
A

Streaming Tree Transducers

RAJEEV ALUR, University of Pennsylvania

LORIS D’ANTONI, University of Pennsylvania

Theory of tree transducers provides a foundation for understanding expressiveness and complexity of analysis

problems for specification languages for transforming hierarchically structured data such as XML documents.

We introduce streaming tree transducers as an analyzable, executable, and expressive model for transforming
unranked ordered trees (and forests) in a single pass. Given a linear encoding of the input tree, the transducer

makes a single left-to-right pass through the input, and computes the output in linear time using a finite-

state control, a visibly pushdown stack, and a finite number of variables that store output chunks that can be
combined using the operations of string-concatenation and tree-insertion. We prove that the expressiveness

of the model coincides with transductions definable using monadic second-order logic (MSO). Existing

models of tree transducers either cannot implement all MSO-definable transformations, or require regular
look-ahead that prohibits single-pass implementation. We show a variety of analysis problems such as type-

checking and checking functional equivalence are decidable for our model.

Categories and Subject Descriptors: F.2.5.1 [Theory of Computation]: Formal languages and automata theory, Formalisms,
Automata extensions, Transducers

General Terms: Theory, Algorithms

Additional Key Words and Phrases: Nested words, tree transducers

ACM Reference Format:

J. ACM V, N, Article A (January YYYY), 43 pages.

DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION

Finite-state machines and logics for specifying tree transformations offer a suitable theoretical foundation
for studying expressiveness and complexity of analysis problems for languages for processing and transform-
ing XML documents. Representative formalisms for specifying tree transductions include finite-state top-
down and bottom-up tree transducers, Macro tree transducers (MTT), attribute grammars, MSO (monadic
second-order logic) definable graph transductions, and specialized programming languages such as XSLT
and XDuce [Comon et al. 2002; Courcelle 1994; Engelfriet and Maneth 1999; Engelfriet and Vogler 1985;
Milo et al. 2000; Hosoya and Pierce 2003; Martens and Neven 2005; Hosoya 2011; Engelfriet 1975].

In this paper, we propose the model of streaming tree transducers (STT) which has the following three
properties: (1) Single-pass linear-time processing: an STT is a deterministic machine that computes the
output using a single left-to-right pass through the linear encoding of the input tree processing each symbol
in constant time; (2) Expressiveness: STTs specify exactly the class of MSO-definable tree transductions;
and (3) Analyzability: decision problems such as type-checking and checking functional equivalence of two
STTs, are decidable. The last two features indicate that our model has the commonly accepted trade-off
between analyzability and expressiveness in formal language theory. The motivation for designing streaming
algorithms that can process a document in a single pass has led to streaming models for checking membership
in a regular tree language and for querying [Segoufin and Vianu 2002; Neven and Schwentick 2002; Milo
et al. 2000; Madhusudan and Viswanathan 2009], but there is no previous model that can compute all
MSO-definable transformations in a single pass (see Section 6 for detailed comparisons of STTs with prior
models).

This research was partially supported by NSF Expeditions in Computing award CCF 1138996.
Authors addresses: R. Alur, Computer Science Department, University of Pennsylvania; L. D’Antoni, Computer Science De-
partment, University of Pennsylvania.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial advantage and that copies show this notice on the first page
or initial screen of a display along with the full citation. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to
lists, or to use any component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481,
or permissions@acm.org.
c© YYYY ACM 0004-5411/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

The transducer model integrates features of visibly pushdown automata, equivalently nested word au-
tomata [Alur and Madhusudan 2009], and streaming string transducers [Alur and Cerný 2010; 2011]. In our
model, the input tree is encoded as a nested word , which is a string over alphabet symbols, tagged with
open/close brackets (or equivalently, call/return types) to indicate the hierarchical structure. The streaming
tree transducer reads the input nested word left-to-right in a single pass. It uses finitely many states, together
with a stack, but the type of operation applied to the stack at each step is determined by the hierarchical
structure of the tags in the input. The output is computed using a finite set of variables with values ranging
over output nested words, possibly with holes that are used as place-holders for inserting subtrees. At each
step, the transducer reads the next symbol of the input. If the symbol is an internal symbol, then the trans-
ducer updates its state and the output variables. If the symbol is a call symbol, then the transducer pushes
a stack symbol, along with updated values of variables, updates the state, and reinitializes the variables.
While processing a return symbol, the stack is popped, and the new state and new values for the variables
are determined using the current state, current variables, popped symbol, and popped values from the stack.
In each type of transition, the variables are updated using expressions that allow adding new symbols, string
concatenation, and tree insertion (simulated by replacing the hole with another expression). A key restriction
is that variables are updated in a manner that ensures that each value can contribute at most once to the
eventual output, without duplication. This single-use-restriction is enforced via a binary conflict relation
over variables: no output term combines conflicting variables, and variable occurrences in right-hand sides
during each update are consistent with the conflict relation. The transformation computed by the model can
be implemented as a single-pass linear-time algorithm.

To understand the novel features of our model, let us consider two kinds of transformations. First, suppose
we want to select and output the sequence of all subtrees that match a pattern, that is specified by a regular
query over the entire input, and not just the prefix read so far. To implement this query, the transducer uses
multiple variables to store alternative outputs, and exploiting regularity to maintain only a bounded number
of choices at each step. Second, suppose the transformation requires swapping of subtrees. The operations
of concatenation and tree-insertion allows an STT to implement this transformation easily. This ability to
combine previously computed answers seems to be missing from existing transducer models. We illustrate
the proposed model using examples such as reverse, swap, tag-based sorting, where the natural single-pass
linear-time algorithms for implementing these transformations correspond to STTs.

We show that the model can be simplified in natural ways if we want to restrict either the input or the
output, to either strings or ranked trees. For example, to compute transformations that output strings it
suffices to consider variable updates that allow only concatenation, and to compute transformations that
output ranked trees it suffices to consider variable updates that allow only tree insertion. The restriction
to the case of ranked trees as inputs gives the model of bottom-up ranked-tree transducers. As far as we
know, this is the only transducer model that processes trees in a bottom-up manner, and can compute all
MSO-definable tree transformations.

The main technical result in the paper is that the class of transductions definable using streaming tree
transducers is exactly the class of MSO-definable tree transductions. The starting point for our result is the
known equivalence of MSO-definable tree transductions and Macro Tree Transducers with regular look-ahead
and single-use restriction, over ranked trees [Engelfriet and Maneth 1999]. Our proof proceeds by establishing
two key properties of STTs: the model is closed under regular look-ahead and under sequential composition.
These proofs are challenging due to the requirement that a transducer can use only a fixed number of variables
that can be updated by assignments that obey the single-use-restriction rules, and we develop them in a
modular fashion by introducing intermediate results (for example, we establish that allowing variables to
range over trees that contain multiple parameters that can be selectively substituted during updates, does
not increase expressiveness).

We show a variety of analysis questions for our transducer model to be decidable. Given a regular language
L1 of input trees and a regular language L2 of output trees, the type-checking problem is to determine if
the output of the transducer on an input in L1 is guaranteed to be in L2. We establish an ExpTime upper
bound on type-checking. For checking functional equivalence of two streaming tree transducers, we show that
if the two transducers are inequivalent, then we can construct a pushdown automaton A over the alphabet
{0, 1} such that A accepts a string with equal number of 0’s and 1’s exactly when there is an input on which
the two transducers compute different outputs. Using known techniques for computing the Parikh images
of context-free languages [Engelfriet and Maneth 2006; Seidl et al. 2004; Esparza 1997; Kopczynski and To
2010], this leads to a NExpTime upper bound for checking functional inequivalence of two STTs. Assuming

2

a bounded number of variables, the upper bound on the parametric complexity becomes NP. Improving the
NExpTime bound remains a challenging open problem.

2. TRANSDUCER MODEL

We first introduce some preliminary notions, then formally define streaming tree transducers, and finally
provide few examples.

2.1. Preliminaries

In this section we first recall the notion of nested word and then introduce the basic building blocks of
streaming tree transducers.

Nested Words. Data with both linear and hierarchical structure can be encoded using nested words [Alur

and Madhusudan 2009]. Given a set Σ of symbols, the tagged alphabet Σ̂ consists of the symbols a, 〈a, and

a〉, for each a ∈ Σ. A nested word over Σ is a finite sequence over Σ̂. For a nested word a1 · · · ak, a position
j, for 1 ≤ j ≤ k, is said to be a call position if the symbol aj is of the form 〈a, a return position if the
symbol aj is of the form a〉, and an internal position otherwise. The tags induce a natural matching relation
between call and return positions, and in this paper, we are interested only in well-matched nested words
in which all calls/returns have matching returns/calls. A string over Σ is a nested word with only internal
positions. Nested words naturally encode ordered trees. The empty tree is encoded by the empty string ε.
The tree with a-labeled root with subtrees t1, . . . tk as children, in that order, is encoded by the nested word
〈a 〈〈t1〉〉 · · · 〈〈tk〉〉 a〉, where 〈〈ti〉〉 is the encoding of the subtree ti. This transformation can be viewed as an
inorder traversal of the tree. The encoding extends to forests also: the encoding of a forest is obtained by
concatenating the encodings of the trees it contains. An a-labeled leaf corresponds to the nested word 〈aa〉,
we will use 〈a〉 as its abbreviation. Thus, a binary tree with a-labeled root for which the left-child is an
a-labeled leaf and the right-child is a b-labeled leaf is encoded by the string 〈a 〈a〉 〈b〉 a〉.

Nested Words with Holes. A key operation that our transducer model relies on is insertion of one nested word
within another. In order to define this, we consider nested words with holes, where a hole is represented by
the special symbol ?. For example, the nested word 〈a ? 〈b〉 a〉 represents an incomplete tree with a-labeled
root where its right-child is a b-labeled leaf such that the tree can be completed by adding a nested word to
the left of this leaf. We require that a nested word can contain at most one hole, and we use a binary type
to keep track of whether a nested word contains a hole or not. A type-0 nested word does not contain any
holes, while a type-1 nested word contains one hole. We can view a type-1 nested word as a unary function
from nested words to nested words. The set W0(Σ) of type-0 nested words over the alphabet Σ is defined by
the grammar

W0 := ε | a | 〈aW0 b〉 |W0W0 for a, b ∈ Σ

The set W1(Σ) of type-1 nested words over the alphabet Σ is defined by the grammar

W1 := ? | 〈aW1 b〉 |W1W0 |W0W1 for a, b ∈ Σ

A nested-word language over Σ is a subset L of W0(Σ), and a nested-word transduction from an input
alphabet Σ to an output alphabet Γ is a partial function f from W0(Σ) to W0(Γ).

Nested Word Expressions. In our transducer model, the machine maintains a set of variables with values
ranging over output nested words with holes. Each variable has an associated binary type: a type-k vari-
able has type-k nested words as values, for k = 0, 1. The variables are updated using typed expressions,
where variables can appear on the right-hand side, and we also allow substitution of the hole symbol by
another expression. Formally, a set X of typed variables is a set that is partitioned into two sets X0 and X1

corresponding to the type-0 and type-1 variables. Given an alphabet Σ and a set X of typed variables, a
valuation α is a function that maps X0 to W0(Σ) and X1 to W1(Σ). Given an alphabet Σ and a set X of
typed variables, we define the sets Ek(X,Σ), for k = 0, 1, of type-k expressions by the grammars:

E0 := ε | a |x0 | 〈aE0 b〉 |E0E0 |E1[E0]

E1 := ? |x1 | 〈aE1 b〉 |E0E1 |E1E0 |E1[E1],

where a, b ∈ Σ, x0 ∈ X0 and x1 ∈ X1. The clause e[e′] corresponds to substitution of the hole in a type-1
expression e by another expression e′. A valuation α for the variables X naturally extends to a type-consistent
function that maps the expressions Ek(X,Σ) to values in Wk(Σ), for k = 0, 1. Given an expression e, α(e)

3

is obtained by replacing each variable x by α(x), and applying the substitution: in particular, α(e[e′]) is
obtained by replacing the symbol ? in the type-1 nested word α(e) by the nested word α(e′).

Single Use Restriction. The transducer updates variables X using type-consistent assignments. To achieve the
desired expressiveness, we need to restrict the reuse of variables in right-hand sides. In particular, we want
to disallow the assignment x := xx (which would double the length of x), but allow the parallel assignment
(x := x, y := x), provided the variables x and y are guaranteed not to be combined later. For this purpose,
we assume that the set X of variables is equipped with a binary relation η: if η(x, y), then x and y cannot be
combined. This “conflict” relation is required to be reflexive and symmetric (but need not be transitive). Two
conflicting variables cannot occur in the same expression used in the right-hand side of a variable update or
as output. During an update, two conflicting variables can occur in multiple right-hand sides for updating
conflicting variables. Thus, the assignment (x := 〈a xa〉[y], y := a?) is allowed, provided η(x, y) does not
hold; the assignment (x := ax[y], y := y) is not allowed; and the assignment (x := ax, y := x[b]) is allowed,
provided η(x, y) holds. Formally, given a set X of typed variables with a reflexive symmetric binary conflict
relation η, and an alphabet Σ, an expression e in E(X,Σ) is said to be consistent with η, if (1) each variable
x occurs at most once in e, and (2) if η(x, y) holds, then e does not contain both x and y. Given sets X and
Y of typed variables, a conflict relation η, and an alphabet Σ, a single-use-restricted assignment is a function
ρ that maps each type-k variable x in X to a right-hand side expression in Ek(Y,Σ), for k = 0, 1, such that
(1) each expression ρ(x) is consistent with η, and (2) if η(x, y) holds, ρ(x′) contains x, and ρ(y′) contains y,
then η(x′, y′) must hold. The set of such single-use-restricted assignments is denoted A(X,Y, η,Σ).

At a return, the transducer assigns the values to its variables X using the values popped from the stack
as well as the values returned. For each variable x, we will use xp to refer to the popped value of x. Thus,
each variable x is updated using an expression over the variables X ∪ Xp. The conflict relation η extends
naturally to variables in Xp: η(xp, yp) holds exactly when η(x, y) holds. However η(x, yp) does not hold for
any x ∈ X and yp ∈ Xp. Then, the update at a return is specified by assignments in A(X,X ∪Xp, η,Σ).

2.2. Transducer Definition

A streaming tree transducer is a deterministic machine that reads the input nested word left-to-right in
a single pass. It uses finitely many states, together with a stack. The use of the stack is dictated by the
hierarchical structure of the call/return tags in the input. The output is computed using a finite set of typed
variables that range over nested words. Such variables are equipped with a conflict relation that restricts
which variables can be combined, and the stack can be used to store variable values. At each step, the
transducer reads the next symbol of the input. If the symbol is an internal symbol, then the transducer
updates its state and the nested-word variables. If the symbol is a call symbol, then the transducer pushes
a stack symbol, updates the state, stores updated values of variables in the stack, and reinitializes the
variables. While processing a return symbol, the stack is popped, and the new state and new values for the
variables are determined using the current state, current variables, popped symbol, and popped variable
values from the stack. In each type of transition, the variables are updated in parallel using assignments
in which the right-hand sides are nested-word expressions. We require that the update is type-consistent,
and meets the single-use-restriction with respect to the conflict relation. When the transducer consumes the
entire input nested word, the output nested word is produced by an expression that is consistent with the
conflict relation. These requirements ensure that at every step, at most one copy of any value is contributed
to the final output.

STT syntax. A deterministic streaming tree transducer (STT) S from input alphabet Σ to output alphabet
Γ consists of

— a finite set of states Q;
— a finite set of stack symbols P ;
— an initial state q0 ∈ Q;
— a finite set of typed variables X with a reflexive symmetric binary conflict relation η;
— a partial output function F : Q 7→ E0(X,Γ) such that each expression F (q) is consistent with η;
— an internal state-transition function δi : Q× Σ 7→ Q;
— a call state-transition function δc : Q× Σ 7→ Q× P ;
— a return state-transition function δr : Q× P × Σ 7→ Q;
— an internal variable-update function ρi : Q× Σ 7→ A(X,X, η,Γ);
— a call variable-update function ρc : Q× Σ 7→ A(X,X, η,Γ); and
— a return variable-update function ρr : Q× P × Σ 7→ A(X,X ∪Xp, η,Γ).

4

STT semantics. To define the semantics of a streaming tree transducer, we consider configurations of the
form (q,Λ, α), where q ∈ Q is a state, α is a type-consistent valuation from variables X to typed nested
words over Γ, and Λ is a sequence of pairs (p, β) such that p ∈ P is a stack symbol and β is a type-consistent
valuation from variables in X to typed nested words over Γ. The initial configuration is (q0, ε, α0) where α0

maps each type-0 variable to ε and each type-1 variable to ?. The transition function δ over configurations
is defined as follows. Given an input a ∈ Σ̂:

(1) Internal transitions: if a is internal, and δi(q, a) = q′, then δ((q,Λ, α), a) = (q′,Λ, α′), where
— q′is the state resulting from applying the internal transition that reads a in state q,
— the stack Λ remains unchanged, and
— the new evaluation function α′ = α · ρi(q, a) is the result of applying the variable update function
ρi(q, a) using the variable values in α.

(2) Call transitions: if for some b ∈ Σ, a = 〈b, and δc(q, b) = (q′, p), then δ((q,Λ, α), a) = (q′,Λ′, α0),
where
— q′ is the state resulting from applying the call transition that reads b in state q;
— Λ′ = (p, α · ρc(q, b))Λ is the new stack resulting from pushing the pair (p, α′) on top of the old stack

Λ, where the stack state p is the one pushed by the call transition function, and α′ = α · ρc(q, b) is
the new evaluation function α′ resulting from applying the variable update function ρc(q, b) using the
variable values in α, and

— α0 is the evaluation function that sets every variable to their initial value.
(3) Return transitions: if for some b ∈ Σ, a = b〉, and δr(q, p, b) = q′, then δ((q, (p, β)Λ, α), a) = (q′,Λ′, α′)

where
— q′ is the state resulting from applying the return transition that reads b in state q with p on top of

the stack,
— the stack Λ′ = Λ is the result of popping the top of the stack value from the current stack, and
— the new evaluation function α′ = α · βp · ρr(q, p, b), where βp is the valuation for variables Xp defined

by βp(xp) = β(x) for x ∈ X, is the result of applying the variable update function ρr(q, p, b) using
the variable values in α, and the stack variable values in βp.

For an input nested word w ∈ W0(Σ), if δ∗((q0, ε, α0), w) = (q, ε, α) then if F (q) is undefined then so is
JSK(w), otherwise JSK(w) = α(F (q)). We say that a nested word transduction f from input alphabet Σ to
output alphabet Γ is STT-definable if there exists an STT S such that JSK = f .

2.3. Examples

Streaming tree transducers can easily implement standard tree-edit operations such as insertion, deletion,
and relabeling. We illustrate the interesting features of our model using operations such as reverse, swap, and
sorting based on fixed number of tags. In each of these cases, the transducer mirrors the natural algorithm
for implementing the desired operation in a single pass.

Reverse. Given a nested word a1a2 · · · ak, its reverse is the nested word bk · · · b2b1, where for each 1 ≤ j ≤ k,
bj = aj if aj is an internal symbol, bj = 〈a if aj is a return symbol a〉, and bj = a〉 if aj is a call symbol 〈a.
As a tree transformation, reverse corresponds to recursively reversing the order of children at each node: the
reverse of 〈a 〈b 〈d〉 〈e〉 b〉 〈c〉 a〉 is 〈a 〈c〉 〈b 〈e〉 〈d〉 b〉 a〉. This transduction can be implemented by a streaming
tree transducer with a single state, a single type-0 variable x, and stack symbols Σ: the internal transition
on input a updates x to a x; the call transition on input a pushes a onto the stack, stores the current value of
x on the stack, and resets x to the empty nested word; and the return transition on input b, while popping
the symbol a and stack value xp from the stack, updates x to 〈b x a〉xp.

Tree Swap. Figure 1 shows the transduction that transforms the input tree by swapping the first (in inorder
traversal) b-rooted subtree t1 with the next (in inorder traversal) b-rooted subtree t2, not contained in t1.
For clarity of presentation, we assume that the input nested word encodes a tree: it does not contain any
internal symbols and if a call position is labeled 〈a then its matching return is labeled a〉.

The initial state is q0 which means that the transducer has not yet encountered a b-label. In state q0, the
STT records the tree traversed so far using a type-0 variable x: upon an a-labeled call, x is stored on the
stack, and is reset to ε; and upon an a-labeled return, x is updated to xp〈a x a〉. In state q0, upon a b-labeled
call, the STT pushes q0 along with the current value of x on the stack, resets x to ε, and updates its state
to q′. In state q′, the STT constructs the first b-labeled subtree t1 in the variable x: as long as it does not
pop the stack symbol q0, at a call it pushes q′ and x, and at a return, updates x to xp〈a x a〉 or xp〈b x b〉,

5

a

a

a

b

ba

a b

b

a

t2

t1

t1

t2

Fig. 1. Tree Swap

depending on whether the current return symbol is a or b. When it pops q0, it updates x to 〈b x b〉 (at this
point, x contains the tree t1, and its value will be propagated), sets another type-1 variable y to xp ?, and
changes its state to q1. In state q1, the STT is searching for the next b-labeled call, and processes a-labeled
calls and returns exactly as in state q0, but now using the type-1 variable y. At a b-labeled call, it pushes q1

along with y on the stack, resets x to ε, and updates the state to q′. Now in state q′, the STT constructs the
second b-labeled subtree t2 in variable x as before. When it pops q1, the subtree t2 corresponds to 〈b x b〉.
The transducer updates x to yp[〈b x b〉]xp capturing the desired swapping of the two subtrees t1 and t2 (the
variable y is no longer needed and is reset to ε to ensure the single use restriction), and switches to state q2.
In state q2, the remainder of the tree is traversed adding it to x. The output function is defined only for the
state q2 and maps q2 to x.

Tag-based Sorting. Suppose that given a sequence of trees t1t2 · · · tk (a forest), and a regular pattern, we
want to rearrange the sequence so that all trees that match the pattern appear before the trees that do not
match the pattern. For example, given an address book, where each entry has a tag that denotes whether
the entry is “private” or “public”, we want to sort the address book based on this tag: all private entries
should appear before public entries, while maintaining the original order for entries with the same tag value.
Such a transformation can be implemented naturally using an STT: variable x collects entries that match
the pattern, while variable y collects entries that do not match the pattern. As the input is scanned, the
state is used to determine whether the current tree t satisfies the pattern; a variable z is used to store the
current tree, and once t is read in its entirety, based on whether or not it matches the pattern, the update
(x := xz, z := ε) or (y := yz, z := ε) is executed. The output of the transducer is the concatenation xy.

Conditional Swap. Suppose that we are given a ternary tree, in which nodes have either three children or
none, and the third child of a ternary node is always a leaf. We want to compute the transformation f defined
as follows:

f(〈c1x1x2〈c2〉c1〉) =

{
〈c1 f(x2) f(x1) c1〉 if c2 = a
〈c1 x2 x1 c1〉 if c2 = b

Informally, while going top-down, f swaps the first two children until it reaches for the first time a node for
which the third child is a symbol different from b. The third child is always deleted in the process. The STT
implementing such transduction uses four variables x1, y1, x2, y2. Given a tree t, let ci(t) be its i-th child.
After finishing processing the first two children t1 = c1(t) and t2 = c2(t) of a tree t, the variables x1 and x2

respectively contain the trees f(t1) and f(t2), and the variables y1 and y2 respectively contain the trees t1
and t2.

