
Shared Variables Interaction Diagrams

Rajeev Alur
Department of Computer and Information Science

University of Pennsylvania
alur@cis.upenn.edu

Radu Grosu
Department of Computer Science

State University of New York at Stony Brook
grosu@cs.sunysb.edu

Abstract

Scenario-based specifications offer an intuitive and vi-
sual way of describing design requirements of distributed
software systems. For the communication paradigm based
on messages,message sequence charts(MSC) offer a stan-
dardized and formal notation amenable to formal analysis.
In this paper, we defineshared variables interaction dia-
grams(SVID) as the counterpart of MSCs when processes
communicate via shared variables. After formally defining
SVIDs, we develop an intuitive as well as formal definition
of refinement for SVIDs. This notion provides a basis for
systematically adding details to SVID requirements.

1. Introduction

Message Sequence Charts (MSCs) are a commonly used
visual description of design requirements for concurrent
systems such as telecommunications software [19], and
have been incorporated into software design notations such
as UML [6]. On one hand, the clear graphical layout of an
MSC immediately gives an intuitive understanding of the
intended system behavior, and on the other, the notation
has been standardized (ITU standard Z.120) with precise
semantics, and hence, can be subjected to analysis. This
has already motivated the development of algorithms for a
variety of analyses including detecting race conditions and
timing conflicts [3], pattern matching [16], detecting non-
local choice [7], and model checking [4], and tools such as
uBET [11] and MESA [5].

An MSC depicts the desired exchange of messages
among communicating entities in distributed software sys-
tems. An alternative paradigm for communication in dis-
tributed systems involves shared variables. Communication
and synchronization via shared objects provides a higher
level of abstraction, and is supported by many modern con-
current programming languages. In this paper, we propose
shared variables interaction diagrams(SVID) as a formal
and visual notation for describing scenarios in the shared

variables paradigm. Textbooks on concurrent programming
(e.g., [14, 17]) contain many pictures describing the interac-
tions of processes communicating by shared variables, and
similar scenarios arise in diverse areas such as transaction
processing in concurrent databases (c.f. [18]) and consis-
tency in shared-memory multiprocessors [13].

In our definition of an SVID, an action corresponds to,
possibly multiple, reading/writing of shared variables. The
actions of one process are visually ordered. The causal de-
pendence among actions of different processes is illustrated
by arrows: an arrow from an actiona of processp to an ac-
tion b of processq means thatq reads a value that was writ-
ten byp. If the variable involved in this communication is
write-shared, then there is an implicit additional constraint
that between these two actionsa andb, there is no interven-
ing action that writes to this variable. Checking whether all
such implicit constraints are consistent with one another can
be computationally hard, and is shown to be NP-complete in
general. We also establish that the problem can be solved in
linear-time when all the variables are read-shared but write-
exclusive. Benefits of SVIDs are the same as that of MSCs:
they give an intuitive and visual understanding of interac-
tions among processes in a single execution, and have a
formal semantics. The execution of a concurrent program
can also be depicted by a linear trace involving actions of
all processes, but a single SVID captures many such execu-
tions succinctly, and makes causal dependencies explicit.

An appealing notion for systematic hierarchical develop-
ment of specifications or models involves refinement (this is
present in all concurrency formalisms [20]). The definition
of SVIDs, and the underlying shared-variables paradigm,
suggests many natural ways of refining SVIDs. We identify
different ways of visually adding more details to an SVID:
by moving arrows depicting dependencies, by introducing
new variables, actions, and/or new arrows, by splitting com-
posite actions, and by splitting processes into subprocesses.
All these cases are captured by our formal definition of re-
finement for SVIDs. The definition requires existence of a
mapping of implementation actions to specification actions
consistent with the dependencies. We show the problem of

checking refinement to be NP-complete. When the commu-
nication is point-to-point, that is, each variable has a sin-
gle writer and a single reader, the problem can be solved in
polynomial time.

The remaining paper is organized as follows. Section 2
introduces the definition of SVIDs. Section 3 defines the
notion of refinement for SVIDs. Section 4 compares SVIDs
to related formalisms, and in particular to message sequence
charts (MSCs).

