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1 Introduction

Finite state machines are widely used in the modeling of systems for various
purposes. Descriptions using FSMs are useful to represent the ow of control
(as opposed to data manipulation) and are amenable to formal analysis such as
model checking [21, 23, 30, 42, 22]. In the simplest setting, a state machine con-
sists of a labeled graph whose vertices correspond to system states and edges
correspond to system transitions. In practice, to describe complex systems using
state machines, several extensions are useful such as communicating state ma-
chines in which the system is described by a collection of state machines that
operate concurrently and synchronize with one another, and extended state ma-
chines in which the edges are annotated with guards and updates that refer to
a set of variables.

In hierarchical state machines, the states can be ordinary states or superstates
which are state machines themselves. The notion of hierarchical state machines
was popularized by the introduction of Statecharts [27], and exists in various
object-oriented software development methodologies such as Rsml [35], Room
[40] and the Uni�ed Modeling Language (Uml [13]). Hierarchical state machines
have two descriptive advantages over ordinary state machines. First, superstates
o�er a convenient structuring mechanism that allows us to specify systems by
stepwise re�nement, and to view it at di�erent levels of granularity. Second, by
allowing sharing of component machines, we need to specify components only
once and then can reuse them in di�erent contexts, leading to modularity and
succinct system representations.

Features of concurrency and extension using variables are well studied from
the perspective of formal analysis. Their impact on complexity of various decision
problems is well understood (see, for instance, [25]), and modeling languages
analyzed by typical model checkers such as SPIN [30] and SMV [38] support
communicating extended state machines. On the other hand, hierarchy has not
received much attention in the literature on formal analysis. This prompted
us to initiate a systematic study of the analysis problems for hierarchical state
machines. Analogous to the features of concurrency and extension with variables,
hierarchy a�ords exponential succinctness (for example, an n-bit binary counter
can be encoded using O(n) description using any one of these three features).



However, unlike the other two features, for some analysis problems, hierarchy
does not increase the complexity by an exponential factor. This paper surveys
these results.

This paper is organized as follows. In Section 2, we de�ne hierarchical state
machines, and show that, even though the state machine underlying a hierar-
chical state machine can be exponentially larger, important analysis problems
such as reachability and cycle detection can be solved in polynomial time. In
Section 3, we study hierarchical state machines from an automata-theoretic per-
spective. We consider features of nondeterminism, hierarchy, and concurrency, in
various combinations, and present results on relative succinctness, and the com-
plexity of decision problems such as language emptiness, universality, inclusion,
and equivalence. In Section 4, we address the problem of verifying hierarchical
structures with respect to requirements speci�ed in popular temporal logics such
as LTL and CTL. Section 5 discusses modeling and symbolic analysis issues in
presence of variables.

2 Hierarchical State Machines

2.1 De�nition

A hierarchical state machine K is a tuple hK1; : : :Kni of modules, where each
module Ki has the following components:

1. A �nite set Ni of nodes.
2. A �nite set Bi of boxes. The sets Ni and Bi are all pairwise disjoint.
3. A subset Ii of Ni, called entry nodes.
4. A subset Oi of Ni, called exit nodes.
5. An indexing function Yi : Bi 7! fi+ 1 : : : ng that maps each box of the i-th

module to an index greater than i. If Yi(b) = j, for a box b of module Ki,
then b can be viewed as a reference to the de�nition of the module Kj . If b
is a box of the module Ki with j = Yi(b), then pairs of the form (b; u) with
u 2 Ij are the calls of Ki and pairs of the form (b; v) with v 2 Oj are the
returns of Ki.

6. An edge relation Ei consisting of pairs (u; v) where the source u is either a
node or a return of Ki, and the sink v is either a node or a call of Ki.

The module K1 is called the top-level module of the HSM K. The edges connect
nodes and boxes with one another. Note that the entry and exit nodes of a
module serve as an interface for invoking the module: edges entering a box specify
the entry nodes of the module associated with that box, while edges exiting a
box specify the exit nodes among the possible returns. If every module has only
a single entry node, we call the HSM single entry, and denote the unique entry
node of each module Ki by ini. Similarly, in a single exit HSM, each module has
a single exit node, and the unique exit of the module Ki is denoted out i.

With each hierarchical state machine, we can associate an ordinary state
machine by recursively substituting each box by the module referenced by the



box. Since di�erent boxes can reference the same module, each node can appear
in di�erent contexts. In general, a state of the expanded state machine is a vector
whose last component is a node, and the remaining components are boxes that
specify the context. As a simple example of a hierarchical state machine, consider
a speci�cation of a digital clock. It contains three modules. The top-level module
consists of a cycle though 24 boxes, one per hour of the day. Each such box is
mapped to the second module consisting of a cycle containing 60 boxes counting
minutes. Each of the boxes of this second module refers to the third module
which is an ordinary state machine consisting of a cycle of 60 nodes counting
seconds. In the expanded form of the hierarchical state machine, the state will
have 3 components comprising of the box of the �rst module specifying the hour,
the box of the second module specifying the minute, and the node of the third
module specifying the second.

Formally, given a hierarchical state machine K = hK1; : : :Kni, for each mod-
ule Ki, we associate a state machine K

F
i , called the expansion of Ki, as follows:

1. The set Wi � ([j�iBj)
�([j�iNj) of states of K

F
i is de�ned by:

{ every node of Ki belongs to Wi.
{ if b is a box of Ki with Yi(b) = j, and v is a state of KF

j , then b � v
belongs to Wi.

2. The initial states of KF
i are Ii.

3. The set Ri of transitions of K
F
i is de�ned by:

{ for (u; v) 2 Ei, (u
0; v0) 2 Ri, where if the source u is a node then u0 = u

and if it is a return (b; w) then u0 = b �w, and if the sink v is a node then
v0 = v and if it is a call (b; w) then v0 = b � w.

{ if b is a box of Ki with Yi(b) = j, and (u; v) is a transition of KF
j , then

(b � u; b � v) belongs to Ri.

The expansion KF
1 of the top-level module is also denoted KF .

The size of the module Ki, denoted jKij, is the sum of jNij, jBij, and jEij.
The size of K is the sum of the sizes of Ki. The nesting depth of K, denoted
nd(K), is the length j of the longest chain i1; i2; : : : ij of indices such that a box
of Kil is mapped to il+1, for 1 � l < j. Observe that each state of the expansion
is a string of length at most the nesting depth, and the size of the expansion
KF can be exponential in the nesting depth, and is O(jKjnd(K)). This bound is
tight: for each n, we can construct a single-entry single-exit HSM of size O(n)
such that the expansion has 2n states.

In many analysis problems, we will describe the algorithms for single entry
HSMs. An HSM with multiple entry nodes can be translated to a single entry
HSM by replacing a module with k entry nodes with k single-entry modules.
Note that each box within a module also may need to be repeated k times,
along with the edges out of the corresponding returns, and consequently, the
blow-up in the total size due to the translation would be a factor of k2 in the
worst case.