When starting processing the third child t3 = c3(t) of a node t all the variables are stored on the stack.
At the corresponding return the variable values are retrieved from the stack (for every v ∈ X, v = vp), and
the state is updated to qa or qb representing whether t3 is labeled with a or b respectively. When processing
the return symbol s of the subtree t, we have the following possibilities:

(1) the current state is qa, and t is the first child of some node t′. The variables are updated as follows:
x1 := 〈s x2 x1 s〉, x2 := ε, y1 := 〈s y1 y2 s〉, y2 := ε;

(2) the current state is qa, and t is the second child of some node t′. The variables are updated as follows:
x1 := xp1, x2 := 〈s x2 x1 s〉, y1 := yp1 , y2 := 〈s y1 y2 s〉;

(3) the current state is qb, and t is the first child of some node t′. In this case, since t3 is labeled with b we
have that f(t) = 〈s t2 t1 s〉 and t = 〈s t1 t2 s〉. In order to maintain the invariants that xi = f(ti) and
yi = ti, we need to copy the values of y1 and y2. The variables are updated as follows: x1 := 〈s y2 y1 s〉,
x2 := ε, y1 := 〈s y1 y2 s〉, y2 := ε.

(4) the current state is qb, and t is the first child of some node t′. Following the same reasoning as for the
previous case the variables are updated as follows: x1 := xp1, x2 := 〈s y2 y1 s〉, y1 := yp1 , y2 := 〈s y1 y2 s〉;

Since y1 and y2 can be copied, the conflict relation η is such that η(x1, y1) and η(x2, y2) hold.

6

3. PROPERTIES AND VARIANTS

In this section, we note some properties and variants of streaming tree transducers aimed at understanding
their expressiveness. First, STTs compute linearly-bounded outputs, that is, the length of the output nested
word is within at most a constant factor of the length of the input nested word. The single-use-restriction
ensures that at every step of the execution of the transducer on an input nested word, the sum of the sizes
of all the variables that contribute to the output term at the end of the execution, can increase only by an
additive constant.

Proposition 3.1 (Linear-Bounded Outputs). For an STT-definable transduction f from Σ to Γ, for
all nested words w ∈W0(Σ), |f(w)| = O(|w|).

We now examine some of the features in the definition of STTs in terms of how they contribute to the
expressiveness. First, having multiple variables is essential, and this follows from results on streaming string
transducers [Alur and Cerný 2010; 2011]. Consider the transduction that rewrites a nested word w to wn

(that is, w repeated n times). An STT with n variables can implement this transduction. It is easy to prove
that an STT with less than n variables cannot implement this transduction. Second, the ability to store
symbols in the stack at calls is essential. This is because nested word automata are more expressive than
classical finite-state automata over strings.

3.1. Regular Nested-Word Languages

A streaming tree transducer with empty sets of string variables can be viewed as an acceptor of nested words:
the input is accepted if the output function is defined in the terminal state, and rejected otherwise. In this
case, the definition coincides with (deterministic) nested word automata (NWA). The original definition of
NWAs and regular nested-word languages does not need the input nested word to be well-matched (that is,

the input is a string over Σ̂), but this distinction is not relevant for our purpose. A nested word automaton
A over an input alphabet Σ is specified by a finite set of states Q; a finite set of stack symbols P ; an initial
state q0 ∈ Q; a set F ⊆ Q of accepting states; an internal state-transition function δi : Q × Σ 7→ Q; a call
state-transition function δc : Q×Σ 7→ Q× P ; and a return state-transition function δr : Q× P ×Σ 7→ Q. A
language L ⊆W0(Σ) of nested words is regular if it is accepted by such an automaton. This class includes all
regular string languages, regular tree languages, and is a subset of deterministic context-free languages [Alur
and Madhusudan 2009].

Given a nested-word transduction f from input alphabet Σ to output alphabet Γ, the domain of f is
the set Dom(f) ⊆ W0(Σ) of input nested words w for which f(w) is defined, and the image of f is the set
Img(f) ⊆W0(Γ) of output nested words w′ such that w′ = f(w) for some w. It is easy to establish that for
STT-definable transductions, the domain is a regular language, but the image is not necessarily regular:

Proposition 3.2 (Domain-Image Regularity). For an STT-definable transduction f from Σ to Γ,
Dom(f) is a regular language of nested words over Σ. There exists an STT-definable transduction f from Σ
to Γ, such that Img(f) is not a regular language of nested words over Γ.

Proof. Given an STT-definable transduction f from Σ to Γ, let Af = (Q, q0, P,X, η, F, δ, ρ) be an STT
defining it. The NWA A accepting the domain Dom(f) of f has set of states Q′ = Q, initial state q′0 = q0,
set of stack states P ′ = P , set of final states F ′ = {q | F (q) is defined}, and transition function δ′ = δ.

We now construct an STT B from Σ = {a, b} to Γ = {a, b} computing a function f ′ for which the image
Img(f ′) is not regular. The STT B only has one state q which is also initial and only has transition function
δi(q, a) = δi(q, b) = q, and has only one type-0 variable x that is updated as follows: ρi(q, a, x) = δi(q, b, x) =
axb. The output function FB of B is defined as FB(q) = x. The STT B computes the following transduction
f ′: if the input word w has length n, B outputs the word anbn. The image Img(f ′) of f ′ is the language
{anbn | n ≥ 0}, which is not a regular language of nested words over Γ. 2

3.2. Copyless STTs

When the conflict relation η is purely reflexive (i.e. {(x, x) | x ∈ X}) we call an STT copyless. The set of
copyless assignments from Y to X is denoted by A(X,Y,Σ) where we drop the relation η. We now define
the notion of atomic assignment that will be fundamental in many proofs.

Definition 3.3. A copyless assignment ρ ∈ A(X,X ∪ Y,Σ) is atomic iff it has one of the following forms:

Reset: for some variable x ∈ X, and some a, b ∈ Σ, x := ε, x :=?, x := 〈a?b〉, or x := a, and for
every variable y ∈ X, if y 6= x, then y := y;

7

Concatenation: for some two distinct variables x, y ∈ X, x := xy or x := yx, y := ε or y :=?, and for every
variable z ∈ X, if z 6= x and z 6= y, then z := z;

Substitution: for some two distinct variables x, y ∈ X, x := x[y] or x := y[x], y :=? or y := ε, and for
every variable z ∈ X, if z 6= x and z 6= y, then z := z; and

Swap: for some two distinct variables x, y ∈ X, x := y, y := x, and for every variable z ∈ X, if
z 6= x and z 6= y, then z := z,

We then show that every copyless assignment can be broken into a sequence of simpler atomic assignments.

Lemma 3.4. For every copyless assignment ρ ∈ A(X,X,Σ) there exists a set of variables Y disjoint from
X, and a sequence of assignments s = ρ1, . . . , ρn such that:

(1) for every variable x ∈ X, s(x) = ρ(x),
(2) the assignment ρ1 belongs to A(X ∪ Y,X,Σ) and it is atomic, and
(3) for every 2 ≤ j < n, the assignment ρj belongs to A(X ∪ Y,X ∪ Y,Σ), and it is atomic.

Proof. We sketch the proof and gloss over the fact the variables can be of both type-0 and type-1. Given
an expression e ∈ E = E0 ∪ E1 we define the size of e, size(e), as the size of its parse tree:

— if e ∈ {ε, a, 〈a?b〉, ?}, then size(e) = 1;
— if for some e1 different from ?, e = 〈ae1b〉, then size(e) = 1 + size(e1); and
— if for some e1, e2, e = e1e2, or e = e1[e2], then size(e) = 1 + size(e1) + size(e2).

Given an assignment ρ ∈ A(X1, X2,Σ), we define size(ρ) ∈ N × N to be the value (a, b) such that a =
maxx∈X1

size(ρ(x)) is the maximum size of a expression on the right hand side of a variable, and b is the
number of variables for which the right-hand side is an expression of size a. We define the order between two
pairs (a, b), (c, d) ∈ N2, as (a, b) < (c, d) if a < c, or if a = c and b < d.

Given an assignment ρ that is not atomic, we show that ρ can be always transformed into a sequence of
atomic assignments s = ρ1 . . . ρn such that for every x ∈ X s(x) = ρ(x). The new assignments can have new
variables. We now proceed by induction on size(ρ) = (s1, s2):

— if s1 = 1 we have the following possibilities:
— ρ is atomic, then we are done; or
— there exist a set of variables X ′, for which every variable x ∈ X ′ has a variable yx 6= x as right-hand

side. Replace ρ with a sequence of atomic swap assignments, so that the resulting variable permutation
is the same as for ρ.

— if s1 > 1 we have the following possibilities:
— one variable x has right-hand side e = w1w2, and e has size s1. Replace ρ with the sequence ρ1ρ2, such

that ρ1, ρ2 ∈ A(X∪{v}, X∪{v},Σ): ρ1(x) = w1, ρ1(v) = w2, ρ2(x) = xv, ρ2(v) = ε, and for each y such
that y 6= x and y 6= n, ρ1(y) = ρ(y) and ρ2(y) = y. We then have that ρ2 is atomic, and since w1 and w2

both have smaller size than e, size(ρ1) is smaller than size(ρ). We now apply the IH, and obtain that
there exists a set X1 and a sequence of assignments s′ = ρ′1 · · · ρ′k over A(X∪X1∪{v}, X∪X1∪{v},Σ),
such that for every x ∈ X ∪ {v} (and in particular for every x ∈ X), s′(x) = ρ1(x). We can now build
our final sequence ρf as ρ′1 · · · ρ′kρ′′2 , such that for each x ∈ X1, ρ′′2(x) = x. The assignment ρ′′2 is atomic,
therefore we are done.

— one variable x has right-hand side e = w1[w2], and e has size s1. Replace ρ with the sequence ρ1ρ2 of
assignment over X ∪ {n} such that: ρ1(x) = w1, ρ1(n) = w2, ρ2(x) = x[n], ρ2(x) = ε, and for each y
such that y 6= x and y 6= n, ρ1(y) = ρ(y) and ρ2(y) = y. We then have that ρ2 is atomic, and since w1

and w2 both have smaller size than e, size(ρ1) is smaller than size(ρ). By IH ρ1 can be transformed
into a sequence of assignments that is atomic, and using the same technique as before we can build
our final sequence of assignments.

— one variable x has right-hand side e = 〈awb〉, e has size s1, and w 6=?. Replace ρ with the sequence
ρ1ρ2 of assignment over X ∪ {n} such that: 1) ρ1(x) = 〈a?b〉, ρ1(n) = w, and for each y ∈ X, if
y 6= x, ρ1(y) = y, 2) ρ2(x) = x[n], ρ2(n)ε, and for each y ∈ X, such that y 6= x, ρ3(y) = y. The
assignment ρ2 is atomic. Since w has smaller size than e, size(ρ1) is smaller than size(ρ). By IH ρ1

can be transformed into a sequence of assignments that is atomic, and using the same technique as
before we can build our final sequence of assignments.

This concludes the proof. 2

8

We can then further refine the lemma.

Corollary 3.5. For every copyless assignment ρ ∈ A(X,X∪Y,Σ), with X disjoint from Y , there exists
a set of variablesZ disjoint from X ∪ Y , and a sequence of assignments s = ρ1, . . . , ρn such that:

(1) for every variable x ∈ X, s(x) = ρ(x),
(2) the assignment ρ1 belongs to A(X ∪ Y ∪ Z,X ∪ Y,Σ) and it is atomic,
(3) for every 2 ≤ j ≤ n, the assignment ρj belongs to A(X ∪ Y ∪ Z,X ∪ Y ∪ Z,Σ), and it is atomic, and
(4) the assignment ρn belongs to A(X,X ∪ Y ∪ Z,Σ) and it is atomic.

Moreover, if two copyless assignments are composed, the resulting assignment is still copyless.

Lemma 3.6. Given a copyless assignment ρ ∈ A(Y,X,Σ), and a copyless assignment ρ′ ∈ A(Z, Y,Σ),
the composed assignment ρ1 = ρ · ρ′ ∈ A(Z,X,Σ) is a copyless assignment in A(Z,X,Σ).

Proof. Assume this is not the case. Then, there exist a variable x ∈ X, such that x appears twice in the
right hand side of ρ1. This means that there exists two variables y1, y2 ∈ Y appearing in the right hand side
of ρ′, such that ρ(y1) and ρ(y2) contain the two incriminated occurrences of x. If y1 6= y2, the assignmentρ
cannot be copyless, since it would contain two occurrences of x. If y1 = y2, ρ′ cannot be copyless, since it
would contain two occurrences of y1. 2

3.3. Bottom-up Transducers

A nested-word automaton is called bottom-up if it resets its state along the call transition: if δc(q, a) = (q′, p)
then q′ = q0. The well-matched nested word sandwiched between a call and its matching return is processed
by a bottom-up NWA independent of the outer context. It is known that bottom-up NWAs are as expressive
as NWAs over well-matched nested words [Alur and Madhusudan 2009]. We show that a similar result holds
for transducers also: there is no loss of expressiveness if the STT is disallowed to propagate information at
a call to the linear successor. Notice that STTs reinitialize all the variables at every call. An STT S is said
to be a bottom-up STT if for every state q ∈ Q and symbol a ∈ Σ, if δc(q, a) = (q′, p) then q′ = q0, and for
every variable x ∈ X, ρc(q, a, x) = x.

Theorem 3.7 (Bottom-up STTs). Every STT-definable transduction is definable by a bottom-up STT.

Proof. Let S = (Q, q0, P,X, η, F, δ, ρ) be an STT. We construct an equivalent bottom-up STT S′ =
(Q′, q′0, P

′, X ′, η′, F ′, δ′, ρ′). Intuitively, S′ delays the application of a call transition of S to the corresponding
return. This is done by computing a summary of all possible executions of S on the subword between a call
and the corresponding matching return. At the return this summary can be combined with the information
stored on the stack to continue the summarization.

Auxiliary Notions. Given a nested word w = a1a2 . . . an, for each position 1 ≤ i ≤ n, let wms(w, i) be
the longest well-matched subword aj . . . ai ending at position i. Formally, given a well-matched nested word
w = a1a2 . . . an, we define wms(w, i) as follows:

— wms(w, 0) = ε;
— if ai is internal, then wms(w, i) = wms(w, i− 1)ai;
— if ai is a call, then wms(w, i) = ε; and
— if ai is a return, with matching call aj , then wms(w, i) = wms(w, j − 1)ajwms(w, i− 1)ai.

The nested word wms(w, i) is always well-matched, and represents the subword from the innermost un-
matched call position up to position i. For a well-matched nested word w of length n, wms(w, n) equals w.
Moreover let lc(w, i) denote the last unmatched call at position i:

— lc(w, 0) = ⊥ is undefined;
— if ai is internal, then lc(w, i) = lc(w, i− 1);
— if ai is a call, then lc(w, i) = i; and
— if ai is a return, and wms(w, i) = aj . . . ai, then lc(w, i) = lc(w, j − 1).

State Components and Invariants. Each state f of Q′ is a function from Q to Q. After reading the
i-th symbol of w, S′ is in state f such that f(q) = q′ iff when S processes wms(w, i) starting in state q, it
reaches the state q′. The initial state of S′ is the identity function f0 mapping each state q ∈ Q to itself. A
stack state in P ′ is a pair (f, a) where f is a function mapping Q to Q and a is a symbol in Σ.

9

Next, we define the transition relation δ′. When reading an internal symbol a, starting in state f , S′ goes
to state f ′ such that for each q ∈ Q, f ′(q) = δi(f(q), a). When reading a call symbol 〈a, starting in state f ,
S′ stores f on the stack along with the symbol a and goes to state f0. When reading a return symbol b〉,
starting in state f , and with (f ′, a) on top of the stack, S′ goes to state f ′′ defined as: for each q ∈ Q, if
f ′(q) = q1 (the state reached by S when reading wms(w, lc(w, i− 1)) starting in q), δc(q1, 〈a) = (q2, p), and
f(q2) = q3 (the state reached by S when reading wms(w, i− 1,) starting in q2), then f ′′(q) = δr(q3, p, b).

Variable Updates and Invariants. We now explain how S′ achieves the summarization of the variable
updates of S. For each variable x ∈ X, and state q ∈ Q, X ′ contains a variable xq. After reading the i-th
symbol, xq contains the value of x computed by S, when reading wms(w, i) starting in state q. Given an
assignment α ∈ A(X,X,Σ) ∪A(X,X ∪Xp,Σ), a state q ∈ Q, and a set of variables Y ⊆ X ∪Xp, we define
subq,Y (α) to be the assignment α′ ∈ A(X ′, X ′,Σ) ∪ A(X ′, X ′ ∪ X ′p,Σ), where X ′ = (X \ Y) ∪ Y ′ with
Y ′ = {yq | y ∈ Y }, and each variable y ∈ Y is replaced by yq ∈ Y ′.

Initially, and upon every call, each variable xq is assigned the value ? or ε, if x is a type-1 or type-0 variable
respectively. We use e{x/x′} to denote the expression e in which every variable x is replaced with the variable
x′. When processing the input symbol a, starting in state f , each variable xq is updated as follows:

a is internal: if f(q) = q′, then xq := subq,X(ρi(q
′, a, x)) is the result of applying the variable update

function of S in state q′ where each variable x ∈ X is renamed to xq;
a is a call: since S′ is bottom-up every variable is simply stored on the stack and the update function

at the call is delayed to the corresponding return, xq := xq; and
a = b〉 is a return: if (f ′, c) is the state popped from the stack, f ′(q) = q1, δc(q1, c) = (q2, p), and f(q2) = q3,

then xq := subq2,X(subq,Xp(ρr(q3, b, p, x){yp/ρc(q1, c, y){z/zp}})) is the result of apply-
ing the the call variable update function in state q1, followed by the return variable update
function of S in state q′ where each variable x ∈ X is renamed to xq2 , and each variable
x ∈ Xp is renamed to xq.

Output Function. The output function F ′ of S′ is defined as follows: for each state f ∈ Q′, F ′(f) =
subq0,X(F (f(q0))) is the result of applying the output function of S in state f(q0) where each variable
x ∈ X is renamed to xq0 .

Conflict Relation. The conflict relation η′ contains the following rules:

(1) Variable summarizing different states are in conflict: for all x, y ∈ X, for all q 6= q′ ∈ Q, η′(xq, yq′); and
(2) Variables that conflict in S, also conflict in S′ for every possible summary: for all q ∈ Q, for all x, y ∈ X,

if η(x, y), then η′(xq, yq).

Next, we prove that η′ is consistent with the update function ρ′. We assume the current state f ∈ Q′ to be
fixed. We first show that two conflicting variables never appear in the same right hand side. Each assignment
of S′ is of the form subq,Y (ρ(q, a, x)). Therefore if no variables of S are conflicting in ρ(q, a, x) w.r.t. η,
no variables are conflicting in subq(ρ(q, a, x)) w.r.t. η′. Secondly, we show that for each x, y, x′, y′ ∈ X ′, if
η′(x, y) holds, x appears in ρ′(q, x′), and y appears in ρ′(q, y′), then η(x′, y′) holds. From the definition of
η′, we have that two variables in X ′ can conflict for one of the following reasons:

— two variables xq1 , yq′1 ∈ X
′ such that q1 6= q′1 appear in two different assignments to wq2 and zq′2 respec-

tively, for some w, z ∈ X and q2, q
′
2 ∈ Q. We need to show η′(wq2 , zq′2). We now have two possibilities:

— if q2 = q′2, assuming the current symbol is internal, we have that wq2 and zq2 are updated to
subq2(ρi(f(q2), a, w)) and subq2(ρi(f(q2), a, z)), where all variables are labeled with q2. This violates
the assumption that q1 6= q′1. If the current symbol is a call or a return a similar reasoning holds.

— if q2 6= q′2, η′(wq2 , zq′2) follows from the first rule of η′.
— two variables xq1 , yq1 ∈ X ′ such that η(x, y) appear in two different assignments to wq2 and zq′2 respectively,

for some w, z ∈ X, and q2, q
′
2 ∈ Q. We need to show η′(wq2 , zq′2). If q2 = q′2, η′(wq2 , zq′2) follows from the

second rule of η′, while if q2 6= q′2, η′(wq2 , zq′2) follows from the first rule of η′.

2

3.4. Regular Look-ahead

Now we consider an extension of the STT model in which the transducer can make its decisions based on
whether the remaining (well-matched) suffix of the input nested word belongs to a regular language of nested
words. Such a test is called regular look-ahead (RLA). A key property of the STT model is the closure under

10

regular look-ahead. Furthermore, in presence of regular-look-ahead, the conflict relation can be trivial, and
thus, copyless STTs suffice.

Definition of Regular Look-ahead. Given a nested word w = a1a2 . . . an, for each position 1 ≤ i ≤ n, let
wmp(w, i) be the longest well-matched subword ai . . . aj starting at position i. Formally given a well-matched
nested word w = a1a2 . . . an, wmp(w, n+ 1) = ε, and for each position i such that 1 ≤ i ≤ n:

(1) if ai is internal, wmp(w, i) = aiwmp(w, i+ 1);
(2) if ai is a call, with matching return aj , wmp(w, i) = aiwmp(w, i+ 1)ajwmp(w, j + 1); and
(3) if ai is a return, wmp(w, i) = ε.

Given a symbol a ∈ Σ, we define the reverse of a tagged symbol as rev(a) = a, rev(〈a) = a〉, and
rev(a〉) = 〈a. We use rev(w) = rev(an) . . .rev(a1), for the reverse of w, and rev(L) = {rev(w) | w ∈ L}
for the language of reversed strings in L.

When reading the i-th symbol of w, a look-ahead checks whether a regular property of the nested word
wmp(w, i) holds. Let L be a regular language of nested words, and let A be a (deterministic) bottom-up
NWA for rev(L) (such a NWA exists, since regular languages are closed under the reverse operation [Alur
and Madhusudan 2009]). Then, while processing a nested word, testing whether the nested word wmp(w, i)
belongs to L corresponds to testing whether the state of A after processing rev(wmp(w, i)) is an accepting
state of A. Since regular languages of nested words are closed under intersection, the state of a single
bottom-up NWA A reading the input nested word in reverse, can be used to test membership of the well-
matched suffix at each step in different languages. Also note that since A is bottom-up, its state after
reading rev(wmp(w, i)), is the same as its state after reading rev(ai . . . an). This motivates the following
formalization. Let w = a1 . . . an be a nested word over Σ, and let A be a bottom-up NWA with states
R processing nested words over Σ. Given a state r ∈ R, we define the (r,A)-look-ahead labeling of w
to be the nested word wr = r1r2 . . . rn over the alphabet R such that for each position 1 ≤ j ≤ n, the
call/return/internal type of rj is the same as the type of aj , and the corresponding symbol is the state of
the NWA A after reading rev(aj . . . an) starting in state r. Then, the A-look-ahead labeling of w, is the
nested word wA = wr0 . An STT-with-regular-look-ahead (STTR) consists of a bottom-up NWA A over Σ
with states R, and an STT S from R to Γ. Such a transducer defines a streaming tree transduction from Σ
to Γ: for an input nested word w ∈W (Σ), the output JS,AK(w) is defined to be JSK(wA).

Closure under Regular Look-Ahead. The critical closure property for STTs is captured by the next theorem
which states that regular look-ahead does not add to the expressiveness of STTs. This closure property is
key to establishing that STTs can compute all MSO-definable transductions.

Theorem 3.8 (Closure under Regular-Look-Ahead). The transductions definable by STTs with
regular look-ahead are STT-definable.

Proof. Let A be an NWA with states R, initial state r0, stack symbols P ′′, and state-transition δ′′. Let
SA be an STT from R to Γ. We construct an STT S′ = (Q′, q′0, P

′, X ′, η′, F ′, δ′, ρ′) equivalent to the STTR
(T,A).

