevant to this work is by Podelski et al [19]; it uses sum-
maries to compositionally verify termination and liveness of recursive programs.
Also, an algorithmic termination analysis of recursive programs, also based on
summaries, appears in [8]. In contrast, this paper uses a nested word semantics
of programs, and handles all properties specifiable in temporal logics over nested
words, including those explicitly referring to procedural contexts.

2 Nested words

Let Σ be an alphabet and <, > /∈ Σ be two symbols respectively known as the call
and return tags. For a word w and i ∈ N, let w(i) denote the symbol at the i-th
position of w; and for i, j ∈ N and j < i, let wji denote the word wjwj+1 . . . wi.
Let a word wji as above be matched if it is of the form w ::= ww | σ | <w>,
where σ ranges over Σ. A nested word over Σ is now defined to be a finite or
infinite word w over (Σ ∪ {<, >}) such that for each i with w(i) = >, there is a
j < i such that w(j) = < and wji is matched.

A position i in w (positions are numbered 0, 1, . . .) is a call if w(i+ 1) = <,
and a return if w(i − 1) = >. If i is a call, j is a return, and w(i+1) (j−1) is
matched, then j is the matching return of i. Calls without matching returns are
pending . For example, consider a nested word w′ = s0s1<s3<s5<s7>s9>s11. Here,

3

position 1 is a call (as w(2) = <), 9 is a return, 1 is a pending call, and 9 is the
matching return of 5. A language of nested words is a set L of nested words.

Intuitively, we use nested words to model executions of procedural programs,
and languages of nested words to define a program’s intensional semantics. We
interpret Σ as the set of program states, and the call and return tags as respec-
tively marking the beginning and end of procedural contexts. Call and return
positions respectively model the points right before and after control enters/exits
a context, while a pending call is a call that does not terminate.

Notably, nested words can also be defined as a logical structure that enriches
a word with a matching relation [5, 1]. The present definition may be seen as
defining a linear encoding of such structures.

Local, global, and staircase paths. The markup provided by the call/return
tags in a nested word allows us to distinguish between the parts of the word cor-
responding to different procedural contexts. These “parts” are naturally viewed
as subsequences. Of them, three are of particular interest.

The global path in w is the word obtained by removing all call and return
tags from w. The local path in w is the word w′ obtained by erasing from w: (1)
every sub-word wjk such that w(j) = <, w(k) = >, and wjk is matched; and (2)
the suffix of w starting at the position (i+ 1), for the least i such that w(i) is a
pending call. For example, the local path in our example nested word w′ is s0s1.

The staircase path in w is the word w′ obtained by first erasing from w every
sub-word wjk such that w(j) = <, w(k) = >, and wjk is matched, and then
erasing all call tags from the word that results. For example, the staircase path
in our example nested word w′ is s0s1s3s11.

Intuitively, if w models a program execution, then the values of its global
variables flow along its global path. The local path of captures the flow of local
data in the “top-level” procedural context. If a local path reaches a call that
eventually returns, it “jumps” to its matching return; if it reaches a pending
call, it terminates. Staircase paths also skip across terminating procedure calls.
Unlike local paths, they continue into the new context on seeing a pending call.
Thus, staircase paths capture local data flow, as well flow of global data into
nonterminating calls.

3 A simple procedural language

Now we fix a simple, sequential language (called Spl from now on) whose
programs we analyze. The language allows local and global variables and recur-
sion. For brevity, we assume that procedures do not take parameters or return
values; these features are encoded using global variables.

The syntax of programs Prog and commands Com of Spl is as in Fig. 1.
Here, p is a procedure name, x is a variable, l is a label, and Aexp, Bexp and
AConst respectively stand for arithmetic and boolean expressions, and arith-
metic constants. We restrict ourselves to well-formed programs where each label
appears at most once. From now on, we assume an arbitrary but fixed program
P .

4

The set of global variables in P is denoted by GV , and the set of local
variables in a procedure p is denoted by LV (p). The set of procedures is denoted
by Proc(P) or simply Proc. For each procedure p, we denote by Labels(p) the set
of labels appearing in p; this set contains a special label ⊥p that is reached when
p terminates. The first label executed when p is run is denoted by First(p).

We use a standard definition of
Prog ::= [global Gdec] Pdec

Gdec ::= x | Gdec ,Gdec
Ldec ::= x := AConst | Ldec ,Ldec

Pdec ::= proc p() = Pbody | Pdec Pdec

Pbody ::= [local Ldec] Com

Com ::= l : skip | l : x := Aexp | l : p()
| Com; Com | l : while Bexp do Com
| l : if Bexp then Com else Com

Fig. 1. Syntax of Spl (terms in square
brackets are optional).

the interprocedural control-flow graph
(CFG) of P . Nodes here are labels
of P . The edges are of three types:
call edges, local edges, and summary
edges. To define these, we construct
a relation Flow(p) between the labels
of p. Suppose the label l in p does not
label a procedure call, and suppose an
execution proceeds from l to a label
l′ if the guard b is true. In this case,
(l, b, l′) ∈ Flow(p). If l is the “last”
label in p, then (l, tt ,⊥p) ∈ Flow(p).