We have required that the modules do not call each other in a recursive
manner, that is, the call dependency among modules is acyclic. Removing this
restriction leads to the de�nition of recursive state machines studied recently in



[1, 11]. Recursive state machines are analogous to the widely studied classical
model of pushdown systems. Consequently, hierarchical state machines can be
viewed as restricted forms of pushdown systems with stack size bounded a priori.
Our de�nition allows a more direct, visual, state-based model of hierarchical
control ow.

2.2 Reachability

The core computational problem in many veri�cation problems can be formu-
lated as a reachability question. In the current context, the input to the reacha-
bility problem consists of a hierarchical state machine K, and a subset T � [iNi

of nodes, called the target region. Given (K;T ), the reachability problem is to
determine whether or not some state whose last component is in the target re-
gion T is reachable from some entry node of the top-level module K1. The target
region is usually speci�ed implicitly, but we assume, that given a node u, the
test u 2 T can be performed in O(1) time.

Even though the expansion of a hierarchical state machine K can have expo-
nential number of states, the reachability problem can be solved in time polyno-
mial in the size of K. Let us assume that the HSM K is a single entry HSM. The
algorithm simply needs to make sure that every module is searched at most once
even if it appears in multiple contexts. We will briey review the algorithm of [7]
that is a modi�cation of the classical depth-�rst search algorithm. The algorithm
performs a depth-�rst search starting at the unique entry node of K1 using the
global data structure visited to store the nodes and boxes. While processing a
node u, the algorithm �rst checks if u 2 T holds, and if so, the algorithm termi-
nates. Otherwise, it examines the edges out of u, and continues to process nodes
and boxes that are not yet visited. While processing a box b with Y (b) = i, the
algorithm checks if the entry node ini of the i-th module was visited before. If
it was not visited before, it searches the structure Ki by initiating a depth-�rst
search starting at the unique entry node ini. At the end of this search, the set of
exit nodes of Ki that are reachable from in i will be stored in the data structure
visited . The search can, then, continue by exploring edges from the returns (b; v)
such that v is known to be reachable in Ki. If the algorithm subsequently visits
some other box c that is mapped to Ki, it does not search Ki again, but simply
uses the information stored in visited to continue the search from the appropri-
ate returns of the box c. This is an on-the-y algorithm that needs to compute
the edges out of a node or a return only on demand, and terminates as soon as
a target node is encountered.

When the modules have multiple entry nodes, we can use the translation into
single-entry HSMs that costs a factor of k2, where k is the maximum number
of entry nodes per module. In terms of complexity, for ordinary state machines,
deciding reachability between two states is in Nlogspace, while for hierarchical
state machines, the reachability problem becomes Ptime-hard even if we require
a single exit for every module [7]. The hardness proof is by reducing alternating
reachability (that is, deciding the existence of winning strategies in two-player
game graphs) to reachability in hierarchical state machines.



Proposition 1. The reachability problem (K;T ) for hierarchical state machines
is Ptime-complete, and can be solved in time O(jKj � k2), where each module of
K has at most k entry nodes.

Note that if a module has multiple entry nodes, it is searched multiple times:
for every entry node u, the algorithm needs to compute which nodes are reachable
from u. To process a box mapped to a module Kj , the relevant information is
which exits are reachable from which entries within Kj . If a module has multiple
entry nodes, but a single exit node, then it is possible to compute this information
by searching the module just once, starting the search at the unique exit node,
and traversing the edges in the reverse direction. This idea can be generalized:
the modules with fewer entries than exits are searched forwards starting at the
entry nodes, and the others are searched backwards starting at the exit nodes.
For each module Ki, let ki be the minimum of jIij and jOij. Then, reachability
problem can be solved in time O(jKj � k2), where k is the maximum of these ki
values [1].

2.3 Cycle Detection

The basic problem encountered during veri�cation of liveness requirements is
to check whether a speci�ed state can be reached repeatedly [42, 29]. As in
the reachability problem, the input to the cycle detection problem consists of a
hierarchical state machine K, and a target region T of nodes. Given (K;T ), the
cycle detection problem is to determine whether there exists a state u whose last
component is in the target region T such that (1) u is reachable from an entry
node of the top-level module, and (2) u is reachable from itself.

Let us assume that every module has a unique entry node. Let us call a
path/cycle to be a T -path/T -cycle if it contains a state whose last component
is in T . For each module Ki, we want compute the following information:

Q1 Is there a T -cycle reachable from the entry node ini within K
F
i ?

Q2 Partition the exit nodes Oi into three sets: the exits that are reachable from
in i along some T -path within K

F
i , the exits that are reachable from in i but

not along any T -path within KF
i , and exits that are not reachable from ini

within KF
i .

Basically, this information is all that is needed to process boxes that reference
Ki. For the module Kn that does not contain any boxes, Q1 and Q2 can be
computed easily using standard search algorithms. Now consider a module Ki

such that Q1 and Q2 have been solved for all modules Kj with j > i. Consider
a box b such that Yi(b) = j. Then, we can replace b by introducing a node be
corresponding to the invocation of Kj and a node bx for every exit x of Kj .
Edges entering b are connected to be, and edges from the returns (b; x) connect
from the respective nodes bx. If there is a T -cycle reachable from inj within K

F
j ,

then we add a self-loop on be, and add be to the target set T . For an exit x of Kj ,
if x is reachable from inj within K

F
j then we add an edge from be to bx, and in

addition, if x is reachable from inj along a T -path, we add bx to the target set.



After transforming each box in this manner, we can process Ki as an ordinary
state machine, and solve Q1 and Q2 for Ki. Each module is processed precisely
once, and this can be done in linear time.

The strategy described above is a bottom-up approach that may explore
modules unnecessarily. An on-the-y algorithm for cycle detection involving two
interleaved depth-�rst searches is presented in [7] by adapting the nested depth
�rst search of [24]. The complexity bound for cycle detection is the same as that
for reachability.

Proposition 2. The cycle detection problem (K;T ) for hierarchical state ma-
chines is Ptime-complete, and can be solved in time O(jKj � k2), where each
module of K has at most k entry nodes.

3 Hierarchical Automata

In this section, we consider hierarchical structures from an automata theoretic
perspective, as generators of regular languages.

3.1 Hierarchical Generators

A (nondeterministic) �nite automaton (NFA) consists of a �nite set Q of states,
a �nite alphabet �, a set I � Q of initial states, a set T � Q of �nal states,
and a set E � Q�� �Q of transitions. Given a word � = �0�1 � � ��n over the
alphabet �, an accepting run of M over � is a sequence q0

�0! q1
�1! � � �

�n! qn+1

such that q0 is an initial state in I , qn+1 belongs to the �nal states T , and for
0 � i � n, (qi; �i; qi+1) is a transition of M . The set of words � 2 �� over which
M has an accepting run is called the language of M , denoted L(M). The NFA
M is deterministic (DFA) if (1) there is only one initial state, and (2) for every
state q and every symbol �, there is at most one �-labeled transition with source
q.

