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ABSTRACT
Formal design and analysis of embedded control software re-
lies on mathematical models of dynamical systems, and such
models can be hard to obtain. In this paper, we focus on au-
tomatic construction of piecewise affine models from input-
output data. Given a set of examples, where each example
consists of a d-dimensional real-valued input vector mapped
to a real-valued output, we want to compute a set of affine
functions that covers all the data points up to a specified
degree of accuracy, along with a disjoint partitioning of the
space of all inputs defined using a Boolean combination of
affine inequalities with one region for each of the learnt func-
tions. While traditional machine learning algorithms such
as linear regression can be adapted to learn the set of affine
functions, we develop new techniques based on automatic
construction of interpolants to derive precise guards defin-
ing the desired partitioning corresponding to these functions.
We report on a prototype tool, Mosaic, implemented in
Matlab. We evaluate its performance using some synthetic
data, and compare it against known techniques using data-
sets modeling electronic placement process in pick-and-place
machines.

1. INTRODUCTION
Formal design and analysis of embedded control software

relies on the construction of mathematical models represent-
ing the dynamics of system components [11]. For many real-
world systems, constructing a model of the continuous-time
dynamics from basic principles is very difficult, but it is
possible to obtain input-output data from observed behav-
iors of the system. Thus algorithms to learn mathematical
models of dynamical systems from input-output data can
play a critical role in model-based design of embedded soft-
ware. In this paper, we focus on learning piecewise affine
models from data. Piecewise affine models are important
since such models can approximate more complex behaviors
including non-linear dynamics, and at the same time, are
more amenable to formal analysis such as symbolic model
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checking [3].
A piecewise affine model is a function from d-dimensional

real-valued input vectors to real-valued outputs, and con-
sists of a finite partitioning of the input domain into re-
gions, with an affine function associated with each of these
distinct regions. Each region of the partition has to be de-
fined by a guard that is a boolean combination of affine
inequalities. An example of a 2-dimensional piecewise affine
model is the function given by the conditional expression if
(x1 + 2x2 ≤ 3 ∨ x1 − 3x2 ≥ 7) then 2x1 + x2 else 3x2 + 5.
The problem of learning piecewise affine model from given
input-output data is to find a set of affine functions that
covers all examples and to compute guards that identify the
partitioning corresponding to these affine functions.

This problem has been explored previously in research lit-
erature [8, 4, 20, 15, 21, 14, 12, 5]. Paoletti et al. present an
extensive survey on these existing techniques in [19]. Some
of these techniques [20, 15] pose this problem as a quadratic
optimization problem. In [12, 5], the piecewise affine model
is learnt iteratively by alternating between learning guards
and learning affine functions. In [8], machine learning tech-
niques for clustering (K-means) and linear separation (SVM)
are used to learn the piecewise affine models. In [4], Bem-
porad et al. give a greedy heuristic to identify the affine
functions and then use two-class or multi-class linear sep-
aration techniques to learn guards. All these techniques,
however, assume that each region of the partition is convex,
that is, defined via guards that are conjunctions of affine
inequalities. In contrast, our solution is able to associate a
non-convex region with each affine function. In other words,
our method is able to detect when a single affine function
can cover inputs in multiple convex sub-regions, and this po-
tentially reduces the size of the representation of the learnt
function.

To find a partitioning into non-convex regions, we propose
a new technique to learn guards based on automatic con-
struction of interpolants [1, 16]. An interpolant is a formula
which precisely separates the solution space of two inconsis-
tent predicates. While interpolant generation techniques in
the literature operate on predicates, we need to adapt them
to learn guards from input-output data points. It should
be noted that many problems explored in the verification
literature require automatic construction of predicates and
functions. For instance, there is a large body of work on
automatic construction of loop invariants in programs ([6,
10, 7]), there has been some recent work on synthesizing
straight-line programs from logical constraints and exam-
ples [9, 2]. Our algorithm to learn piecewise affine models
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Figure 1: Example data-set. Each input point is
labelled by the corresponding output value.

can also be considered as a solution to a specific instance of
such synthesis problems.

The first phase of the proposed algorithm learns a set
of affine functions that covers all data points upto a spec-
ified degree of accuracy (given by an error bound δ). To
do this, we first find an affine function that covers points
in the neighborhood of a given point and then refine it fur-
ther so as to cover as many points as possible. Next, we
remove the points covered by this function and repeat the
computation on remaining points until all points are cov-
ered. The second phase of the algorithm learns a guard for
each affine function that characterizes the region contain-
ing points covered by this function. The desired guard is
a boolean combination of affine inequalities that separates
points covered by the function from remaining points in the
data-set. For this purpose, we iteratively create positive and
negative groups of points such that each pair of positive and
negative group can be separated by a single affine inequality,
and combine these inequalities using boolean connectives to
get the desired guard. Finally, we use these affine functions
and guards to construct the required piecewise affine model.
A simpler model is more desirable as it is easier to analyze
and by Occam’s razor, more likely to generalize. Hence, we
try to minimize the number of affine functions and the sizes
of guards in the learnt model. However, these problems are
computationally hard and thus, we only give a best effort
solution for both of them.