If l labels a call and l′ is the label to which the called procedure returns control
on termination, then (l, tt , l′) ∈ Flow(p).

A call edge from procedure p to pro-
global flag, n

proc inc_n (): void = ...

proc bar() = local cond:=true

L1: while (cond) do

L2: flag:=true;

L3: if (*) then (L4: inc_n()) else

(L5: flag:=false; L6: cond:=false)

proc main() =

L7: flag:=false; L8: n:=0;

L9: while (true) do

(L10: bar(); L11: inc_n())

Fig. 2. Flagging and unflagging

cedure q is now defined as a directed
edge e = (l,m), where m = First(q)
and l is the label of a command call-
ing q. A local edge e = (l, b,m) in the
procedure p goes from l to m (both l
and m are labels in p), and exists only
if l does not label a procedure call and
(l, b,m) ∈ Flow(p). A summary edge
e = (l, q,m) in p goes from l to m, and
exists only if l labels a call to a proce-
dure q, and (l, tt ,m) ∈ Flow(p).

The sets of call, local, and summary
edges in the CFG of P are respectively
denoted by Ecall , Eloc , and Esum . Fi-
nally, we define the restriction Pp of a program P with respect to a procedure p
as the program obtained by removing from P all procedures unreachable from
p in the CFG of P .

Figure 2 shows a program with procedures main and bar. The procedure bar
need not terminate, but if it does, it sets the flag to false before doing so.

Nested execution semantics. Now we give a semantics for Spl programs
using nested words. Let us fix a set Val from which the values of our variables
are drawn, and a special variable pc that captures the program counter and
does not appear in the text of any of our programs. Now we define a state
of a procedure p to be a map σ such that σ(pc) is a label in p, and for each

5

x ∈ GV ∪ LV (p), σ(x) ∈ Val . An entry state of a procedure p is a state σ such
that σ(pc) = First(p), and for each local variable u of p, we have σ(u) = n if u
is initialized to n in p. We denote the set of states of p by States(p), and the set
of states in P by States.

Note that a state as defined above does not contain a procedure stack. Let a
nested execution now be a finite or infinite nested word over States. Our seman-
tics assigns, to each procedure p in P , a set of nested executions.

Let a state σ of p be a call state, calling a procedure q, if σ(pc) is the label
of a call to q. For a call state σ of p calling q, Entry(σ, q) denotes the state
σen ∈ States(q) such that: (1) σen(pc) = First(q); (2) for each g ∈ GV ar(P),
we have σen(g) = σ(g); (3) for each local variable u of q initialized to n, we have
σen(u) = n. Intuitively, this is the entry state of q that is reached when q is called
from the state σ. Likewise, for each call state σcall of p that calls q, and state
σex ∈ States(q) such that σex(pc) =⊥q, we define a return state Retn(σcall , σex)
of p where control returns from the call.

Also, we define the sequential composition w1;w2 of two nested executions w1

and w2. Intuitively, this is the execution obtained by running w1 till termination,
then continuing with w2. Formally, w1;w2 equals:
– w1 if w1 is infinite;
– w′1.σ1.w

′
2, if w1 = w′1.σ1 and w2 = σ2.w

′
2 for σ1 and σ2 such that: (1)

σ1(pc) =⊥p for some p, and (2) σ1 and σ2 agree on the values of all variables;
and

– undefined otherwise.

For languages L1 and L2 of nested executions, we define L1;L2 = {w;w′ : w ∈
L1, w

′ ∈ L2}.
The semantics of a procedure p is now defined using sets [[p]]∗ and [[p]]ω

respectively comprising its finite and infinite executions. The semantics of p is
the union of these sets. We define these using sets [[c]]∗p and [[c]]ωp , respectively
comprising the finite and infinite executions of each command c in p.

As [[p]]∗ and [[c]]∗p only contain terminating executions, they can be obtained
by finite unrolling of loops and recursion. Accordingly, we define them as the
least fixpoint of equations following the syntax of p and c. We only show a few
cases:

1. [[c1; c2]]∗p = [[c1]]∗p ; [[c2]]∗p .
2. [[l : x := Aexp]]∗p comprises all nested executions of the form σ.σ′, where σ(pc) =
l, and σ′ is obtained by taking σ and setting pc to ⊥p and x to the value of
the expression Aexp in σ.

3. If c is a procedure call of the form l : q(), then [[c]]∗p = L, where L is the set of
words w′ = σ.〈.σen.w.σex.〉.σ′ such that: (1) σ, σ′ ∈ States(p) and σ(pc) = l;
(2) σen = Entry(σ, q); (3) σen.w.σex ∈ [[q]]∗; and (4) σ′ = Retn(σex, σ).

4. If the procedure p has the command c as its body, then [[p]]∗ = [[c]]∗p ∩LEn(p)
where LEn(p) is the set of nested words over States starting with an entry
state of p.