A (nondeterministic) hierarchical automaton (NHA)M is a hierarchical state
machine K = hK1; : : :Kni whose edges are annotated with the symbols in �

(that is, the edge relation Ei of every moduleKi consists of triples (u; �; v) where
� 2 �, the source u is either a node or a return of Ki, and the sink v is either a
node or a call of Ki) together with a set T � [iNi of �nal nodes. The expansion
MF of an NHA is obtained by expanding the hierarchical state machine K, and
declaring each state with its last component in T to be a �nal state. Every edge
in the expansion uniquely corresponds to an edge in one of the edge relations
Ei, and inherits the symbol labeling that edge. The language of an NHA M is
the language of its expansion. The NHA M is said to be deterministic (DHA)
if the expansion MF is deterministic. Note that this is the same as requiring
that (1) the top-level module has a single entry node, (2) in every module Ki,
for every node or return u, for every symbol �, there is at most one sink v with
(u; �; v) 2 Ei, and (3) if a return (b; v) of a module Ki has a �-labeled outgoing
edge for a box b mapped to Kj , then the exit node v does not have any outgoing



�-labeled edges within Kj . The last condition ensures determinism concerning
returning from module calls.

Since the expansion of an NHA is a �nite automaton, NHAs can generate only
regular languages, but they can be much more succinct than ordinary automata.
To compare succinctness, we will look at families of languages fLnjn = 1; 2; : : : ; g
and consider the number of states needed by an automaton that accepts Ln in
the formalisms to be compared. By classical results on succinctness of nondeter-
ministic automata, NFAs are exponentially more succinct than DFAs (cf. [31]).

Consider the family of languages Ln given by fw#wR j w 2 f0; 1gng.
Consider the sequence M0;M1; : : :Mn of single-entry single-exit DHAs over the
alphabet f0; 1;#g. M0 is an ordinary automaton with L(M0) = f#g, and for
i > 0, Mi is a hierarchical automaton with two boxes, each mapped to Mi�1,
so that L(Mi) is the union of 0 � L(Mi�1) � 0 and 1 � L(Mi�1) � 1. Thus, there is
a DHA of size O(n) that recognizes Ln

1. On the other hand we can show that
any NFA to recognize Ln must use at least 2n states.

Proposition 3. Deterministic hierarchical automata are exponentially more suc-
cinct than nondeterministic �nite automata.

The gap between NHAs and NFAs is singly exponential since there is an ex-
ponential expansion. It is interesting to note that nondeterminism and hierarchy
are incomparable extensions. Consider the language Ln consisting of strings w
such that for some i, wi = wi+n. It is easy to see that there is an O(n) NFA to
accept Ln. A deterministic automaton, on the other hand, needs to remember
the �rst n symbols, and thus, has to have at least 2n states. Even deterministic
hierarchical automaton must have 2n states.

Proposition 4. Nondeterministic �nite automata are exponentially more suc-
cinct than deterministic hierarchical automata.

The next result establishes that, while nondeterminism introduces exponen-
tial succinctness for ordinary automata, it introduces doubly-exponential suc-
cinctness in presence of hierarchy. Observe that an NHA can be converted into
an equivalent DHA with a doubly-exponential blow-up via expansion followed
by determinization. Consider the language Ln consisting of strings w such that
for some i, wi = wi+2n . There is a O(n) NHA for Ln where the automaton
simply guesses the position i, remembers the symbol wi, counts 2

n symbols suc-
cinctly using hierarchy, and checks that the next symbol is in fact equal to wi.
On the other hand, we can show that any DHA for this language must have
states doubly exponential in n.

Proposition 5. Nondeterministic hierarchical automata are doubly exponen-
tially more succinct than deterministic hierarchical automata.

1 It is worth noting that the language f w#w j w 2 f0; 1gn g cannot be de�ned
succinctly by hierarchical automata. In fact, we can prove that every NHA accepting
this language must be of exponential size.



Finally, consider the succinctness due to intersection. Consider the language
Ln consisting of strings of the form w#wR#w such that w 2 f0; 1gn. This
is intersection of the languages of two DHAs of O(n) size. However, it can be
shown that any hierarchical acceptor (even if it is non-deterministic) requires
exponential-size.

Proposition 6. Products of deterministic hierarchical automata are exponen-
tially more succinct than nondeterministic hierarchical automata.

3.2 Decision Problems

The emptiness question for a hierarchical automaton M = (K;T ) is to check
whether the language L(M) is empty. This is same as the reachability question
for hierarchical state machines: whether the target set T is reachable from a top-
level entry node in the expansion, and is Ptime-complete as discussed earlier.

We now consider the problem of testing emptiness of the intersection of
the languages of two automata. For NFAs, the product of two automata has a
quadratic blow-up. However, to analyze product of two hierarchical automata,
there is no way around expansion, thus, requiring the exponential price. Recall
that for pushdown automata, emptiness of a single automaton can be solved in
polynomial-time, but emptiness of the intersection of two pushdown automata is
undecidable [31]. In the case of hierarchical automata, emptiness of a single au-
tomaton is Ptime, but emptiness of the intersection of two automata is Pspace-
complete. The upper bound follows from the fact that emptiness of the intersec-
tion can be tested by searching the product of the two expansions, and the lower
bound is by reduction from the halting problem for linear bounded automata [4].
Let us briey describe the main idea in the encoding. Let A be a linear-bounded
automaton. A con�guration of A can be described by a string w of length n. A
halting run of A can be described by a sequence w0; w1; : : : wk such that each wi
describes a con�guration of A, w0 is the initial con�guration, wk is the halting
con�guration, and each wi+1 is obtained from wi by a legal move of the machine.
Consider the language LA consisting of strings w0#wR1 #w2#wR3 # � � � #wk
corresponding to halting runs w0; w1; : : : wk of A. We can construct two hierar-
chical automataM1 andM2 such that L(M1)\L(M2) equals LA. The automaton
M1 ensures that for each i � 0, the con�guration 2i + 1 is a successor of the
con�guration 2i in the reversed order. Similarly, the automatonM2 ensures that
for each i � 0, the con�guration 2i+2 is a successor of the con�guration 2i+1 in
the reversed order. In addition, one of them has to ensure that w0 is the initial
con�guration and wk is the halting con�guration (this can be easily done by
even an ordinary automaton).

Proposition 7. The problem of testing emptiness of the intersection of lan-
guages of two hierarchical automata is Pspace-complete.

The universality problem for hierarchical automata is to decide whether the
complement of the language of an NHA is empty. The language equivalence



problem is to decide, given two NHAsM1 andM2, whether L(M1) equals L(M2).
Recall that for NFAs both universality and language equivalence problems are
Pspace-complete. These problems are Expspace-complete for NHAs.

The lower bound for the universality problem is established by a reduction
from the halting problem of Expspace Turing machines. We briey sketch the
basic idea. Let A be a deterministic exponential space Turing Machine. We
can construct an NHA that accepts strings in the complement of the strings
encoding legal halting computations of A on a given input string. The main
obstacle is to detect existence of a con�guration i, and a cell position j in the
i-th con�guration which does not follow from the previous con�guration. For
this, the hierarchical automaton non-deterministically guesses the pair (i; j),
\remembers" the contents of the cells (i� 1; j � 1), (i� 1; j), and (i� 1; j + 1)
from the (i � 1)-th con�guration, uses hierarchy to count succinctly to skip
as many symbols as the exponential length of a single con�guration, and then
checks that cell (i; j) does not follow from the transition rules of A.