We evaluate the performance of our algorithm using a
prototype tool, Mosaic. It is implemented in Matlab. We
use synthetic data to measure the quality of models learnt
by Mosaic and real data from electronic placement process
in pick-and-place machines to compare it against existing
approaches. On synthetic data, we find that Mosaic per-
forms well on low dimensional input-output data and also
learns models of small sizes. For real data, we implement
two alternate approaches. In the first approach, we replace
our technique to learn guards with a machine learning based
technique as used in most existing approaches [8, 4]. In the
second one, we also replace our solution to learn affine func-
tions with a clustering-based approach from [8]. We compare
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Figure 2: A piecewise affine model for data-set in
Figure 1. � points map to affine function (x1+x2+5),
3 points to (x1 − 10) and the © points to 0.

these on different data-sets from electronic placement pro-
cess in pick-and-place machines. We find that Mosaic out-
performs the other two on three of the data-sets with little
overhead in the size of the model. This shows that non-
convex regions can be found in real data which validates
the need for our algorithm. This also provides some evi-
dence that our approach can perform better than existing
approaches and hence can be useful in practice.

The outline of the paper is as follows. In Section 2, we
formalize the computational problem of learning piecewise
affine models from input-output data. In Section 3, we de-
scribe the algorithms to learn affine functions and the guards
defining the regions corresponding to these functions, along
with analysis of correctness and complexity. In Section 4, we
describe the implementation of our tool, Mosaic and eval-
uation of its performance. Finally in Section 5, we conclude
with some discussion and directions for future work.

2. PROBLEM
Preliminaries. An affine function l : Rd → R is a func-

tion of the form l(x1, x2, . . . , xd) = h1x1+h2x2+· · ·+hdxd+
c, where h1 . . . hd, and c are real constants and x1, . . . , xd
are real variables. Equivalently, it can be written as l(x) =
h.x+ c, where h and x are d-dimensional vectors. Similarly,
an affine inequality, φ : Rd → {true, false} is a predicate of
the form φ(x) ≡ p(x) ≤ 0, where p is an affine function.

A piecewise affine model f : Rd → R is defined using the
following expression.

f(x) = if {φ1(x)} then l1(x)
else if {φ2(x)} then l2(x)
. . .

else if {φm−1(x)} then lm−1(x)
else lm(x)

where li(x) is an affine function i.e. li(x) = hi.x + ci and φi

is a boolean combination of affine inequalities, i.e. φi(x) =∨
j

∧
k p

jk
i (x) ≤ 0.

The size of a piecewise affine model is defined as the total
number of affine functions and affine inequalities used in the



Algorithm 1 genPiecewiseAffineModel

Input: D = {(x1, y1), (x2, y2), . . . , (xN , yN )} and an error
bound δ

Output: Piecewise affine model f , s.t. ‖yi− f(xi)‖ ≤ δ for
all 1 ≤ i ≤ N
/*Compute a set of affine functions L = {l1, l2 . . . lm} that
covers all points in D. */
X := D
L = {}
while X is non-empty do

l := genAffineFunction(X)
X := {(xi, yi) ∈ X | ‖yi − l(xi)‖ > δ}
Add l to L

end while

/*Compute guards {φ1, φ2, . . . φm−1} for regions defined
by the affine functions in L */
for k = 1 to m− 1 do

Let Pj = {xi | ‖yi − lj(xi)‖ ≤ δ, (xi, yi) ∈ D, lj ∈ L}
Select lk ∈ L s.t. for all j, |Pk| ≤ |Pj |
X+ := Pk \

⋃
j 6=k Pj

X− :=
⋃

j 6=k Pj \ Pk

φk := genGuard(X+, X−)
L := L \ {lk}
D := D \ {(xi, yi) ∈ D | φk(xi) = true}

end for

return f(x) = if {φ1(x)} then l1(x),
else if {φ2(x)} then l2(x),
. . .

else lm(x)

expression for the model.
Problem. Given a set of input-output points, D : Rd×R

and an error bound δ, the problem is to learn a piecewise
affine model f : Rd → R such that,

‖f(xi)− yi‖ ≤ δ, for all (xi, yi) ∈ D

A function g covers a point (x, y) if ‖g(x)−y‖ ≤ δ. Thus,
we need to learn a model that covers all points in D.

Example. Consider a set of input-output points in R2×R
as shown in Figure 1. Here, each input point is labelled
by the corresponding output value. For example, a point
(10, 10) is mapped to the value 25 as can be seen in Figure 1.
Let the error bound δ be 0.01. A possible piecewise affine
model that covers all points in this data is as follows.

f(x1, x2) =
if x2 − x1 ≤ −35 then

x1 − 10
else if (x1 ≤ −5 ∧ x2 ≤ −5) ∨ (5 ≤ x1 ∧ 5 ≤ x2) then

x1 + x2 + 5
else

0

This model is also shown in Figure 2. It has 5 inequalities
and 3 affine functions and thus, a total size 8. This is the
smallest possible model for the given data.

