LU CLLE

Penn
& Engincering

Regular Functions

Rajeev Alur
University of Pennsylvania



Regular Languages

3 Natural

Intuitive operational model of finite-state automata
0 Robust

Alternative characterizations and closure properties
d Analyzable

Algorithms for emptiness, equivalence, minimization, learning ...
 Applications

Algorithmic verification, text processing ...

What is the analog of regularity for defining functions?

Do we really need such a concept ?



FlashFill: Programming by Examples

Ref: Gulwani (POPL 2011)

Input Output
Vechev, Martin Martin Vechev
Martin Abadi Martin Abadi
Rinard, Martin C. Martin Rinard

Q Infers desired Excel macro program
O TIterative: user gives examples and corrections
O Already incorporated in Microsoft Excel

Learning regular languages ; L* (Angluin'92)
Learning string transformation  : ??



Verification of List-processing Programs

function delete head curr tail
input ref curr;
input data v; l
output ref result;
output bool flag := 0; =13 8 12
local ref prev;
while (curr !'= nil) & (curr.data = v) {

curr := curr.next;

flag := 1;

]. c c o * *
result := curr: Typically a simple function D* > D
prev:= curr; Insert
if (curr '= nil) then {

curr := curr.next; Delete
prev.next := nil;
while (curr !'= nil) { Reverse ..
if (curr.data = v) then {
curr := curr.next;
flag := 1;
olse’ | But finite-state verification
gizz-r}gxgu;.curr; algorithms not applicable, only lots
curr := curr:next; Of undecidabili‘ry results |

prev.next := nil;

}



Document Transformation

@inproceedings{ACl11, Task: Shift titles one entry up
author = {Alur and Cerny},

conference = {POPL 2011}
}

@inproceedings{AFR14,
title = {Streaming transducer
conference = {LICS 2014},
author = {Alur and Freilichggnd Raghothaman}
}

@inproceedings{ADR1S5,
author = {Alur and D’Antoni d Raghothman},
title = {Regular combinator®},
conference = {POPL 2015}

14

Should we use Per| ? sed ?
But these are Turing-complete languages with no “analysis” tools



Complexity Classification of Languages

--- Recursive What if we consider functions?
From strings fto strings
--- NP
--- P
No essential change for
- Linear-time Recursive, NP, P, linear-time...
--- Regular

Natural starting point for regular functions:
Variation of classical finite-state automata



Finite-State Sequential Transducers

0 Deterministic finite-state control + transitions labeled by
(input symbol / string of output symbols)

a/010
q > q

d Examples:
» Delete all a symbols
» Duplicate each symbol
» Insert O after first b

d Theoretically not that different from classical automata, and
have found applications in speech/language processing

Expressive enough ? What about reverse ?



Deterministic Two-way Transducers

acbabbc
<——T—>

q

[ Unlike acceptors, two-way transducers more expressive than
one-way model (Aho, Ullman 1969)

» Reverse
» Duplicate entire string (map w to w.w)
» Delete a symbols if string ends with b (regular look-ahead)



Theory of Two-way Finite-state Transducers

[ Closed under sequential composition (Chytil, Jakl, 1977)
0 Checking functional equivalence is decidable (Gurari 1980)

O Equivalent o MSO (monadic second-order logic) definable
graph transductions (Engelfriet, Hoogeboom, 2001)

O Challenging theoretical results

» Not like finite automata (e.g. Image of a regular language
need not be reqular 1)

» Complex constructions
» No known applications



Talk Outline

® Machine model: Streaming String Transducers

O DReX: Declarative language for string transformations

 Regular Functions: Beyond strings to strings

10



Example Transformation 1: Delete
Del (w) = String w with all a symbols removed

a/¢

A

@

U

b/b b/ x:=xb

Finite-state control +
Explicit string variable to
compute output

Traditional transducer

11



Example Transformation 2: Reverse

Rev(w) = String w in reverse

a/y:=ay

b/y:=by

String variables updated at each step as in a program

Key restriction: No tests | Write-only variables |

12



Example Transformation 3: Regular Choice

f(w)= If input ends with b, then Rev(w) else Del (w)

a/ y = ay b/ x:=x.b: y:by
Xy =g A b/ x:=x.b; y:= b.y
outputy
a/y:=ay

Multiple string variables used to compute alternative outputs

Model closed under "regular look-ahead"

13



Example Transformation 4: Swap

flupsviB#Fu, v & L) =vi i #H v, u, # L u, and v; : {a,b}*

c/y:=yo 6/ X:=X0

XYy =€ :
) output x 'y
#/x=xyHy=

e

Concatenation of string variables allowed (and needed)

Restriction: if x := x.y then y must be assigned a constant
14



©NO O wWN R

Streaming String Transducer (SST)

Finite set Q of states

Input alphabet X

Output alphabet T’

Initial state qq

Finite set X of string variables

Partial output function F: Q -> (I' U X)*

State transition functiond: Q x X -> Q

Variable update functionp : Q x £ x X -> (I' U X)*

Output function and variable update function required to be
copyless: each variable x can be used at most once