For the upper bound, given M1 and M2, it suÆces to check the emptiness
of the product of M1 with the complement of M2, and the emptiness of the
product of M2 with the complement of M1. This can be done by expansion and
complementation. For instance, the product of MF

1 and the complement of MF
2

has doubly-exponentially many states, and can be searched in Expspace.

Proposition 8. The universality and language equivalence problems for nonde-
terministic hierarchical automata are Expspace-complete.

For ordinary automata, problems such as universality, inclusion, and equiv-
alence, are much easier if we consider deterministic automata. The results for
hierarchical automata show somewhat subtle distinctions between these prob-
lems. Observe that if M is a DHA, then complementing it, that is, constructing
a DHA accepting the complement of L(M), is easy. Consequently, checking uni-
versality has the same complexity as checking emptiness, namely, Ptime. Given
DHAsM1 andM2, testing language inclusion L(M1) � L(M2) reduces to check-
ing emptiness of the product ofM1 and the complement ofM2. This can be done
in Pspace. The problem is Pspace-hard as in case of testing the emptiness of
the product of two hierarchical automata.

Proposition 9. For deterministic hierarchical automata, the universality prob-
lem is Ptime-complete, and the language inclusion problem is Pspace-complete.

For DHAs, language equivalence can be solved in Pspace, but its complexity
is sandwiched somewhere between that of the Ptime universality problem and
the Pspace language inclusion problem. It remains open to determine its exact
complexity.

3.3 Communicating Hierarchical Automata

Now we proceed to consider models with hierarchy as well as concurrency. For
concurrency, an automaton is composed of a set of component automata which



synchronize on transitions labeled with common alphabet symbols. For hierar-
chy, the states of an automaton can be other automata. The following formal
de�nition allows arbitrary nesting of the concurrency and hierarchy constructs.

A communicating hierarchical automaton (CHA) is a tuple hK1; : : :Kni such
that each module Ki is one of the following two forms:

1. It is a tuple of indices (j1; j2; : : : jl) with i < jp � n. Such a module is called
a product module, and represents the product of the CHAs Kjp .

2. It is a hierarchical module (Ni; Bi; Ii; Oi; Yi; Ei) with nodes Ni, boxes Bi,
an indexing function Yi mapping the boxes to modules indexed higher than
i, entry nodes Ii, exit nodes Oi, and �-labeled edges Ei connecting nodes,
calls, and returns.

Note that the moduleKn must be an ordinary NFA. The hierarchical modules are
as before, except that the boxes can be mapped to modules that are de�ned using
both product and hierarchy constructs. The expansion KF

i of each module of a
CHA is de�ned in the natural way. For a product moduleKi, the expansionK

F
i is

simply the product of the expansions KF
jp

of its components. For a hierarchical
module Ki, the states and the transitions of the expansion are de�ned as in
case of HSMs in Section 2.1. The language of a CHA M is the language of its
expansion as usual.

A CHA can be represented by a directed acyclic graph. A terminal vertex
corresponds to the base case, and has an associated NFA. An internal vertex
may correspond to a product module or a hierarchical module. The children of a
vertex for a product module are the components of the product. We can assume
that the immediate children of a product module are not themselves product
modules. A vertex for a hierarchical module has the top-level module associated
with it, and the children are the modules referenced by its boxes. Two important
parameters of this DAG representation are its width and depth: width of a CHA
M is the maximum number of components in the product module, and depth is
the length of the longest path in the DAG.

In CHAs, the concurrency and hierarchy operators are arbitrarily nested,
and the product components can synchronize with each other at di�erent levels
of hierarchy. These features contribute signi�cantly to the complexity of the
reachability problem. First, we establish that for a CHA M , the number of
states of MF is O(kd

m

), where each module has at most k nodes/boxes, M
has width d > 1 and depth m. The proof is by induction on the depth m. If
M is an ordinary automaton, MF equals M , and has size O(k). Now, consider
a CHA M with depth m > 0. The root is either a hierarchical module or a
product module. If it is a hierarchical module, then its top-level state machine
has at most k boxes, each of which is mapped to a CHA of depth m� 1 or less.
Consequently, for each box b, by induction, the module it is mapped to has size
O(kd

m�1

), and hence,MF is of size k �O(kd
m�1

). If the root is a product module,
then it has at most d components, each of which has depth m � 1 or less, and
by induction, has size O(kd

m�1

) for the expansion. Since MF is the product of

the expansions of the components, its size is O(kd
m�1

)d, which is O(kd
m

).



This implies that reachability problem for a CHM can be solved in time
O(kd

m

), that is, doubly-exponential in the depth in the worst case. Since the
expansion MF need not be constructed explicitly, and can be searched in space
that is required to represent a single state, the upper bound on reachability is
Expspace.

For the lower bound, consider the sequence of CHAsN0; N1; : : :Nn as follows.
The automaton N0 accepts strings of the form ��2n���. The automaton N0

remembers the �rst symbol, then skips over the next 2n symbols, and checks
if the following symbol is same as the remembered one. Having de�ned the
automaton Ni, the automaton Ni+1 is a product of two automata. The �rst one
is Ni. The second one skips over the �rst 2i symbols, and then starts a copy of
Ni. The second component can be de�ned as a hierarchical two-state automaton,
whose �rst box is mapped to an automaton that counts 2i, and the second box
is mapped to Ni. Observe that the size of description of Nn is only O(n). A
string of the form ww0, where w and w0 are strings of length 2n, is accepted
by Nn precisely when w = w0. Intuitively, Nn has exponentially many copies
in parallel each checking a di�erent position of w. This shows that CHA can
ensure \copying" of exponential-sized strings. This can be used to construct a
CHA that accepts only legal encodings of computations of Expspace Turing
machines, and lower bound follows.

Proposition 10. Reachability problem for communicating hierarchical automata
is Expspace-complete, and can be solved in time O(kd

m

) for a CHA of depth m,
width d > 1, and with each hierarchical module having at most k nodes/boxes.

Since reachability problem for CHAs is Expspace-hard, [4] identi�es a sub-
class of well-structured automata with Pspace-complete reachability problem
(note that reachability problem for communicating automata is Pspace-hard
even in absence of hierarchy). The restriction ensures that if two (or more) hi-
erarchical automata are composed together by the product module, then they
can synchronize only at the top level. This is enforced by syntactic restrictions
on which alphabet symbols are allowed to appear as labels on edges.