3. SOLUTION
The problem, as described in Section 2, is to compute a

piecewise affine model f that covers all points in the dataset
D. We divide this problem into two subproblems. The first
subproblem is to find a set of affine functions L such that ev-

Algorithm 2 genAffineFunction

Input: X = {(x1, y1), (x2, y2), . . . , (xN , yN )} and an error
bound δ

Output: An affine function l(x) = h.x+c that covers some
points in X

Randomly select (xp, yp) from X
P := {(xp, yp)}
l′ := Affine function found by linear regression on P
while ‖yi − l′(xi)‖ ≤ δ, for all (xi, yi) ∈ P do

l := l′

v := argminj{|xp − xj | | (xj , yj) /∈ P }
Add (xv, yv) to P
l′ := Affine function found by linear regression on P

end while

l′ := l
P ′ := {(xi, yi) ∈ X | ‖yi − l′(xi)‖ ≤ δ}
repeat

l := l′

P := P ′

l′ := Affine function found by linear regression on P
P ′ := {(xi, yi) ∈ X | ‖yi − l′(xi)‖ ≤ δ}

until |P ′| ≤ |P |
return l

ery point in D is covered by at least one affine function in L.
These form the required affine functions li in f . The second
subproblem is to learn a guard predicate for each affine func-
tion l ∈ L such that it separates the points covered by l from
the remaining points in D. These guard predicates form the
guards φi in f . Finally, we use the affine functions and guard
predicates to construct the required piecewise affine model
f which covers all points in D. We give strategies to solve
the subproblems in Section 3.1 and Section 3.2 respectively.

3.1 Learning Affine Functions
We describe here, our strategy to learn a set of affine func-

tions L that covers all points in D. An affine function l
covers a point (x, y) if ‖l(x) − y‖ ≤ δ, where δ is the er-
ror bound. A set of affine functions L covers (x, y) if there
exists at least one affine function l ∈ L such that l covers
(x, y). We would want to learn the smallest set L which cov-
ers all points in D so as to minimize the size of the model.
However, this problem is computationally hard. We state
this formally in Theorem 1. Meggido et al. prove this for
d = 2 in [18]. This can be extended further to all constants
d > 2, by showing a polytime reduction from the problem
in d dimensions to that in d+ 1 dimensions.

Theorem 1. Given N input-output points in d dimensions
i.e. Rd × R, the problem of finding r affine functions such
that they cover all N points is NP-Hard for all constants
d ≥ 2.

Hence, we give a heuristic that learns a small set L in
practice. We learn this set iteratively. We first find an affine
function l that covers some points in D. Then, we remove
points covered by l and repeat this process on the remaining
points until all points in D are covered. We also describe
this in the first part of Algorithm 1.

We now explain the algorithm to learn an affine function
that covers some points in a set X (Algorithm 2). First, we
select a random point p : (xp, yp) in X and learn an affine



function that covers neighboring points of p. We start with a
set P containing only p and repeatedly add nearest neighbors
of p until all of them can not be covered by the learnt affine
function. We use linear regression to learn the affine function
that covers points in P . Linear regression is a technique that
computes the affine function which minimizes the error on
the given set of points. This is a classic technique in machine
learning and we use it as a black box to learn the optimum
affine function. Let l be the affine function that covers the
maximum number of neighboring points of p. Now, we find
all points in X which are covered by l. We apply linear
regression on these points to learn a new affine function l′

and compute a new set of points covered by l′. We repeat
this step until the number of covered points stops increasing
and then return the affine function that covers the maximum
number of points. The assumption here is that an affine
function which covers a point p, must also cover points in the
neighborhood of p. Hence, we first learn an affine function
that covers the neighborhood of a point in X and then use
it as seed to learn the final affine function.

We illustrate this further with the example described in
Section 2. Suppose, we select ((−20,−10),−25) as our ran-
dom point p. We use its neighboring point ((−10,−10),−15)
to learn an affine function l1(x) = x1 − 5. Both points
lie within the given error bound 0.01 from l1 and hence,
are covered by l1. Next, we add another neighboring point
((−20,−20),−35) and learn the function l2(x) = x1+x2+5.
Again, all 3 points are covered by l2. Next, we add the point
((−20, 0), 0) and learn the function l3(x) = 0.5x1 +1.75x2 +
7.5. Now, none of the points are covered by l3. Hence we
stop and l2 is the function that covers most points in the
neighborhood of p. Next, we find all points in D which are
covered by l2. All � points, as shown in Figure 2, lie within
the error bound 0.01 from l2. Thus, we use these points to
learn a new affine function l′2 which is same as l2. Since, the
number of covered points remains same as earlier, we stop
and return l′2 as the required affine function. Now, we re-
move all � points and repeat the search for affine functions
on the remaining points.