Using Theorem 3.7, let S = (Q, q0, P,X, η, F, δ, ρ) be a bottom-up STT equivalent to SA. We use few
definitions from the proof of Theorem 3.7: 1) wms(w, i) is the longest well-matched subword aj . . . ai ending
at position i; 2) subq,Y (α) is the function that substitutes each variables x ∈ Y in an assignment α with the
variable xq.

First of all, we observe that for a well-matched nested word w, and an STT S, if δ∗((q,Λ, α), w) =
(q′,Λ′, α′), then Λ = Λ′, and the value Λ does not influence the execution of S. Hence, for a well-matched
nested word w, we can omit the stack component from configurations, and write δ∗((q, α), w) = (q′, α′).

State Components and Invariants. Given the input nested word w = a1 . . . an, when processing the
symbol ai, the transition of the STT S depends on the state of A after reading rev(wmp(w, i)). Since the
STT S′ cannot determine this value based on the prefix read so far, it needs to simulate S for every possible
choice of r ∈ R. We do this by keeping some extra information in the states of S′.

Each state q′ ∈ Q′ is a pair (f, g), where f : R 7→ R, and g : R 7→ Q. After reading the input symbol ai,
for every state r ∈ R, f(r) is the state reached by A after reading rev(wms(w, i)) when starting in state r,
and g(r) is the state reached by S after reading wms(w, i)r starting in state q0. Recall that wr is the state
labeling produced by A, when reading w starting in state r. The initial state is q′0 = (f0, g0), where, for every
r ∈ R, f0(r) = r and, g0(r) = q0. Each stack state p′ ∈ P ′ is a triplet (f, g, a), where the components f and
g are the same as for Q′, and a is a symbol in Σ.

11

We now describe the transition relation δ′. We assume S′ to be in state q = (f, g), and processing the
input symbol ai. We have the following three possibilities:

ai is internal: δ′i(q, ai) = (f ′, g′) where, for each r ∈ R, if δ′′i (r, ai) = r′;
— if f(r′) = r′′, then f ′(r) = r′′; the state reached by A when reading rev(wms(w, i)),

starting in r, is the same as the state reached when reading rev(wms(w, i − 1))
starting in r′, and

— if g(r′) = q, and δi(q, r
′) = q′, then g′(r) = q′; the state reached by S when reading

wms(w, i)r, is the same as the state it reaches when reading wms(w, i− 1)r′r
′;

ai = 〈a is a call: δ′c(q, a) = (q′0, p), where p = (f, g, a); the current state (f, g) is stored on the stack along
with the current symbol a, and the control state is reset to q′0; and

ai = a〉 is a return: let aj = 〈b be the matching call of ai, and let p = (f ′, g′, b) be the state popped from
the stack. Since A is bottom-up for every r ∈ R, δ′′c (r, a) = (r0, pr) for some pr ∈ P ′′.
Let f(r0) = r1 be the state reached by A when reading rev(wms(w, i − 1)) (i.e. the
reversed subword sandwiched between the matching call and return) starting in state
r0, and g(r0) = q1 is the state reached by S after processing wms(w, i − 1)r0 . Finally,
δ′r(q, p, a) = (f ′′, g′′), where for each r ∈ R, if δ′′r (r1, pr, b) = r2,
— if f ′(r2) = r′ is the state reached by A after processing rev(wms(w, j − 1)) starting

in state r2, then f ′′(r) = r′, and
— if g′(r2) = q2 is the state reached by S after processing wms(w, j − 1)r2 , δ′c(q2, r2) =

(q0, p
′), and δ′r(q1, p

′, r0) = q′. then g′′(r) = q′ .

Variable Updates and Invariants. The STT S′ has variable set X ′ = {xr | x ∈ X, r ∈ R}. After
processing the i-th symbol ai, the value of xr is the same as the value of x computed by S after reading
wms(w, i)r. We can now describe the variable update function ρ′. We assume that S′ is in state q = (f, g),
and it is processing the symbol ai. For each variable xr ∈ X ′, S′, S′ performs the following update:

ai is internal: if δ′′i (r, a) = r′, and g(r′) = q′, then ρ′(q, a, xr) = subr′(ρi(q
′, r′, x)) is the assignment of

S to x where each variable x is replaced with xr′ ;
ai = 〈a is a call: we perform the assignment ρ′c(q, b, xr) = xr, where we store all variable values on the

stack, and delay the update to the matching return; and
ai = a〉 is a return: let aj = 〈b be the corresponding call, and let p = (f ′, g′, b) be the state popped from

the stack. The update follows a similar reasoning to that of the transition function
δ′. Assume δ′′c (r, a) = (r0, p), f(r0) = r1, δ′′r (r1, p, b) = r2, g(r0) = q1, g′(r2) = q2,
δc(q2, r2) = (q3, p

′). For each x ∈ X, let tc(x) be the expression ρc(q2, r2, x), and tr(x)
be the expression ρr(q1, r0, x);
now for every x ∈ X, let t′c(x) = tc(x){y/yp} be the expression tc(x) in which ev-
ery variable y ∈ X is replaced with the corresponding stack variable yp, and let
t′′(x) = tr(x){yp/t′c(y)} be the expression tr(x) in which every variable yp ∈ Xp is
replaced with the expression t′c(y). The final update will be the expression ρ′(q, a, xr) =
subr2,Xp(subr′,X(t′′(x))) where each non stack variable x is replaced with x′r, and each
stack variable y is replaced with yr2 .

Output Function. At the end of the run F ′ only outputs variables labeled with r0: for every state
(f, g) ∈ Q′,
Conflict Relation. if g(r0) = q, then F ′(f, g) = subr0F (q). Finally, we define the conflict relation η′ as

follows:

(1) Variable summarizing different lookahead states are in conflict: for all x, y ∈ X, for all r1 6= r2 ∈ R, then
η′(xr1 , yr2); and

(2) Variables that conflict in S, also conflict in S′ for every possible summary: for all x, y ∈ X, such that
η(x, y), and for all r ∈ R, then η′(xr, yr).

The proof that ρ′ is consistent with η′ is analogous to the proof of Theorem 3.7. 2

Copyless STTs with RLA. Recall that an STT is said to be copyless if η only contains the reflexive relation. In
an STT, an assignment of the form (x, y) := (z, z) is allowed if x and y are guaranteed not to be combined,
and thus, if only one of x and y contributes to the final output. In presence of regular-look-ahead test, the

12

STT can check which variable contribute to the final output, avoid redundant updates, and can thus be
copyless.

Theorem 3.9 (Copyless STT with RLA). A nested-word transduction f is STT-definable iff it is
definable by a copyless STT with regular-look-ahead.

Proof. The proof of the ⇐ direction is straightforward: given a copyless STT with regular look-ahead, we
can use Theorem 3.8 to construct an equivalent STT.

We now prove the ⇒ direction. Let S1 be an STT from Σ to Γ. Using theorem 3.7, let S =
(Q, q0, P,X, η, F, δ, ρ) be a bottom-up STT, equivalent to S1. We construct a bottom-up NWA A =
(R, r0, P

′′, δ′′), and a copyless STT S′ from R to Γ, such that JS′, AK is equivalent to JSK.
The NWA A keeps in the state information about which variables will contribute to the final output. The

STT S′ uses such information to update only the variables the will contribute to the final output, and reset
all the ones that will not. This allows S′ to be copyless.

Auxiliary Notions. We use the notion wmp(w, i) of longest well-matched subword ai . . . aj starting at
position i. Given a nested word w = a1 . . . an, we also define nr(w, i) to be the position of the first unmatched
return in ai . . . an. By definition, nr(w, n+ 1) = n+ 1, and for each position i such that 1 ≤ i ≤ n:

(1) if ai is internal, nr(w, i) = nr(w, i+ 1);
(2) if ai is a call, with matching return aj , nr(w, i) = nr(w, j + 1); and
(3) if ai is a return, nr(w, i) = i.

RLA Automaton Intuition. Since A needs to reset its state at every call, it is not enough to consider
the variables appearing in the output function of S as contributing variables. After reading the i-th input
symbol in rev(w), the state r ∈ R of A contains the following information: for every set of variables Y , if Y
is the set of relevant variables after reading nr(w, i), r contains the set of variables Y ′ that must be updated
when reading the i-th symbol, in order to have all necessary information to update the variables Y when
processing nr(w, i).

Before presenting the construction in detail, we need few more definitions. We define the set of subsets

of non-conflicting variables of X as follows: UX
def
= {Y | Y ⊆ X ∧ ∀x, y ∈ Y, (x, y) 6∈ η}. We then enrich it

with a special variable xF that represents the final output: UFX
def
= UX ∪ xF . Moreover, given an expression

s ∈ E(X,Σ) (i.e. an assignment’s right hand side), we use x ∈a s to say that a variable x ∈ X appears in s.
Given a nested word w = a1 . . . an, and an STT S, we define the function cvS,w : Q×{0, . . . , n}×UFX 7→ UFX ,

such that, for every state q ∈ Q, position i, and set of variables Y , cvS,w(q, i, Y) = Y ′ iff, Y ′ is the set of
variables that must be updated by S′ when reading ai+1 in state q, if the set of relevant variables at nr(w, i)
is Y . For every Y ∈ UFX , cvS,w(q, n, Y) = Y . For every 0 ≤ i ≤ n− 1,

ai+1 is internal: if δi(q, ai+1) = q′, and cvS,w(q′, i+ 1, Y1) = Y2, then cvS,w(q, i, Y1) = Y3 where
— if Y2 = xF , then Y3 = {x | x ∈a F (q′)};
— if Y2 6= xF and ai+2 is a call 〈a, then Y3 = {x | ∃y ∈ Y2.x ∈a ρc(q′, a, y)}; Y3 contains

the variables that appear on the right-hand side of the variables Y1 while reading the
symbol ai+2;

— if Y2 6= xF and ai+2 is internal, then Y3 = {x | ∃y ∈ Y2.x ∈a ρi(q′, ai+2, y)}; and
— if ai+2 is a return, then Y3 = Y2.

ai+1 = 〈a is a call: let aj+1 = b〉 be the matching return; if δc(q, a) = (q0, p), δ
∗(q0, (ai+2 . . . aj)) = q1,

δr(q1, aj+1, p) = q2, and cvS,w(q2, j + 1, Y1) = Y2, then cvS,w(q, i, Y1) = Y3 where
— if Y2 = xF , then Y3 = {x | ∃y ∈a F (q2).xp ∈a ρr(q1, b, p, y)}; and
— if Y2 6= xF , then Y3 = {x | ∃y ∈ Y3 ∧ xp ∈a ρr(q1, b, p, y)}.

ai+1 is a return: cvS,w(q, i, Y) = Y if Y 6= xF , and undefined otherwise.

Before continuing we prove that the above function is well-defined; i.e. for every possible input, cvS,w returns
a set of non-conflicting variables.

Lemma 3.10. For every i ∈ {0, . . . , n− 1}, q ∈ Q, Y ∈ UFX , if cvS,w(q, i, Y) = Y ′ then Y ′ ∈ UFX .

Proof. We proceed by induction on i. The base case, i = n and cvS,w(q, n, Y) = Y , is trivial. We now have
to show that for all i < n, if cvS,w(q, i, Y) = Y ′, then Y ′ ∈ UFX . We assume by induction hypothesis that,
for all q′ ∈ Q, Z ∈ UFX , if cvS,w(q′, i+ 1, Z) = Z ′ then Z ′ ∈ UFX .

We have three cases:

13

ai+1 is internal: we need to prove that Y3 ∈ UFX . By IH, we know that Y2 ∈ UFX . If Y2 = xF , Y3 = {x | x ∈a
F (q′)} must be a set non-conflicting for F (q′) to be well defined. If Y2 6= xF , and ai+2 = 〈a
is a call, Y3 = {x | ∃y ∈ Y3.x ∈a ρc(q′, a, y))}. Let’s assume by way of contradiction that
there exist x, y ∈ Y2, such that η(x, y) holds. If this is the case there must exist either two
variables x′, y′ ∈ Y3 such that x ∈a ρc(q′, ai+2, x

′) and y ∈a ρc(q′, a, y′), or a variable x′ ∈ Y2

such that x, y ∈a ρc(q′, a, x′). In both cases, using the definition of conflict relation, we can
show that the hypothesis that Y2 ∈ UFX contains only conflict free variables is violated.

ai+1 is a call: similar to the previous case; and
ai+1 is a return: trivial.

2

RLA Automaton Construction. We now construct the NWA A that computes the function cvS,w. The
NWA A mimics the definition of cvS,w while reading the input nested word backward. At every call (return
for the input) the state of A is reset to ensure that the A is bottom-up and the current value of cvS,w is
stored on the stack. At the matching return (call for the input), the value popped from the stack is used to
compute the new value of cvS,w.

In order for the construction to work, we also need A to “remember”, while reading backward, what is the
set of variables that will be relevant at the next call. Given a nested word w = a1 . . . an, and a position i,
we define nc(w, i) as the next call in wmp(w, i). Formally, nc(w, n+ 1) = ⊥, and, for each 1 ≤ i ≤ n

— if ai is internal, then nc(w, i) = nc(w, i+ 1),
— if ai is a call, then nc(w, i) = i, and
— if ai is a return, then nc(w, i) = ⊥.

Next, we define the set of states R of A. Each state r ∈ R, is a quadruple (s, f, g, h) where s ∈ Σ ∪ {⊥},
f : Q×UFX 7→ UFX , g : Q 7→ Q, and h : Q×UFX 7→ (UFX∪⊥), where f computes the function cvS,w(q, i, Y) = Y ′,
g summarizes the execution of S on wmp(w, i), and h, computes which variables will be necessary at the
return matching the next call, and therefore which variables must be stored on the stack. We maintain the
following invariants: given the input nested word w = a1 . . . an, after processing rev(ai . . . an), A is in state
(s, f, g, h), where:

(1) for all Y ∈ UFX , and q ∈ Q, if cvS,w(q, i, Y) = Y ′, then f(q, Y) = Y ′,
(2) if ai is a return, then s = ⊥, otherwise s = ai,
(3) if q′ = δ∗(q,wmp(w, i)), then g(q) = q′, and
(4) for all Y ∈ UFX , and q ∈ Q, h(q, Y) = Y1, where

— if nc(w, i) = ⊥, then Y1 = ⊥,
— if nc(w, i) = ic, aic = 〈a has matching return air = b〉, δ∗(q, ai . . . aic−1) = q1, δc(q1, aic) = (q0, p),
δ∗(q0,wmp(w, ic + 1) = q2, δr(q2, p, air) = q3, and cvS,w(q3, ir, Y) = Y2, then
— if Y2 = xF , then Y1 = {x | x 6∈ Xp ∧ ∃y ∈a F (q3). x ∈a ρr(q2, b, p, y)};
— if Y2 6= xF and air+1 = 〈c is a call, then Y1 = {x | x 6∈ Xp ∧ ∃y ∈ Y2.∃z ∈a ρc(q3, c, y).x ∈a
ρr(q2, b, z)};

— if Y2 6= xF and air+1 is internal, then Y1 = {x | x 6∈ Xp ∧ ∃y ∈ Y2.∃z ∈a ρi(q3, air+1, y).x ∈a
ρr(q2, b, z)}; and

— if Y2 6= xF and air+1 = c〉 is a return, then Y1 = {x | x 6∈ Xp ∧ ∃y ∈a Y2. x ∈a ρr(q2, air , p, y)}.

The initial state of A is r0 = (⊥, f0, g0, h0), where f0(q, Y) = Y , g0(q) = q and h0(q, Y) = ⊥, for every
q ∈ Q, and Y ∈ UFX .

Next we define the transition relation δ′′ of A, that preserves the invariants of above. For each r =
(s, f, g, h) ∈ R, a ∈ Σ, δ′′(r, a) is defined as follows:

a is internal: δ′′i (r, a) = (a, f1, g1, h1) where for each q ∈ Q, Y1 ∈ UFX , if δi(q, a) = q′, then g1(q) = g(q′),
h1(q, Y1) = h(q′, Y1), and f1(q, Y1) = Y3 where
— if Y2 = xF , then Y3 = {x | x ∈a F (q′)};
— if Y2 6= xF and s = 〈c is a call, then Y3 = {x | ∃y ∈ Y2.∃z ∈a ρc(q3, c, y).x ∈a ρr(q2, b, z))};
— if Y2 6= xF and s is internal, then Y3 = {x | ∃y ∈ Y2.x ∈a ρi(q′, s, y)};
— if s = ⊥, then Y3 = Y2;

a is a call 〈b (return reading backward): let r1 = ((s1, f1, g1, h1), s) be the state popped from the stack, then,
δ′′r (r, r1, b) = (b, f2, g2, h2), where for each q ∈ Q, Y ∈ UFX ,

14

if δc(q, b) = (q0, p), g(q0) = q1, δr(q1, s, p) = q2, and f1(q2, Y1) = Y2, then,
g2(q) = g(q2), h2(q, Y1) = Y3 ∩X, and, f2(q, Y1) = {x | xp ∈ Y3}, where
— if Y2 = xF , then Y3 = {x | ∃y ∈a F (q2) ∧ x ∈a ρr(q1, s, p, y)};
— if Y2 6= xF and s1 = 〈c is a call, then Y3 = {x | ∃y ∈ Y2. ∃z ∈a ρc(q1, s1, y). x ∈a ρr(q2, s, z)};
— if Y2 6= xF and s1 is internal, then Y3 = {x | ∃y ∈ Y2. ∃z ∈a ρc(q1, s1, y). x ∈a ρr(q2, s, z)};
— if Y2 6= xF and s1 = c〉 is a return, then Y3 = {x | ∃y ∈ Y2. x ∈a ρr(q1, s, p, y)};

a is a return b〉 (call reading backward): δ′′c (r, b) = (r0, (r, b)).

STT Construction. We finally need to define the STT S′ from R to Γ. When reading an input symbol in
(a, f, g, h) ∈ R, S′ uses the information stored in the function f to update only the variables that are relevant
to the final output. The set of states of S′ is Q′ = Q×UFX , with initial state q′0 = (q0, xF). When processing
the symbol ri = (a, f, g, h), S′ is in state (q, Y) iff S reaches the state q when processing a1 . . . ai−1, starting
in q0, and the set of relevant variables at the end of wmp(w, i) is Y . Similarly, the set of stack states is
P ′ = P ×UFX . The set of variables is X ′ = X. The transition function δ′ is defined as follows. For each state
(q, Y) ∈ Q′, stack state (p, Y ′) ∈ P ′, and symbol r = (a, f, g, h) ∈ R we have the following possibilities:

a is internal: if δi(q, a) = q′, then δ′i((q, Y), r) = (q′, Y);
a is a call: if δc(q, a) = (q′, p), and h(q, Y) = Y ′, then δ′c((q, Y), r) = (q′, (p, Y ′)); and
a is a return: if δr(q, p, a) = q′, then δ′r((q, Y), (p, Y ′), r) = (q′, Y ′).

Next, we define the variable update function ρ′. For each state (q, Y) ∈ Q′, stack state (p, Y ′) ∈ P ′, symbol
r = (a, f, g, h) ∈ R, variable x ∈ X ′;
— if x ∈ f(q, Y), then we have the following possibilities:
a is internal: ρ′i(q, r, x) is the same as ρi(q, a, x);
a is a call: ρ′c(q, r, x) is the same as ρc(q, a, x); and
a is a return: ρ′r(q, p, r, x) is the same as ρr(q, p, a, x);

— if x 6∈ f(q, Y), then we have the following possibilities:
a is internal: if x is a type-0 variable then ρ′i(q, r, x) = ε, otherwise ρ′i(q, r, x) =?;
a is a call: if x is a type-0 variable then ρ′c(q, r, x) = ε, otherwise ρ′c(q, r, x) =?; and
a is a return: if x is a type-0 variable then ρ′r(q, r, p, x) = ε, otherwise ρ′r(q, r, p, x) =?.

Last, the output function F ′ is the same as F . From the definition of cvS,w we have that S′ is copyless, and
by construction JS′, AK is equivalent to JSK. 2

3.5. Multi-parameter STTs

In our basic transducer model, the value of each variable can contain at most one hole. Now we generalize
this definition to allow a value to contain multiple parameters. Such a definition can be useful in designing
an expressive high-level language for transducers, and it is also used to simplify constructions in later proofs.

We begin by defining nested words with parameters. The set H(Σ,Π) of parameterized nested words over
the alphabet Σ using the parameters in Π, is defined by the grammar

H := ε | a |π | 〈aH b〉 |HH for a, b ∈ Σ and π ∈ Π

For example, the nested word 〈a π1 〈b〉 π2 a〉 represents an incomplete tree with a-labeled root that has a
b-labeled leaf as a child, such that trees can be added to its left as well as right by substituting the parameter
symbols π1 and π2 with nested words. We can view such a nested word with 2 parameters as a function of
arity 2 that takes two well-matched nested words as inputs and returns a well-matched nested word.

In the generalized transducer model, the variables range over parametrized nested words over the output
alphabet. Given an alphabet Σ, a set X of variables, and a set Π of parameters, the set E(Σ, X,Π) of
expressions is defined by the grammar

E := ε | a |π |x | 〈aE b〉 |E E |E[π 7→ E] for a, b ∈ Σ, x ∈ X, and π ∈ Π

A valuation α from X to H(Σ,Π) naturally extends to a function from the expressions E(Σ, X,Π) to H(Σ,Π).
To stay within the class of regular transductions, we need to ensure that each variable is used only once

in the final output and each parameter appears only once in the right-hand side at each step. To understand
how we enforce single-use-restriction on parameters, consider the update x := xy associated with a transition
from state q to state q′. To conclude that each parameter can appear at most once in the value of x after
the update, we must know that the sets of parameters occurring in the values of x and y before the update
are disjoint. To be able to make such an inference statically, we associate, with each state of the transducer,

15

an occurrence-type that limits, for each variable x, the subset of parameters that are allowed to appear in
the valuation for x in that state. Formally, given parameters Π and variables X, an occurrence-type ϕ is a
function from X to 2Π. A valuation α from X to H(Σ,Π) is said to be consistent with the occurrence-type
ϕ if for every parameter π ∈ Π and variable x ∈ X, if π ∈ ϕ(x), then the parameterized nested word α(x)
contains exactly one occurrence of the parameter π, and if π 6∈ ϕ(x), then π does not occur in α(x). An
occurrence-type from X to Π naturally extends to expressions in E(Σ, X,Π): for example, for the expression
e1e2, if the parameter-sets ϕ(e1) and ϕ(e2) are disjoint, then ϕ(e1e2) = ϕ(e1) ∪ ϕ(e2), else the expression
e1e2 is not consistent with the occurrence-type ϕ. An occurrence-type ϕ′ from variables X to Π is said to be
type-consistent with an occurrence-type ϕ from Y to Π and an assignment ρ from Y to X, if for every variable
x in X, the expression ρ(x) is consistent with the occurrence-type ϕ and ϕ(ρ(x)) = ϕ′(x). Type-consistency
ensures that for every valuation α from Y to H(Σ,Π) consistent with ϕ, the updated valuation α · ρ from X
to H(Σ,Π) is guaranteed to be consistent with ϕ′.