Recall that for NFAs, problems such as universality and language inclusion
are exponentially harder than reachability. The same holds for CHAs. Show-
ing 2Expspace-hardness requires some tricky encoding. Consider a 2Expspace
Turing machine A. A con�guration of A can be represented by a string w of
length 22

n

over an appropriate alphabet � (assume � does not contain the
symbols 0 or 1). We introduce an additional binary counter of exponential size
to encode the con�gurations of double-exponential length. For an integer j, let
bin(j) be the binary string over f0; 1g encoding j. Then, for each con�guration
w = w0 : : : w22n�1, de�ne

enc(w) = bin(0)w0% bin(1)w1% : : : % bin(22
n

� 1)w22n�1%

A halting run of A can be described by a sequence w0; w1; : : : wk of con�gurations
wi of the usual form. Consider the language LA

f enc(w0)# enc(w1)# � � � # enc(wk) j w0; w1; : : : wk is a halting run of A g:



We construct a CHA M that accepts the complement of LA, which would imply
the lower bound for checking universality. The automatonM needs to check that
the string does not encode a halting run. Errors concerning initial and halting
con�gurations can be detected easily. The automaton M needs to detect errors
in encoding using the binary counter. In LA, each cell � is encoded by a block
of length 2n+2 of the form f0; 1g2

n

�%. Counting with exponential succinctness
allows to detect a violation of this. Furthermore, an error occurs if the binary
counter following # is not 0� or preceding # is not 1�. For each cell, the counter
of the successive cells must be incremented. A violation of this can be detected
by an NHA of size O(n) due to the properties of a binary counter.

The tricky part is to detect an error if adjacent con�gurations are not related
by a legal move of A. For illustration of the basic idea, let us consider it to be an
error if there exists a cell position j such that some two adjacent con�gurations
di�er in the contents of the j-th cell. even though we do not know how to count
with double-exponential succinctness, we can use the fact that in our encoding,
matching cells of the two con�gurations must have identical counters. We will
construct a machine to accept the language

L0 = f b �% [f0; 1g2
n

�%]�#[f0; 1g2
n

�%]� b �0% j � 6= �0 and b 2 f0; 1g2
n

g:

Note that (� [ f0; 1;%;#g)� � L0 � (� [ f0; 1;%;#g)� is the language of all the
strings containing the desired error. Accepting L0 requires checking that the
counters in the �rst and the last blocks are identical. Since b is of exponential
length, we will use an O(n) CHA that spawns 2n parallel modules, each checking
one bit of b. This is done along the same lines as the proof of Expspace-hardness
of reachability of CHAs. In particular, let N1 be the automaton that remembers
the �rst bit, skips over a string whose length is a multiple of 2n+2 (block length)
and which contains precisely one # symbol. Then, N1 checks that the follow-
ing symbol matches the remembered bit, and halts after reading the following
% symbol. Notice that if N1 is started at the p-th bit of the counter b, it will
ensure matching of the p-th bit of the counter in the last block before it halts.
The machine Ni+1 equals Nikf0; 1g

2i �Ni. The claim is that the automaton Nn,
in conjunction with a machine that enforces the � 6= �0 requirement, accepts
the language L0. The key to the construction is that even though the exponen-
tially many parallel copies of N1 guess independently the number of blocks to
skip over, they halt on the same % symbol following the guess, which enforces
synchronization.

Proposition 11. For communicating hierarchical automata, the universality,
language inclusion, and language equivalence problems are 2Expspace-complete.

The results concerning hierarchical automata are summarized in Figure 1.
The ability of CHAs to copy exponential-sized strings also yields signi�cant

succinctness. Consider the languages Ln consisting of w0#w1# � � �#wk such
that each wi is of size 2

n, and wi = wj for some i; j. A nondeterministic CHA
of size O(n) to accept Ln can be constructed. An NFA can guess the position i,
but needs to remember the exponentially long string wi, and hence, is at least



Emptiness Intersection Universality Inclusion Equivalence

NFA Nlogspace Nlogspace Pspace Pspace Pspace

DFA Nlogspace Nlogspace Nlogspace Nlogspace Nlogspace

NHA Ptime Pspace Expspace Expspace Expspace

DHA Ptime Pspace P Pspace 2 Pspace

CHA Expspace Expspace 2Expspace 2Expspace 2Expspace

Fig. 1. Summary of complexity results for decision problems
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of double-exponential size. A DFA needs to remember all the words wi read so
far, and is at least of triple-exponential size.

Proposition 12. Communicating hierarchical automata are doubly exponen-
tially more succinct than NHAs (and NFAs), and triply-exponentially more suc-
cinct than DHAs (and DFAs).

The various succinctness claims are summarized in Figure 2.

4 Temporal Logic Model Checking

In this section, we consider the problem of verifying that a model given as a
hierarchical state machine satis�es a temporal requirement expressed using au-
tomata over in�nite words or using temporal logics. Kripke structures are state-
transition graphs whose states are labeled with atomic propositions, and are used
as models for temporal logics. Analogously, to interpret temporal logic formulas
over hierarchical state machines, we label the nodes with atomic propositions.
A hierarchical Kripke structure K over a set P of atomic propositions is a hi-
erarchical state machine hK1; : : :Kni where each module Ki has an additional
component: a labeling function Xi : Ni 7! 2P that labels each node with a subset
of P . The expansions KF

i are de�ned as before. Recall that the last component
of every state in the expansion is a node, and the propositional labeling of the
last component determines the propositional labeling of the entire state. This



implies that the state assertions cannot refer to the context, and this choice is
important for the algorithms and the complexity bounds. A more permissive
de�nition that allows the speci�cations to refer to the context is considered in
[34].

4.1 Automata Emptiness

Given a Kripke structureM whose states are labeled with atomic propositions P ,
we can associate an !-language L(M) of in�nite words over the alphabet 2P as
follows. An execution ofM is an in�nite path in the state-transition graph ofM
starting at an initial state. A trace corresponding to an execution is obtained by
replacing each state in the execution by the corresponding label. The !-language
L(M) is the set of all traces ofM . The !-language L(K) of a hierarchical Kripke
structure K is the !-language of its expansion L(KF ).

A B�uchi automaton A over P consists of a Kripke structure M over P and
a set T of accepting states. An execution w0w1 : : : of M is called accepting if
wi 2 T for in�nitely many indices i. The !-language L(A) is the set of all traces
corresponding to the accepting executions.

The input to the automata emptiness problem consists of a hierarchical struc-
ture K over P and a B�uchi automaton A over P . Given (K;A), the automata
emptiness problem is to determine whether the intersection L(A) \ L(KF ) is
empty. This is the automata-theoretic approach to veri�cation: if the automaton
A accepts undesirable or bad behaviors, checking emptiness of L(A) \ L(KF )
corresponds to ensuring that the model has no bad behaviors (see [42], [33], [41],
and [29] for more details on !-automata and their role in formal veri�cation).

We solve the automata emptiness problem (K;A) by reduction to a cycle
detection problem for the hierarchical structure obtained by constructing the
product of K with A. The basic property of the product construction is that
some trace of KF is accepted by A i� there is a reachable cycle in K 
 A

containing a node of the form (u;w) for an accepting state w of A. The product
has size O(jKj � jAj), and the number of entry nodes per module gets multiplied
by the number of states of A. This leads to the following bound:

Proposition 13. The automata emptiness question (K;A) can be solved by re-
duction to the cycle detection problem in time O(a2 � k2 � jAj � jKj), where a is
the number of states in A, and each module of K has at most k entry nodes.