3.2 Learning Guard Predicates
After we have learnt a set of affine functions L, the next

task is to learn a guard predicate φj for each affine function
lj ∈ L. φj identifies the region where f is defined by the
affine function lj . Therefore, given an input point x ∈ Rd,
when φj(x) is true, f(x) = lj(x) and so, φj must be true
on points in D which are covered by lj . Also, it must be
false on the points xi ∈ D which are not covered by lj so
that f(xi) 6= lj(xi). Thus, given an affine function lj , the
problem here is to find a guard predicate φj such that φj

is true on points that are covered by lj and false on the
remaining points in D.

3.2.1 Overall Strategy
We explain here the overall strategy to learn guards for

affine functions in L. This is also described in the second
part of Algorithm 1. First, we select the affine function
l1 that covers the smallest set of points in D. This is a
heuristic to eliminate spurious affine functions, which cover
small sets of points, early in the algorithm and learn simpler
guards for the relevant affine functions. Next, we learn a
guard predicate φ1 that separates points covered by l1 from
the remaining points in D. Then, we remove l1 from L
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Figure 3: Positive points are marked by ‘+’. Nega-
tive points are marked by ‘×’.

and points in D for which φ1 is true. This is because, the
guards are checked in a sequential order in the piecewise
affine model f and φ1 is the first guard to be checked. Hence,
while learning the subsequent guards, we can ignore points
on which φ1 is true. Now, we repeat the above process and
learn guards for the remaining affine functions in L.

To learn a guard predicate φj that separates points cov-
ered by lj from the remaining points, we label points in D
that are covered only by lj and no other affine function in
L as positive and the points that are not covered by lj as
negative. Points that are covered by lj and also some other
affine function in L are ignored as they can be labelled ei-
ther way. Now, φj is a predicate such that it is true on the
positive points and false on the negative points. This is a
standard problem of learning a binary classifier and many
techniques in machine learning can be used for this. These
techniques work well when the points can be separated by
an affine inequality or a conjunction of affine inequalities.
However, such a classifier does not always suffice and we
may need a boolean combination of inequalities, for exam-
ple, when positive points occur in disconnected groups in
between negative points (Figure 4). Hence, we develop a
new technique that learns precise classifiers, based on the
work on learning interpolants by Albarghouthi et al. in [1].
We present this in Section 3.2.2.

We explain the overall strategy further using the example
in Section 2. Suppose that the set of affine functions learnt
for this data is L = {l1 = x1 − 10, l2 = x1 + x2 + 5, l3 = 0}.
l1 covers the least number of points and hence, we select it
first and learn a guard φ1 that separates points covered by
l1 from the remaining points. As we can see in Figure 3,
we label points that are covered only by l1 as positive and
those not covered by l1 as negative. Note that, the points
(10, 0), (10,−10), (10,−20), (10,−30) are covered by both l1
and l3. Hence, these points are ignored. Suppose, we learn
φ1 as x2 − x1 ≤ −35. We remove l1 from L and points in
D where φ1 is true. Next, we repeat the above process and
select l2 which covers the least number of remaining points
in D. We learn a predicate φ2 that separates points covered
by l2 from those covered by l3. The corresponding positive



Algorithm 3 genGuard

Input: A set of points X+ and X−, s.t. X+ ∩X− = {}
Output: A guard φ, s.t. for all xi ∈ X+, φ(xi) = true and

for all xi ∈ X−, φ(xi) = false

Randomly select x+ ∈ X+ and x− ∈ X−
S+ := {{x+}}
S− := {{x−}}
while true do

φ := genPred(S+, S−) . [E]
Y := {xi ∈ X+ | ¬φ(xi)} ∪ {xi ∈ X− | φ(xi)}
if Y is empty then

return φ

Randomly select xce in Y . [CE]
case xce ∈ X+

for all g− ∈ S− do
if genPred({{xce}}, {g−}) = NULL then

/*xce conflicts with group g− */ . [S]
/*g− needs to be split */
Find an affine function l such that

l(xce) = 0 and l(w) 6= 0, for all w ∈ g−.
g> := {w ∈ g− | l(w) > 0}
g< := {w ∈ g− | l(w) < 0}
Remove g− from S−
Add g> and g< to S−.

end for

for all g+ ∈ S+ do
/*Try merging xce in the group g+ */ . [M]
if genPred({g+ ∪ {xce}}, S−) 6= NULL then

g+ := g+ ∪ {xce}
break

end for

if xce is not merged in any group g+ then
/*Create a new group {xce} in S+ */ . [N]
S+ := S+ ∪ {{xce}}

case xce ∈ X−
. . .

end while

and negative points are shown in Figure 4. Note that here,
the positive points can not be separated from the negative
points using only conjunction of inequalities and thus φ2 can
not be learnt using traditional machine learning techniques.
Finally, we are left with points only from l3 and we need not
learn a predicate for this function.