Now we can define the transducer model that uses multiple parameters. A multi-parameter STT S from
input alphabet Σ to output alphabet Γ consists of:

— a finite set of states Q,
— an initial state q0,
— a set of stack symbols P ,
— state-transition functions δi, δc, and δr, that are defined in the same way as for STTs;
— a finite set of typed variables X equipped with a reflexive symmetric binary conflict relation η;
— for each state q, an occurrence-type ϕ(q) : X 7→ 2Π, and for each stack symbol p, an occurrence-type
ϕ(p) : X 7→ 2Π,

— a partial output function F : Q 7→ E(X,Γ,Π) such that for each state q, the expression F (q) is consistent
with η, and ϕ(q)(F (q)) is the empty set,

— for each state q and input symbol a, the update function ρi(q, a) from variables X to X over Γ is consistent
with η and it is such that the occurrence-type ϕ(δi(q, a)) is type-consistent with the occurrence-type ϕ(q)
and the update ρi(q, a),

— for each state q and input symbol a, the update function ρc(q, a) from variables X to X over Γ is consistent
with η and it is such that, if δc(q, a) = (q′, p) the occurrence-types ϕ(p) and ϕ(q′) are type-consistent with
the occurrence-type ϕ(q) and the update ρc(q, a),

— for each state q and input symbol a and stack symbol p, the update function ρr(q, p, a) from variables
X ∪ Xp to X over Γ is consistent with η and it is such that the occurrence-type ϕ(δr(q, p, a)) is type-
consistent with the occurrence-type ϕ(q) and ϕ(p) and the update ρr(q, p, a).

We can assume that ϕ(q0) = ∅, and therefore all variables are initialized to ε.
Configurations of a multi-parameter STT are of the form (q,Λ, α), where q ∈ Q is a state, α is a valuation

from variables X to H(Γ,Π) that is consistent with the occurrence-type ϕ(q), and Λ is a sequence of
pairs (p, β) such that p ∈ P is a stack symbol and β is a valuation from variables X to H(Γ,Π) that is
consistent with the occurrence-type ϕ(p). The clauses defining internal, call, and return transitions are as
in case of STTs, and the transduction JSK is defined as before. In the same way as before we define a
copyless multi-parameter STT as a multi-parameter STT with a purely reflexive reflexive conflict relation
(i.e.η = {(x, x) | x ∈ X}) .

Now we establish that multiple parameters do not add to expressiveness. We first prove the property for
copyless STT. Then we add regular look-ahead and show, through the closure under such operation, that
the property holds for general STT.

Theorem 3.11 (Copyless Multi-parameter STTs). A nested-word transduction is definable by
copyless STT iff it is definable by a copyless multi-parameter STT.

Proof. Given a copyless STT S constructing a multi-parameter copyless STT S′ is trivial. The parameter
set Π of S′ is the singleton {?}. For every state q of S, there is a corresponding state q in S′. For every type-0
variable x and state q in S, ϕ(q, x) = ∅ while for every type-1 variable y, ϕ(q, y) = {?}.

We now prove the other direction of the iff. Let S be multi-parameter copyless STT with states Q, initial
state q0, stack symbols P , parameters Π with |Π| = k, variables X with |X| = n, occurrence-type ϕ,

16

output function F , state-transition functions δi, δc, and δr, and variable-update functions ρi, ρc, and ρr. We
construct an equivalent copyless STT S′ = (Q′, q′0, P

′, X ′, F ′, δ′, ρ′).

Variable Summarization Intuition. We need to simulate the multi-parameter variables using only
variables with a single hole. We do this by using multiple variables to represent a single multi-parameter
variable, and by maintaining in the state extra information on how to combine them.

The construction maintains a compact representation of every multi-parameter variable. To understand
the construction, consider a variable x with value 〈a 〈b π1 b〉 〈c〉 〈b π2 b〉 a〉. One possible way to represent x
using multiple variables, each with only one parameter in its value, is the following: x1 = 〈a?a〉, x2 = 〈b?b〉〈c〉,
and x3 = 〈b?b〉. Next, we need to maintain in the state some information regarding how to combine these
three values to reconstruct x. For this purpose, we use a function of the form f(x1) = (x2, x3), f(x2) =
π1, f(x3) = π2, that tells us to replace the ? in x1 with x2x3 and the holes in x2 and x3, with π1 and π2

respectively. The state will also maintain a function g that remembers the starting variable (the root of the
tree): in this case g(x) = x1 means that x1 is the root of the symbolic tree representing the variable x.

We now formalize this idea. The set of variables X ′ contains (2k− 1)n variables of type-1 and n variables
of type-0. When S′ is in state q, for every variable x ∈ X,

— if ϕ(x) 6= ∅, the value of x is represented by 2|ϕ(x)| − 1 type-1 variables in X ′, and
— if ϕ(x) = ∅, the value of x is represented by one type-0 variable in X ′.

Since ϕ(x) ≤ k, we can assume that for every variable x ∈ X, there are exactly 2k − 1 type-1 variables and
one type-0 variable in S′ corresponding to it. We denote this set by V (x) = {x0, x1, . . . , x2k−1}, where x0 is
the only type-0 variable. Therefore, the STT S′ has the set of variables X ′ =

⋃
x∈X V (x).

State Components and Invariants. Each state of Q′ is a triplet (q, g, f), where q ∈ Q keeps track of
the current state of S, g : X 7→ X ′ keeps track of the root of the symbolic tree representing each variable,
and f : X ′ 7→ (X ′×X ′)∪Π∪{ε}∪⊥ maintains information on the symbolic tree representing each variable.
Given a variable x ∈ X ′, f(x) = ⊥ means that x is not being used in any symbolic tree.

We now define the unfolding f∗ of the function f that, given a variable in x ∈ X ′ provides the value in
H(Σ,Π) corresponding to the symbolic tree rooted in x:

— if f(x) = ε, then f∗(x) = x,
— if f(x) = πi, then f∗(x) = x[πi], and
— if f(x) = (y, z), then f∗(x) = x[f∗(y)f∗(z)].
— if f(x) = ⊥, then f∗(x) = ⊥,

Our construction maintains the following invariant: at every point in the computation, the value of f∗(g(x))
in S′ is exactly the same as the value of x in S. We can assume that at the beginning every variable x ∈ X ′
has value ε, and we represent it with g(x) = x0, and f(x0) = ε. For this base case the invariant holds.

Similarly to what we did for STT (Corollary 3.5), we observe that every assignment can be expressed as
a sequence of elementary updates of the following form:

Constant assignment. x := w where w is a constant (w is of the form a, π, x, 〈aπb〉);
Concatenation. {x := xy; y := ε} (and similar cases such as {x := yx; y := ε}); and
Parameter substitution:. {x := x[π 7→ y]; y := ε} (and similar cases such as {x := y[π 7→ x]; y := ε}).
Swap:. {x := y; y := x}.

Update Functions. We now describe at the same time the transition relation δ′ and the variable update
function ρ′ of S′. Consider a state (q, f, g). We call (q′, f ′, g′) the target state and we only write the parts
that are updated, and skip the trivial cases. Every time a variable v is unused we set f ′(v) to ⊥. We show
that the state invariant is inductively preserved:

{x := w}: where w is a constant. Similarly to what we showed earlier in the informal descrip-
tion, the content of x can be summarized using 2|ϕ(x)| − 1 variables.

{x := xy; y := ε}: in order for the assignment to be well-defined we have that ϕ(q′, x) must be the same
as ϕ(q, x)∪ϕ(q, y), and |ϕ(q′, x)| = |ϕ(q, x)|+ |ϕ(q, y)| ≤ k. Let’s assume wlog that
both ϕ(q, x) and ϕ(q, y) are not empty. By IH x and y use 2|ϕ(x)|−1+2|ϕ(y)|−1 =
2(|ϕ(q, x)| + |ϕ(q, y)|) − 2 ≤ 2k − 2 variables. First we assign each yi in the tree
rooted in g(y) to some unused xi′ in V (x) Let a(yi) = xi′ be such a mapping. From
the IH we know that at least one type-1 variable xj ∈ V (x) is unused. We can use

17

x5

x3

x2

x1 x′′

x3

x5

x2 x7x1

x6

x7

x4 x4

x6

x′

x := ax[π1 ← π1π5]

Fig. 2. Parameter tree for the variable x = π1π2π3π4. In this case (on the left) g(x) = x5 and f(x5) = (x1, x6), f(x6) =
(x2, x7), f(x7) = (x3, x4), f(x1) = π1, f(x2) = π2, f(x3) = π3, f(x4) = π4. Each variable is of type-1. After the update
we have that x5 := ax5 and we take two fresh variables x′, x′′ to update the tree to the one on the right where we set
f(x′′) = (x1, x′), f(x′) = π5. Since we have 5 parameters and 9 nodes, the counting argument still holds. Before the update
f∗(x5) evaluates to π1π2π3π4 and after the update f∗(x5) evaluates to aπ1π5π2π3π4.

xj to concatenate the variables summarizing x and y. We can reflect such an update
in the tree shape of x as follows: for every z ∈ V (x),
— if there exists y′ such that a(y′) = z, we copy the summary from y′ to z and

replace each variable in the summary with the corresponding one in V (x): f(z) =
f(y){y′/a(y′)}, z = y, and y′ = ε;

— if z = xj we concatenate the previous summaries of x and y: if g(x) = x′, and
g(y) = y′, and a(y′) = x′′, then g′(x) = z, and f ′(z) = x′x′′. Finally the variable
z needs to hold the ?: ρ(z) =?.

Finally if y0 is the type-0 variable in V (y), g′(y) = y′, f(y′) = ε, and y0 = ε.
{x := x[π 7→ y]; y := ε}: in order for the assignment to be well-defined we have that ϕ(q′, x) must be the

same as (ϕ(q, x) \ {π}) ∪ ϕ(q, y), and |ϕ(q′, x)| = (|ϕ(q, x)| − 1) + |ϕ(q, y)| ≤ k.
Let’s assume wlog that both ϕ(q, x) and ϕ(q, y) are not empty. By IH x and y use
2|ϕ(x)| − 1 + 2|ϕ(y)| − 1 = 2(|ϕ(q, x)|+ |ϕ(q, y)|)− 2 ≤ 2(k+ 1)− 2 = 2k variables.
First we assign each yi 6= g(y) in the tree rooted in g(y) to some unused xi′ in V (x).
Let a(yi) = xi′ be such a mapping. So far we used 2k − 1 variables in V (x). When
performing the updates we show how the variable representing the root g(y) need
not be copied allowing us to use at most 2k− 1 variables to summarize the value of
x. The root of the tree summarizing x will be the same as before: if g′(x) = g(x).
Every variable z ∈ V (x) is updated as follows,
— if there exists y such that a(y) = z, we copy the summary from y to z and

replace each variable in the summary with the corresponding one in V (x): f(z) =
f(y){y′/a(y′)}, z = y, and y′ = ε;

— if z = xπ we append the summary of y to it: if g(y) = y′, then

— if f(y′) = y1y2, a(y′) = x′, a(y1) = x1 and a(y2) = x2, then f ′(z) = (x1, x2),
and ρ(z) = z[y′]; and

— if f(y′) = π′, and a(y′) = x′, then f ′(z) = π′, and ρ(z) = z[y′].

Finally if y0 is the type-0 variable in V (y), g′(y) = y′, f(y′) = ε, and y0 = ε.
{x := y; y := x}: we simply swap the summaries of x and y. Let a : V (x) 7→ V (y) be a bijection from

V (x) to V (y), and let b : V (y) 7→ V (x) be the inverse of a. Then g′(x) = a(g(y)),
g′(y) = b(g(x), f ′(x) = f(y){y′/a(y′)}, f ′(y) = f(x){x′/b(x′)}, for each x′ ∈ V (x),
x′ = a(x′), and for each y′ ∈ V (y), y′ = b(y′).

Figure 2 shows an example of update involving a combination of elementary updates. We still have to show
how δ′ and ρ′ are defined at calls and returns. The functions maintained in the state are stored on the stack
at every call, and such information is used at the corresponding return to create the updated tree. Since all
variables are reset at calls, this step is quite straightforward and we omit it. By inspection of the variable
update function, it is easy to see that the assignments are still copyless.

Output Function. Last, for every state (q, f, g) ∈ Q′, the output function F ′(q, f, g) = f∗(F (q)), where
f∗ is naturally extended to sequences: f∗(ab) = f∗(a)f∗(b). 2

We can Theorem 3.11 with regular look-ahead and get the following result.

18

Corollary 3.12 (Copyless Multi-parameter STTs RLA). A nested-word transduction is defin-
able by a copyless STT with regular look-ahead iff it is definable by a copyless multi-parameter STT with
regular look-ahead.

We then extend the result of Theorem 3.9 to multi-parameter STTs.

Lemma 3.13. A nested-word transduction is definable by a copyless multi-parameter STT with regular
look-ahead iff it is definable by a multi-parameter STT.

Proof. The proof of Theorem 3.9 does not use parameters assignment and can therefore be used for this
theorem as well. 2

Finally, we can conclude that multi-parameter STTs capture the class of STT definable transformations.

Theorem 3.14 (Multi-parameter STTs). A nested-word transduction is definable by an STT iff it
is definable by a multi-parameter STT.

Proof. From Theorems 3.13, 3.12, and 3.14. 2

3.6. Closure Under Composition

We proceed to show that STTs are closed under sequential composition. Many of our results rely on this
crucial closure property.

Theorem 3.15 (Composition Closure). Given two STT-definable transductions, f1 from Σ1 to Σ2

and f2 from Σ2 to Σ3, the composite transduction f2 · f1 from Σ1 to Σ3 is STT-definable.

Proof. Using Theorem 3.9, we consider S1 and S2 to be copyless STTs with regular look-ahead. We are
given two copyless STT:

— S1 = (Q1, q01, P1, X1, F1, δ1, ρ1) with regular look-ahead automaton A1, and
— S2 = (Q2, q02, P2, X2, F2, δ2, ρ2) with regular look-ahead automaton A2 = (R, r0, Pr, δr).

We construct a multi-parameter STT S with regular look-ahead automaton A1, that is equivalent to S1

composed with S2. Finally, we use Theorems 3.8 and 3.14, to remove the parameters and then regular
look-ahead, proving that there exists an STT equivalent to S.

Intuition Behind the Construction. The main idea is that we want to simulate all the possible executions
of S2 on the output of S1 in a single execution. The composed STT S keeps in each state a summarization
of the possible executions S2, and uses a larger set of variables to consider all the possible variable values
of such executions. At every point in the execution, for every state q ∈ Q2, and for every variables x1 ∈ X1

and x2 ∈ X2, the STT S has to remember what would be the value of x2, if S2 would read the content of x1

starting in q. The construction relies on the fact that the content of a variable is a well-matched nested word
(with parameters). Thanks to this property, S does not need to collect any information about the stack of
S2.

We show the intuition with a simple example. Let’s assume for simplicity, that S1 has only one variable
x, and S2 has only one variable y. We also assume that both the lookaheads consist of only one state, and
therefore we ignore them. Let’s say that at some point in the computation x has value ? and the next input
symbol is a. When reading a, S1 updates x to ax[?b]. We need to reflect this update on the variable y of S2

— i.e. what is the value of y when S2 reads ax[?b]. However, we do not know what is the current state of
S2, and what value S1 stores in the hole ?. For every possible state q of S2, and variable x of S1, the STT S
tracks what is the state reached by S2 after processing the value in x, starting in state q. However, we still
need to deal with the unknown value of the hole ?. We can extend the previous idea to solve this problem.
Consider the value of x to be a?b, where a and b are the nested words respectively before and after the hole.
The STT S maintains a function f that, for every two states q1 and q2 of S2, keeps track of the state reached
by S2 when reading a starting in state q1, and the state reached by S2 when reading b starting in state q2

knowing that a was read starting in state q1. In order to compute the second part of the function, S needs
the stack computed by the first one and therefore needs to know that a is processed starting in state q1.

Next, we describe how we summarize the variable updates of S2. Again, the update of y depends on the
state in which S2 starts reading the value of x. Similarly to before, we need to deal with the unknown value
of the hole ?. However this is not the only problem. Let’s assume the variable update function of S2 is as
follows: ρ2(q, y, b) = cy. We want to simulate the execution of S2, but, at this point we do not know what
is the previous value of y! We address this issue by treating the old value of y as a parameter. This tells us

19

that the set of parameters contains a parameter x′ for every variable in x ∈ X2. Similarly to what we did
for the transition relation, for every two states q1 and q2 of S2, and every variable y of S1, there is

— a variable gL1 (q1, x, y) representing the value of y, when S2 reads the value of x on the left of ?, starting
in state q1; and

— a variable gR1 (q1, q2, x, y) representing the value of y, when S2 reads the value of x on the right of ?,
starting in state q2, assuming that the value of y on the left of ? was read by S2 starting in state q1.

Both these variables at the beginning are be set to y′, a parameter that represents the value of y before
processing the current input. The updates then mimic the transition relation. For example, for the case in
which ρ2(q, y, b) = cy, the value of gR1 (q′, q, x, y) is set to cy′.

Since S2 itself uses type-1 variables, we use the parameter ? for such variable values. Let’s analyze this
case in detail. When ? directly appears in the g representation of a variable, we can treat it as a normal
parameter. The problem occurs in the following case: let’s say at a particular step g(q, x, y) = y′ but y is a
type-1 variable. This can only mean that the ? appears in y′. Now let’s assume that the next update is of the
form y := y[a]. As we can see, we still do not have the ? appearing in the representation of y. We record this
fact with a function and delay the substitution using an extra variable for the parameters. As an example,
suppose that at some point the values of x and y, both of type 1, are x′, y′. We use the variables x? =? and
y? =? to represent their parameters. Then, after processing a well-matched subword, we may have an update
of this form x := ax[cy[a?c]]b and y := a?. Notice that the reflexivity of η ensures that x′ and y′ can appear
at most once in the valuation of a variable at any point. This configuration is captured by (there is one such
variable for every state, in this case let’s assume is q) x := axb, x? = cy, y? = a?c and y = a?. In addition
we need to keep information about where the actual parameter of every variable is. Let’s consider the case
in which we are trying to summarize a type-0 variable y of S2. We keep in the state a function p0, such that
p0(q, x, y) = ε if the ? appears in g0(q, x, y), while p0(q, x, y) = xy, if, for example, in order to substitute the
value of ? with the value v (x := x[v]), we need to perform the following update, where we omit the state q
and the variable x for readability:

x := x[x′ 7→ x?[y′ 7→ y?[? 7→ v]]]

Finally, we need to summarize the possible lookahead values of S2 when reading the variable contents. For
example if a variable x of S1 contains the value s?t, we need to know, for every r1 and r2 in R, what state
would A2 reach when reading s and t backward. We use two functions lL1 and lR1 , such that lR1 (r2, x) = r′2
and lL1 (r1, r2, x) = r′1, iff δ∗R(r2,rev(t)) = (r′2,Λ), and δ∗R(r1,Λ,rev(s)) = r′1.

State Components and Invariants. We denote with Xi,j the set of type-j variables in Xi. Each state
of Q is a tuple (q, f0, f

L
1 , f

R
1 , l0, l

L
1 , l

R
1 , p0, p

L
1 , p

R
1), where

— q ∈ Q1 keeps track of the current state of S1,
— f0 : Q2 ×R×X1,0 7→ Q2 is the summarization function for type-0 variable,
— fL1 : Q2 ×R×R×X1,1 7→ Q2, and fR1 : Q2 ×Q2 ×R×R×X1,1 7→ Q2 are the summarization functions

for type-1 variables,
— l0 : R×X1,0 7→ R is the lookahead summarization function for type-0 variable,
— lL1 : R × R × X1,1 7→ R, and lR1 : R × X1,1 7→ R are the lookahead summarization functions for type-1

variables,
— p0 : Q2 ×R×X1,0 ×X2,1 7→ X∗2,1 is the function keeping track of the ? for type-0 variables, and

— pL1 : Q2 ×R×R×X1,1 ×X2,1 7→ X∗2,1, and pR1 : Q2 ×Q2 ×R×R×X1,1 ×X2,1 7→ X∗2,1 are the function
keeping track of the ? for type-1 variables.

We first describe the invariants that S maintains for the first 7 components: given an input nested word
w = a1 . . . an, after reading the symbol ai, S is in state (q, f0, f

L
1 , f

R
1 , l0, l

L
1 , l

R
1 , , ,), such that

— q is the state reached by S1 on the prefix a1 . . . ai, δ
∗
1(q01, a1 . . . ai) = q,

— given q1 ∈ Q2, and r ∈ R, if x contains the value s ∈W0(Σ2), and δ∗2(q1, sr) = q′1, then f0(q1, r, x) = q′1;
— given q1, q2 ∈ Q2, and r1, r2 ∈ Q2, if x contains the value s?t ∈ W1(Σ2), δ∗2(q1, sr1,Λr2,t) = (q′1,Λ), and

δ∗2(q2,Λ, tr2) = q′2, then fL1 (q1, r1, r2, x) = q′1, and fR1 (q1, q2, r1, r2, x) = q′2. We use the notation sr1,Λr2,t

to denote the run on s of A2 starting in state r1 assuming that A2 has an initial stack value computed
by A2 on t starting in state r2.

— given r1 ∈ R, if x contains the value s ∈W0(Σ2), and δ∗2(r1,rev(s)) = r′1, then l0(r1, x) = r′1; and

20

— given r1, r2 ∈ R, if x contains the value s?t ∈W1(Σ2), δ∗2(r2,rev(t)) = (r′2,Λ), and δ∗2(r1,Λ,rev(s)) = r′1,
then lL1 (r1, r2, x) = r′1, and lR1 (r2, x) = r′2.

State Transition Function. We now show how we maintain the invariants defined above at every update.
We first investigate the update of all the components different from p0, p

L
1 , and pR1 . Let’s assume S is in

state (q, f0, f
L
1 , f

R
1 , l0, l

L
1 , l

R
1 , p0, p

L
1 , p

R
1). We are only going to write the parts that are updated, and as before

we only consider atomic updates of S1. We analyze the type-1 case (the 0 case is easier). At every step we
indicate with a prime sign the updated components.

{x := w}: we consider the case where w is a constant 〈a?b〉 (the other cases are similar). For each
q1 and q2 in Q2, r1, r2 in R, if δR(r2, 〈b) = (r′2, p) for some p ∈ Pr, δR(r1, p, a〉) = r′1,
δ∗2(q1, r

′
1) = (q′1,Λ), and δ∗2(q2,Λ, r

′
2) = q′2, then the new state has the following compo-

nents: fL1
′
(q1, r1, r2, x) = q′1, fR1

′
(q1, q2, r1, r2, x) = q′2, lL1

′
(r1, r2, x) = r′1, and lR1

′
(r2, x) =

r′2.
{x := xy; y := ε}: without loss of generality, let y be a type-0 variable, and x be type-1 variables.

For each ql and qr in Q2, rl, rr in R, if l0(r1, y) = r1, lR1 (r1, x) = r2, lL1 (rl, r1, x) = r3,
fL1 (ql, rl, r1, x) = q1, fR1 (qr, rl, r1, x) = q2, and f0(q2, rr, y) = q3, then for every q ∈ Q2,

and r ∈ R, the new state has the following components: lL1
′
(rl, rr, x) = r3, lR1

′
(rr, x) = r2,

l0
′(r, y) = r, fL1

′
(ql, rl, rr, x) = q1, fR1

′
(ql, qr, rl, rr, x) = q3, and f0

′(q, r, y) = q.
{x := x[y]; y :=?}: we consider the case where x, y are type-1 variables (the other cases are simpler). We

need to “synchronize” the left and right parts to update the function f . For each ql
and qr in Q2, rl, rr in R, assume lR1 (rr, x) = r1, lR1 (r1, y) = r2, lL1 (rl, r1, y) = r3,
lL1 (r3, rr, z) = r4, and fL1 (ql, r3, rr, x) = q1, fL1 (q1, rl, r1, y) = q2, fR1 (q1, qr, rl, r1, y) = q3,
and fR1 (ql, q3, r3, rr, x) = q4. For every q, q′ ∈ Q2, and r, r′ ∈ R, the new state has the
following components:

lL1
′
(rl, rr, x) = r4, lR1

′
(rr, x) = r2, lL1

′
(r, r′, y) = r, lR1

′
(r, y) = r, fL1

′
(ql, rl, rr, x) = q2,

fR1
′
(ql, qr, rl, rr, x) = q4, fL1

′
(q, r, r′, y) = q, and fR1

′
(q, q′, r, r′, y) = q′.