4.2 Linear Temporal Logic

Requirements of trace-sets can be speci�ed using the temporal logic LTL [39, 37].
A formula ' of LTL over propositions P is interpreted over an in�nite sequence
over 2P . A hierarchical Kripke structure K satis�es a formula ' i� every trace in
L(K) satis�es the formula '. The LTL model-checking problem is to determine
whether or not the input hierarchical structureK satis�es the input LTL formula
'.



To solve the model-checking problem, we construct a B�uchi automaton A:'

such that the language L(A:') consists of precisely those traces that do not
satisfy '. This can be done using one of the known translations from LTL to
B�uchi automata [36, 42]. The number of states of A:' is O(2j'j). Then, the
hierarchical structure K satis�es ' i� L(K)\L(A:') is empty. Thus, the model-
checking problem reduces to the automata-emptiness problem. The complexity
of solving the automata-emptiness problem, together with the cost of translating
an LTL formula to a B�uchi automaton, yields O(k2 �jKj�8j'j) bound on the model
checking.

An alternative approach to solve the LTL model-checking problem (K;') is
to search for an accepting cycle in the product of the expansion KF with the
automaton A:'. This product has jKj

nd(K) � 2j'j states, and each state of this
product can be represented in space O(jKj � j'j). Transitions of the product can
be computed eÆciently using standard techniques, and consequently the search
can be performed in space O(jKj � j'j). This gives a Pspace upper bound on the
LTL model-checking problem. It is known that the LTL model-checking problem
for ordinary Kripke structures is Pspace-hard. These results are summarized in
the following:

Proposition 14. The LTL model-checking problem (K;') can be solved in time
O(k2 � jKj � 8j'j), where each module of K has at most k entry nodes, and is
Pspace-complete.

4.3 Computation Tree Logic

Now we turn our attention to verifying requirements speci�ed in the branching-
time temporal logic CTL [21]. Branching-time logics provide quanti�cation over
computations of the system allowing speci�cation of requirements such as \along
some computation, eventually p" and \along all computations, eventually p." We
refer the reader to [21] to syntax and semantics of CTL. The CTL model-checking
problem is to decide, given a hierarchical Kripke structure K and a CTL formula
', whether all the top-level entry nodes satisfy '.

The classical CTL model checking algorithm for Kripke structures processes
all the subformulas of the input formula ' in an increasing order of complexity,
and for each state u, determines whether or not the subformula holds at u. The
model checking for hierarchical Kripke structures works on a similar principle.
The algorithm considers subformulas of ' starting with the innermost subfor-
mulas, and extends the label X(u), at each node u, with the subformulas that
are satis�ed at u. At the beginning, for each node u, the labeling set X(u) is
initialized to contain the atomic propositions that are true at the node u. The
subformulas whose top-level connective is a logical operator are processed in the
natural way. For the subformulas whose top-level connective is a temporal op-
erator, whether a node satis�es such a subformula can depend on the context.
Consequently, the algorithm repeatedly transforms the hierarchical structure K,
and is designed to maintain the following property: after the algorithm processes



a subformula  , if a node u is labeled with  then in the expansion of the struc-
ture KF , every state with the last component u satis�es  , and if a node u is
not labeled with  then in KF , no state with the last component u satis�es  .

Let us consider a formula  = 9�. The truth of � at every node is already
known. Consider a node u of a module Ki. Multiple boxes of other modules
may be mapped to Ki, and hence, u may appear in multiple contexts in the
expansion. If u is not an exit node, then the successors of u do not depend on
the context. Hence, the truth of  is identical in all states corresponding to u,
and can be determined from the successors of u within Ki (if u has an edge into
a box that is mapped to Kj , then the truth of � at the corresponding entry
node of Kj must be examined). If u is an exit node of Ki, then the truth of  
may depend on the context. Let us assume that u is the only exit node of Ki.
In this case, we need to create two copies of Ki: K

0
i and K1

i . The superscript
indicates whether or not the exit-node of Ki has some successor that satis�es
� and is outside Ki. The exit node of K

1
i is labeled with  . The exit node of

K0
i is labeled with  only if it has a successor within Ki that satis�es �. The

mapping of boxes, originally mapped toKi, must be consistent with the intended
meaning: a box which has a successor satisfying � is mapped to K1

i and to K0
i

otherwise. If Ki has 2 exit-nodes u and v, then for di�erent boxes mapped to
Ki, whether the exit node u satis�es  can vary, and similarly, whether the exit
node v satis�es  can vary. Consequently, we need to split Ki into four copies,
depending whether both, only u, only v, or none, have a  -successor outside Ki.
In general, if there are d exit-nodes, processing of a single temporal subformula
can generate 2d copies of each structure in the worst case.

Now let us consider an until-formula  =  1 9U 2. Whether a node u of a
structure Ki satis�es  may depend on what happens after exiting Ki, and thus,
di�erent occurrences may assign di�erent truth values to  1 9U 2, requiring
splitting of each structure into two. Again, let us assume single-entry single-
exit modules. The computation proceeds in two phases. In the �rst phase, we
partition the index-set f1; : : : ng into three sets, yes, no, and maybe, with the
following interpretation. An index i belongs to yes when the unique entry node
in i satis�es the until-formula  within the expansion KF

i . Then, in K
F , every

occurrence of the entry node in i satis�es  . Now consider an index i that does
not belong to yes. It belongs to maybe if within KF

i there is a path from ini to
the unique exit node out i that contains only states labeled with  1. In this case,
it is possible that for some occurrences of KF

i in KF , the entry node satis�es  
depending on whether or not the corresponding exit-node satis�es  . In the last
case, the index i belongs to no, and in every occurrence of KF

i , the entry node
does not satisfy the formula  . This happens when upon entering KF

i , a path is
guaranteed to encounter a node violating : 1 before visiting a node satisfying
 2 or the exit node of Ki.

To express the computation of the �rst phase succinctly, let us interpret
CTL formulas over the module Ki by considering it to be an ordinary Kripke
structure over vertices Ni [ Bi. In this interpretation, a box is considered like
an ordinary vertex, which is labeled with yes, no, or maybe, according to the



characterization of the index that it is mapped to. Observe that a box labeled
with yes is like a node labeled with  2, and a box labeled with maybe is like
a node labeled with  1. Now, for i going down from n to 1, if in i satis�es
( 1 _ maybe) 9U( 2 _ yes), then i is added to yes, otherwise, if in i satis�es
( 1_maybe) 9U(out i^ 1), then i is added to maybe, else i is added to no. The
computation for each index i can be performed by a simple depth-�rst search
over the nodes and boxes of Ki starting at the node ini in time jKij.