Infinite nested executions of procedures and commands are defined similarly,
except: (1) for commands that terminate—e.g., assignments—the set of infinite

6

executions is empty; and (2) we have to take greatest fixpoints to define the
semantics of loops and procedure calls. The semantics of the procedure p, denoted
by [[p]], is now given by [[p]] = [[p]]∗ ∪ [[p]]ω.

Finally, we define the notion of local reachability between states. For σ, σ′ ∈
States(p), σ′ is locally reachable from σ if for some nested execution w ∈ [[p]] and
positions i and j ≥ i, we have w(i) = σ, w(j) = σ′, and the word wij is matched.

4 Local invariants and summaries

Now we develop a class of invariants, called local invariants, that apply only to
execution fragments within a single procedural context. To derive them, we use
procedure summaries and reason with respect to environment assumptions.

We start by fixing an assertion language A and defining an extended state
of a procedure p to be a pair (σen, σ) of states of p. Intuitively, in an extended
state (σen, σ), σ is the current state, and σen is the state at the beginning of the
current procedural context. An extended state formula ϕ over p is an assertion in
A such that ϕ may use two free variables xen and x for each variable (including
the control variable pc) x in scope in p. 1 Such a formula is interpreted over
extended states (σen, σ), with xen and x capturing the values of x at σen and
σ; every formula thus encodes a set of extended states. Therefore, an extended
state formula (x ≤ 5xen) says the value of the program variable x at the point
where the assertion is made is at most five times the value of x at the beginning
of the present procedural context.

We write (σen, σ) |= ϕ if (σen, σ) satisfies ϕ. If all extended states satisfy ϕ,
then we write |= ϕ. Also, we denote the set of extended state formulas over p by
Assn(p).

A local invariant of p ∈ Proc is a formula π ∈ Assn(p) such that for any
nested execution w ∈ [[p]], the local path wl of w satisfies the following property:
for all positions i in wl, (wl(0), wl(i)) |= π. A summary of a procedure p is a
formula ψ ∈ Assn(p) such that for each finite nested execution w ∈ [[p]] ending
at a position n, (w(0), w(n)) |= ψ. Intuitively, local invariants assert conditions
that hold on the path through the “top-level” context of a nested execution. Note
that if the formula π is a local invariant of p, then the formula (π ∧ (pc =⊥p))
is a summary of the procedure p—i.e., a summary can be obtained by asserting
the local invariant at the terminal label of the procedure.

Inductive local invariants and summaries. Our goal here is to obtain, for
each procedure p, an inductive local invariant. This is done with respect to a
summary of each procedure called from p. Due to recursion, these invariants and
summaries may be interdependent, and need to be defined via mutual induction.

These notions are developed via a simple generalization of the non-procedural
case. First we define a predicate transformer for each edge e in the CFG of P .
Consider, first, a local edge e = (l, b,m) in the procedure p. The transformer for

1 As a convention, we use typewriter font to refer to program variables, and italics to
refer to logical variables.

7

e takes a formula ϕ ∈ Assn(p), and returns a formula ϕ′ = Poste(ϕ) ∈ Assn(p).
The latter formula encodes the least set S of extended states such that for each
(σen, σ) that satisfies ϕ and is such that σ(pc) = l, if σ′ is the state reached by
executing from σ the command to which e corresponds, then (σen, σ

′) ∈ S. We
write

{
ϕ
}
e
{
ϕ′
}

if Poste(ϕ)⇒ ϕ′.
Predicate transformers for call edges e are similar, except for ϕ ∈ Assn(p),

Poste(ϕ) ∈ Assn(q), where q is a procedure called from p. If e is a summary edge
capturing execution within a called procedure q, then its predicate transformer
takes in a summary ψ of q as an extra parameter, and is of the form Poste(ϕ,ψ).
Here, for given ϕ and ψ, ϕ′′ = Poste(ϕ,ψ) represents the least set of extended
states S such that if (σen, σ) satisfies ϕ and σ is a call to procedure q, then
assuming the summary ψ for q and the return state σret, we have (σen, σret) ∈ S.
We write

{
ϕ
}

(e, ψ)
{
ϕ′′
}

if Poste(ϕ,ψ)⇒ ϕ′′.
Finally, let us define a formula Ip capturing the initial condition of a pro-

cedure p—i.e., the initialization of its local variables. Inductive local invariants
and summaries are now defined as follows:

Definition 1. Let P have procedures p1, . . . , pk and initial procedure pin. The
inductive local invariant and summary for each procedure pi are respectively
given by I(pi) and Ψ(pi), where I and Ψ are maps that assign an extended state
formula to each procedure in P , and satisfy the following:

1. |= Ipin ⇒ I(pin) ∧ (pc = pcen = First(pin))
2. for each local edge e = (l, b,m) in p, |=

{
I(p)∧(pc = l)

}
e
{
I(p)∧(pc = m)

}
3. for each summary edge e = (l, q,m) in p,
|=
{
I(p) ∧ (pc = l)

}
(e, Ψ(q))

{
I(p) ∧ (pc = m)

}
4. for each call edge e = (l,m) from p to q,
|=
{
I(p) ∧ (pc = l) ∧ Iq

}
e
{
I(q) ∧ (pc = First(q))

}
5. for all p, we have |= I(p) ∧ (pc =⊥p)⇒ Ψ(p).