3.2.2 Learning Precise Classifiers
Here we describe our approach to learn a guard predi-

cate φ that separates a set of positive points, X+ from a
set of negative points X− i.e. φ(x) = true for all x in X+

and φ(x) = false for all x in X−. It may not be possi-
ble to separate all points in X+ and X− by a single affine
inequality. Therefore, in this algorithm, we create some pos-
itive and negative groups of points, such that each positive
group can be separated from every negative group by an
affine inequality and then, combine these inequalities using
boolean connectives to learn a predicate ψ which separates
all positive groups from the negative groups. If ψ also sep-
arates all points in X+ from those in X−, then we have
the required guard φ. Otherwise, we update our groups to
learn a new predicate ψ. The procedure to compute ψ from

Algorithm 4 genPred

Input: A set of positive and negative groups, S+ and S−.
Output: A boolean combination of affine inequalities ψ

such that for all x in positive groups, ψ(x) = true and
for all x in negative groups, ψ(x) = false.
Returns NULL if some positive and negative group are
not separable.

ψ := false
for all g+ ∈ S+ do

t := true
for all g− ∈ S− do

Find an affine function l such that
for all x+ ∈ g+, l(x+) ≤ 0 and
for all x− ∈ g−, l(x−) > 0

if no such l exists then
return NULL

t := t ∧ (l(x) ≤ 0)
end for
ψ := ψ ∨ t

end for

sets of positive and negative groups is described in Algo-
rithm 4. We create a disjunct for each positive group by
conjoining the affine inequalities which separate the positive
group from the negative groups and then disjoin these dis-
juncts to get the required predicate. To compute an affine
inequality that separates a positive group from a negative
group, we use a linear constraint solver that takes in a set of
constraints and returns a feasible solution, if it exists. Note
that, Algorithm 4 returns NULL if a positive group can not
be separated from a negative group by an affine inequality.

Now, we describe our algorithm to create positive and neg-
ative groups and learn the required guard predicate φ. The
pseudocode is given in Algorithm 3. Let the set of positive
groups be S+ and that of negative groups be S−. We start
with a single positive point and negative point as positive
and negative group respectively. We learn a predicate φ from
these groups using Algorithm 4 (step E in Algorithm 3) and
then compute the set of misclassified points or counterex-
amples, Y . If Y is empty and thus, all points in X− and
X+ are classified correctly by φ, we return φ. Otherwise, we
randomly pick a counterexample point xce in Y (step CE).
We update our groups such that xce is classified correctly
in future. Let us consider the case that xce is a positive
counterexample i.e. a positive point on which φ is false. We
check if xce can be added to some positive group, g+ ∈ S+

(step M). Note that, g+ must remain separable from all neg-
ative groups by affine inequalities even after adding xce. If
this is the case, we add xce to g+. Otherwise, we create a
new positive group that consists only of xce and add it to
S+ (step N).

We might have a situation where xce can not be separated
from a negative group g− by an affine inequality even when it
is not added to any of the positive groups. This can happen
when xce lies in between the points in g−. In this case, we
split g− into new groups g> and g< such that they can be
separated from xce by affine inequalities (step S). We do
this by finding an affine function l such that l(xce) = 0 and
l(x) 6= 0 for all x ∈ g−. We again use the linear constraint
solver to find l. Now, group g> is the set of points in g−
where l(x) > 0. Group g< is similarly defined. We add these
new groups to S− and remove g− from S−.
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Figure 4: Positive points are marked by ‘+’. Nega-
tive points are marked by ‘×’.

We follow a similar procedure when xce is a negative
counterexample. After the groups are updated, all points
in groups along with the counterexample xce are classified
correctly by the new predicate φ (step E). We repeat this
process until all points in X+ and X− are classified correctly.

We explain this further using the example in Section 2.
Let us try to separate positive points from negative points in
Figure 4. Suppose we start with groups g1+ = {(−10,−30)}
and g1− = {(−20, 20)} and learn the predicate separating
positive and negative groups as φ1 : x2 ≤ −5. φ1 is true in
the region below line l1 in Figure 4. Let us pick a positive
counterexample ce1 = (30, 10). ce1 can be merged with g1+
to produce g1+ = {(−10,−30), (30, 10)}. Now, the predicate
separating groups is φ2 : x2 − x1 ≤ 10 which is true in the
region below l2. Next, we pick another positive counterex-
ample ce2 = (−30,−10) and add it to g1+ in a similar way.

Now suppose we pick a negative counterexample ce3 =
(10,−20). Clearly, it can not be merged with g1− as (g1− ∪
ce3) can not be separated from g1+ by an affine inequality.
Hence, we create a new negative group g2− = {(10,−20)}.
Now, the predicate separating groups becomes φ3 : (3x2 −
x1 ≤ 40 ∧ x1 − x2 ≤ 25). φ3 is true in the region be-
tween two dashed lines marked as l3. Next, suppose we
pick another negative counterexample ce4 = (0,−10). ce4
lies in between the elements of g1+ and so, it can not be
separated from g1+ by any affine inequality. Thus, we split
g1+ : {(−10,−30), (30, 10), (−30,−10)} into 2 new groups
g2+ = {(−30,−10), (−10,−30)} and g3+ = {(30, 10)}. g2+
and g3+ contain points with x1 < 0 and x1 > 0 respectively.
ce4 can be separated from the positive groups g2+ and g3+ by
affine inequalities. Further, we can add ce4 to g2− and learn
a new predicate separating groups. We repeat this process
until no new counterexamples can be found.