Configuration = (state g, valuation o from X to I'*)
Semantics: Partial function from = * to I'*

15



SST Properties

[ At each step, one input symbol is processed, and at most a
constant number of output symbols are newly created

[ Output is bounded: Length of output = O(length of input)
0 SST transduction can be computed in linear time
d Finite-state control: String variables not examined

[ SST cannot implement merge
Uy, U FFVV,. V) = UViULV,.. UV,

O Multiple variables are essential
For f(w)=wk, k variables are necessary and sufficient

16



Decision Problem: Type Checking

Pre/Post condition assertion: {L} S {L'}

Given a regular language L of input strings (pre-condition), an
SST S, and a regular language L' of output strings (post-
condition), verify that for every winL, S(w) isin L’

Thm: Type checking is solvable in polynomial-time
Key construction: Summarization

17



Decision Problem: Equivalence

Functional Equivalence;
Given SSTs S and S’ over same input/output alphabets,
check whether they define the same transductions.

Thm: Equivalence is solvable in PSPACE
(polynomial in states, but exponential in no. of string variables)

Open problem: Lower bound / Improved algorithm

18



Expressiveness

Thm: A string transduction is definable by an SST iff it is reqular

1. SST definable transduction is MSO definable

2. MSO definable transduction can be captured by a two-way
transducer (Engelfriet/Hoogeboom 2001)

3. SST can simulate a fwo-way transducer

Evidence of robustness of class of reqular transductions
Closure properties with effective constructions
1. Sequential composition: f(f,(w))

2. Regular conditional choice: if w in L then f;(w) else f,(w)

19



From Two-Way Transducers to SSTs

0—s0—>0—>01>0—0—0

q
" —

Two-way transducer A visits each position multiple times
What information should SST S store aftfer reading a prefix?

For each state q of A, S maintains summary of computation of A
started in state q moving left till return to same position

1. The state f(q) upon return
2. Variable x, storing output emitted during this run

20



Challenge for Consistent Update

a

>() >
q «— u
o C— £(q)— f(u)

Map f: Q -> Q and variables x, need to be consistently updated at
each step

If tfransducer A moving left in state u on symbol a transitions to
q. then updated f(u) and x, depend on current f(q) and x,

Problem: Two distinct states u and v may map to g
Then x, and x, use X, but assignments must be copyless !

Solution requires careful analysis of sharing (required value of
each x, maintained as a concatenation of multiple chunks)

21



Heap-manipulating Programs

Sequential program +

Heap of cells containing data and next pointers +
Boolean variables +

Pointer variables that reference heap cells

Program operations can add cells, change next pointers, and
traverse the heap by following next pointers

head prev  curr

|

—1 3] 18] 12| 5

hew —> 4

How to restrict operations to capture exactly regular transductions

22



Representing Heaps in SST

X

\D%»oaoaofg»o»o

—>

Uz
/O/O‘/U; s

Y

Shape (encoded in state of SST):
X' U UyZ, Yy UglUyZ; Z Ug
String variables: uy, u,, us, U,
Shape + values of string vars enough to encode heap

23



Simulating Heap Updates

X

\D\o& ;

E)»O»O»O?é»O»O

Uz
/O/O‘/U;

Y

Consider program instruction
y.next = z
How to update shape and string variables in SST?

—>

Us

24



Simulating Heap Updates

New Shape: x: u;z; y: z;z: uz
Variable update: u; := u; u,
Special cells:

Cells referenced by pointer vars
Cells that 2 or more (reachable) next pointers point to

Contents between special cells kept in a single string var
Number of special cells = 2(# of pointer vars) - 1

25



Regular Heap Manipulating Programs

Update

x.next =y (changes heap shape destructively)

X := new (a) (adds new cell with data a and next nil)
Traversal

curr := curr.next (traversal of input list)

X iz y.next (disallowed in general)

Theorem: Programs of above form can be analyzed by compiling
into equivalent SSTs

Single pass traversal of input list possible
Pointers cannot be used as multiple read heads

26



Manipulating Data

O Each string element consists of (tag 1, data d)
Tags are from finite set
Data is from unbounded set D that supports = and < tests
Example of D: Names with lexicographic order

1 SSTs and list-processing programs generalized to allow
Finite set of data variables
Tests using = and < between current value and data vars
Input and output values

[ Checking equivalence remains decidable (in PSPACE) |

O Many common routines fall in this class
Check if list is sorted
Insert an element in a sorted list
Delete all elements that equal input value

27



Decidable Class of List-processing Programs

function delete head curr tail
input ref curr;
input data v; l
output ref result;
output bool flag := 0; E 8 12

local ref prev;

while (curr !'= nil) & (curr.data = v) {
curr .= curr.next;
flag := 1;
}
result := curr;
prev:= curr;
if (curr '= nil) then {
curr := curr.next;
prev.next := nil; : S o
Phile (curr '= mil) { Decidable Ana|y5|s.
if (curr.data = v) tlgen { 1. Assertion ChZCkS
curr := curr.nex ey
flag := 1; 2. Pre/post condition
else’ | 3. Full functional correctness
prev.next := curr;
prev := curr;
curr := curr.next;
prev.next := nil;

}

28



Potential Application: String Sanitizers

O BEK: A domain specific language for writing string manipulating
sanitizers on untrusted user data

d Analysis tool translates BEK program into (symbolic)
transducer and checks properties such as

¢ Is transduction idempotent: f(f(w)) = f(w)
¢ Do two transductions commute: f,(f,(w)) = f,(f;(w))

[ Recent success in analyzing TE XSS filters and other web apps

O Example sanitizer that BEK cannot capture (but SST can):
Rewrite input w to suffix following the last occurrence of "dot”

Fast and precise sanitizer analysis with BEK.