2. Shared Variables Interaction Diagrams

Peterson’s mutual exclusion protocol. In order to il-
lustrate the use and utility ofshared variables interaction
diagrams (SVID)let us consider the Peterson’s mutual ex-
clusion protocol for two asynchronous processesp1 andp2.
The protocol makes sure thatp1 and p2 never simultane-
ously reach their critical sections and that each may eventu-
ally enter its critical section provided it desires to do so.

To achieve the desired synchronization amongp1 andp2
the protocol uses three variables. The first variablef1 is a
boolean variable (or flag), that when set, signals thatp1 de-
sires to enter its critical section. It is writable only byp1 but
it can be read byp2. The second variable, the flagf2, plays
the same role forp2 asf1 does forp1. Finally, the variablet
(turn) is used to resolve the conflict when both processes try
to simultaneously enter their critical sections. The variable
is written and read by both processes and ranges over the
set of process identifiers, i.e.,f1; 2g in the binary case.

Exemplary SVIDs for the protocol. In Figure 1 we
show four typical scenarios for the Peterson’s protocol as
basicSVIDs. They intuitively capture the synchronization
(communication) patterns between the processesp1 andp2.
The SVIDsM1 andM3 describe the situations where only
p1 or only p2 requests the critical section. The SVIDsM2

andM4 show how the tie is resolved when both processes
p1 andp2 request the critical section. These scenarios can
be used for understanding the behavior of the protocol, or
they can be used as a specification for designing the proto-
col. Clearly, there are many more scenarios that are possi-
ble, and the specified ones serve only as a guide.

As with message sequence charts (MSCs), vertical lines
correspond to processes. However, in contrast to MSCs,
the processes do not communicate with each other via mes-
sages. Instead, they communicate viashared variables. The
way a process updates its variables is given textually in the
left compartment of rectangular boxes (or vertices). The
variables needed (or read) by the update operations in a box
are given in the right compartment of the same box. Vari-
ables and updating operations inside a box are not ordered.
They may be regarded as being performed simultaneously,
i.e., they define anatomic action.

The inter-process communication via shared variables is
depicted by arrows (or edges) between boxes. An arrow
pointing from a boxb1 to a boxb2 indicates that the value of
the variables updated byb1 is read (or checked) byb2. For
instance, in Figure 1, inM2, the arrow fromb12 to b24 spec-
ifies that the value off1 read byp2 in box b24 is the value
written tof1 by p1 in box b12. Thus, the arrows establish a
causal order between actions of different processes: the ac-
tion ofp2 corresponding tob24 must happenafter the action
of p1 corresponding tob12. For write-shared variables, the
arrows establish an additional causal dependence between
reads and writes, namely, not only the read should happen
after the write, but in addition, there should be no interven-
ing write to the shared variable. For instance, inM2, the
arrow from boxb22 to b13 says that the value oft read by
p1 in boxb13 is the value written tot by p2 in boxb22. This
means that the action ofp1 corresponding tob13 happens af-
ter the action ofp2 corresponding tob22, and between these
two actions there is no action involving writing to the shared
variablet. In this case, this enforces an implicit causal de-
pendence between boxb12 andb22 (i.e, p2 writes tot after
p1 in this scenario).

To simplify the notation we adopt the (usual) convention
that, write exclusive variables of a process preserve their
values if not explicitly updated. Hence, a boxb contained
by a processp exports not only the variables explicitly up-
dated byb but also the write exclusive variables ofp that are
not updated byb. This allows the use of empty boxes (not
explicitly drawn) as sources for arrows. Similarly to MSCs
the arrows may be labeled. However, the arrow labels are
not messages. They are conditions over variables that have
to hold in order to perform the update operation at the head
of the arrow.

The vertical process lines define a top down linear or-
der among the update operations (boxes) of the same pro-
cess (like in MSCs time flows top/down). Hence, verti-
cal lines describe local synchronization whereas arrows de-
scribe global synchronization.