A pair (I, Ψ) of maps as above is called an inductive pair.

Intuitively, condition (1) requires that the inductive local invariant, when
asserted at the label where the program starts execution, satisfies the initial
conditions of pin. Conditions (2) and (3) require that invariants are preserved
under transitions along local and summary edges. Condition (4) asserts the initial
conditions of a procedure at its entry states reached via calls. Condition (5)
relates summaries given by Ψ to invariants given by I.

It is not hard to show that Definition 1 is sound:

Lemma 1. If (I, Ψ) is an inductive pair, then for each p ∈ Proc, I(p) is a local
invariant and Ψ(p) a summary of p.

For example, consider the program in Figure 2. Suppose, assuming inc_n
only increments n, we want to derive the local invariant (flag = ff) for main.
The required reasoning is performed in a procedure-modular way. First we just
consider the body of main, while making the necessary assumptions about the
procedures it calls (in this case, bar). We note that the invariant holds if (flag =

8

ff) is a summary for bar. Now we must validate this summary by reasoning
about bar. Here we assume the invariant (cond ∨ (flag = ff)) for the label L2
and show that this is a loop invariant. Verifying the summary is now easy.

5 Temporal verification

Local invariants may be directly applied in proving temporal safety and liveness
properties interpreted on nested program executions. We explore three classes of
temporal properties—safety, response, and reactivity—each of which has three
subclasses corresponding to interpretations on local, global, and staircase paths
in nested executions. Of these, staircase reactivity properties can capture all
properties expressible in temporal logic over nested words [13, 5].

In the following, we write P, p |= f if the procedure p in the program P
satisfies a temporal property f (we will define what this means for each property
we consider). We write P, p `R f , often omitting P and/or R, if we can prove
using a rule R that p satisfies f . Finally, we write ` ϕ if we can prove the
extended state formula ϕ.

A rule R proving a property f of a procedure p in a program P is called sound
if P, p `R f only when P, p |= f . As for completeness, consider sets S1, . . . , Sk of
extended states. We call R complete relative to these sets if, assuming that each
Si can be encoded by an extended state formula and that all assertions in A can
be proved or disproved, we have P, p |= f only if P, p `R f . We call R relatively
complete if it is complete relative to a collection of sets of extended states, each
of which can be captured using A.

Local safety. A local safety property says: “In any nested execution of a proce-
dure p, a certain assertion is never violated in the top-level procedural context.”
We define:

Definition 2. Let ϕ ∈ Assn(p) for a procedure p. The procedure p satisfies the
local safety property �lϕ (read as “Always locally ϕ”) if for each w ∈ [[p]] and
for each position i in the local path σ0σ1 . . . in w, (σ0, σi) satisfies ϕ. This fact
is written as P, p |= �lϕ)

Input: (1) Procedure p in program P ; (2) ϕ ∈ Assn(p)

Rule: Find an inductive pair (I, Ψ) for the program Pp such that ` I(p)⇒ ϕ

P, p ` �lϕ

Fig. 3. Rule L-Safe for local safety

Fig. 3 shows our rule L-Safe for local safety. The rule is a generalization of
the classic proof rule for temporal safety [15]. Unlike in the classical case, the
inductive invariant we need here is a local invariant. To prove local safety for p,
we only need to consider the program Pp.

9

Example 1. Recall the program in Fig. 2, and consider the safety property: “flag
is always false.” While this property is violated by global program executions, it
holds locally in main. A proof follows from the inductive pair for this program
derived earlier. In fact, this example represents a class of applications of local
safety properties: those where an invariant may be legitimately broken by a
called procedure, so long as it is restored before control returns.

Soundness of L-Safe follows from Lemma 1:

Theorem 1. The rule L-Safe is sound.

As for completeness, let Proc(Pp) be the set of procedures in Pp, and let SR
q be,

for each q ∈ Proc(Pp), the set of extended states (σen, σ) such that σen is an
entry state of q and σ is locally reachable from σen. Thus, the set SR

q captures
local reachability from an entry state of q. We have:

Theorem 2. L-Safe is complete relative to the sets SR
q , where q ∈ Proc(Pp).

Proof: Let us assume that P, p |= �lϕ. For each q ∈ Proc(Pp), let χq be an
extended state formula capturing the set SR

q (i.e., for each extended state (σen, σ)
of q, we have (σen, σ) |= χq iff (σen, σ) ∈ SR

q). By our assumption, these formulas
exist. Now consider the pair of maps (I, Ψ), each assigning a formula to each q as
above, such that for all such q, we have I(q) = χq and Ψ(q) = I(q) ∧ (pc =⊥q).