Note that, this algorithm may not produce a predicate
with smallest number of affine inequalities. However, doing
so is computationally hard as stated in Theorem 2. Meggido
et al. prove this in [17].

Theorem 2 ([17]). The problem of checking if 2 sets of
points can be separated by a predicate with k affine inequal-
ities is NP-Hard.

3.3 Correctness and Runtime Analysis
We analyze here the correctness and the running time of

our algorithm. First we show the correctness of Algorithm 3.
To show this, we prove that groups in S+ and S− can always
be separated by an affine inequality.

Lemma 3. In Algorithm 3, for all pairs (g+, g−), g+ ∈
S+, g− ∈ S−, g+ and g− can be separated by an affine in-
equality.

Proof. Initially, groups in S+ and S− are separable by an
affine inequality. We show that the theorem holds also at
steps S, M and N where S+ and S− are modified. First,
at step S, both g> and g< are subsets of g− and thus, they
can be separated from every g+ ∈ S+ by affine inequalities.
Hence, the theorem holds at step S. Also note that after the
split, xce can be separated from both g> and g< by affine
inequalities. Thus, after all conflicting negative groups are
split, xce can be separated from all groups in S− by affine
inequalities. At step M, xce is added to g+ only if it re-
mains separable from all groups in S− by affine inequalities.
Therefore, S+ and S− still remain valid. Finally, at step
N, we know that xce is separable from all groups in S− by
affine inequalities and so, {xce} can be added to S+ while
maintaining validity.

Correctness of Algorithm 2 can be shown trivially. Cor-
rectness of Algorithm 1 follows from the correctness of Al-
gorithm 2 and Algorithm 3. We state it as a lemma here.

Lemma 4. In Algorithm 1, piecewise affine model f covers
all points in D i.e. ‖yi − f(xi)‖ ≤ δ, ∀(xi, yi) ∈ D.

Next, we analyze the running time of Algorithm 3, which
is the most expensive component of the complete algorithm.
We quantify this by the number of times we search for an
affine function during the algorithm. This is because, search-
ing an affine function that satisfies the given constraints is
costly and dominates the running time of Algorithm 3. This
search happens at step S in Algorithm 3 and within the
loops in Algorithm 4 and is done by making queries to a lin-
ear constraint solver. We now state the following lemmas.

Lemma 5. Algorithm 4 makes O(|S+| × |S−|) queries to a
linear constraint solver.

Lemma 6. Algorithm 3 makes O(N3) queries to a linear
constraint solver, where N is the number of points in D.

Proof. First, the number of iterations of the outer while loop
in Algorithm 3 is O(N). This is because, in each iteration,
the groups are updated such that the counterexample xce is
classified correctly in future and can not be a counterexam-
ple again. Thus each iteration eliminates at least one point
from being a counterexample which implies that there are at
most O(N) iterations. Now, |S+| < N and |S−| < N . Thus,
at step E, the call to Algorithm 4 makes O(N2) queries to
the linear constraint solver. Step S runs at most O(N) times
and makes a constant number of queries to the solver each
time. Similarly, step M runs at most O(N) times in an it-
eration and each call to Algorithm 4 makes O(N) queries to
the solver. Therefore, there are O(N2) queries to the linear
constraint solver in each iteration of the outer while loop
and thus, the total number of queries is O(N3).



4. EVALUATION
In this section, we evaluate the performance of our al-

gorithm using a prototype tool, Mosaic. In Section 4.1,
we describe its implementation and some synthetic and real
data-sets used for its evaluation. In Section 4.2, we use syn-
thetic data to measure the quality of the piecewise affine
models learnt by the tool. In Section 4.3, we use real data
from electronic placement process in pick and place machines
to compare its performance against existing techniques.

4.1 Experimental Setup
We have implemented our tool, Mosaic, in Matlab. We

implement the linear constraint solver in Mosaic via the lin-
ear program solver within Matlab and some simple heuris-
tics. To compute an affine function that separates a positive
group from a negative group in Algorithm 4, we encode the
constraints as a linear program and use the linear program
solver to solve them. To compute the affine function l at step
S in Algorithm 3, we generate an affine function with ran-
dom coefficients and update it such that l(xce) = 0. Then,
we check if there is a point x in g−, such that l(x) = 0. We
repeat the above steps until no point x in g− has l(x) = 0,
which gives the required affine function l. While some off-
the-shelf linear constraint solver could also be used, we found
this to work well in practice. We implement linear regres-
sion using an inbuilt function of Matlab. We use a machine
with 2.6 GHz i5 processor and 8GB RAM to conduct the
experiments and evaluate the performance of our tool.