To improve readability we use, as with MSCs,condi-
tions. They are drawn inside hexagonal boxes. Intuitively,
a condition is an update of the program counter variable as-
sociated with the relevant process.

In the following we define SVIDs in a formal way. To
simplify the definition we do not consider arrow labels.
They might be understood simply as comments that reflect
the most recent value of the associated variables. Similarly,
we do not include the conditions in the formal definition.

Definition 1 (Shared variables interaction diagram) A
shared variables interaction diagramM consists of the fol-
lowing components:

Processes.A finite setP of processes. Each process
p 2 P has an associated (finite) setp:X of (typed)

12

1

2

21

14

3

13

1

12
1

22

2 2

21

4

14

1

24

1

13 23

12
1

11

1

11

2

1

1 1

f f 1

p p

b

M

2f := F

reqCS

idle

ini

2

idleidle

pp

b t

t := 1

inCS

t := 2

reqCS

1 f := T2

f := F1 f := F2

f := F1

f := T

reqCS

idle

ini

reqCS

M

reqCS

b

idle

b

idle

b

ini

b

ini

b

reqCS

t := 2

inCS

f := F1 f := F2

idle

f := T

f := F2

2

M

ini

t := 1 t := 2

inCS

reqCS

f := F2

idle

ini

f := T21

idle

f := T

f := F1 f := F2

M

idle

p

f

p

1

t := 1

2f

inCS

f := F1

1
b

f := T

f := F1

ini

b

reqCS

b

idle

b

ini

t

b

p p

idle

b

t t

Figure 1. Basic SVIDs for the Peterson protocol

variables. The variables inp:X are classified into
read variablesp:Xr , write-shared variablesp:Xs and
write-exclusive variablesp:Xe. We denote byp:Xw =
p:Xs [p:Xe the set of write variables ofp and by
X = [p2P p:X the set of all variables ofM . It is
required that the write-exclusive variables of different
process are disjoint: forp 6= q, p:Xe \ q:Xe = ;, and
every variable is written by some process:M:X =
[p2P p:Xw.

Vertices. A finite setV of vertices. Each vertexv has an
associated processv:p. The set of vertices belonging
to a processp is denoted byp:V . This set is linearly
ordered by the (top down) relation<p. We denote by
< the partial order[p2P <p obtained by taking the
union of these linear orders.

Update boxes.Each vertexv has an associated setv:Xr

of read variables, a setv:Xw of write variables and a
statev:s. The setv:Xr is the set of variables read
in order to perform the update, and it is required
that v:Xr � v:p:Xr. The setv:Xw is the set of
variables explicitly updated, and it is required that
v:Xw � v:p:Xw. Finally, the statev:s corresponds
to the update and it is a mapping that associates each
variablex 2 v:Xw to a valuea 2 Tx whereTx is the
type associated tox 1.

Read edges.A finite setE � V � V of edges denoting
the read dependencies. For each vertexv the setv:Xr

of read variables ofv is included in the set of write and
1The specific state associated with a vertex is not of importance for

subsequent results. The definition can be made more general to allow more
abstract states such as predicates, or to omit the state altogether.

inherited variables of the immediate predecessors, i.e.,
v:Xr � [(u;v)2E(u:Xw [u:p:Xe). �

We say that a SVIDM is consistent if there is a lin-
earization of the updates inM that respects the linear ver-
tical (process) orders and the partial horizontal (arrows) or-
der. In addition, the horizontal order should reflect most
recentupdates (see definition below). For example, in Fig-
ure 1,M1 is a consistent SVID with three linearizations
b21b11b12b13b14; b11b21b12b13b14 andb11b12b21b13b14.

Definition 2 (Consistent SVID)An SVIDM is calledcon-
sistentif there is a linear orderv1v2 : : : vn of all vertices in
M:V such that (1) it is consistent with<, (2) it is consistent
withE, and (3) ifx is a variable ande = (u; v) is an edge
with x 2 v:Xr and x 2 u:Xw then there is no vertexw
betweenu andv withx 2 w:Xw. �

The consistency requirement makes sure that the value
assigned by a process to a variable in an update box at the
tail of an arrow is also the value considered by the other
process in the box at the head of the arrow. This condition is
new when compared with MSCs and it is necessary because
both the process containing the box at the head of an arrow
or another process if the variable is write shared might have
written the variable too.