We claim that (I, Ψ) is an inductive pair for Pp. To see why this is so, consider
the conditions in Definition 1. Condition (1) holds because (σin, σin), where σin

is an entry state of p belongs to SR
p . Condition (5) holds trivially from our choice

of Ψ . Conditions (2), (3), and (4) follow from the definition of local reachability
and predicate transformers, and the hypothesis that Ψ captures summaries.

Now note that I(p) ⇒ ϕ. Recall that (σen, σ) |= ϕ for all entry states σen

of p and all σ such that σ is locally reachable from σen. As I(p) (i.e., χp)
precisely characterizes those pairs, (I, Ψ) satisfies the premises of L-Safe. Thus,
P, p ` �lϕ. ut

Now we show a way to encode the sets SR
q using assertions, generalizing a

technique in Manna and Pnueli’s completeness proof [14] and proving that:

Theorem 3. L-Safe is relatively complete.

Proof: We assume that our data domain can express records and binary trees
of records; our assertions use auxiliary variables of these types. For a node u
in a tree τ of records, let lc(u) and rc(u) respectively denote the left and right
children of u (the right child may not exist, in which case we write rc(u) =⊥).
The root of τ is denoted by root(τ); u satisfies the predicate leaf (u, τ) iff it is a
leaf of τ .

The records u forming the tree nodes have fields indexed by the logical vari-
ables xen and x of our state formulas. For an extended state formula ψ, the
application ψ(u) is obtained by substituting the free variables of ψ with the cor-
responding fields of u. The formula Ṽ = u has free variables x and xen for every

10

variable x of q, and states that each free variable has the value of the corre-
sponding field in u. For each local or call edge e, Poste(u) refers to Poste(ψu),
where ψu states that each variable has the value of the corresponding field in u.
The application of Poste(u) to a node u′ is denoted by (u = Poste(u′)). If e is
a summary edge, the formula (u = Poste(u′, u′′)) (where u′, u′′ are records) is
likewise defined.

The formula χq is:

χq : ∃τ.((|τ | > 0) ∧ λleaf ∧ λroot ∧ ∀u.(¬leaf (u, τ)⇒ δloc ∨ δsum))

where

λleaf : ∀u. leaf (u, τ)⇒
∨

r∈Proc(Ir ∧ (pc =pcen =First(r))(u)
λroot : Ṽ = root(τ)
δloc : (rc(u) =⊥) ∧

∨
e∈Eloc

(u = Poste(lc(u)))
δsum : (rc(u) 6=⊥) ∧

∨
e∈Esum

(u = Poste(lc(u), rc(u)))

The assertion χp encodes a proof tree establishing local reachability between
states σen and σ in p (also, σen is an entry state of p). The root of τ encodes
variable values at these states. The leaves encode the fact that each state σ
is locally reachable from itself. The children of a node u = (σ′en, σ

′) capture
reachability facts that, together, imply that σ′ is locally reachable from σ′en

(note that these states are not necessarily in p; also, if u has no right child, then
only one premise is needed to derive it). For example, u may have a single child
(σ′en, σ

′′), where σ′′ has a transition along a local edge to σ′. Thus, χp captures
SR
p . ut

Local response. Now we extend our approach to liveness. We define local
response as:

Definition 3. Let ϕ1, ϕ2 ∈ Assn(p) for a procedure p. The procedure p satisfies
the local response property f = �l(ϕ1 ⇒ ♦lϕ2) if for each w ∈ [[p]]ω and for each
position i in the local path σ0σ1 . . . such that (σ0, σi) |= ϕ1, there exists j ≥ i
such that (σ0, σj) |= ϕ2. This fact is written as P, p |= f .

Note that the definition only considers the infinite executions of p.
Liveness properties as above are proved by generalizing techniques from clas-

sical verification using ranking functions. Let (D,�) be a well-founded preorder;
for a, b ∈ D, we write a = b if a � b and b � a, and a ≺ b if a � b and
a 6= b. Let a ranking function for the above preorder and the program P be a
map δ : (σen, σ) 7→ d, where (σen, σ) is an extended state and d ∈ D. We use
extended state formulas such as (δ � d) and (δ = d) that are satisfied by an
extended state (σen, σ) respectively when δ(σen, σ) � d and δ(σen, σ) = d. Ways
to encode such assertions in a language like A may be found in [14].