In the second phase, the new hierarchical structureK 0 along with the labeling
of  is constructed. To obtain K 0, each structure Ki is split into two: K0

i and
K1
i . A box b that is previously mapped to Ki will be mapped to K1

i if there is
a path starting at b that satis�es  , and otherwise to K0

i . Consequently, nodes
within K1

i can satisfy  along a path that exits Ki, while nodes within K
0
i can

satisfy  only if they satisfy it withinKi. Consider a box b ofKi that is originally
mapped to Kj . If b has a successor satisfying ( 1 _ maybe) 9U( 2 _ yes), then
in K0

i , b is mapped to K
1
j , else it is mapped to K

0
j . Similarly, if b has a successor

satisfying ( 1 _ maybe) 9U( 2 _ yes _ (out i ^  1)) then in K1
i , b is mapped to

K1
j , else it is mapped to K0

j . A node u of Ki inherits the labels in both copies.

If u satis�es ( 1 _maybe) 9U( 2 _yes) then  is added to its labels in K0
i , and

if it satis�es ( 1 _ maybe) 9U( 2 _ yes _ (out i ^  1)), then  is added to its
labels in K1

i .
The construction of K 0 is immediate if we have computed, for each Ki, the

set of nodes and boxes satisfying ( 1 _ maybe) 9U( 2 _ yes) and satisfying
( 1_maybe) 9U( 2_yes_(out i^ 1)) are computed. Since the nodes of Ki are
already labeled with  1 and  2, and the boxes are labeled with yes, maybe, or
no, these two sets can be computed in time O(jKj), as in the standard labeling
algorithm of CTL [21].

The processing of formulas of the form 9�� requires similar splitting and
two-phase algorithm. This leads to the following complexity:

Proposition 15. The CTL model-checking problem (K;') can be solved in time
O(k2 � jKj � 2j'jd), where each module of K has at most d exit nodes and k entry
nodes.

The labeling algorithm described above is not optimal in terms of space re-
quirements. It is known that deciding whether an ordinary Kripke structure M
satis�es a CTL formula ' can be solved in space O(j'j � log jM j) [32]. For a
hierarchical structure K, the size of the expansion KF is O(jKjnd(K)). The ex-
pansion need not be constructed explicitly. Each state of the expansion can be
represented in space O(nd (K) � jKj). The number of successors of a state of KF

is only polynomial in the size of K: the number of successors of an expanded
state whose last component is the node u of the module Ki equals the number
of successors of u if u is not an exit node, and is bounded by the product of the
number of edges in K and the number of boxes mapped to the index i, if u is
an exit-node. The successors of any state of the expansion can be computed in
space polynomial in the size of K. It follows that the space-eÆcient algorithm
of [32] requires space polynomial in the size of K, and consequently, CTL model



Ordinary Structure M Hierarchical Structure K

Reachability O(jM j) O(jKj)

Automata-emptiness O(jM j � jAj) O(k2 � a2 � jKj � jAj)

LTL model checking O(jM j � 2j'j) O(k2 � jKj � 8j'j)

CTL model checking O(jM j � j'j) O(k2 � jKj � 2j'jd)
Table 1. Summary of model checking results.

checking for hierarchical structures is in Pspace. Hardness holds even when
all modules have only one exit node, and this is established by reduction from
the satis�ability of quanti�ed Boolean formulas [7]. Hardness can also be estab-
lished for �xed CTL formulas if modules have multiple exit nodes, and thus, the
parametric complexity in the size of the structure is also Pspace.

Proposition 16. Model checking of CTL formulas for single exit hierarchi-
cal structures is Pspace-complete, and the structure-complexity of CTL model
checking for hierarchical structures is Pspace-complete.

The model checking results are summarized in Table 1. For hierarchical struc-
tures, model checking of branching-time formulas seems more expensive than
model checking of linear-time formulas. This di�erence is intuitively due to the
di�erent complexities of the local and global model-checking problems. In local
model checking, we want to check whether some (or all) paths starting at a
speci�ed state (e.g., an initial state) satisfy a linear-time property, while in the
global model checking, we want to compute all (reachable) states such that some
(or all) paths starting at that state satisfy a linear-time property. For ordinary
state machines, both local and global variants can be solved in time linear in the
size of the structure (even though the local, or on-the-y, algorithms for check-
ing linear-time properties are preferred in practice). For hierarchical structures,
the local variant can be solved eÆciently by our algorithm that avoids repeated
analysis of a shared substructure. The global variant is more expensive, as it
requires splitting of a substructure because the satisfaction of formulas can vary
from context to context. CTL model checking requires solving the global problem
repeatedly, due to the nesting of path quanti�ers in the formula.

5 Extended Hierarchical State Machines

State-machine based speci�cation languages are typically extended by introduc-
ing variables ranging over �nite domains to allow description of complex systems
concisely. This has motivated us to de�ne the language of hierarchic reactive
modules that allows hierarchical descriptions with variables [2, 3]. In this sec-
tion, we briey review the relevant features of the language and techniques for
BDD-based symbolic reachability analysis.

Before we describe the modeling language, let us examine the cost of adding
variables. Suppose we have an extended hierarchical state machine K with
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m global boolean variables, and the edges have guards and assignments that
read/write these variables. The expansion would su�er a blow-up due to the
nesting as well as due to recording of the values of the variables. The number of
states of the expansion will be O(jKjnd(K) � 2m), and reachability can be solved
in Pspace 2. Note that for communicating extended state machines, reachability
problem is in Pspace, as the state can be completely described by the control
locations of all the components and the values of all the Boolean variables, and
transitions can be computed in polynomial space. When all the three features are
present, that is, if we consider extended communicating hierarchical automata,
again by augmenting each node with the values of the variables, and applying
the expansion for CHA, we get an ordinary state machine of doubly exponen-
tial size, which can be searched in Expspace. These results are summarized in
Figure 3.

5.1 Modeling Language

The central component of the description language of hierarchical reactive mod-
ules is a mode. A mode is an HSM with a few extensions. In addition to entry,
exit, and internal nodes, boxes (which are called submodes), and transitions con-
necting them, a mode also allows declaration of typed variables. Variables are
partitioned into local and global. The scoping rules are as in standard structured
programming languages: whenever a box inside a mode M refers to another
mode N , a global variable of N must either be a global or local variable of M .
The local variables of N are not accessible toM , while the global variables of N
can be used to share information between the two at the time of invocation of N
as well as upon its return. Each edge of a modeM , besides specifying the source

2 To make this claim precise, we need to specify the syntax for writing guards and
assignments, but the bound should hold for typical choices such as propositional
formulas. Also, these bounds assume that all variables are global.



and the sink, has an associated guard which is a Boolean predicate over the vari-
ables of M , and an assignment to some of the variables of M . Global variables
can further classi�ed into read and write variables, and this limits the allowed
access on transitions. The precise choice of allowed types of the variables and
the syntax for writing guards and assignments is guided by the tradeo� between
desired expressiveness and eÆcient representation and analysis using symbolic
techniques.