Note that if a boxb1 reads a variablex, then the def-
inition of an SVID requires that it has an incoming edge
from some boxb2 that writes tox or inheritsx. Multiple
incoming edges are not ruled out. Suppose bothb2 andb3
write tox and have an edge to boxb1 that readsx. In this
case, ifx is write-shared, the SVID cannot be consistent.
If x is write-exclusive, then bothb2 andb3 must belong to

the same process, and thus, are linearly ordered according
to the visual vertical order. Ifb2 appears beforeb3 in this
order, then the edge fromb2 to b1 is redundant.

If there are no write-shared variables, i.e., if the SVIDs
use the one-to-many communication paradigm, then consis-
tency can be verified in linear time.

Theorem 1 (Consistency check: write-exclusive case)If
M is an SVID such that all variables are write-exclusive,
then the problem of checking consistency ofM can be
solved in linear time.

Proof: If all variables ofM are write-exclusive, then
M is consistent iff the relation(< [E)� is acyclic. Thus,
checking inconsistency reduces to finding a cycle in a graph,
and can be performed by standard linear-time search algo-
rithms. �

One-to-many communication is the typical case for (asyn-
chronous) hardware applications where connecting the out-
puts of two gates is not allowed. An example of an incon-
sistent SVID for this paradigm is shown in Figure 2 (there
is an implied cycle betweenb13 andb23).

If there are also write-shared variables, i.e., if the SVIDs
also use the many to one communication paradigm, then
checking consistency can be difficult. Ifx is a write-shared
variable written in vertexu and read in vertexv, then the
consistency requirement says that any other vertexw that
writes tox should come either beforeu or afterv. That is,
we want to add an edge fromw to u or from v to w. If
only one of these edges is consistent with the partial-order
(< [E)� then we can resolve the dependence efficiently.
This is likely to be the typical case. For instance, in sample
scenarioM2, the consistency requirement says that the box
b12 should either precedeb22 or follow b13. The latter is
inconsistent with the vertical order. Hence, we can resolve
the disjunctive dependency conclusively by adding an edge
from b12 to b22. If both the edges are consistent, we can
make a greedy choice, but backtracking may be necessary,
leading to exponential worst-case complexity

Theorem 2 (Consistency check: general case)Checking
the consistency of an SVID with write shared variables is
NP-complete.

Proof: Membership in NP is obvious since check-
ing whether a guessed linearization satisfies all the require-
ments of consistency is easy. For hardness, the proof is by
reduction from the problem of checking sequential consis-
tency. Consider the case when all variables are shared, and
all boxes involve a single read or a single write. Check-
ing consistency, then, corresponds to verifying whether the
local views of individual processes are sequentially consis-
tent. Since the edges match reads with writes, this is a re-
stricted case of sequential consistency, which is known to
be NP-hard [8]. �

Henceforth we will assume that we are dealing only with
consistent SVIDs. Note that an SVID has multiple lin-
earizations, and thus, provides a more succinct representa-
tion than linear traces.

3. Refinement

Given an SVIDS as a high-level requirement, one may
want to add more details to the requirement leading to an-
other SVID I. In this context, given an implementation
SVID I and a specification SVIDS, it is important to know
if I refines (or implements)S, written asI � S, in a mathe-
matically precise way. We are mainly interested in a refine-
ment notion that has a concrete, syntactic counterpart that
would guide the users to add details in a visual, yet formal,
way. Intuitively, there are three simple ways to refine an
SVID: (1) by moving arrows and adding empty boxes, (2)
by splitting the vertices and (3) by splitting the processes2.