We have created some synthetic functions and use data
sampled from these to learn piecewise affine models, so as
to compare the performance and the size of the models learnt
by Mosaic against the true models. We have manually con-
structed four piecewise affine functions, f1, f2, f3 and g and
three smooth non-linear functions, p, q, r. f1, f2, f3 are func-
tions in R5 → R, while g is a function in R10 → R. The sizes
of these functions are 10, 10, 11 and 19 respectively. Func-
tions p, q and r have input dimensions 3, 4 and 3 respectively.
We sample points from these functions by selecting a value
for each input variable randomly in range [−1000, 1000].

We use data from an experimental study conducted by
Juloski et al. in [13] to compare our algorithm against ex-
isting approaches. This study tries to model the electronic
component placement process in pick and place machines.
A pick and place machine has a mounting head that carries
an electronic component. The head is pushed down by the
machine until the electronic component is inserted inside the
circuit board placed below. Then, the head is retracted and
another electronic component is picked up to be pushed in-
side the board. The data consists of the input voltage of
the motor that drives the head down and the position of the
head, both of which are collected at regular intervals of time.
We want to learn a piecewise affine model that represents
the head position at any time instant k as a function of head
positions at time k−1, k−2, . . . , k−a and input voltages at
time k, k− 1, k− 2, . . . k− b, also known as PWARX model.
We set a to 2 and b to 1 for our experiments. Data-sets are
collected in 4 different settings of the machine for 15 seconds
each. We sample each data-set at 150Hz which gives us 2250
data points for each setting.

The synthetic functions, the datasets from the experimen-
tal study and the code for Mosaic are available at http:

//seas.upenn.edu/~nimits/mosaic.
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4.2 Quality of the Learnt Models
We use synthetic data, as described in Section 4.1, to mea-

sure the quality of the model learnt by Mosaic. To do this,
we first sample some training points from the functions. The
number of points vary from 500 to 10000. We also add a
Gaussian noise with zero mean and standard deviation 0.001
to these points. Next, we use our tool to learn piecewise
affine models from these data points with an error bound
0.1. Finally, we evaluate the learnt piecewise affine models
on 20000 test points that are sampled separately from the
original functions.

We measure the quality of the learnt models using two pa-
rameters, the size of the learnt model and its performance
on test data. Figure 5 shows the size of learnt models for
varying number of training points. Figure 6 shows the per-
centage of test points for which the error is greater than the
error bound 0.1. We found that our algorithm is able to
reconstruct the affine functions in f1, f2, f3 and g quite ac-
curately. Hence, we wanted to measure the fraction of test
points which are assigned wrong regions by the learnt mod-
els. A test point assigned a wrong region is likely to have an
error greater than the given error bound 0.1 and thus, we



use percentage of test points with error greater than > 0.1
as the measure of performance on test set. While this is not
necessarily true for the smooth functions p, q, r, this measure
is proportional to the root mean square error and hence, we
use it as a measure of performance for all functions.

We can observe that as the number of training points in-
creases, the size of the learnt model increases and the perfor-
mance on the test set improves. The learnt models seem to
perform very well on the test data for f1, f2 and f3 with less
than 5% error for models learnt with 1000 points or more.
The error on g, p, q, and r is much larger in comparison and
thus here, the learnt models do not seem to generalize to the
test data. For f1, f2 and f3, the size of the learnt model is
fairly close to the actual size even when we have 10000 train-
ing points. However, for g, the size of the learnt model grows
significantly with increase in the number of training points.
As we mentioned in the previous paragraph, the affine func-
tions are reconstructed quite accurately in the learnt mod-
els. Hence, the increase in size is mainly because of increase
in the size of the guards. We investigated this further and
found that while learning the guard predicates, large num-
ber of positive and negative groups were created when only
few groups would suffice. This was probably because many
irrelevant groups were formed containing points from discon-
nected regions. Such groups could be formed if there were
no points of opposite label that lie in between to restrict
this formation. For example, in Figure 4, positive points
(−10,−10) and (10, 20) could form a group even though
they lie in disconnected positive regions, because there are
no negative points in between to prevent this. This problem
becomes more severe when the input points are in 10 dimen-
sions as in case of g. We will try to address this problem in
future. For functions p, q, and r, sizes of the learnt models
are quite large, but there is no baseline to compare them.
Finally, these functions will be available online and can be
used as benchmarks for future work.

4.3 Comparison with Existing Techniques
Now we use the real data from the electronic placement

process in pick and place machines to compare our algorithm
against existing techniques.