{x := y; y := x}: every component involving x is swapped with the corresponding component involving y.

Variable Summarization. Similarly to what we did for state summarization, S will have variables of
the form g0(q, r, x, y) with the following meaning: if x contains a nested word w, g0(q, r, x, y) is the value
contained in y ∈ X2 after reading wr starting in state q. As we described earlier, there will also be variables
of the form g0(q, r, x, y)? representing the value of the parameter of y. The set of variables X of S described
by the union of the following sets:

— {g0(q, r, x, y) | (q, r, x, y) ∈ Q2 ×R×X1,0 ×X2},
— {g0(q, r, x, y)? | (q, r, x, y) ∈ Q2 ×R×X1,0 ×X2,1},
— {gL1 (q, r1, r2, x, y) | (q, r1, r2, x, y) ∈ Q2 ×R×R×X1,1 ×X2},
— {gL1 (q, r1, r2, x, y)? | (q, r1, r2, x, y) ∈ Q2 ×R×R×X1,1 ×X2,1},
— {gR1 (q, q′, r1, r2, x, y) | (q, q′, r1, r2, x, y) ∈ Q2 ×Q2 ×R×R×X1,1 ×X2}, and
— {gR1 (q, q′, r1, r2, x, y)? | (q, q′, r1, r2, x, y) ∈ Q2 ×Q2 ×R×R×X1,1 ×X2,1}.

Given a nested word w, and a stack Λ, we use wr,Λ to denote the regular look-ahead labeling of w when
processing rev(w) in the starting configuration (r,Λ). For every q1 ∈ Q2, r1, r2 ∈ R, x ∈ X1,1, and y ∈ X2,
if x contains a nested word v?w, δ∗r (r2, w) = (r′2,Λr2), and δ∗2(q1, vr1,Λr2

) = (q2,Λq2), then

— gL1 (q1, r1, r2, x, y) is the variable representing the value of y, after S2 reads vr1,Λr2
starting in state q1; and

— gR1 (q1, q2, r1, r2, x, y) is the variable representing the value of y, after S2 reads wr2 starting in the config-
uration (q2,Λq2).

The parameters of S are used to represent the values of the variables in X2 when starting reading the values
of a variable X1. At this point we do not know what the values of the variables in X2 are and for every
variable x ∈ X2, we use a parameter x′ to represent the value of x before reading the value in X1. The STT
S has set of parameters Π = {x′|x ∈ X2} ∪ {?}.

At any point in the execution the variable values and the state of S will be related by the following
invariant: for any starting valuation α of the variables in X2, state q ∈ Q2, look-ahead state r ∈ R, variable

21

y ∈ X2, and variable x ∈ X1 with value w, the value of y after reading wr with initial configuration α can
be retrieved from the variables in X and the state components p0, p

L
1 , p

R
1 .

Given a nested word w = a1 . . . an, we consider the configuration of S and S1 right after process-
ing the symbol ai. Let’s call (q1,Λ1, α1) the current configuration of S1, and (qS ,Λ, α), with qS =
(q, f0, f

L
1 , f

R
1 , l0, l

L
1 , l

R
1 , p0, p

L
1 , p

R
1), the current configuration of S. For every two states q2, q

′
2 ∈ Q2, lookahead

states r, r′ ∈ R, variables x0 ∈ X1,0, x1 ∈ X1,1, y0 ∈ X2,0, and y1 ∈ X2,1:

x0, y0: let α1(x0) = sx0 be the current valuation of x0 in S1, α(g0(q2, r, x0, y0)) = t be the current valuation
of g0(q2, r, x0, y0) in S, and {v′1, . . . , v′k} ⊆ Π be the set of parameters in ϕ(g0(q2, r, x0, y0)); for every
valuation α2 over X2, if δ∗((q2, α2), sx0

r) = (q3, α
′
2), then

α′2(y0) = t[v′1 7→ α2(v1)] . . . [v′k 7→ α2(vk)]

x0, y1: let α1(x0) = sx0 be the current valuation of x0 in S1, α(g0(q2, r, x0, y1)) = t be the current valuation
of g0(q2, r, x0, y1) in S, p0(q2, r, x0, y1) = z1 . . . zi be the sequence of variables to follow to reach the
hole ? in the representation of y1, and {v′1, . . . , v′k} ⊆ Π be the set of parameters in

(ϕ(g0(q2, r, x0, y1)) ∪ ϕ(g0(q2, r, x0, z1)?) ∪ . . . ∪ ϕ(g0(q2, r, x0, zi)?)) \ {z1, . . . , zi}
then for every valuation α2 over X2, if δ∗((q2, α2), sx0

r) = (q3, α
′
2), then

α′2(y1) = t[z′1 7→ [g0(q2, x0, z1)?[. . . [z′i 7→ g0(q2, x0, zi)?]]]])[v′1 7→ α2(v1)] . . . [v′k 7→ α2(vk)]

x1, y0: let α1(x1) = sx
L
1 ?sx

R
1 be the current valuation of x1 in S1, α(gL1 (q2, r, r

′, x1, y0)) = tL be the cur-
rent valuation of gL1 (q2, r, r

′, x1, y0) in S, α(gR1 (q2, q
′
2, r, r

′, x1, y0)) = tR be the current valuation of

gR1 (q2, q
′
2, r, r

′, x1, y0) in S, let {vL1
′
, . . . , vLk

′} ⊆ Π be the set of parameters in ϕ(gL1 (q2, r, r
′, x1, y0)),

and let {vR1
′
, . . . , vrl

′} ⊆ Π be the set of parameters in ϕ(gR1 (q2, q
′
2, r, r

′, x1, y0)); for every valuations

α2, α
′
2 over X2, if δ∗((q2, α2), s

xL
1

r,Λ′
r,s

x1,R) = (q3,Λ2, α3), and δ∗((q′2,Λ2, α
′
2), s

xR
1

r′) = (q′3, α
′
3), then

α3(y0) = tL[vL1
′ 7→ α2(vL1)] . . . [vLk

′ 7→ α2(vLk)], and α′3(y0) = tR[vR1
′ 7→ α2(vR1)] . . . [vRl

′ 7→ α2(vRl)].

x1, y1: let α1(x1) = sx
L
1 ?sx

R
1 be the current valuation of x1 in S1, α(gL1 (q2, r, r

′, x1, y1)) = tL be the cur-
rent valuation of gL1 (q2, r, r

′, x1, y1) in S, α(gR1 (q2, q
′
2, r, r

′, x1, y1)) = tR be the current valuation
of gR1 (q2, q

′
2, r, r

′, x1, y1) in S, pL1 (q2, r, r
′, x1, y1) = zL1 . . . z

L
i be the sequence of variables to fol-

low to reach the hole ? in the representation of y1 on the right of the ?, pR1 (q2, q
′
2, r, r

′, x1, y1) =
zR1 . . . z

R
j be the sequence of variables to follow to reach the hole ? in the representation of y1

on the right of the ?, {vL1
′
, . . . , vLk

′} ⊆ Π be the set of parameters in ϕ(gL1 (q2, r, r
′, x1, y1)), and

{vR1
′
, . . . , vRl

′} ⊆ Π be the set of parameters in ϕ(gR1 (q2, q
′
2, r, r

′, x1, y1)); for every valuations α2, α
′
2

over X2, if δ∗((q2, α2), s
xL
1

r,Λ′
r,s

xR
1

) = (q3,Λ2, α3), and δ∗((q′2,Λ2, α
′
2), sx1,R

r′) = (q′3, α
′
3), then

α3(y1) = tL[zL1
′ 7→ [gL1 (q2, r, r

′, x1, z
L
1)?[. . . [zLi

′ 7→ gL1 (q2, r, r
′, x1, z

L
i)?]]]])

[vL1
′ 7→ α2(vL1)] . . . [vLk

′ 7→ α2(vLk)]

α′3(y1) = tR[zR1
′ 7→ [gR1 (q2, q

′
2, r, r

′, x1, z
R
1)?[. . . [zRi

′ 7→ gR1 (q2, q
′
2, r, r

′, x1, z
R
i)?]]]])

[vR1
′ 7→ α2(vR1)] . . . [vRk

′ 7→ α2(vRk)]

Variable Update Function. We assume that S is reading the symbol a, starting in state qS =
(q, f0, f

L
1 , f

R
1 , l0, l

L
1 , l

R
1 , p0, p

L
1 , p

R
1). We only describe the components that are updated, and assume w.l.o.g

that x0, x1 ∈ X1,0 are type-0 variable, and x2 ∈ X2,1 is a type-1 variable. We assume the occurrence-type
function ϕ : Q×X 7→ 2Π to be well defined according to the following assignments (we will prove consistency
later).

{x0 := w}: where w.l.o.g. w is a constant without a ?. We fix the variable components to be the
state q ∈ Q2, lookahead state r ∈ R, and we are summarizing the values of y0 ∈ X2,0

and y1, y2 ∈ X2,1, when reading the value in x0 ∈ X1,0. We consider the variable
updates performed by S2 when reading the w, and assume u = u1 . . . un to be the
sequence of atomic updates (using Theorem 3.4) performed by S2 when reading wr
starting in state q. We now provide the updates of S corresponding to the updates in
u. At the beginning of the procedure g0(q, r, x0, y1) = y′1, and p0(q, r, x0, y1) = y1.

22

We denote with a prime the new state values and we only write the parts that are
updated. Let’s assume the atomic update is of the following form:
{y1 := w}: where w = 〈a?b〉 (the other cases are similar). We have

p′0(q, r, x0, y1) = ε, and we define the current assignment to
be g0(q, r, x0, y1) := w.

{y0 := ε; y1 := y0y1}: p′0(q, r, x0, y1) = p0(q, r, x0, y1), and we define the current as-
signment to be g0(q, r, x0, y1) := g0(q, r, x0, y0)g0(q, r, x0, y1),
and g0(q, r, x0, y0) = ε.

{y1 := y1[y2]; y2 :=?}: the summary p0 is updated as p′0(q, r, x0, y1) =
p0(q, r, x0, y1)p0(q, r, x0, y2), p0(q, r, x0, y2) = ε; if
p0(q, r, x0, y1) = v1 . . . vk, then we define the current as-
signment to be

— if k = 0, then
g0(q, r, x0, y1) := g0(q, r, x0, y1)[g0(q, r, x0, y2)], and
g0(q, r, x0, y2) =?; and

— if k > 0, then g0(q, r, x0, y1) := g0(q, r, x0, y1),
g0(q, r, x0, vk?) := g0(q, r, x0, vk?)[g0(q, r, x0, y2)], and
g0(q, r, x0, y2) =?.

{y1 := y2; y2 := y1}: every component involving y1 is swapped with the correspond-
ing component involving y2.

The final variable update is the result of composing all the atomic updates. As shown
in Lemma 3.6, the composition of copyless updates is itself copyless.

{x0 := x0x1;x1 := ε}: we need to substitute the values of the variables after reading x0 in the corresponding
parameters in x1 in order to simulate the concatenation. Informally (we omit the states
for readability) if g0(x1, y) contains the value az′, and g0(x0, z) contains the value bw′,
the new summarization g′0(x0, y) will contain the value abw′ where the parameter z′

is being replaced with the corresponding variable values.
For every state q2 ∈ Q2, lookahead state r ∈ R, variable y1 ∈ X2,1, if l0(r, x1) = r1,

f0(q2, r1, x0) = q3, ϕ(qS , g0(q3, r, x1, y1)) = {v′1, . . . , v′k}, and p0(q2, r, x1, y1) =
b1 . . . bk′ , then p0

′(q2, r, x0, y1) := p0(q2, r1, x0, b1) . . . p0(q2, r1, x0, bk′), and
p0
′(q2, r, x1, y1) := y1. The next step is collapsing all the parameters chains

that can now be resolved with proper parameter substitution. For each assignment to
a variable g′0(q2, r1, x0, v) we omit, unless interesting, the fact that every parameter v′

is replaced with the corresponding variable value g0(q2, r1, x0, v
′), and we iterate the

following procedure starting with the sequence P = b1 . . . bk′ , and the variable v = y1.
(1) let pi be the first element in P = p1 . . . pn such that p0

′(q2, r, x0, pi) 6= ε
(2) perform the following assignment

g0
′(q2, r, x0, v) := g0(q3, r, x1, v)[

p′1 7→ g0(q3, r1, x0, p1)[
? 7→ g0(q3, r1, x1, p1)?[

. . . p′i−1 7→ g0(q3, r1, x0, pi−1)[
? 7→ g0(q3, r1, x1, pi−1)?] . . .]]]

g0
′(q2, r, x0, pj)? :=? for each 1 ≤ j < i

(3) P := pi+1 . . . pn, and v := pi+1;
Last, g0

′(q2, r, x1, y1) := x′1.
{x0 := x2[x0];x2 :=?}: we need to “synchronize” the variables representing the left and right parts in a way

similar to the previous case.
{x0 := x1;x1 := x0}: every component involving x0 is swapped with the corresponding x1 component.

Conflict Relation and Well-formedness. First of all we need to show that the assignments are consistent
with respect to the parameters. Let’s assume by contradiction that at some point in the computation, for
some q ∈ Q and x ∈ X some parameter u′ ∈ Π appears twice in ϕ(q, x). This means that there exists a run
of S2 in which a variable u appears twice in a right hand side, violating the copyless assignment.

23

Next, we show that there exists a conflict relations η over X, which is consistent with ρ. We’ll often use
the fact that, in assignments of the form x := yz or x := y[z], it is always the case that y 6= z. The conflict
relation η is defined as follows: for all q1, q

′
1, q2, q

′
2 ∈ Q2, r1, r

′
1, r2, r

′
2 ∈ R, x ∈ X1,0, y ∈ X1,1, u, v ∈ X2,

— if (q1, r1) 6= (q′1, r
′
1), then η(g0(q1, r1, x, u), g0(q′1, r

′
1, x, v)),

— if (q1, r1) 6= (q′1, r
′
1), then η(g0(q1, r1, x, u?), g0(q′1, r

′
1, x, v?)),

— if (q1, r1, r2) 6= (q′1, r
′
1, r
′
2), then η(gL1 (q1, r1, r2, y, u), gL1 (q′1, r

′
1, r
′
2, y, v)),

— if (q1, r1, r2) 6= (q′1, r
′
1, r
′
2), then η(gL1 (q1, r1, r2, y, u?), gL1 (q′1, r

′
1, r
′
2, y, v?)),

— if (q1, q2, r1, r2) 6= (q′1, q
′
2, r
′
1, r
′
2), then η(gR1 (q1, q2, r1, r2, y, u), gR1 (q′1, q

′
2, r
′
1, r
′
2, y, v)), and

— if (q1, q2, r1, r2) 6= (q′1, q
′
2, r
′
1, r
′
2), then η(gR1 (q1, q2, r1, r2, y, u?), gR1 (q′1, q

′
2, r
′
1, r
′
2, y, v?)).

We now show that the variable update function ρ does not violate the conflict relation η. Inspecting the
updates we perform it is easy to see that the same variable never appears twice on the right-hand side of
the same variable. Now, by way of contradiction let’s assume there exists an assignment which violates the
constraints (we indicate in bold the meta-variables of S and in italic those of S2). There are two possibilities:

(1) x 6= y, η(x,y), and both x and y occur on the right-hand side of some variable;
(2) η(x,y), and there exists two variables x′ and y, such that x′ := fun(x), y′ = fun(y) for which η(x′,y′)

doesn’t hold.

Case (1) can be ruled out by simply inspecting all the possible assignments in the definition of ρ. The only
interesting cases are {x0 := x0x1;x1 := ε} and {x0 := x2[x0];x2 :=?} where the reasoning is the following.
We first need to show that, for every q2 ∈ Q2, r ∈ R, x0 ∈ X1,0, if X2,1 = {y1, . . . , yn} is the set of type-1
variables in S2, then the sequence p0(q2, r, x0, y1) . . . p0(q2, r, x0, yn) is repetition free. It is easy to show that
this property holds by induction. After we have this, it is easy to show that the assignments do not violate
the conflict relation.

We now need to deal with the conflict case (2). Before starting it is worth to point out that every variable
x ∈ X1 appears in at most one of the assignments of S2 due to the copyless restriction. We want to show
that it cannot happen that two variables that are in conflict are assigned to two different variables that are
not in conflict. Let’s try to analyze when two variables x,y assigned to different variables can be in conflict.
The first case is that of x = y. The case for {x0 := w} can be ruled out by inspecting the assignments. For
the cases {x0 := x0x1;x1 := ε} we observe the following: the only case in which two variables appearing on
two different right hand sides conflict is when (looking at point two of the iteration) we perform the following
update: {g0(q2, r, x0, v) := g0(q3, r, x1, v); g0(q3, r, x1, v) := . . . g0(q3, r, x1, v) . . .}. The two left-hand side are
in conflict, therefore η is well defined. For the case x0 := x2[x0] the argument is analogous.

Next, we show how the construction deals with calls and returns. As in the proof of Theorem 3.14, at every
call, S stores the state containing the information about the current variable values on the stack, and, at
the corresponding return we use them to construct the new values for the state. Since at every call variables
are reset, this construction is quite straightforward. Using an argument similar to that of Theorem 3.14,
assignments do not violate the single use restriction. Notice that the fact that the variables are reset at calls
is crucial for this construction.

Output Function. Finally, we define the output function F . When reaching the last symbol, we need to
construct the final output, but now at this point, we know what states to use. We illustrate the construction
with an example, since the general one is very similar to the construction of ρ. Let’s assume we are in state
qS = (q, f0, f

L
1 , f

R
1 , l0, l

L
1 , l

R
1 , p0, p

L
1 , p

R
1), then F (qS) is defined as follows. We assume w.l.o.g. that F1(q) = x

for some x0 ∈ X1,0, since the other cases are similar to our previous constructions. If f0(q02, r0, x0) = qf , and
F2(qf) = y0, with y0 ∈ X2,0, then F (qS) = g0(q02, r0, x0, y0){v′ 7→ ε} for every v′ ∈ ϕ(qS , g0(q02, r0, x0, y0)).
This concludes the proof. 2

3.7. Restricted Inputs

A nested word captures both linear and hierarchical structure. There are two natural classes of nested words:
strings are nested words with only linear structure, and ranked trees are nested words with only hierarchical
structure. Let us consider how the definition of STT can be simplified when the input is restricted to these
two special cases.

Mapping Strings. Suppose we restrict the inputs to contain only internal symbols, that is, strings over Σ.
Then the STT cannot use its stack, and we can assume that the set P of stack symbols is the empty set.
This restricted transducer can still map strings to nested words (or trees) over Γ with interesting hierarchical

24

structure, and hence, is called a string-to-tree transducer. This leads to the following definition: a streaming
string-to-tree transducer (SSTT) S from input alphabet Σ to output alphabet Γ consists of a finite set of
states Q; an initial state q0 ∈ Q; a finite set of typed variables X together with a conflict relation η; a
partial output function F : Q 7→ E0(X,Γ) such that for each state q, a variable x appears at most once in
F (q); a state-transition function δ : Q× Σ 7→ Q; and a variable-update function ρ : Q× Σ 7→ A(X,X, η,Γ).
Configurations of such a transducer are of the form (q, α), where q ∈ Q is a state, and α is a type-consistent
valuation for the variables X. The semantics JSK of such a transducer is a partial function from Σ∗ to W0(Γ).
We notice that in this setting the copyless restriction is enough to capture MSO completeness since the
model is closed under regular look-ahead (i.e. a reflexive η is enough).

Theorem 3.16 (Copyless SSTT’s closure under RLA). A string-to-tree transduction is definable
by an SSTT iff it is definable by a copyless SSTT.

Proof. The ⇐ direction is immediate. For the ⇒ direction, using Theorem 3.9 we consider the input to be
a copyless SSTT with regular look-ahead. Given a DFA A = (R, r0, δA) over the alphabet Σ, and a copyless
string-to-tree STT S = (Q, q0, X, F, δ, ρ) over R, we construct an equivalent copyless multi-parameter STT
S′ = (Q′, q′0, X

′,Π, ϕ, F ′, δ′, ρ′) over Σ.

Auxiliary Notions. Given a finite set U , we inductively define the following sets:

F(U) : the set of forests over U defined as: ε ∈ F(U), and if s0, . . . , sn ∈ U , and f0, . . . , fn ∈ F(U), then
s0(f0) . . . sn(fn) ∈ F(U);

SF(f ′) : given a forest f ′ ∈ F(U), the set of sub-forests of f ′, for short SF(f ′), is defined as follows: let
f ≡ s0(t0) . . . sn(tn), and f ′ ≡ s′0(t′0) . . . s′m(t′m),
— if there exist 0 ≤ i ≤ m such that s0 . . . sn = s′i . . . s

′
i+n, and for every 0 ≤ j ≤ n, tj ∈ SF(t′i+j),

then f ∈ SF(f ′); and
— if there exist i ≤ m such that f ∈ SF(t′i), then f ∈ SF(f ′).

Given two forests f1, f2 ∈ F(U), we write S(f1, f2) ≡ SF(f1) ∩ SF(f2) for the set shared sub-forests of f1

and f2. Finally the set of maximal shared sub-forests is defined as

M(t1, t2) = {f | f ∈ S(t1, t2) ∧ ¬∃f ′ ∈ S(t1, t2).f ′ 6= f ∧ f ∈ SF(f ′)}

State Components and Invariants. The transition of the STT S at a given step depends on the state of
A after reading the reverse of the suffix. Since the STT S′ cannot determine this value based on the prefix, it
needs to simulate S for every possible choice. We denote by Xi the type-i variables of X. Every state q ∈ Q′
is a tuple (l, f, g) where

— l : R 7→ R, keeps track, for every possible state r ∈ R, of what would be the state of A after processing
the string rev(w), where w is the string read so far;

— f : R 7→ Q, keeps track, for every possible state r ∈ R, of what would be the state of S after processing
the string wr, where w is the string read so far; and

— g : (R × X) 7→ F (X ′ ∪ {?}) keeps track of how the variables X ′ of S′ need to be combined in order to
obtain the value of a variable of S,

State Summarization Invariants. We first discuss the invariants of the first two components l and f
of a state, and how they are preserved by the transition function δ′ of S′. After reading a word w S′ is in
state (l, f, g) where

— for every lookahead state r ∈ R, l(r) = r′, then δ∗A(r,rev(w)) = r′; and
— for every lookahead state r ∈ R, f(r) = q, then δ∗(q0, wr) = q.

At the beginning S′ is in state (l0, f0, g0), where for every r ∈ R, l0(r) = r and f0(r) = q0. The component
g0 is discussed later.

Next we describe the transition function δ′. We assume S′ to be in state (l, f, g), and to be reading the
input symbol a ∈ Σ; we denote with l′, f ′ the new values of the state components, and we only write the

25

parts that change. For every lookahead state r ∈ R, if δA(r, a) = r′, and δ(q′, r′) = q, then l′(r) = l(r′) and
f ′(r) = q.

Variable Summarization. Next, we describe how S′ keeps track of the variable values. The natural
approach for this problem would be that of keeping, for each state r ∈ R and variable x ∈ X, a variable
g(r, x) containing the value of x in S, assuming the prefix read so far, was read by A starting in state r.

This natural approach, however, would cause the machine not to be copyless. Consider, for example the
following scenario. Let r, r1 and r2 be look-ahead states in R such that, for some a ∈ Σ, δ(r1, a) = δ(r2, a) = r.
Assume S only has one state q ∈ Q, and one variable x ∈ X. If S updates ρ(q, r, x) to x, in order to perform
the corresponding update in S′ we would have to assign both g(r, x) to both g(r1, x) and g(r2, x), and this
assignment is not copyless.