Moving arrows and adding empty boxes. The write
exclusive variables of a processp that are updated in a box
b1 maintain their value down the process line as long as they
are not updated in another boxb2. This is not only an ex-
pected behavior for SVIDs but it also allows to move the
arrows exporting only write exclusive variables in order to
simplify the SVID, by minimizing the number of arrows
crossing each other. The transformation of moving arrows
can restrict the set of allowed linearizations, and leads to a
refined SVID. Moreover, it allows to introduce empty boxes
if this further simplifies the SVID. In the SVIDM1

2 in Fig-
ure 2, we show how to move the arrow exporting the flagf1
of the SVIDM2 of Figure 2.

Splitting vertices. One may split a box that contains a
set of reads and writes in several successive boxes placed on
the same process line and such that each contains a disjoint
subset of the original set of reads and writes. As an example
of this transformation, the SVIDM2

2 in Figure 2 refines the
SVID M1

2 . Splitting boxes may be applied repeatedly un-
til all boxes contain either only one read or only one write
operation for a single variable.

Splitting processes. The third type of refinement we
consider is splitting processes into subprocesses such that
the set of variables of each subprocess is contained in one
of the original processes (thus, implementation processes
cannot aggregate distinct variables of different processes).
During the splitting, a write shared variable may become
write exclusive. However, a write exclusive variable cannot
become write shared. Similarly to splitting vertices, split-
ting processes may be applied repeatedly until each process
writes only one variable, distinct from the variable associ-

2In the full paper we define a more general refinement that allows to
augment an SVID with additional variables, boxes, and/or arrows.

1

1

12 22
1

23

24

2

14

21

1 111

11

13

three

1

two

1

p1

1f := F

f

t := 1 t := 2

reqCS

1 2

1
b

2

inCS

ini

reqCS

M2

o := T

t
1

p

b

t
three

idle

t

reqCS

idle

idle

ini

one

b

two t := 2

four

o := T

t := 1

Inconsistent

four

2

2

p

f := F

1f := T

o := F

b

f := F1

1f

1p

o := F o 1

f := T

zero

idle

o

idle

2

one

o := T

reqCS

f := F1 f := F2

idle

ini

reqCS

M2
2

inCS

t

2p

idle

2

t

reqCS

o := T

ini ini

reqCS

idle

1

t := 2

t := 1

inCS 1f

1p

1 2

zero

o := Fo := F

f := T

b

b

bb f := T

p

f := F1

1

f := F1

f := F1

idle

ini

reqCS

f := F2

reqCS

f := T2

t

M2
3

t

2p2

f := T1

Figure 2. Inconsistency and refinement by moving arrows and splitting vertices and processes

ated to the other processes. An example of this kind of re-
finement is the SVIDM3

2 in Figure 2 obtained by refining
M2

2 . In this SVID, the write shared variablet has been fac-
tored out both fromp1 andp2 and transformed into a write
exclusive variable. This SVID mimics the way Peterson’s
protocol would be implemented with MSCs. In this case,
a shared resource liket is written by sending it messages
(mimicked with SVIDs by a write followed by an event ar-
row) and it is read by getting from it a message (mimicked
with SVIDs by a read arrow). Since this SVID is a refine-
ment of the original SVID, it should be clear that SVIDs
offer in general a very high level of abstraction.

Now let us proceed to formally define the notion of re-
finement.

Definition 3 (Refinement)A shared variables interaction
diagramI refinesa shared variables interaction diagram
S, writtenI � S if:

Variables. The set of variables inS and I is the same:
S:X = I:X.

Processes.For every implementation processp 2 I:P

and every specification processq 2 S:P , eitherp:X \
q:X = ; or p:X � q:X. In the latter case, write
shared variables inS may become write exclusive in
I, but write exclusive variables inS cannot become
write shared:p:Xs � q:Xs andp:Xe � q:Xw.