The first question that we want to answer via experiments
is whether it is useful to learn guards using the technique
presented in Section 3.2.2 and how does it compare with tra-
ditional learning techniques like Support Vector Machines
(SVMs). SVM is a machine learning technique that learns
an affine inequality such that the separation between given
positive and negative points is maximized. We can observe
in Figure 4, that a single affine inequality or even a con-
junction of affine inequalities can not separate positive and
negative points and so, SVMs would not perform well in this
example. However, the question is whether such scenarios
are found often in real data. To answer this, we have imple-
mented an alternate approach that uses SVM for learning
guards and compare it with Mosaic on the pick and place
machine data. In this approach, we use SVM to learn a
single affine inequality that separates positive points from
negative points. While in Mosaic, we learn a single guard
predicate that separates points covered by an affine function
li from points covered by remaining affine functions, here we
learn multiple predicates where each predicate is an affine
inequality separating points covered by li from points cov-
ered by one of the remaining affine functions, and return a

conjunction of these predicates as the required guard. Let
us call this implementation Linear.

The next question that we want to answer is whether Lin-
ear would perform better if we split points covered by an
affine function into clusters and then learn guards for these
clusters using SVMs. For example, in Figure 4, we could
split positive points into 2 clusters, each with 9 points form-
ing a square and then, each cluster could be separated from
negative points by a conjunction of inequalities. In fact,
Ferrari-Trecate et al. give such an algorithm in [8]. We
have implemented a version of this algorithm and compare
it with Mosaic and Linear. In this algorithm, first, for
each training point p, an affine function lp that covers its
c nearest neighbors and the mean point mp of these neigh-
bors is computed. Then, the points are assigned a weight
wp that measures how well lp fits the c neighboring points of
p with lower weight for poorer fit. We faced some numerical
issues like infinite or not-a-number values while computing
these weights and hence weighed all points equally. Next,
the training points are segregated into K clusters using a
weighted version of K-means, such that two points lying in
the same cluster have similar mean point mp and are cov-
ered by similar affine functions lp. This is done so that the
points in a cluster are covered by the same affine function
and also are close to each other, whereby each cluster could
be separated from other clusters by affine inequalities. Next,
an affine function lk is assigned to each cluster Ck such that
it minimizes error on points in Ck and then, a predicate
that separates Ck from other clusters is learnt using the ap-
proach described in Linear. Let us call this implementation
Cluster.

We compare these implementations via experiments on
the pick and place machine data as described in Section 4.1.
We use first 1500 points in each data-set as training points
and remaining 750 points as test points. Note that each
point is given by ((yk−1, yk−2, vk, vk−1), yk) where yk is the
position of the head at time k and vk is the input voltage
of the motor at time k. Figure 7 shows the results for the
experiments on 4 data-sets. For Mosaic and Linear, we
learn models by varying the error bound δ. We repeat this
15 times for each value of δ and report train (dashed line)
and test (solid line) root mean square error and the size of
the learnt model in Figure 7. For Cluster, we learn models
by varying the number of neighboring points c from 10 to 70
and the number of clusters K from 2 to 12. We report train
and test root mean square error for different values of c and
K by the black � and ◦ points respectively in Figure 7. Note
that, the size of the learnt model for Cluster is given by
about K(K + 1)/2, where K is the number of clusters and
thus varies from 3 to 78.

As we can observe in Figure 7, the train root mean square
error of Mosaic is smaller than both Linear and Clus-
ter and reduces as the error bound is decreased. Further,
Mosaic has generally lower test error than Linear and
Cluster for data-sets 1, 2 and 3 and similar error for data-
set 4. This gives some evidence that non-convex regions
(regions that can not be identified by conjunction of affine
inequalities) for affine functions can be found in real data
and thus, our technique to learn guards can perform bet-
ter than machine learning techniques like SVMs. Further,
we can observe that, as δ is reduced, train error reduces for
Mosaic but, test error increases generally. Also, the size
of the learnt model increases rapidly as we reduce δ. This



is a standard observation in machine learning and is known
as overfitting i.e. when δ is reduced significantly, the learnt
model overfits the training data and thus, does not general-
ize to the test data. Further, Cluster performs worse than
Mosaic on data-set 1 and 2 and 3. This is probably be-
cause in Cluster, while the regions for the affine functions
are better separated by SVM, the affine functions do not fit
the data very well. To conclude, we have some evidence that
non-convex regions for affine functions can be found in real
data and therefore, our algorithm to learn piecewise affine
models can be useful in practice.

5. CONCLUSION AND FUTURE WORK
In this paper, we have presented a new technique to learn

piecewise affine models, with a novel application of inter-
polant generation to learn guards which can identify non-
convex regions for affine functions. Further, we have eval-
uated this algorithm on some synthetic and real data and
observe that it performs well with a little overhead in the
size of the learnt models. In future, we would like to solve
the problem discussed in Section 4.2 where many irrelevant
groups are formed while learning guard predicates. Further,
currently while learning guard predicates, we pick a random
counterexample and use it to update the positive and neg-
ative groups. We would like to explore other strategies to
pick the counterexample and see how they affect the perfor-
mance of this algorithm. We would also like to explore if
our technique to learn guard predicates can also be used as
a machine learning technique to learn classifiers. Lastly, we
would like to explore other applications for our algorithm to
learn piecewise affine models.
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Figure 7: RMSE and Size of models learnt by Mosaic, Linear and Cluster on pick and place machine data