Our solution to this problem relies on a symbolic representation of the update and a careful analysis of
sharing. In the previous example, a possible way to represent such update is by storing the content of g(r, x)
into a variable z, and then remembering in the state the fact that both g(r1, x) and g(r2, x), now contain
z as a value. In the construction, the above update is reflected by updating the state, without touching the
variable values.

The set of variables X ′ contains |R|(4|X0||R|) type-0 variables, and |R|(4|X1||R|) type-1 variables. The
set of parameters Π of S′ is {πi | 0 ≤ i ≤ 4|X||R|}. We will show later how this numbers are obtained.

Variables Semantics and Invariants. We next describe how we can recover the value of a vari-
able in X from the corresponding shape function g(x). We define the unrolling u : F (X ′) 7→ E(X ′,Σ),
of a symbolic variable representation as follows: given a forest f = s0(f0) . . . sn(fn) ∈ F (X ′), u(f) ≡
ut(s0, f0) . . . ut(sn, fn), where, if s′ ∈ X ′, and f ′ = f ′0 . . . f

′
m, then ut(s

′, f ′) ≡ s′[π0 7→ u(f ′0), . . . , πm 7→
u(f ′m)].

After reading the symbol an input word w S′ is in a configuration ((l, f, g), α) iff for every lookahead state
r ∈ R, and variable x ∈ X, if δ∗(q0,rev((a1 . . . ai)r)) = (q, α1), and u(g(r, x)) = s, then α1(x) = α(s).

Counting Argument Invariants. Next, we describe how we keep the shape function g compact, allowing
us to use a finite number of variables, while updating them in a copyless manner. The shape function g
maintains the following invariants.

Single-Use: each shape g(r, x) is repetition-free: no variable x′ ∈ X ′ appears twice in g(r, x);
Sharing Bound: for all states r, r′ ∈ R,

∑
x,y∈XM(g(r, x), g(r′, y)) ≤ |X|;

Hole Placement: for every type-1 variable x ∈ X1, and state r ∈ R, there exists exactly one occur-
rence of ? in g(r, x), and it does not have any children;

Horizontal compression: for every ff ′ ∈ SF(g(r, x)), such that ? 6∈ ff ′, then there must be a shape g(r′, x′),
with (r′, x′) 6= (r, x), such that either f ∈ SF(g(r′, x′)) and ff ′ 6∈ SF(g(r′, x′)), or
f ′ ∈ SF(g(r′, x′)) and ff ′ 6∈ SF(g(r′, x′)); and

Vertical compression: for every s(f) ∈ SF(g(r, x)), such that ? 6∈ s(f), then there must be a shape
g(r′, x′), with (r′, x′) 6= (r, x), such that either s() ∈ SF(g(r′, x′)) and s(f) 6∈
SF(g(r′, x′)), or f ∈ SF(g(r′, x′)) and s(f) 6∈ SF(g(r′, x′)).

The first invariant ensures the bounded size of shapes. Notice that the second invariant implies that for
each r, and for each x 6= y, g(r, x) and g(r, y) are disjoint. The second invariant implies that for every state
r, the tree g(r, x), for all x cumulatively, can have a total of |X||R| maximal shared sub-forests, with respect
to all other strings. The compression assured by the third and fourth invariants, then implies that the sum∑
x∈X |g(r, x)| is bounded by 4|X||R|. This is due to the fact that a shape can be updated only in three

ways, 1) on the left, 2) on the right, and 3) below the ?. As a result it suffices to have |R|(4|X||R|) variables
in Z. The fourth invariant helps us dealing with variable substitution.

Variable and State Updates. Next we show how g and the variables in X ′ are updated and initialized.
The initial value g0 in the initial state, and of each variable in X ′ is defined as follows: let X ′0 = {z1, . . . , zk},

X ′1 = {z′1, . . . , z′k}, X0 = {x1, . . . , xi}, X1 = {x′1, . . . , x′j}. For each type-0 variable xi ∈ X0, for each type-1
variable x′i ∈ X1, and look-ahead state r ∈ R, we have that g0(r, xi) = zi, zi = ε, g0(r, x′j) = z′j(?), and
z′j = π0.

We assume S′ to be in state (l, f, g), and to be reading the input symbol a ∈ Σ. We denote with g′ the
new value of g. We assume we are given a look-ahead state r ∈ R, such that δA(r, a) to be equal to r′, and
x and y are the variables to be the updated.

26

{x := w}: where w.l.o.g. w = 〈a?b〉. We first assume there exists an unused variable, and then show
that such a variable must exist. Pick an unused variable zf , then we update g′(r, x) = zf ,
and set zf := 〈a?b〉. Since the counting invariants are preserved, there must have existed
an unused variable zf .

{x := xy, y := ε}: we perform the following update: g′(r, x) = g(r′, x)g(r′, y). Let g(r′, x) = s1(f1) . . . sn(fn)
and g(r′, y) = s′1(f ′1) . . . s′m(f ′m). We now have two possibilities,
— there exists l ≤ m′, and (r1, x1) 6= (r, x) such that g(r1, x1) contains sn or s′1, but not
sns
′
1; or

— there does not exists l ≤ m′, and (r1, x1) 6= (r, x) such that g(r1, x1) contains
sn or s′1, but not sns

′
1: in this case we can compress; assume fn = t1 . . . ti

and f ′1 = t′1 . . . t
′
k, sn := sns

′
1[π0 7→ πi, . . . , πk 7→ πk+i], and g′(r, x) =

s1(f1) . . . sn(fnf
′
1)s′2(f ′2) . . . s′m(f ′m)

In both cases, due to the preserved counting invariant, we can take an unused variable
zf and use it to update g(r, y): zf := ε, and g′(r, y) = zf .

{x := x[y], y :=?)}: without loss of generality let x and y be type-1 variables. Let s(?) be the subtree of
g(r′, x) containing ?. We perform the following update: g′(r, x) = g(r′, x){?/g(r′, y)},
where a{b/c} replaces the node b of a with c. Let g(r′, y) = s′1(f ′1) . . . s′m(f ′m). For every
sl, we now have two possibilities:
— there exists l ≤ m′, and (r1, x1) 6= (r, x) such that g(r1, x1) contains s or s′l, but not
s(s′l); or

— there does not exists l ≤ m′, and (r1, x1) 6= (r, x) such that g(r1, x1) contains s or
s′l; in this case we can compress: assume f ′l = t1 . . . tk, then s := s[πi 7→ s′l[π0 7→
πi, . . . , πk 7→ πk+i], πi+1 7→ πi+1+k, . . . , πn+k+1], and g′(r, x) = g′(r, x){s(s′l)/s}.

In both cases, due to the preserved counting invariant, we can take an unused variable
zf and use it to update g(r, y): zf := π0, and g′(r, y) = zf (?). Figure 3 shows an example
of such an update.

{x := y, y := x}: we symbolically reflect the swap. g′(r, x) = g(r′, y), and g′(r, y) = g(r′, x). Similarly to
before, we compress if necessary.

We can show by a trivial inspection of the variable assignments that S′ is copyless.
The output function F , of S′ simply applies the unfolding function. For example, let’s assume S′ ends in

state (l, f, g) ∈ Q′, with l(r0) = r, f(r) = q, and F (q) = xy. We have that F (l, f, g) = u(g(r0, x)g(r0, y)).
This concludes the proof. 2

Mapping Ranked Trees. In a ranked tree, each symbol a has a fixed arity k, and an a-labeled node has exactly
k children. Ranked trees can encode terms, and existing literature on tree transducers focuses primarily on
ranked trees. Ranked trees can be encoded as nested words of a special form, and the definition of an STT
can be simplified to use this structure. For simplicity of notation, we assume that there is a single 0-ary
symbol 0 6∈ Σ, and every symbol in Σ is binary. The set B(Σ) of binary trees over the alphabet Σ is then a
subset of nested words defined by the grammar T := 0 | 〈a T T a〉, for a ∈ Σ. We will use the more familiar
tree notation a〈tl, tr〉, instead of 〈a tl tr a〉, to denote a binary tree with a-labeled root and subtrees tl and
tr as children. The definition of an STT can be simplified in the following way if we know that the input is
a binary tree. First, we do not need to worry about processing of internal symbols. Second, we restrict to
bottom-up STTs due to their similarity to bottom-up tree transducers, where the transducer returns, along
with the state, values for variables ranging over output nested words, as a result of processing a subtree.
Finally, at a call, we know that there are exactly two subtrees, and hence, the propagation of information
across matching calls and returns using a stack can be combined into a unified combinator: the transition
function computes the result corresponding to a tree a〈tl, tr〉 based on the symbol a, and the results of
processing the subtrees tl and tr.

A bottom-up ranked-tree transducer (BRTT) S from binary trees over Σ to nested words over Γ consists
of a finite set of states Q; an initial state q0 ∈ Q; a finite set of typed variables X equipped with a conflict
relation η; a partial output function F : Q 7→ E0(X,Γ) such that for each state q, the expression F (q) is
consistent with η; a state-combinator function δ : Q × Q × Σ 7→ Q; and a variable-combinator function
ρ : Q × Q × Σ 7→ A(X,Xl ∪ Xr, η,Γ), where Xl denotes the set of variables {xl |x ∈ X}, Xr denotes
the set of variables {xr |x ∈ X}, and the conflict relation η extends to these sets naturally: for every
x, y ∈ X, if η(x, y), then η(xl, yl), and η(xr, yr). The state-combinator extends to trees in B(Σ): δ∗(0) = q0

and δ∗(a〈tl, tr〉) = δ(δ∗(tl), δ
∗(tr), a). The variable-combinator is used to map trees to valuations for X:

27

z1# z4#

g(r1,x)# g(r2,x)#

x:=x[y]#
y:=?#

?#

z2#

z8# z4#

?#

z2#

z5# z7#

g(r1,y)# g(r2,y)#

?#

z6#

z10# z7#

?#

z6#

z1# z4#

g’(r1,x)# g’(r2,x)#

z2#

z8# z4#

z5#

g’(r1,y)# g’(r2,y)#

?#

z10#

?#

z3# z9#
z3# z7#

?#

z6#

z2#

z9# z7#

?#

z6#

z2#:=#z2[π0;>π0π1]# #z2#:=#z2[π0;>π0π1]#
z3#:=#z3[π0;>z5] # #z9##:=#z9[π0;>z10]#
z5#:=#π0 # # #z10:=#π0#

Fig. 3. Example of symbolic variable assignment. Every variable zi belongs to X′. The depicted update represents the case in
which we are reading the symbol a such that δA(r1, a) = r1 and δA(r2, a) = r1. Before reading a (on the left), the variables z2,
z4, z6, and z7 are shared between the two representations of the variables at r1 and r2. In the new shape g′ the hole ? in g(r1, x)
(respectively g(r2, x)) is replaced by g(r1, y) (respectively g(r2, y)). However, since the sequence z3z5 (respectively z9z10) is
not shared, we can compress it into a single variable z3 (respectively z5), and reflect such compression in the variable update
z3 := z3[π0 7→ z5] (respectively z9 := z9[π0 7→ z10]). Now the variable z5 (respectively z10) is unused and we can therefore use
it to update g′(r1, y) (respectively g′(r2, y)).

α∗(0) = α0, where α0 maps each type-0 variable to ε and each type-1 variable to ?, and α∗(a〈tl, tr〉) =
ρ(δ∗(tl), δ

∗(tr), a)[Xl 7→ α∗(tl)][Xr 7→ α∗(tr)]. That is, to obtain the result of processing the tree t with a-
labeled root and subtrees tl and tr, consider the states ql = δ∗(tl) and qr = δ∗(tr), and valuations αl = α∗(tl)
and αr = α∗(tr), obtained by processing the subtrees tl and tr. The state corresponding to t is given by
the state-combinator δ(ql, qr, a). The value α∗(x) of a variable x corresponding to t is obtained from the
right-hand side ρ(ql, qr, a)(x) by setting variables in Xl to values given by αl and setting variables in Xr to
values given by αr. Note that the consistency with conflict relation ensures that each value gets used only
once. Given a tree t ∈ B(Σ), let δ∗(t) be q and let α∗(t) be α. Then, if F (q) is undefined then JSK(t) is
undefined, else JSK(t) equals α(F (q)) obtained by evaluating the expression F (q) according to valuation α.

Theorem 3.17 (Expressiveness of Ranked Tree Transducers). A partial function from B(Σ) to
W0(Γ) is STT-definable iff it is BRTT-definable.

Proof Sketch. From STT to BRTT ⇒. Using Theorem 3.7, let S = (Q,P, q0, X, F, η, δ, ρ) be a binary

bottom-up STT. We construct a BRTT S′ = (Q′, q′0, X
′, F ′, η′, δ′, ρ′) equivalent to S. We can assume w.l.o.g.

that the set of variables X is partitioned into two disjoint sets Xl = {xL1 , . . . , xLn} and Xr = {xR1 , . . . , xRn }
such that, given a tree t = a〈tl, tr〉, 1) after processing the left child tl, all the variables in Xl depend on the
run over tl, while all the variables in Xr are reset to their initial values, and 2) after processing the second
child, the values of Xr only depend on tr (do not use any variable xp ∈ Xp), and every variable x ∈ Xl

is exactly assigned the corresponding value xp stored on the stack. In summary, every variable in Xr only
depends on the second child, and every variable in XL only depends on the first child. Such variables can
only be combined at the return a〉 at the end of t. An STT of this form can be obtained by delaying the
variable update at the return at the end tr to the next step in which a〉 is read.

Now that we are given a bottom-up STT, the construction of S′ is similar to the one showed in Theorem 3.7.
Each state q ∈ Q′ contains a function f : Q 7→ Q, that keeps track of the executions of S for every possible
starting state. After processing a tree t, S′ is in state f , such that for every q ∈ Q, f(q) = q′ iff when S
reads the tree t starting in state q, it will end up in state q′. Similarly, the BRTT S′ uses multiple variables
to keep track of all the possible states with which a symbol could have been processed. The BRTT S′ has

28

set of variables X ′ = {xq | x ∈ X, q ∈ Q}. After processing a tree t, for every x ∈ X, and q ∈ Q: if after S
processes t starting in state q, x contains the value s, then xq also contains the value s.

Next we describe how these components are updated. Let fl and fr be the states of S′ after processing the
children tl and tr of a tree a〈tl, tr〉. We denote with f ′ the new state after reading a. For every state q,∈ Q,
and variable x ∈ X, if δc(q, 〈a) = (q1, p), fl(q1) = q2, fr(q2) = q3, and δr(q3, p, 〈a) = q4, then f ′(q) = q4,
and xq is assigned the value ρ(q3, p, 〈a, x), in which every variable in Xl and Xr is is replaced with the
corresponding variables in X ′l and X ′R. For every state f , the output function of F ′ of S′ is then defined as
F ′(f) = F (f(q0)). The conflict relation η′ of S′ has the following rules:

(1) for every x, y ∈ X, and q 6= q′ ∈ Q, η′(xq, yq′), and
(2) for every q ∈ Q, and x, y ∈ X, if η(x, y), then η′(xq, yq).

The proof of consistency is the same as for Theorem 3.7.

From BRTT to STT ⇐. Given a BRTT S = (Q, q0, X, F, η, δ, ρ), we construct an STT S′ =
(Q′, P ′, q′0, X

′, F ′, η′, δ′, ρ′) equivalent to S. The STT S′ simulates the execution of S while reading the
input nested word. The states and stack states of S′ are used keep track of whether the current child is a
first or second child. The STT S′ has set of states Q′ = Q× ({l, r} ∪Q), initial state q′0 = (q0, l), and set of
stack state P ′ = Q× {l, r}. Given a tree 〈a tl, tr a〉, the STT S′ maintains the following invariant:

— right before processing the first child tl, S
′ is in state (q0, l);

— right before processing the second child tl, S
′ is in state (q1, r); and

— right after processing the second child tr, S
′ is in state (q1, q2).

We now define the transition relations δ′ that preserves the invariant defined above. Let’s assume S′ is in
state q = (q1, d), and it is processing the symbol a.

a is a call 〈b: the STT S′ resets the control to the initial state and pushes q1 on the stack: δ′(q1, b) =
(q′0, q1); and

a is a return b〉: we first of all observe that since the input is a binary tree d cannot have value r when
reading a return symbol. If the state popped from the stack is p = (qp, dp), then
End of First Child: if dp = l, then

Leaf: if d = l, and δ(q0, q0, b) = q2 then δ′(q, p, b) = (q2, r), and
Not a Leaf: if d = q2 ∈ Q, and δ(q1, q2, b) = q3, then δ′(q, p, b) = (q3, r).

End of Second Child: if dp = r, then
Leaf: if d = l, and δ(q0, q0, b) = q2, then δ′(q, p, b) = (q′, q2), and
Not a Leaf: if d = q2 ∈ Q, and δ(q1, q2, b) = q3, then δ′(q, p, b) = (qp, q3).

The STT S′ has set of variables X ′ = X ′l ∪X ′r, where X ′d = {xd | x ∈ X}. We use one set of variables Xl

for the variable values after processing the left child, and Xr for the variable values after processing the right
child. The variables in Xl and Xr are the combined when processing the parent. The STT S′ maintains the
following invariant: given a tree 〈a tl, tr a〉, and d ∈ {l, r}, after processing the first child td, every variable
xd ∈ X ′d will contain the value of x computed by S after processing the tree td.

We can now describe the variable update function ρ′ of S′. Given a variable x ∈ X ′, let the function ini(x)
be the function that returns the initial value of a variable x, that is defined as: 1) if x is a type-0 variable,
then ini(x) = ε, and 2) if x is a type-1 variable, then ini(x) =?. Let’s assume S′ is in state q = (q1, d), it is
processing the symbol a, and updating the variable x ∈ X ′:

a is a call 〈b: every variable is copied on the stack ρ′(q, b, x) = x;
a is a return b〉: if the state popped from the stack is p = (qp, dp), then

End of First Child: if dp = l, then
— if x ∈ XL, then

Leaf: if d = l, then ρ′(q, p, b, x) = ρ(q0, q0, b, x), and
Not a Leaf: if d = q2 ∈ Q, then ρ′(q, p, b, x) = ρ(q1, q2, b, x).

— if x ∈ XR, then ρ′(q, p, b, x) = ini(x).
End of Second Child: if dp = r, then

— if x ∈ XL, then ρ′(q, p, b, x) = xp, and
— if x ∈ XR, then

Leaf: if d = l, then ρ′(q, p, b, x) = ρ(q0, q0, b, x), and
Not a Leaf: if d = q2 ∈ Q, then ρ′(q, p, b, x) = ρ(q1, q2, b, x).

29

The conflict relation η′ of S′ is defined as: for every x, y ∈ X, and d ∈ {L,R}, if η(x, y), then η′(xd, yd). The
consistency of η is trivial. Finally, the output function F ′ is defined as follows. For every state (q, d) ∈ Q′, if
d = r, F ′(q, i) = F (q), otherwise F ′ is undefined. 2

3.8. Restricted Outputs

Let us now consider how the transducer model can be simplified when the output is restricted to the special
cases of strings and ranked trees. The desired restrictions correspond to limiting the set of allowed operations
in expressions used for updating variables.

Mapping Nested Words to Strings. Each variable of an STT stores a potential output fragment. These frag-
ments get updated by addition of outputs symbols, concatenation, and insertion of a nested word in place of
the hole. If we disallow the substitution operation, then the STT cannot manipulate the hierarchical struc-
ture in the output. More specifically, if all variables of an STT are type-0 variables, then the STT produces
outputs that are strings over Γ. The set of expressions used in the right-hand sides can be simplified to
E0 := ε | a |x0 |E0E0. That is, each right-hand side is a string over Γ ∪X. Such a restricted form of STT is
called a streaming tree-to-string transducer (STST). While less expressive than STTs, this class is adequate
to compute all tree-to-string transformations, that is, if the final output of an STT is a string over Γ, then
it does not need to use holes and substitution.

Theorem 3.18 (STST Expressiveness). A partial function from W0(Σ) to Γ∗ is STT-definable iff it
is STST-definable.

Proof Sketch. Since STST are also STTs the ⇐ direction of the proof is immediate.
We now prove the ⇒ direction. Given an STT S that only outputs strings over Γ∗, we can build an

equivalent STST S′ as follows. The goal of the construction is eliminating all the type-1 variables from S.
This can be done by replacing each type-1 variable x in S with two type-0 variables xl, xr in S′ representing
the values to the left and to the right of the ? in x. If after reading a nested word w, the type-1 variable x
of S contains the value wl?wr, then the type-0 variables xl and xr of S′ respectively contain the values wl
and wr. Notice that this cannot be done in general for SSTs, because wl and wr might not be well-matched
nested words. The states, and state transition function of S′ are the same as for S, and the variable update
function and the output function can be easily derived. If η is the conflict relation of S, then the conflict
relation η′ of S′ is defined as follows: given two type-1 variables x, y of S, η(x, y), x 6= y, and d, d′ ∈ {l, r},
then η′(xd, yd′). The type-0 case is defined analogously. 2

If we want to compute string-to-string transformations, then the STT does not need a stack and does not
need type-1 variables. Such a transducer is both an SSTT and an STST, and this restricted class coincides
with the definition of streaming string transducers (SST) [Alur and Cerný 2011].

Mapping Nested Words to Ranked Trees. Suppose we are interested in outputs that are binary trees in B(Γ).
Then, variables of the transducer can take values that range over such binary trees, possibly with a hole.
The internal symbols, and the concatenation operation, are no longer needed in the set of expressions. More
specifically, the grammar for the type-0 and type-1 expressions can be modified as:

E0 := 0 |x0 | a〈E0E0 〉 |E1[E0]

E1 := ? |x1 | a〈E0E1 〉 | a〈E1E0 〉 |E1[E1]

where a ∈ Γ, x0 ∈ X0 and x1 ∈ X1. To define transformations from ranked trees to ranked trees, we can use
the model of bottom-up ranked-tree transducers with the above grammar.

4. EXPRESSIVENESS

The goal of this section is to prove that the class of nested-word transductions definable by STTs coincides
with the class of transductions definable using Monadic Second Order logic (MSO). Our proof relies on the
known equivalence between MSO and Macro Tree Transducers over ranked trees.

4.1. MSO for Nested Word Transductions

Formulas in monadic second-order logic (MSO) can be used to define functions from (labeled) graphs to
graphs [Courcelle 1994]. We adapt this general definition for our purpose of defining transductions over
nested words. A nested word w = a1 . . . ak over Σ is viewed as an edge-labeled graph Gw with k + 1 nodes
v0 . . . vk such that (1) there is a (linear) edge from each vj−1 to vj , for 1 ≤ j ≤ k, labeled with the symbol

30

aj ∈ Σ, and (2) for every pair of matching call-return positions i and j, there is an unlabeled (nesting) edge
from vi−1 to vj−1. The monadic second-order logic of nested words is given by the syntax:

φ := a(x, y) |X(x) |x y |φ ∨ φ | ¬φ | ∃x.φ | ∃X.φ

where a ∈ Σ, x, y are first-order variables, and X is a second-order variable. The semantics is defined over
nested words in a natural way. The first-order variables are interpreted over nodes in Gw, while set variables
are interpreted over sets of nodes. The formula a(x, y) holds if there an a-labeled edge from the node x to
node y (this can happen only when y is interpreted as the linear successor position of x), and x y holds
if the nodes x and y are connected by a nesting edge.