Boxes. There is asurjective mapr from the vertices of
I to the vertices ofS such that for each vertexv of
S, v:Xw = [r(w)=vw:Xw, v:s = [r(w)=vw:s, and
v:Xr = [r(w)=vw:Xr

3.
3In the more general notion of refinement, all equalities can be made

Dependency.The specification partial order(S:E [
S:<) is included in the imager(I:E [I:<) of the im-
plementation partial order under the mapr. That is,
whenever a specification vertexu is related tov ac-
cording to (S:E [S:<), there exist implementation
verticesu0 and v0 such thatr(u0) = u, r(v0) = v,
andu0 is related tov0 according to(I:E [I:<). �

By this definition, we have

M3
2 � M2

2 � M1
2 � M2:

For example, let the boxes inM1
2 be denoted by

m11;m12;m13;m14;m21;m22;m23;m24 and the boxes
in M3

2 be denoted byn11;n12;n13;n14;n21;n22;n31;n32;
n33;n34, as shown in Figure 3. Define the implementation
mapr such that it mapsn11 to m11, n31 to m21, n12 and
n21 to m12, n32 andn22 to m22, n13 to m13, n33 to m23

and finallyn14 to m14 andn34 to m24. Then it is easy to
see that the dependency condition is satisfied and that the
process condition is satisfied too. Hence,M3

2 refinesM1
2 .

Note that the vertical dependency(n21; n22) in M3
2 be-

comes an arrow(m12;m22) in the imager(M3
2). Similarly,

the arrows(n12; n21) and (n32; n22) in M3
2 become self-

loops inr(M3
2). All these arrows are new when compared

with M1
2 .

Given an “implementation” SVIDI and a “specifica-
tion” SVID S, we would like to determine algorithmically if
I � S holds. According to the definition of refinement, we
first need to verify the requirements concerning variables
and processes, both of which are stratighforward to check.

subsets, allowing the implementation to add more variables.

11 11 1

1 p

2

p

14

1

n

p

n

n21

1

12n

11n

14

n22

13m

12

13

m

11m

f 1f

m

1f 1

t := 1

idle

ini

reqCS

idle

reqCS

idle

ini

idle

1
2

t := 1

inCS

t := 2

reqCS

1

M

f := T2

f := F1 f := F2

f := F1

f := T

reqCS

idle

ini

reqCS

m21

23

t := 1

inCS

t := 2

reqCS

1

idle

f := T2

f := F1 f := F2

f := F1

f := T

ini

idle

ini

reqCS

2
3r(M)

n31

n32

inCS

f := F1

f := F1

idle

ini

reqCS

f := F2

reqCS

f := T

t

M2
3

m24

tt t m t

n34

n33tt

m22

2p 2p 2p

t := 2

idle

f := T1

Figure 3. Refinement image by a mapping r

Then, the the algorithm has to guess (or synthesize) a vertex
mapr and to check the dependencies. This, in general, can
be computationally difficult if the actions appearing in an
implementation vertex can appear in multiple processes.

Theorem 3 (Checking refinement: general case)Given
two SVIDsS and I, deciding whetherI � S holds is
NP-complete.

Proof: In the general case, membership in NP is ob-
vious since once the refinement mapr is guessed, check-
ing whether all dependencies are preserved can be done
polynomial-time. For NP-hardness, it is known that given
an MSC whose vertices are labeled with symbols in an al-
phabet�, and a stringw over�, the problem of determining
whetherw is a possible linearization of vertices of the MSC
is NP-complete [4]. This problem can be reduced to refine-
ment checking problem, whereI contains a single process.

�

If every specification variable is written by at most one
process and read by at most one process (i.e. the communi-
cation is point-to-point) then each action in the implemen-
tation can be mapped to vertices of a uniquely determined
process. Since vertices of a single process are totally or-
dered, there is no ambiguity in determining the refinement
map. Once the refinement map is determined, the require-
ment about dependencies can be checked by computing the
transitive closure of the imeplementation partial-order in
cubic time.

Theorem 4 (Checking refinement: exclusive case)Given
two SVIDsS andI such that each variable is read by a sin-

gle process and written by a single process, the refinement
relation I � S can be determined inO(n3), wheren is the
number of vertices inI.