Another feature that is useful in a modeling language based on hierarchical
state machines is the use of group transitions. For this purpose, each mode has
a special, default exit node dx. A transition starting at dx is called a group
transition of the corresponding mode. It may be taken whenever the control is
inside the mode. That is, a group transition of a mode is enabled at all the nodes
and boxes inside a mode. Allowing such transitions has two bene�ts. First, it
allows succinct textual or visual description. For example, if every node has a
transition to a node u, then we can replace all these edges by a single edge
from the default exit node dx to u. Second, since dx is an exit node, edges can
connect the corresponding return in the higher level modes, and this can be used
to model preemption. For example, suppose a box b of a mode M is mapped to
the mode N . Then an edge of M connecting the return (b; dx) to a node (or a
call) of M can allow the transfer of control from inside N to a node of M . This
models interrupting the execution within N when the guard labeling this group
transition becomes enabled. Furthermore, such a transition can test variables of
M that are not visible to N . To de�ne the group transitions precisely, we need
to formalize their priority with respect to the internal transitions. Consider a
node u within a mode M , an edge e with source u and an edge e0 starting at
the default exit dx or the corresponding return from a box mapped to M . In
our modeling language, the edge e has a priority over e0 (that is, the guard of
e0 has an implicit conjunct corresponding to the negation of the guard of e).
This corresponds to weak preemption. However, other choices are possible: the
group transition e0 can have a higher priority than the local transition e, or
both can have the same priorities (meaning if both are enabled, the choice is
nondeterministic).

In the language of hierarchical reactive modules, concurrency is allowed only
at the highest level: a system is a collection of top-level (hierarchical) modes
that communicate via global shared variables. Statecharts, on the other hand,
are similar to communicating hierarchical automata, with a richer event-based
synchronization mechanism and nested hierarchy and concurrency constructs.

As the modeling language becomes rich with features such as hierarchy, con-
currency, variables, group transitions, the operational semantics needs to be
de�ned carefully. This is, again, done by de�ning the expansion that captures
the underlying state machine. In this case, the node and the sequence of boxes
giving the context, is called the control state, and this needs to be augmented
with the data state that gives the values of all the variables of the active modes.
Another important issue concerns compositional observational semantics. This
means that two modes with identical interfaces in terms of entry and exit nodes



and global variables, and identical observable behaviors should be interchange-
able in any context. To formalize this, the notion of observable behavior must
be made precise. For the hierarchical reactive modules language, this is de�ned
using traces as follows. The execution of a mode can be best understood as a
game, that is, as an alternation of moves, between the mode and its environment.
In a mode move, the mode gets the state from the environment along its entry
nodes. It then keeps executing until it gives the state back to the environment
along one of its exit nodes. In an environment move, the environment gets the
state along one of the mode's exit nodes. Then it may update any variable except
the mode's local ones. Finally, it gives the state back to the mode along one of
its entry modes. An execution of a mode M is a sequence of transitions of the
mode. Given such an execution, the corresponding trace is obtained by project-
ing the states in the execution to the set of global variables. The observational
semantics of a modeM consists of its entry and exit nodes, global variables, and
the set of its traces. The key compositionality result is that the observational
semantics of a mode can be constructed from its top-level state machine and the
observational semantics of the modes it invokes. This also forms the basis for
de�ning modular reasoning principles which allow deduction of properties of a
mode from the properties of the modes it invokes [2].

5.2 Symbolic Search

Models described using boolean (or enumerated and other �nite types) can be
searched using symbolic model checking techniques that employ representations
based on ordered binary decision diagrams (BDDs) [16, 17, 38]. Instead of obtain-
ing a symbolic representation of the expanded mode, and then applying these
classical techniques, our reachability analyzer attempts to exploit the hierarchi-
cal structure for representation as well as for search.

To begin with, the pool of variables is not global. For instance, the state
can consist of variables x and y in one mode, and x and z in another. Instead of
obtaining a symbolic representation of the transition relation of the expansion of
a mode, we maintain the hierarchical control structure, and simply compile the
guards and assignments annotating edges into a BDD-based symbolic form. This
is basically a more general form of partitioned representation of the transition
relation than the usually employed conjunctive partitioning [15]. Consequently,
even if a mode appears in multiple contexts, its representation appears only once.
This representation can also exploit the scoping rules. For example, if a mode
does not have write access to a variable x, then the symbolic representation of
the transitions within the mode do not have to include the constraint that x
stays unchanged.

In symbolic �xpoint computation, the set of reachable states of a model is
computed iteratively starting from the set of initial states by repeatedly apply-
ing the image computation. Instead of a single global BDD, we maintain the
reachable states as a forest of BDDs indexed by the nodes. This allows us to
partition the state space in regions, each containing all states with the same
control state. During the image computation, the scoping rules are exploited to



employ early quanti�cation. For example, to process an edge from a node u to
a node v, we need to conjunct the set of reachable states at node u with the
transition relation associated with this edge. If v is an exit node, then we know
that the local variables are no longer relevant, and can be existentially quanti-
�ed. It is also worth noting that the search has a mixture of enumerative and
symbolic techniques: it is enumerative over the nodes (that is, the control state),
and symbolic over variables (that is, the data state).

Finally, if a mode M is instantiated many times or contains many local
variables, we can do some preprocessing to improve the performance of reach-
ability computation as follows. Note that an execution of M starts at an entry
node, follows a sequence of transitions (which may involve invoking submodes),
and �nishes at an exit node. For the calling mode, this can be viewed as a
macro-transition that connects entry nodes to exit nodes based on the values of
the global variables, possibly updating them. We have experimented with com-
puting the BDDs for such macro-transitions. Computation of macro-transitions
requires computing the transitive closure of the transitions within M . This can
be expensive, but once these are computed, the boxes referencingM can simply
be replaced by its macro transitions, and the local variables of M are no longer
needed.

These optimizations and their impact on the computational requirements of
the symbolic search are described in [3, 6]. The speed-up due to the technique
of computing the macro-transitions is also described in the context of analysis
of Boolean recursive programs [8]. Heuristics for choosing variable ordering and
for exploiting locality of variables to compile hierarchical speci�cations into the
modeling language of SMV are discussed in [20]. A backwards reachability algo-
rithm that exploits the hierarchical structure for early termination is discussed
in [10].

6 Conclusions

We have discussed results on model checking and succinctness of hierarchical
state machines. These results indicate when hierarchical descriptions can be
analyzed eÆciently without constructing the underlying expanded description.
These results also suggest the restrictions that a modeling language should im-
pose to lower the complexity. In particular, in presence of concurrency and hi-
erarchy, unrestricted synchronization across levels is very expensive, and also
poses obstacles for compositional semantics. In terms of developing heuristics
that improve the performance of analysis tools in presence of all the features,
some progress has been reported, but we believe that it merits further investi-
gation. In particular, in recent years SAT-based techniques have been shown to
be very e�ective in analyzing models with large number of variables [12], and
it may be possible to optimize the SAT solvers by exploiting the hierarchical
structure.

If the modules are allowed to call each other recursively, the model is equiv-
alent to pushdown systems, for which model checking problems are known to



be decidable, both for linear-time and branching-time requirements [18, 14], and
has been a subject of renewed interest in the context of software analysis using
abstraction [1, 11, 9, 26, 28]. Another topic of current interest involves two-player
games on hierarchical or recursive structures [43, 19, 5].
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