An MSO nested-word transducer Φ from input alphabet Σ to output alphabet Γ consists of a finite copy
set C, node formulas φc, for each c ∈ C, each of which is an MSO formula over nested words over Σ with
one free first-order variable x, and edge formulas φc,d and φc,da , for each a ∈ Γ and c, d ∈ C, each of which
is an MSO formula over nested words over Σ with two free first-order variables x and y. Given an input
nested word w, consider the following output graph: for each node x in Gw and c ∈ C, there is a node xc

in the output if the formula φc holds over Gw, and for all such nodes xc and yd, there is an a-labeled edge
from xc to yd if the formula φc,da holds over Gw, and there is a nesting edge from xc to yd if the formula φc,d

holds over Gw. If this graph is the graph corresponding to the nested word u over Γ then JΦK(w) = u, and
otherwise JΦK(w) is undefined. A nested word transduction f from input alphabet Σ to output alphabet Γ
is MSO-definable if there exists an MSO nested-word transducer Φ such that JΦK = f .

By adapting the simulation of string transducers by MSO [Engelfriet and Hoogeboom 2001; Alur and
Cerný 2010], we show that the computation of an STT can be encoded by MSO, and thus, every transduction
computable by an STT is MSO definable.

Theorem 4.1 (STT-to-MSO). Every STT-definable nested-word transduction is MSO-definable.

Proof. Consider a copyless STT S with regular look-ahead automaton A. The labeling of positions of the
input nested word with states of the regular look-ahead automaton can be expressed in MSO. The unique
sequence of states and stack symbols at every step of the execution of the transducer S over a given input
nested word w can be captured in MSO using second order existential quantification. Thus, we assume that
each node in the input graph is labeled with the corresponding state of the STT while processing the next
symbol. The positions corresponding to calls and returns are additionally labeled with the corresponding
stack symbol pushed/popped.

We explain the encoding using the example shown in Figure 4. Suppose the STT uses one variable x of
type-1. The corresponding MSO transducer has eight copies in the copy set, four for the current value of
the variable, and four for the current value of the variable on the top of the stack. The current value of the
variable x is represented by 4 copies in the copy set: xi, xo, xi? and xo?. At every step i (see top of Figure
4) the value of x corresponds to the sequence of symbols labeling the unique path starting at xi and ending
at xi?, followed by the hole ? and by the sequence labeling the unique path starting at xo? and ending at xo.
At step i the value of x on top of the stack (xp in this example) is captured similarly using other 4 copies.

We now explain how the STT variable updates are captured by the MSO transducer. At step 0, x instan-
tiated to ? by adding an ε-labeled edge from the xi node to the xi? node and from the xo? node to the xo
node. Consider an internal position i, and consider the variable assignment x := ax[c?]. This means that the
value of x for column i is the value of x in column i− 1, preceded by the symbol a, where we add a c before
the parameter position in i − 1. To reflect this assignment we insert an a-labeled edge from the xi node in
column i to the xi node in column i− 1, a c-labeled edge from the xi? node in column i− 1 to the xi? node
in column i (this reflects adding to the left of the ?), an ε-labeled edge from the xo? node in column i to the
xo? node in column i− 1, and an ε-labeled edge from the xo node in column i− 1 to the xo node in column
i.

We again use Figure 4 to show how variables are stored on the stack. At the call step i+1, the assignment
xp := x is reflected by the ε-labeled edges between the xp nodes in column i+ 1 and the x nodes in column
i. The edges are added in a similar way as for the previous assignment. The value of xp in column i + 1 is
preserved unchanged until the corresponding matching return position is found. At the return step j, the
value of x can depend on the values of x in column j − 1, and the value of xp on the top stack, which is
captured by the input/output nodes for xp in column j − 1. The j − 1 position can be identified uniquely
using the matching relation . Even though it is not shown in figure, at position j we have to add ε edges
from the xp nodes at position j to the xp nodes at position i to represent the value of xp that now is on the
top of the stack.

31

i+1

stack variables
variables

jj−10 k

OutputReturnCall

ii−1

Internal

xo

xi?

xpo

xi

xpi

xo?

xpi?

xpo?

�

ε

ε

xp := x
x := ε x := xxp[ε] x[b]

ε

ε

εε

ε

ε

ε
b

ε

x := ax[c?]

a

c

ε

ε

ε

ε

ε

ε

Fig. 4. Encoding STT computation in MSO. The bold lines link the current variable values to the values on top of the stack,
and are all added when processing the return position j.

To represent the final output, we use an additional column k. In the example, the output expression is
x[b]. We mark the first edge from xi by a special symbol � to indicate where the output string starts, a
b-labeled edge from the xi? node to the xo? node of x. In the same way as before we connect each component
to the corresponding k − 1 component using ε edges.

Notice that in this exposition, we have assumed that in the MSO transducer, edges can be labeled with
strings over the output alphabet (including ε) instead of single symbols. It is easy to show that allowing
strings to label the edges of the output graph does not increase the expressiveness of MSO transducers.
Also notice that not every node will appear in the final output string. An MSO transducer able to remove
the useless edges and nodes can be defined. Using closure under composition we can then build the final
transducer.

Some extra attention must be paid to add the matching edges in the output, but since the output at
every point is always a well-matched nested word, the matching relation over the output nested word can
be induced by inspection of each assignment (i.e. the matching edges are always between nodes in the same
column). 2

Nested Words as Binary Trees. Nested words can be encoded as binary trees. This encoding is analogous to
the encoding of unranked trees as binary trees. Such an encoding increases the depth of the tree by imposing
unnecessary hierarchical structure, and thus, is not suitable for processing of inputs, however, it is useful to
simplify proofs of subsequent results about expressiveness. The desired transduction nw bt from W0(Σ) to
B(Σ) is defined by

nw bt(ε) = 0

nw bt(aw) = a〈nw bt(w),0 〉
nw bt(〈aw1 b〉w2) = a〈nw bt(w1), b〈nw bt(w2),0 〉 〉

Notice that the tree corresponding to a nested word w has exactly one internal node for each position in w.
Observe that nw bt is a one-to-one function, and in particular, the encodings of the two nested words aaa
and 〈a a a〉 differ:

— nw bt(aaa) = a〈 a〈 a〈0,0 〉,0 〉,0 〉, and
— nw bt(〈aaa〉) = a〈 a〈0,0 〉, a〈0,0 〉 〉.

32

We can define the inverse partial function bt nw from binary trees to nested words as follows: given t ∈ B(Σ),
if t equals nw bt(w), for some w ∈ W0(Σ) (and if so, the choice of w is unique), then bt nw(t) = w, and
otherwise bt nw(t) is undefined. The next proposition shows that both these mappings can be implemented
as STTs.

Proposition 4.2 (Nested-Words Binary-Trees Correspondence). nw bt : W0(Σ) 7→ B(Σ), and
bt nw : B(Σ) 7→W0(Σ) are both STT-definable transductions.

Proof. We prove the two statements in the order.
STT for nw bt. The transduction nw bt can be performed by an STT S that basically simulates its inductive

definition. and only needs one type-1 variable x. When processing the input nested word w = a1 . . . an, after
reading the symbol ai, x[0] contains the value of nw bt(wms(w, i)) (see Theorem 3.7 for the definition of
wms(w, i)). The STT S has one state q which is also initial. The set of stack states is the same as the input
alphabet P = Σ, and the output function is F (q) = x[0]. Next we define the update functions. For every
a, b ∈ Σ,

— δi(q, a) = q, δc(q, a) = (q, a), and δr(q, a, b) = q; and
— ρi(q, a, x) = x[a〈?,0〉], ρc(q, a, x) = x, and ρr(q, a, b) = xp[a〈x[0], b〈?,0〉〉].

STT for bt nw. The translation bt nw can be implemented by the following BRTT S′. The BRTT S′ has
three type-0 variables xi, xc, xr such that after processing the tree t, 1) xi contains the value of bt nw(t),
assuming t’s root was representing an internal symbol, 2) xc contains the value of bt nw(t), assuming t’s root
was representing a call, and 3) xr contains the value of bt nw(t), assuming t’s root was representing a return.
The BRTT S′ has set of states Q′ = {q0} ∪ ({qa | a ∈ Σ} × {C, IR}), and initial state q0. The {C, IR}
component is used to remember whether the last symbol S′ read was a call, or an internal or return symbol.
The BRTT S′ is in a state (qa,) after processing a tree rooted with the symbol a. The output function F ′

is defined as follows: for every a ∈ Σ, F ′(qa, IR) = xi, F
′(qa, C) = xc, and F ′ is undefined otherwise. Next

we define the update functions. When a variable is not assigned, we assume it is set to ε. For every symbols
a ∈ Σ,

Right Child is 0: for every q′ ∈ Q, δ(q′, q0, a) = (qa, IR), and
— if q′ = q0, then ρ(q0, q0, a, xi) = a;
— q′ = (qb, C) for some b ∈ Σ, then ρ((qb, C), q0, a, xi) = axlc, ρ((qb, IR), q0, a, xr) = xlc;

and
— q′ = (qb, IR) for some b ∈ Σ, then ρ((qb, IR), q0, a, xi) = axli, and
ρ((qb, IR), q0, a, xr) = xli.

right child is not 0: for every ql, qr ∈ Q, δ(ql, qr, a) = (qa, C), and qr must be of the form (qb, IR) for some
b ∈ Σ. The variable update is defined as follows:
— if ql = q0, then ρ(q0, (qb, IR), a, xc) = 〈a〉b;
— q′ = (qc, C) for some c ∈ Σ, then ρ((qc, C), (qb, IR), a, xc) = 〈axlc〉bxrr; and
— q′ = (qc, IR) for some c ∈ Σ, then ρ((qc, IR), (qb, IR), a, xc) = 〈axli〉b.

Finally, the conflict relation of S′ only contains η′(xi, xr) 2

For a nested-word transduction f from W0(Σ) to W0(Γ), we can define another transduction f̃ that
maps binary trees over Σ to binary trees over Γ: given a binary tree t ∈ B(Σ), if t equals nw bt(w), then

f̃(t) = nw bt(f(w)), and otherwise f̃(t) is undefined. The following proposition can be proved easily from
the definitions of the encodings.

Proposition 4.3 (Encoding Nested-Word Transductions). If f is an MSO-definable transduc-

tion from W0(Σ) to W0(Γ), then the transduction f̃ : B(Σ) 7→ B(Γ) is an MSO-definable binary-tree trans-

duction and f = bt nw · f̃ · nw bt.

Since STT-definable transductions are closed under composition, to establish that every MSO-definable
transduction is STT-definable, it suffices to consider MSO-definable transductions from binary trees to
binary trees.

4.2. Macro Tree Transducers

A Macro Tree Transducer (MTT) [Engelfriet and Vogler 1985; Engelfriet and Maneth 1999] is a tree trans-
ducer in which the translation of a tree may not only depend on its subtrees but also on its context. While

33

the subtrees are represented by input variables, the context information is handled by parameters. We refer
the reader to [Engelfriet and Vogler 1985; Engelfriet and Maneth 1999] for a detailed definition of MTTs,
and present here the essential details. We only consider deterministic MTTs with regular look-ahead that
map binary trees to binary trees.

A (deterministic) macro-tree transducer with regular look-ahead (MTTR) M from B(Σ) to B(Γ) consists
of a finite set Q of ranked states, a list Y = y1, . . . yn of parameter symbols, variables X = {xl, xr} used to
refer to input subtrees, an initial state q0, a finite set R of look-ahead types, an initial look-ahead type r0,
a look-ahead combinator θ : Σ×R×R 7→ R, and the transduction function ∆. For every state q and every
look-ahead type r, ∆(q, r) is a ranked tree over the alphabet (Q × X) ∪ Γ ∪ Y , where the rank of a label
(q, x) is the same as the rank of q, the rank of an output symbol a ∈ Γ is 2, and the rank of each parameter
symbol is 0 (that is, only leaves can be labeled with parameters).

The look-ahead combinator is used to define look-ahead types for trees: θ∗(0) = r0 and θ∗(a〈 sl, sr 〉) =
θ(a, θ∗(sl), θ

∗(sr)). Assume that only the tree 0 has the type r0, and for every state q, ∆(q, r0) is a tree over
Γ ∪ Y (the variables X are used to refer to immediate subtrees of the current input tree being processed,
and the type r0 indicates that the input tree has no subtrees).

The MTTR M rewrites the input binary tree s0, and at every step the output tree is a ranked tree with
nodes labeled either with an output symbol, or with a pair consisting of a state of the MTTR along with
a subtree of the input tree. Let T (s0) denote the set of all subtrees of the input tree s0. Then, the output
t at any step is a ranked tree over (Q × T (s0)) ∪ Γ ∪ {0}. The semantics of the MTTR is defined by the
derivation relation, denoted by ⇒, over such trees. Initially, the output tree is a single node labeled with
[q0, s0]. Consider a subtree of the output of the form u = [q, s](t1, . . . tn), that is, the root is labeled with the
state q of rank n, with input subtree s, and children of this node are the output subtrees t1, . . . tn. Suppose
the look-ahead type of the input subtree s is r, and let sl and sr be the children of the root. Let χ be the
tree obtained from the tree ∆(q, r) by replacing input variables xl and xr appearing in a node label with
the input subtrees sl and sr respectively, and replacing each leaf labeled with a parameter yl by the output
subtree tl. Then, in one step, the MTTR can replace the subtree u with the tree χ. The rewriting stops when
all the nodes in the output tree are labeled only with output symbols. That is, for s ∈ B(Σ) and t ∈ B(Γ),
JMK(s) = t iff [q0, s]⇒∗ t.

In general, MTTs are more expressive than MSO. The restrictions needed to limit the expressiveness rely
on the so-called single-use and finite copying, that enforce an MTT to process every subtree in the input a
bounded number of times. Let M be an MTTR.

(1) The MTTR M is single use restricted in the parameters (SURP) if for every state q and every look-ahead
type r, each parameter yj occurs as a node-label at most once in the tree ∆(q, r).

(2) The MTTR M is finite-copying in the input (FCI) if there exists a constant K such that for every tree
s over Σ and subtree s′ of s, if the (intermediate) tree t is derivable from [q0, s], then t contains at most
K occurrences of the label [q, s′] (and thus, each input subtree is processed at most K times during a
derivation).

The following theorem is proved in [Engelfriet and Maneth 1999].

Theorem 4.4 (Regularity for MTTs). A ranked-tree transduction f is MSO-definable iff there ex-
ists an MTTR M with SURP/FCI such that f = JMK.

4.3. MSO Equivalence

We first show that bottom-up ranked-tree transducers are as expressive as MTTs with regular-look-ahead
and single-use restriction, and then conclude that STTs are equivalent to MSO-definable transducers.

Theorem 4.5 (MTTs to BRTTs). If a ranked-tree transduction f : B(Σ) 7→ B(Γ) is definable by an
MTTR with SURP/FCI, then it is BRTT-definable.

Proof. In the same way as we did for STTs, we can extend BRTTs to multi-parameter BRTTs (MBRTT).
We omit the definition, since it is straightforward. Using the proof for Theorem 3.17 we can show that these
are equivalent to multi-parameter STTs and therefore using Theorem 3.14 to STTs.

We are given a MTTR with SURP/FCI M = (Q,Y, q0, R, r0, θ,∆) with FCI constant K computing a
transduction f and we construct a BRTT B equivalent to M .

We divide the construction into several steps and each step uses one of the properties of the MTT.

34

(1) We construct a BRTT S1, computing the transduction f1 : B(Σ) 7→ B(R), where each input element is
replaced by its regular look-ahead state;

(2) We construct an STT S2, computing the transduction f2 : B(R) 7→ B(R′), where each element of R′,
contains information on the set of states in which the MTT processes the corresponding node;

(3) We construct a multi-parameter BRTT S3, that computes the function f3 : B(R′) 7→ B(Γ). This part
relies on the SURP restriction;

(4) Finally, we use the fact that STTs are closed under composition (Theorem 3.15), and the equivalence of
STTs and BRTTs (Theorem 3.17), to show that f = f1 · f2 · f3 is a BRTT definable transduction.

Step 1. The BRTT S1 simulates the look-ahead automaton of M by following the transition relation θ. The
set of states of S1 is R, with initial state r0, and it only has one type-0 variable x. For every symbol a ∈ Σ,
and states r1, r2 ∈ R, the transition function δ1, and the variable update function ρ1 of S1 are as follows: if
θ(r1, r2, a) = r, then δ1(r1, r2, a) = r, and ρ1(r1, r2, a, x) = r〈xlxr〉. Finally, for every r ∈ R, F (r) = x.

Step 2. STTs can also be viewed as a top down machine, and f2 is in fact a top-down relabeling. Every
subtree s can be processed at most K times, and we can therefore use S2 to label s with the ordered sequence
of states that processes it. So given a tree over B(R), S2 outputs a tree over B(R′), where R′ = R ×Q≤K ,
and Q≤K =

⋃
0≤k≤K Q

k .

The states and stack states of S2 are defined by the set Q2 = P2 = Q≤K ∪ (Q≤K ×Q≤K). The initial state
q2
0 = q0 ∈ Q≤K means that the root is only processed by q0). The construction of S2 then maintains the

following invariants: assume tl and tr are the left and right children of a node, ml ∈ Q≤K is the sequence of
states that processes tl in M , and mr ∈ Q≤K is the sequence of states that processes tr in M ;

— before processing tl, S2 is in state (ml,mr); and
— before processing tr (after processing tl), S2 is in state mr.

The states mi can be obtained directly from the right hand sides of the rules of the MTT. It’s now trivial
to do the corresponding labeling using the information stored in the state. Given a state q ∈ Q, and
a symbol r1 ∈ R, let seqd(q, r1), with d ∈ {l, r}, be the sequence of states processing the child sl in
∆(q, r1), assuming a linearization of such tree. For every sequence m = q1 . . . Q

≤K , and symbol r1 ∈ R,
seqd(s, r1) = seqd(q1, r1) . . . seqd(qn, r1). The STT S2 only has one variable x.

We can now define the transition relation δ2, and the variable update function ρ2 of S2. For every states
m ∈ Q2, m′ ∈ Q≤K , (m1,m2) ∈ Q≤K ×Q≤K , and for every symbol r ∈ R,

r1 is a call 〈r2: store the variables on the stack and update the state consistently
— δ2(m′, r2) = (m1,m

′), where m1 = (seql(m
′, r2), seqr(m

′, r2)), and δ2((m1,m2), r2) =
(m3, (m1,m2)), where m3 = (seql(m1, r2), seqr(m1, r2));

— ρ2(m′, r2, x) = x, and ρ2((m1,m2), r2, x) = x;
r is a return r2〉: use the values on the stack to compute the labeling

— δ2(m, (m1,m2), r2) = m2, and δ2(m,m′, r2) = m;
— ρ2(m, (m1,m2), r2, x) = 〈(r,m1) x (r,m1)〉, and
ρ2(m,m′, r2, x) = xp 〈(r2,m

′) x (r2,m
′)〉.

Finally, the output function F2 of S2 outputs x for every possible q ∈ Q2.

Step 3. This last step relies on the SURP property of the MTT M . We notice that, when processing
bottom-up the MTT parameter updates behave in a different way as when processing top-down: to perform
the top-down parameter update y1 := a(y2) in bottom-up manner, we need to use the multi-parameter BRTT
parameter substitution x := x[y1 7→ a(y2)], where now, the new visible parameter is y2. We now formalize
this idea.

We construct a multi-parameter BRTT S3 = (Q3, q03,Π3, η3, X3, F3, δ3, ρ3) from B(R′) 7→ B(Γ), that
implements the transduction f3. The set of states Q3 only contains one state q03, which is also initial. The
transition function is therefore trivial.

The set of variables X3 = {x1, . . . , xK} contains K variables. After processing a tree t, xi contains the
result of M processing the tree t starting in qi, with the possible holes given from the parameters. At the
beginning all the variable values are set to ε. The parameter set Π3 is Y .

Next, we define the update functions of S3. We start from the leaf rules, in which both the 0 children are
labeled with the empty sequence. Let’s assume the current leaf is (r,m), where m = q1 . . . qj . We assume
w.l.o.g., that all the states have exactly K parameters. For every qi ∈ m, if ∆(qi, r) = ti(y1, . . . , yK), we

35

update xi := ti(y1, . . . , yK), where y1, . . . , yK ∈ Π. Since the MTT is SURP, there is at most one occurrence
of each yi.

We now analyze the binary node rules. Let’s assume the node we are processing the input node (r,m),
where m = q1 . . . qj . For every qi ∈ m, ∆(qi, r) is of the form

ti(Y, (q
i
l,1, sl), . . . , (q

i
l,ai , sl), (q

i
r,1, sr), . . . , (q

i
r,bi , sr))

where qil,1 . . . q
i
l,ai

is the sequence of states processing the left subtree, and qir,1 . . . q
i
r,bi

is the sequence of
states processing the right subtree.

When picking the concatenation of all the ∆(qi, r) , we have that by the construction of S2, the left child

(similarly for the right), must have been labeled with the sequence ml = q1
l,1 . . . q

1
l,a1

. . . qjl,1 . . . q
j
l,aj

such that

|ml| ≤ K. Moreover, we have that for all xi ∈ Xl (similarly for Xr), xi contains the output of M when
processing the left child of the current node starting in state qi, where qi is the i-th element of the sequence
ml and assuming the parameter are not instantiated yet

Now we have all the ingredients to complete the rule. The right hand side of a variable xi contains the
update corresponding to the rule in M where we replace every state with the corresponding variable in the
linearization stated above and parameters are updated via substitution. Since ρ is copyless η3 is trivial. The
output function FS simply outputs x1, i.e. the transformation of the input tree starting in q0.

Step 4. We use Theorem 3.15, and Theorem 3.17 to compose all the transformations and build the final
BRTT equivalent to the MTT M . 2

Theorem 4.6 (MSO Equivalence). A nested-word transduction f : W0(Σ) 7→W0(Γ) is STT-definable
iff it is MSO-definable.

Proof. From Theorems 3.15, 3.17, 4.1, 4.2, 4.4, and 4.5. 2

5. DECISION PROBLEMS

In this section, we show that a number of analysis problems are decidable for STTs.

5.1. Output Analysis

Given an input nested word w over Σ, and an STT S from Σ to Γ, consider the problem of computing
the output JSK(w). To implement the operations of the STT efficiently, we can store the nested words
corresponding to variables in linked lists with reference variables pointing to positions that correspond to
holes. Each variable update can be executed by changing only a number of pointers that is proportional to
the number of variables.

Proposition 5.1 (Computing Output). Given an input nested word w and an STT S with k vari-
ables, the output nested word JSK(w) can be computed in time O(k|w|) in a single pass.

Proof. A naive implementation of the transducer would cause the running time to be O(k|w|2) due to the
possible variable sharing. Let’s consider the assignment (x, y) := (x, x). The naive implementation of this
assignment would copy the value of the variable x in both x and y causing the single step to cost O(k|w|)
since every variable might contain a string of length O(|w|).

We now explain how we achieve the O(k|w|) bound by changing the representation of the output. Instead
of outputting the final string, we output a pointer graph representation of the run. The construction is
exactly the same as in Theorem 4.1. In this case the transducer might not be copyless, however, we can
construct the graph in the same way. The key of the construction is that due to the definition of sharing,
each variable contributes only once to the final output. In this way starting from the output variable, we
can reconstruct the output string by just following the edges in the graph. Notice that the stack variables
won’t cause a linear blow-up in the size of the graph since at every point in the run the graph only needs to
represent the top of the stack. 2

The second problem we consider corresponds to type-checking: given a regular language Lpre of nested
words over Σ, a regular language Lpost of nested words over Γ, and an STT S from Σ to Γ, the type-checking
problem is to determine if JSK(Lpre) ⊆ Lpost (that is, if for every w ∈ Lpre, JSK(w) ∈ Lpost).