In the standard notion of refinement for processes, im-
plementation is obtained from specification by adding more
details, and typically, by restricting the set of observable
behaviors. The notion of implementation for SVIDs allows
splitting processes and adding constraints, and thus, con-
straining the set of valid linearizations. However, it also al-
lows splitting of vertices, thus changing the notion of atom-
icity and “increasing” the possible interleavings. While this
may seem counter to the traditional notion of hierarchical
development of systems, it seems intuitive for developing
requirements in a systematic manner by refining the atom-
icity assumptions4.

4. Comparison with Other Formalisms

As we discussed in the introduction, the purpose of
shared variables interaction diagrams (SVIDs) is to describe
exemplary interactions (scenarios) of concurrent systems
that communicate via shared variables. Hence, they play
the same role for these systems as message sequence charts
(MSCs) or interaction diagrams (in UML) play for concur-
rent systems that communicate via message passing. While
scenarios involving shared variables appear in many con-

4One can reconcile these two notions of implementation by observing
that, under the refinement map the implementation has more constraints
and therefore less linearizations than the specification.

1

1 42 2 331 21

2

tstLtstL tstL

ini ini

f pp

tstLtstL tstL

ini iniini

p ff

tstRtstR

set(F)tstRtstR tstR

tstLtstL tstL

f[2]f[1]

ini iniini

p pp

f[3] := Ff[1] := F f[2] := F

get

val(T)

get

MM

tstLtstL tstL

f[3] f[1] f[2]

f[1] := T f[2] := T f[3] := T f[3]

val(T)

ini

tstR

tstLtstL tstL tstLtstL tstL

set(F)

val(F)

set(T)

get get

val(F)

set(T)

get

val(F)

set(T)

get
val(T)

set(F)set(F)

Figure 4. Deadlock for three dining philosophers

texts, there seems to be no effort to formally define a no-
tation for our intended purposes. One exception is [9], in
which the authors define a notation for describing scenarios
for hybrid systems in which synchronous communication
can be captured by global conditions over variables.

Since MSCs are already standardized by the ITU consor-
tium and very popular (e.g. in the specification of telecom-
munication protocols) one might wonder if MSCs could not
be used instead of SVIDs for shared variables systems, too.
Indeed, by associating with each global variable a sepa-
rate process (vertical line) and introducing three messages
set(x) , get and val(v) one can model reading and
writing these variables. However, this is an indirect way
of dealing with the read and write primitives and the more
shared variables the system contains, the more complex the
MSCs become.

To illustrate this point, let us consider the dining philoso-
phers example (see, for instance, [15]). There aren philoso-
phers seated around a table, usually thinking. Betweeneach
pair of philosophers is a single fork. From time to time, any
philosopher might become hungry and attempt to eat. In
order to eat, the philosopher needs exclusive use of the two
adjacent forks. After eating, the philosopher relinquishes
the two forks and resumes thinking.

In a wrong symmetric solution, each philosopher will
wait first for the right fork and after getting it will wait for
the left fork. However, if all philosophers pick the right fork
first, they will wait forever for the left fork. This situation
is illustrated for three philosophers in Figure 4 where the
left hand side is the scenario presented as an SVID and the
right hand side is the scenario presented as an MSC. The
MSC solution has more processes, more arrows and more
crossings. We believe, this makes it harder to read and un-
derstand. Trying to model message passing systems in an

indirect way with SVIDs would probably lead to more com-
plex solutions too.

From a visual point of view (as boxes connected by ar-
rows), SVIDs are also related to acyclic versions of Petri
nets and data flow diagrams (DFDs). Unlike these for-
malisms, an SVID denotes a single partially-ordered exe-
cution, and has an implicit notion of shared state.

5. Conclusions

We have presented a formal notation for visual descrip-
tion of scenarios in distributed systems when the commu-
nication is via shared variables. We have also presented a
natural and precise way of relating such scenarios via the
notion of refinement. SVIDs can be useful for writing de-
sign requirements. Many model checkers, such as SPIN [10]
and MOCHA [1], support shared-variables communication
and show the counter-examples in a graphical format like
SVIDs. Consequently, SVIDs can also be used to compare
requirements with executions of models.