Our rule L-Resp for local response is in Fig. 4. Intuitively, the obligation κ
is asserted whenever ϕ1 holds along a local path, and is “released” only when
ϕ2 holds on this path as well. In path fragments where κ is asserted, the ranking

11

Input: (1) Procedure p in program P ; (2) Formulas ϕ1, ϕ2 ∈ Assn(p)

Rule: Find an inductive pair (I, Ψ) for the program Pp, a ranking function from ex-
tended states of P to D, a formula κ ∈ Assn(p) and, for each procedure q ∈ Proc(Pp),
a formula βq ∈ Assn(q), such that:

1. ` ϕ1 ⇒ ϕ2 ∨ κ;
2. For each local edge e in p,
`

˘
κ ∧ (δ = d)

¯
e

˘
ϕ2 ∨ (κ ∧ (δ ≺ d)

¯
;

for each local edge in a procedure q,
`

˘
βq ∧ (δ = d)

¯
e

˘
(pc =⊥q) ∨ (βq ∧ (δ ≺ d)

¯
3. For each call edge e from p to a procedure q,
`

˘
κ ∧ (δ = d)

¯
e

˘
βq ∧ (δ ≺ d)

¯
;

for each call edge from a procedure q to a procedure r,
`

˘
βq ∧ (δ = d)

¯
e

˘
βr ∧ (δ ≺ d)

¯
4. For each summary edge e = (l, r,m) in p,
`

˘
κ ∧ (δ = d)

¯
(e, Ψ(r))

˘
ϕ2 ∨ (κ ∧ (δ ≺ d))

¯
;

for each such edge in a procedure q,
`

˘
βq ∧ (δ = d)

¯
(e, Ψ(r))

˘
(pc =⊥q) ∨ (βq ∧ (δ ≺ d))

¯
P, p ` �l(ϕ1 ⇒ ♦lϕ2)

Fig. 4. Rule L-Resp for local response

function decreases in value; as D has no infinite descending chain, this means
that ϕ2 will hold eventually.

Now, when the execution enters a new context via a call, the execution frag-
ment from then on till the matching return is not part of the local path. Suppose
κ was not released by the time the call happened. If the call never terminates, the
local path will have ended at the call, and the response property will be violated.
Consequently, we must ensure that all such calls eventually return. This is done
using the properties βq (split among procedures), which are just like κ, except
they are released when the “terminal” label ⊥q is reached. Note that because of
recursive calls, a procedure may be re-entered—e.g., we may have q = p.

Example 2. In the program in Fig. 2, suppose we want to show that bar satisfies
the property �l(cond ⇒ ♦l(¬flag ∨ (n ≥ nen + 100))). This is done using a
ranking function that maps each extended state (σen, σ) of bar to a pair (l, v),
where l is the label of σ, and v is the value of max{0, (nen + 100 − n)} in this
extended state. The labels are partially ordered as (L1 < L2 < L3), (L4 < L3),
and (L5 < L3). We have (l′, v′) ≺ (l, v) iff either (v′ < v), or (v′ = v) and
(l′ < l).

Now κ says: “pc is one of L1, L2, L3, L4, or L5, and (n < nen+100).” Clearly,
this satisfies the rule’s premises.

We can show that:

Theorem 4. The rule L-Resp is sound and relatively complete.

Global response. Local invariants may also be used to modularly prove prop-
erties of executions spanning multiple contexts. The simplest of these is global

12

Input: (1) Procedure p in program P ; (2) Formulas ϕ1, ϕ2 ∈ Assn(p)

Rule: Find an inductive pair (I, Ψ) for the program Pϕ2
p , a ranking function from

extended states of P to D, and, for each procedure q in Pϕ2
p , a formula κq ∈ Assn(P),

such that:

1. ` (pc = l) ∧ ϕ1 ⇒ (ϕ2 ∨ κq), if the label l is in q;
2. For each local edge e in a procedure q,
`

˘
κq ∧ (δ = d)

¯
e

˘
ϕ2 ∨ (κq ∧ (δ ≺ d)

¯
;

3. For each call edge from procedure q to procedure r,
`

˘
κq ∧ (δ = d)

¯
e

˘
ϕ2 ∨ (κr ∧ (δ ≺ d))

¯
4. For each summary edge e = (l, r,m) in procedure q,
`

˘
κq ∧ (δ = d)

¯
(e, Ψ(r))

˘
¬#ϕ2 ⇒ (ϕ2 ∨ (κq ∧ (δ ≺ d)))

¯
P, p ` �g(ϕ1 ⇒ ♦gϕ2)

Fig. 5. Rule G-Resp for global response

Input: (1) Procedure p in program P ; (2) Formulas ϕ1, ϕ2, θ ∈ Assn(P)

Rule: Find an inductive pair (I, Ψ) for the program Pp, a ranking function from ex-
tended states of P to D, a formula κ ∈ Assn(p) and, for each procedure q ∈ Proc(Pp),
a formula βq ∈ Assn(q), such that:

1. ` ϕ1 ⇒ ϕ2 ∨ κ;
2. For each local edge e in q,
`

˘
κ∧θ∧ (δ = d)

¯
e

˘
ϕ2∨ (κ∧ (δ ≺ d)

¯
`

˘
κ∧ (δ = d)

¯
e

˘
ϕ2∨ (κ∧ (δ � d)

¯
`

˘
βq ∧ θ ∧ (δ = d)

¯
e

˘
(pc =⊥q) ∨ ϕ2 ∨ (βq ∧ (δ ≺ d)

¯
`

˘
βq ∧ (δ = d)