Theorem 5.2 (Type-Checking). Given an STT S from Σ to Γ, an NWA A accepting nested words
over Σ, and an NWA B accepting nested words over Γ, checking JSK(L(A)) ⊆ L(B) is solvable in ExpTime,

36

and more precisely in time O(|A|3 · |S|3 · nkn2

) where n is the number of states of B, and k is the number of
variables in S.

Proof Sketch. The construction is similar to the one of Theorem 3.15, therefore we only present a sketch.
Given S, A, and B, we construct an NWA P , that accepts a nested word w iff w is accepted by A and JSK(w)
is not accepted by B. This is achieved by summarizing the possible executions of B on the variable values
of S. The states of P are triplets (qA, qS , f), such that

— qA is the current state of A,
— qS is the current state of S, and
— for every variable x of S, and states q1, q2 in B, f(x, q1, q2) is a pair of states (q′1, q

′
2) of B, such that if

the value of x is w1?w2:
— if B reads w1 starting in state q1, then it ends in state q′1 and produces some stack Λ, and
— if B raads w2 starting in state q2, and with stack Λ, then it ends in state q′2.

The final states of the machine are those where A is final, and the summary of the output function of the
current state of QS of S leads to a non accepting state in B. 2

As noted in Proposition 3.2, the image of an STT is not necessarily regular. However, the pre-image of a
given regular language is regular, and can be computed. Given an STT S from input alphabet Σ to output
alphabet Γ, and a language L ⊆W0(Γ) of output nested words, the set PreImg(L, S) consists of input nested
words w such that JSK(w) ∈ L.

Theorem 5.3 (Computing Pre-Image). Given an STT S from Σ to Γ, and an NWA B over Γ, there
is an ExpTime algorithm to compute an NWA A over Σ such that L(A) = PreImg(L(B), S). The NWA A

has size O(|S|3 · nkn2

) where n is the number of states of B, and k is the number of variables in S.

Proof. The proof is the same as for Theorem 5.2, but this time the final states of the machine are those
where S is in a final configuration, and the summary of the output function of the current state qS of S
leads to an accepting state in B. 2

5.2. Functional Equivalence

Finally, we consider the problem of checking functional equivalence of two STTs: given two STTs S and S′,
we want to check if they define the same transduction. Given two streaming string transducers S and S′,
[Alur and Cerný 2010; 2011] shows how to construct an NFA A over the alphabet {0, 1} such that the two
transducers are inequivalent exactly when A accepts some string w such that w has equal number of 0’s and
1’s. The idea can be adopted for the case of STTs, but A now is a nondeterministic pushdown automaton.
The size of A is polynomial in the number of states of the input STTs, but exponential in the number of
variables of the STTs. Results in [Esparza 1997; Seidl et al. 2004; Kopczynski and To 2010] can be adopted
to check whether this pushdown automaton accepts a string with the same number of 0’s and 1’s.

Theorem 5.4 (Checking Equivalence). Given two STTs S1 and S2, it can be decided in NExpTime
whether JSK 6= JS′K.

Proof. Two STTs S1 and S2 are inequivalent if one of the following holds:

(1) for some input u, only one of JS1K(u) and JS2K(u) is defined,
(2) for some input u, the lengths of JS1K(u) and JS2K(u) differ, or
(3) for some input u, there exist two symbols a and b, such that a 6= b, JS1K(u) = u1au2, JS2K(u) = v1bv2,

and u1 and v1 have the same length.

The first case can be solved in PTime using the techniques in [Alur and Madhusudan 2009]. The second
case can be reduced to checking an affine relation over pushdown automata, that in [Müller-Olm and Seidl
2004] is proven to be PTime. Informally, let A be a pushdown automaton where each transition computes
an affine transformation. Checking whether a particular affine relation holds at every final state is decidable
in polynomial time [Müller-Olm and Seidl 2004]. We can therefore take the product Sp of S1 and S2, where
Sp updates the variables of S1 and S2 as follows. Let Xi be the set of variables in Si. For every state (q1, q2),
symbol a ∈ Σ and every x ∈ Xi, Sp updates the variable x to the sum of the number of constant symbols in
the variable update of x in Si when reading a in state qi, and the variables appearing in such variable update.
For every state (q1, q2) for which F1(q1) and F2(q2) are defined, we impose the affine relation F1(q1) = F2(q2)

37

which checks whether the two outputs have the same length. We can then use the algorithm in [Müller-Olm
and Seidl 2004] to check if such a relation holds.

Let us focus on the third case, in which the two outputs differ in some position. Given the STT S1 =
(Q, q0, P,X, η, F, δ, ρ), and a symbol a, we construct a nondeterministic visibly pushdown transducer (VPT)
V1 (a visibly pushdown automaton with output), from Σ to {0} such that 0n is produced by V1 on input u,
if JS1K(u) = u1au2 and |u1| = n.

First, we modify S1, so that we do not have to worry about the output function. We add to S1 a new
variable xf , and a new state qf , obtaining a new STT S′1. We can then add a special end-of-input symbol
#, such that, for every state q ∈ Q for which F (q) is defined, S′1 goes from q to qf on input #, and updates
xf to F (q). This new STT S′1 has the following property: for every input u, JS1K(w) = JS′1K(w#).

Each state of V1 is a pair (q, f), where q is a state of S′1, and f is a partition of the variables X of S′1 into
6 categories {l,m1,m?,m2, r, n}, such that a variable x is in the set:

l : if x contributes to the final output occurring on the left of a symbol a where a is the symbol we have
guessed the two transducers differ in the final output,

m1 : if x contributes to the final output and the symbol a appears in this variable on the left of the ?,
m? : if x contributes to the final output and the symbol a appears in this variable in the ? (a future substi-

tution will add a to the ?),
m2 : if x contributes to the final output and the symbol a appears in this variable on the right of the ?,
r : if x contributes to the final output occurring on the right of a symbol a, or
n: if x does not contribute to the final output.

At every step, V1 nondeterministically chooses which of the previous categories each of the variables of S1

belongs to. In the following, we use fp to denote a particular partition: for example fm1 is the set of variables
mapped by f to m1. A state (q, f) of V1 is initial, if q = q0 is the initial state of S1, and fm1 ∪ fm2 = ∅.
A state (q, f) of V1 is final, if q = qf , fm1 = {xf} (the only variable contributing to the output is xf), and
fl ∪ fr ∪ fm? ∪ fm2 = ∅.

We now define the transition relation of V1. Given a state s, and a symbol b, a transition updates the
state to some s′, and outputs a sequence in 0∗. We assume V1 is in state (q, f), and it is processing the input
symbol b. Given an expression α ∈ E(X,Σ) (i.e. an assignment right hand side), we use x ∈a α to say that
a variable x ∈ X appears in α.

b is internal: the VPT V1 goes to state (q′, f ′), where δi(q, s) = q′. For computing f ′ we have three different
possibilities:
(1) the VPT V1 guesses that in this transition, some variable x is going to contain the po-

sition on which the outputs differ. We show the construction with an example. Assume
ρi(q, b, x) = α1cα2?α3, and c is the position on which we guess the output differs. The
transition must satisfy the following properties, which ensures that the current labeling is
consistent:
— ∀y ∈a α1.y ∈ fl, ∀y ∈a α2α3.y ∈ fr, f ′m1 = {x}, and fm = ∅ (the only variable that

contributes in the middle now is x),
— for every y 6= x, all the variables appearing in ρi(q, b, y), on the left of the ?, belong to

the same partition pl;
— for every y 6= x all the variables appearing in ρi(q, b, y), on the right of the ?, belong to

the same partition pr;
— if pl = pr, then y belongs to f ′pl , and
— if pl 6= pr, then y belongs to f ′m?.
If a variable is assigned a constant we nondeterministically choose which category it be-
longs to in f ′. The output of the transition is 0k, where k is the sum of the number of
output symbols in α, and in {ρi(q, b, y)|y ∈ f ′l}.

(2) the transition is just maintaining the consistency of the partition, and the position on
which the output differs has not been guessed yet. Similar to case (1); or

(3) the transition is just maintaining the consistency of the partition, and the position on
which the output differs has already been guessed. Similar to case (1).

b is a call: in this case the updates are similar to the internal case. The updated partition is stored on
the stack, and a new partition is non-deterministically chosen for the variables that are reset.

b is a return b′〉: the VPT V1 uses the partition in the state for the variables in X, and the partition on the
stack state for the variables in Xp. We assume (p, f ′) is the state on top of the stack. The

38

VPT V1 steps to (q′′, f ′′), such that δr(q, p, b) = q′. The computation of f ′ is similar to case
in which a is internal.

For every transition we also impose the following conditions: the cardinality of fm1 ∪ fm2 is always less or
equal than 1, and if a variable x does not appear in the right hand side of any assignment then x ∈ fn. The
first condition ensures that at most one variable contains the position on which the outputs differ.

Then, in the same way as for V1, given S2, and a symbol b 6= a, we construct a nondeterministic VPT
V2 from Σ to {1}, such that 1n is produced by V2 on input u, if JS2K(u) = u1bu2 and |u1| = n. Next,
we take the product V = V1 × V2. After this operation, since the input labels are synchronized, they are
no longer relevant. Therefore, we can view such machine as a pushdown automaton that generates/accepts
strings over {0, 1}∗. Finally, we check if V accepts a string that contains the same number of 0’s and 1’s.
The existence of such string ensures that there exists an input w on which S1 outputs a string α1aβ1, and
S2 outputs α2bβ2, such that |α1| = |α2|. Such a string can be found by constructing the semi-linear set that
characterizes the Parikh image of the context-free language of V [Esparza 1997; Seidl et al. 2004]. A solution
to such semi-linear set can be found in NP (in the number of states of V) [Kopczynski and To 2010].

The number of states of V is polynomial in the number of states of S1 and S2, but exponential in their
number of variables. This is due to the partitioning of the variables into the 6 categories. We can then
conclude that checking whether two STTs are inequivalent can be solved in NExpTime. 2

If the number of variables is bounded, then the size of V is polynomial, and this gives an upper bound of
NP. For the transducers that map strings to nested words, that is, for streaming string-to-tree transducers
(SSTT), the above construction yields a PSpace bound [Alur and Cerný 2011].

Corollary 5.5 (Equivalence of String-to-Tree Transducers). Given two SSTTs S and S′ that
map strings to nested words, the problem of checking whether JSK = JS′K is solvable in PSpace.

6. DISCUSSION

We have proposed the model of streaming tree transducers to implement MSO-definable tree transformations
by processing the linear encoding of the input tree in a single left-to-right pass in linear time. Below we discuss
the relationship of our model to the rich variety of existing transducer models, and directions for future work.

Executable models. A streaming tree transducer is an executable model, just like a deterministic automaton
or a sequential transducer, meaning that the operational semantics of the machine processing the input
coincides with the algorithm to compute the output from the input and the machine description. Earlier
executable models for tree transducers include bottom-up tree transducers, visibly pushdown transducers (a
VPT is a sequential transducer with a visibly pushdown store: it reads the input nested word left to right pro-
ducing output symbols at each step) [Raskin and Servais 2009], and multi bottom-up tree transducers (such
a transducer computes a bounded number of transformations at each node by combining the transformations
of subtrees) [Engelfriet et al. 2008]. Each of these models computes the output in a single left-to-right pass in
linear time. However, none of these models can compute all MSO-definable transductions, and in particular,
can compute the transformations such as swap and tag-based sorting.

Regular look-ahead. Finite copying Macro Tree Transducers (MTTs) with regular look-ahead [Engelfriet and
Maneth 1999] can compute all MSO-definable ranked-tree-to-ranked-tree transductions. The “finite copying”
restriction, namely, each input node is processed only a bounded number of times, can be equivalently
replaced by the syntactic “single use restriction” which restricts how the variables and parameters are
used in the right-hand sides of rewriting rules in MTTs. In all these models, regular look-ahead cannot
be eliminated without sacrificing expressiveness: all of these process the input tree in a top-down manner,
and it is well-known that deterministic top-down tree automata cannot specify all regular tree languages.
A more liberal model with “weak finite copying” restriction achieves closure under regular look-ahead, and
MSO-equivalence, by allowing each input node to be processed an unbounded number of times, provided
only a bounded subset of these contribute to the final output. It should be noted, however, that a linear
time algorithm exists to compute the output [Maneth 2002]. This algorithm essentially uses additional look-
ahead passes to label the input with the information needed to restrict attention to only those copies that
contribute to the final output (in fact, [Maneth 2002] shows how relabeling of the input can be effectively
used to compute the output of every MTT in time linear in the size of the input and the output). Finally,
to compute tree-to-string transductions, in presence of regular look-ahead, MTTs need just one parameter
(alternatively, top-down tree transducers suffice). In absence of regular look-ahead, even if the final output
is a string, the MTT needs multiple parameters, and thus, intermediate results must be trees (that is, one

39

parameter MTTs are not closed under regular look-ahead). Thus, closure under regular look-ahead is a key
distinguishing feature of STTs.

From SSTs to STTs. The STT model generalizes our earlier work on streaming string transducers (SST): SST
is a copyless STT without a stack [Alur and Cerný 2010; 2011]. While results in Section 5 follow by a natural
generalization of the corresponding results for SSTs, the results in Section 3 and 4 require new approach. In
particular, equivalence of SSTs with MSO-definable string-to-string transductions is proved by simulating a
two-way deterministic sequential transducer, a well-studied model known to be MSO-equivalent [Engelfriet
and Hoogeboom 2001], by an SST. The MSO-equivalence proof in this paper first establishes closure under
regular look ahead, and then simulates finite copying MTTs with regular look-ahead. The natural analog
of two-way deterministic string transducers would be the two-way version of visibly pushdown transduc-
ers [Raskin and Servais 2009]: while such a model has not been studied, it is easy to show that it would
violate the “linear-bounded output” property of Proposition 1, and thus, won’t be MSO-equivalent. While
in the string case the copyless restriction does not reduce the expressiveness, in Section 2.3 we argue that
the example conditional swap cannot be expressed by a copyless STT. Proving this result formally is a
challenging open problem.

Succinctness. To highlight the differences in how MTTs and STTs compute, we consider two “informal”
examples. Let f1 and f2 be two MSO-definable transductions, and consider the transformation f(w) =
f1(w)f2(w). An MTT at every node can send multiple copies to children, and thus, has inherent parallelism.
Thus, it can compute f by having one copy compute f1, and one copy compute f2, and the size of the
resulting MTT will be the sum of the sizes of MTTs computing f1 and f2. STTs are sequential, and thus, to
compute f , one needs the product of the STTs computing f1 and f2. This can be generalized to show that
MTTs (or top-down tree transducers) can be exponentially more succinct than STTs. If we were to restrict
MTT rules so that multiple states processing the same subtree must coincide, then this gap disappears. In
the other direction, consider the transformation f ′ that maps input u#v#a to uv if a = 0 and vu otherwise.
The transduction f ′ can be easily implemented by an STT using two variables, one of which stores u and
one which stores v. The ability of an STT to concatenate variables in any order allows it to output either
uv or vu depending on the last symbol. In absence of look-ahead, an MTT for f ′ must use two parameters,
and compute (the tree encodings of) uv and vu separately in parallel, and make a choice at the end. This
is because, while an MTT rule can swap or discard output subtrees corresponding to parameters, it cannot
combine subtrees corresponding to parameters. This example can be generalized to show that an MTT must
use exponentially many parameters as well as states compared to an STT.

Input/output encoding. Most models of tree transducers process ranked trees (exceptions include visibly
pushdown transducers [Raskin and Servais 2009] and Macro forest transducers [Perst and Seidl 2004]).
While an unranked tree can be encoded as a ranked tree (for example, a string of length n can be viewed as
a unary tree of depth n), this is not a good encoding choice for processing the input, since the stack height
is related to depth (in particular, processing a string does not need a stack at all). We have chosen to encode
unranked trees by nested words; formalization restricted to tree words (that are isomorphic to unranked
trees) would lead to a slight simplification of the STT model and the proofs.

Streaming algorithms. Consistent with the notion of a streaming algorithm, an STT processes each input
symbol in constant time. However, it stores the output in multiple chunks in different variables, rearranging
them without examining them, making decisions based on finite-state control. Unlike a typical streaming
algorithm, or a sequential transducer, the output of an STT is available only after reading the entire input.
This is unavoidable if we want to compute a function that maps an input to its reverse. We would like to
explore if the STT model can be modified so that it commits to output symbols as early as possible. A related
direction of future work concerns minimization of resources (states and variables). Another streamable model
is that of Visibly Pushdown Transducers (VPT) [Filiot et al. 2011], which is however less expressive than
STT. In particular VPTs cannot guarantee the output to be a well-matched nested word.

Complexity of checking equivalence. The problem of checking functional equivalence of MSO tree transducers
is decidable with non-elementary complexity [Engelfriet and Maneth 2006]. Decidability follows for MSO-
equivalent models such as MTTs with finite copying, but no complexity bounds have been established.
Polynomial-time algorithms for equivalence checking exist for top-down tree transducers (without regular
look-ahead) and visibly pushdown transducers [Comon et al. 2002; Raskin and Servais 2009; Engelfriet et al.
2009]. For STTs, we have established an upper bound of NExpTime, while the upper bound for SSTs is
PSpace [Alur and Cerný 2011]. Improving these bounds, or establishing lower bounds, remains a challenging

40

open problem. If we extend the SST/STT model by removing the single-use-restriction on variable updates,
we get a model more expressive than MSO-definable transductions; it remains open whether the equivalence
problem for such a model is decidable.

Application to XML processing. We have argued that SSTs correspond to a natural model with exe-
cutable interpretation, adequate expressiveness, and decidable analysis problems, and in future work, we
plan to explore its application to querying and transforming XML documents [Hosoya 2011] (see also
http://www.w3.org/TR/xslt20/). Our analysis techniques typically have complexity that is exponential in
the number of variables, but we do not expect the number of variables to be the bottleneck. Before we start
implementing a tool for XML processing, we want to understand how to integrate data values (that is, tags
ranging over a potentially unbounded domain) in our model. A particularly suitable implementation plat-
form for this purpose seems to be the framework of symbolic automata and symbolic transducers that allows
integration of automata-theoretic decision procedures on top of the SMT solver Z3 that allows manipulation
of formulas specifying input/output values from a large or unbounded alphabet in a symbolic and succinct
manner [Bjorner et al. 2012; D’Antoni et al. 2012].

ACKNOWLEDGMENT

We thank Joost Engelfriet for his valuable feedback: not only he helped us navigate the extensive literature on tree transducers,

but also provided detailed comments, including spotting bugs in proofs, on an earlier draft of this paper.

REFERENCES

R. Alur and P. Cerný. 2010. Expressiveness of streaming string transducers. In IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science (LIPIcs 8). 1–12.

R. Alur and P. Cerný. 2011. Streaming transducers for algorithmic verification of single-pass list-processing programs. In
Proceedings of 38th ACM Symposium on POPL. 599–610.

R. Alur and P. Madhusudan. 2009. Adding Nesting Structure to Words. Journal of the ACM 56, 3 (2009).

N. Bjorner, P. Hooimeijer, B. Livshits, P. Molner, and M. Veanes. 2012. Symbolic finite state transducers, algorithms, and
applications. In Proc. 39th ACM Symposium on POPL.

H. Comon, M. Dauchet, R. Gilleron, D. Lugiez, S. Tison, and M. Tommasi. 2002. Tree automata techniques and applications.
(2002). Draft, Available at http://www.grappa.univ-lille3.fr/tata/.

B. Courcelle. 1994. Monadic Second-Order Definable Graph Transductions: A Survey. Theor. Comput. Sci. 126, 1 (1994), 53–75.

L. D’Antoni, M. Veanes, B. Livshits, and D. Molnar. 2012. FAST: A Transducer-Based Language for Tree Manipulation.
Technical Report MSR-TR-2012-123. Microsoft Research.

J. Engelfriet. 1975. Bottom-up and top-down tree transformations? a comparison. Mathematical systems theory 9, 2 (1975),
198–231. DOI:http://dx.doi.org/10.1007/BF01704020

J. Engelfriet and H.J. Hoogeboom. 2001. MSO definable string transductions and two-way finite-state transducers. ACM Trans.
Comput. Log. 2, 2 (2001), 216–254.

J. Engelfriet, E. Lilin, and A. Maletti. 2008. Extended Multi Bottom-Up Tree Transducers. In Developments in Language
Theory (LNCS 5257). 289–300.

J. Engelfriet and S. Maneth. 1999. Macro tree transducers, attribute grammars, and MSO definable tree translations. Informa-
tion and Computation 154 (1999), 34–91.

J. Engelfriet and S. Maneth. 2006. The equivalence problem for deterministic MSO tree transducers is decidable. Inf. Process.
Lett. 100, 5 (2006), 206–212.

J. Engelfriet, S. Maneth, and H. Seidl. 2009. Deciding equivalence of top-down XML transformations in polynomial time. J.
Comput. Syst. Sci. 75, 5 (2009), 271–286.

J. Engelfriet and H. Vogler. 1985. Macro tree transducers. J. Comput. System Sci. 31 (1985), 71–146.

J. Esparza. 1997. Petri Nets, Commutative Context-Free Grammars, and Basic Parallel Processes. Fundam. Inform. 31, 1
(1997), 13–25.

E. Filiot, O. Gauwin, P. Reynier, and F. Servais. 2011. Streamability of Nested Word Transductions.. In FSTTCS (LIPIcs),
Supratik Chakraborty and Amit Kumar (Eds.), Vol. 13. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 312–324.
http://dblp.uni-trier.de/db/conf/fsttcs/fsttcs2011.html#FiliotGRS11

H. Hosoya. 2011. Foundations of XML Processing: The Tree-Automata Approach. Cambridge University Press.

H. Hosoya and B. C. Pierce. 2003. XDuce: A statically typed XML processing language. ACM Trans. Internet Techn. 3, 2
(2003), 117–148.

E. Kopczynski and A.W. To. 2010. Parikh Images of Grammars: Complexity and Applications. In Logic in Computer Science
(LICS), 2010 25th Annual IEEE Symposium on. 80–89. DOI:http://dx.doi.org/10.1109/LICS.2010.21

P. Madhusudan and M. Viswanathan. 2009. Query Automata for Nested Words. In Mathematical Foundations of Computer
Science 2009, 34th International Symposium (LNCS 5734). 561–573.

S. Maneth. 2002. The Complexity of Compositions of Deterministic Tree Transducers. In FST TCS 2002: Foundations of
Software Technology and Theoretical Computer Science, 22nd Conference (LNCS 2556). 265–276.

41

W. Martens and F. Neven. 2005. On the complexity of typechecking top-down XML transformations. Theor. Comput. Sci. 336,
1 (2005), 153–180.

T. Milo, D. Suciu, and V. Vianu. 2000. Typechecking for XML Transformers. In Proceedings of the 19th ACM Symposium on
PODS. 11–22.

M. Müller-Olm and H. Seidl. 2004. Precise interprocedural analysis through linear algebra. SIGPLAN Not. 39 (2004), 330–341.
Issue 1.

F. Neven and T. Schwentick. 2002. Query automata over finite trees. Theor. Comput. Sci. 275, 1-2 (2002), 633–674.

T. Perst and H. Seidl. 2004. Macro forest transducers. Inf. Process. Lett. 89, 3 (2004), 141–149.

J. Raskin and F. Servais. 2009. Visibly pushdown transducers. In Automata, Languages and Programming: Proceedings of the
35th ICALP (LNCS 5126). 386–397.

L. Segoufin and V. Vianu. 2002. Validating streaming XML documents. In Proceedings of the 21st ACM Symposium on PODS.
53–64.

H. Seidl, T. Schwentick, A. Muscholl, and P. Habermehl. 2004. Counting in Trees for Free. In Automata, Languages and
Programming: 31st International Colloquium (LNCS 3142). 1136–1149.

42