SVIDs are also a promising specification and debugging
formalism for concurrent systems written in Java. This is
one of the few languages that allows process creation and
process control. In Java processes are instances of a spe-
cial class calledThread and run in an asynchronous way.
Threads interact by using the shared memory paradigm.

To obtain richer specifications using SVIDs, we will
need to considerhigh-levelSVIDs in the spirit of high-level
MSCs (a high-level MSC is basically a finite graph whose
nodes are labeled with basic MSCs). To be able give seman-
tics to such specifications, we need to define concatenation
of SVIDs that accounts for the shared state.

References

[1] R. Alur, L. de Alfaro, R. Grosu, T.A. Henzinger, M. Kang,
R. Majumdar, F. Mang, C.M. Kirsch, and B.Y. Wang. MOCHA:
A model checking tool that exploits design structure. InPro-
ceedings of 23rd International Conference on Software Engi-
neering, 2001.

[2] R. Alur, K. Etessami, and M. Yannakakis. Inference of mes-
sage sequence charts. InProceedings of 22nd International
Conference on Software Engineering, pages 304–313, 2000.

[3] R. Alur, G.J. Holzmann, and D. Peled. An analyzer for mes-
sage sequence charts.Software Concepts and Tools, 17(2):70–
77, 1996.

[4] R. Alur and M. Yannakakis. Model checking of message se-
quence charts. InCONCUR’99: ConcurrencyTheory, Tenth In-
ternational Conference, LNCS 1664, pages 114–129. Springer-
Verlag, 1999.

[5] H. Ben-Abdallah and S. Leue. MESA: Support for scenario-
based design of concurrent systems. InProceedings of the 4th
International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems, LNCS 1384, pages 118–135,
1998.

[6] G. Booch, I. Jacobson, and J. Rumbaugh.Unified Modeling
Language User Guide. Addison Wesley, 1997.

[7] H. Ben-Abdallah and S. Leue. Syntactic detection of process
divergence and non-local choice in message sequence charts.
In Proceedings of the Second International Workshop on Tools
and Algorithms for the Construction and Analysis of Systems,
1997.

[8] P. Gibbons and E. Korach. Testing shared memories.SIAM
Journal on Computing, 26(4):1208–1244, 1997.

[9] R. Grosu, I. Krueger, and T. Stauner. Hybrid sequence
charts. InISORC’2K, the 3rd IEEE International Symposium
on Object-oriented Real-time distributed Computing, pages
104–111, 2000.

[10] G.J. Holzmann. The model checker SPIN.IEEE Trans. on
Software Engineering, 23(5):279–295, 1997.

[11] G.J. Holzmann, D.A. Peled, and M.H. Redberg. Design tools
for for requirements engineering.Lucent Bell Labs Technical
Journal, 2(1):86–95, 1997.

[12] I. Krueger, R. Grosu, P. Scholz, M. Broy, From MSCs to
Statecharts. InDistributed and Parallel Embedded Systems,
Kluwer Academic Publishers, 1999.

[13] L. Lamport. How to make a multiprocessor computer that
correctly executes multiprocess programs.IEEE Transactions
on Computers, 28(9):690–691, 1979.

[14] D. Lea. Concurrent Programming in Java: Design Princi-
ples and Patterns. Addison Wesley, 2000.

[15] N. Lynch.Distributed algorithms. Morgan Kaufmann, 1996.

[16] A. Muscholl, D. Peled, and Z. Su. Deciding properties of
message sequence charts. InFoundations of Software Science
and Computation Structures, 1998.

[17] J. Reppy.Concurrent Programming in ML. Cambridge Uni-
versity Press, 1999.

[18] R. Ramakrishnan and J. Gehrke.Database management sys-
tems. McGraw-Hill, 1999.

[19] E. Rudolph, P. Graubmann, and J. Gabowski. Tutorial on
message sequence charts. InComputer Networks and ISDN
Systems – SDL and MSC, volume 28. 1996.

[20] R.J. van Glabbeek and U. Goltz. Refinement of Actions in
Causality Based Models. InComparitive Concurrency Seman-
tics and Refinement of Actions, pages 161–203, 1989.