¯
e

˘
(pc =⊥q) ∨ ϕ2 ∨ (βq ∧ (δ � d)

¯
3. For each call edge e from a procedure q to a procedure r,
`

˘
κ ∧ θ ∧ (δ = d)

¯
e

˘
βr ∧ (δ ≺ d)

¯
`

˘
κ ∧ (δ = d)

¯
e

˘
βr ∧ (δ � d)

¯
`

˘
βq ∧ θ ∧ (δ = d)

¯
e

˘
βr ∧ (δ ≺ d)

¯
`

˘
βq ∧ (δ = d)

¯
e

˘
βr ∧ (δ � d)

¯
4. For each summary edge e = (l, q,m) in a procedure r,
`

˘
κ ∧ θ ∧ (δ = d)

¯
(e, Ψ(q))

˘
ϕ2 ∨ (κ ∧ (δ ≺ d))

¯
`

˘
κ ∧ (δ = d)

¯
(e, Ψ(q))

˘
ϕ2 ∨ (κ ∧ (δ � d))

¯
`

˘
βr ∧ θ ∧ (δ = d)

¯
(e, Ψ(q))

˘
(pc =⊥r) ∨ ϕ2 ∨ (βr ∧ (δ ≺ d))

¯
`

˘
βr ∧ (δ = d)

¯
(e, Ψ(q))

˘
(pc =⊥r) ∨ ϕ2 ∨ (βr ∧ (δ � d))

¯
P, p ` �s((ϕ1 ∧�s♦sθ)⇒ ♦sϕ2)

Fig. 6. Rule S-React for staircase reactivity

safety. Here we consider the global response property �g(ϕ1 ⇒ ♦gϕ2), which is
defined in exactly the same way as local response, except that it is interpreted
on the global rather than the local path.

Our rule G-resp for global response is in Fig. 5. To understand it, first
consider the rule for local response and a state of procedure p that calls the
procedure q and satisfies κ, but not ϕ2. Clearly, this state was reached along
a local path where ϕ1 held at one point, but ϕ2 has not held since. In local
response, we had to ensure that this call terminates, and that ϕ2 holds along the
local path in the continuation. In global response, we do not need termination:

13

a non-returning path is legitimate if ϕ2 eventually holds in it. However, we must
assert that in all executions that do reach the matching return without having
satisfied ϕ2 in the interim, an invariant like κ must be asserted at the matching
return. This requires us to relate the fragment of the execution within q with
the conditions that hold afterwards. It is possible to do this using an auxiliary
program variable.

For an assertion ϕ and a program P , let us define the program Pϕ ob-
tained by modifying P as follows. To each procedure p of P , we add a local
boolean variable #p,ϕ. Between every two commands in p, we add the command
if(ϕ) then (#p,ϕ:=true) else skip. We also make p return the value of
this variable. This is encoded using a global variable γ—the last command in p
stores the value of #p,ϕ in γ. Finally, after each procedure call from p to q, we
add a statement #p,ϕ = γ.

This augmented program tracks if ϕ is satisfied within a procedure q called
from p. As q returns the value of #q,ϕ on termination, we can refer to this value
to see if ϕ was satisfied within the called context.

The rule G-Resp uses such an augmentation of the input program P . The
interesting premise concerns summary edges: we assert liveness at the target of
such an edge only if the procedure’s auxiliary variable is false at that point (i.e.,
if the property is not satisfied within the context summarized by the edge).

Example 3. Consider the program in Fig. 2 once again, and the global response
property �g((n = 0) ⇒ ♦g(n ≥ 1)). While the local version of this property is
not satisfied by the procedure main, the global version is easily verified using
G-Resp. As bar may or may not terminate or not increment n, the auxiliary
variables are critical to the proof.

Soundness and completeness are obtained by slightly modifying the corre-
sponding proofs for local response:

Theorem 5. G-Resp is sound and relatively complete.

Staircase reactivity. Now we prove the most general of our properties: stair-
case reactivity. A staircase reactivity property asserts: “Along the staircase path
in any nested execution, if ϕ1 holds infinitely often, then ϕ2 also holds in-
finitely often.” These properties can capture the parity acceptance condition
of ω-automata. As automata operating on the staircase path can capture all
ω-regular properties of nested words [5], a complete rule for staircase reactivity
can prove all temporal properties of nested executions.

Following [14], we use a syntactic formulation of reactivity that involves an
extra assertion θ. We define:

Definition 4. Let ϕ1, ϕ2, θ ∈ Assn(p) for a procedure p. The procedure p sat-
isfies the staircase reactivity property f = �s(ϕ1 ∧ �s♦sθ ⇒ ♦sϕ2) if for each
w ∈ [[p]] and for each position i in the staircase path σ0σ1 . . . such that: (1)
(σ0, σi) |= ϕ1, and (2) there exist infinitely many j ≥ i such that (σ0, σj) |= θ,
there is some k ≥ i such that (σ0, σk) |= ϕ2.

14

Our rule S-React for staircase reactivity is shown in Fig. 6. The rule com-
bines features of proofs for local and global properties, and generalizes the rule
for response.

Consider, first, the case where there are no procedure calls. As in local re-
sponse, κ is asserted whenever an extended state satisfying ϕ1 is reached along a
local path, and continues to hold till the “goal” of reaching ϕ2 is met. However,
this time the rank decreases along a path fragment with invariant κ only when θ
is satisfied (and it never increases along a path). If θ holds infinitely often, then
either ϕ2 holds eventually, or the rank must decrease unboundedly. The latter
is impossible as D is well-founded.

If the program has procedure calls, we propagate two liveness conditions at
each call. Along the call edge, we assert the property that along each path within
the new context, either the reactivity condition is met, or the matching return of
the present call is reached. Along the summary edge, we assert: “the reactivity
condition is met eventually.”

To see why, suppose a call terminates after having satisfied the liveness obli-
gation. The part of this execution within the called context is not in the staircase
path, but this is not an issue as liveness is asserted along the summary edge re-
gardless of what happens within the called context. Now suppose this call never
returns. In this case, using a strong summary, we rule out a continuation of the
current execution along the summary edge in question. However, the condition
for the call edge ensures that the context reached via the call satisfies the liveness
obligation. In general, we can show that:

Theorem 6 (Soundness, completeness). The rule S-React is sound and
relatively complete.

6 Conclusion

We have presented a set of rules to modularly verify temporal properties of
procedural programs. Our approach uses a nested-word semantics of programs,
and uses summaries and local invariants to perform modular reasoning. Our
rules are sound and relatively complete, and can prove any temporal property
of nested words.

In future work, we will mechanize these rules using recent techniques for au-
tomatic invariant generation [7, 18]. Also, we did not permit assertions referring
to the past in this paper—they will be dealt with in the journal version.

References

1. R. Alur, M. Arenas, P. Barceló, K. Etessami, N. Immerman, and L. Libkin. First-
order and temporal logics for nested words. In Proceedings of LICS, pages 151–160,
2007.

2. R. Alur, K. Etessami, and P. Madhusudan. A temporal logic of nested calls and
returns. In Proceedings of TACAS, pages 467–481, 2004.

15

3. R. Alur and P. Madhusudan. Adding nesting structure to words. JACM, 2009.
4. K. R. Apt. Ten years of Hoare’s logic: A survey—part I. ACM Transactions on

Programming Languages and Systems, 3(4):431–483, 1981.
5. M. Arenas, P. Barceló, and L. Libkin. Regular languages of nested words: Fixed

points, automata, and synchronization. In ICALP, pages 888–900, 2007.
6. T. Ball and S. Rajamani. The SLAM toolkit. In 13th International Conference on

Computer Aided Verification, pages 260–264, 2001.
7. A. Bradley and Z. Manna. The Calculus of Computation. Springer, 2007.
8. B. Cook, A. Podelski, and A. Rybalchenko. Summarization for termination: no

return! Formal Methods for System Design, 2009.
9. I. Dillig, T. Dillig, and A. Aiken. Sound, complete and scalable path-sensitive

analysis. In PLDI, pages 270–280, 2008.
10. M. Heizmann, J. Hoenicke, and A. Podelski. Nested interpolants. In Proceedings

of POPL, 2010.
11. T.A. Henzinger, R. Jhala, R. Majumdar, G.C. Necula, G. Sutre, and W. Weimer.

Temporal-safety proofs for systems code. In Proceedings of CAV, pages 526–538,
2002.

12. C.A.R. Hoare. An axiomatic basis for computer programming. Communications
of the ACM, 12(10):576–580, 1969.

13. C. Löding, P. Madhusudan, and O. Serre. Visibly pushdown games. In Proceedings
of FSTTCS, pages 408–420, 2004.

14. Z. Manna and A. Pnueli. Completing the temporal picture. Theoretical Computer
Science, 83(1):91–130, 1991.

15. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:
Safety. Springer-Verlag, New York, 1995.

16. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:
Progress. 1996.

17. A. Pnueli. The temporal logic of programs. In Proceedings of FOCS, pages 46–77,
1977.

18. A. Podelski and A. Rybalchenko. A complete method for the synthesis of linear
ranking functions. In Proceedings of VMCAI, pages 239–251, 2004.

19. A. Podelski, I. Schaefer, and S. Wagner. Summaries for while programs with
recursion. In ESOP, pages 94–107, 2005.

20. T. Reps, S. Horwitz, and S. Sagiv. Precise interprocedural dataflow analysis via
graph reachability. In Proc. of POPL, pages 49–61, 1995.

21. T. W. Reps, S. Schwoon, and S. Jha. Weighted pushdown systems and their
application to interprocedural dataflow analysis. In Proceedings of SAS, pages
189–213, 2003.

22. M. Sharir and A. Pnueli. Two approaches to interprocedural dataflow analysis.
Program Flow Analysis: Theory and Applications, pages 189–234, 1981.

16