Hooimeijer et al. USENIX Security 2011 s



Talk Outline

v Machine model: Streaming String Transducers

S DReX: Declarative language for string transformations

 Regular Functions: Beyond strings to strings

30



Search for Regular Combinators

O Regular Expressions
» Basic operations: ¢, a, Union, Concatenation, Kleene-*

» Additional constructs (e.g. Intersection) : Trade-off between
ease of writing constraints and complexity of evaluation

d What are the basic ways of combining functions?
» Goal: Calculus of regular functions

3 Partial function from =* to I'*
» Dom(f): Set of strings w for which f(w) is defined
» Inour calculus, Dom(f) will always be a regular language

31



Base Functions

dForainZandyinT™, a/y
» If input w equals a then output v, else undefined

dForyinT*, e/ vy
» If input w equals ¢ then output y else undefined

32



Choice

d felseg
» Given input w, if w in Dom(f), then return f(w) else return g(w)

d Analog of union in regular expressions

» Asymmetric (hon-commutative) nature ensures that the result
(f else g)(w) is uniquely defined

d Examples:
» Idl=(a/a)else(b/Db)
» Del 1=(a/c¢)else Idl

33



Concatenation and Iteration

a split (f, g)
» Given input string w, if there exist unique u and v such that w=u.v
and u in Dom(f) and v in Dom(g) then return f(u).g(v)

» Similar to "unambiguous” concatenation

Q iterate (f)

» Given input string w, if there is unique k and unique strings uy,...u
such that w = u;.u,...u, and each u; in Dom(f) then return f(u,)...f(u,)

a left-split (f, g)
» Similar to split, but return g(v).f(u)

Q left-iterate (f)
» Similar to iterate, but return f(uy)..f(u,)

34



Examples

A Idl=(a/a)else(b/Db)
d Del 1=(a/ ) else Idl

d Id-=iterate (Id1): maps w to itself
O Del, = iterate (Del,1) : Delete all a symbols
O Rev = left-iterate (Id1) : reverses the input

d If w ends with b then delete d's else reverse
split (Del,, b / b) else Rev

Q Map u#v to v.u
left-split ( split (Id, # /¢), Id)

35



Function Combination

d combine (f, g)
» If winboth Dom(f) and Dom(g), then return f(w).g(w)

 combine(Id, Id) maps an input string w to w.w
1 Needed for expressive completeness

O Reminiscent of Intersection for languages

36



Document Transformation Example

@inproceedings{ACl11, Task: Shift titles one entry up
author = {Alur and Cerny},

conference = {POPL 2011}
}

@inproceedings{AFR14,
title = {Streaming transducer
conference = {LICS 2014},
author = {Alur and Freilichggnd Raghothaman}

14

}

@inproceedings{ADR1S5,
author = {Alur and D’Antoni d Raghothman},
title = {Regular combinator®},
conference = {POPL 2015}

}

Does not seem expressible with combinators discussed so far...
Cannot compute this by splitting document in chunks, transforming
them separately, and combining the results

37



Chained Iteration

chain (f, r) : Given input string w, if there is unique k and unique strings
Uy,..U, such that w = u;.u,...u, and each u; in Dom(r) then return

fuguy). fuaus)... Fug guy)

Apply f to get v, Apply f to get v,
A A
| | [ |
Apply f to get v, Apply f To get v,

A A

| | |
Inputw | | | | | | | |

Matches r  Matches r Matches r Matches r Matches r

Output vi.v,.v3.v,

Thm: A partial function f : Z*->I'* is regular iff it can be constructed using
base functions, choice, split, left-split, combine, chain, and left-chain.

38



Towards a Prototype Language

O Goal: Design a DSL for regular string transformations

d Allow "symbolic” alphabet
» Symbols range over a "sort"
» Base function: ¢(x) /vy
» Set of allowed predicates form a Boolean algebra
» Inspired by Symbolic Automata of Veanes et al

d Given a program P and input w, evaluation of P(w) should be fast!
» Natural algorithm is based on dynamic programming: O(|w|3)

39



Consistency Rules

a Inf else g, Dom(f) and Dom(g) should be disjoint
d In combine(f,g), Dom(f) and Dom(g) should be identical

Q In split(f,g), for every string w, there exists at most one way to
split w = u.v such that u in Dom(f) and v in Dom(g)

d Similar rules for left-split, iterate, chain, and so on

40



DReX: Declarative Regular Transformations

O Syntax based on regular combinators + Type system to enforce
consistency rules

O Thm: Restriction to consistent programs does not limit the
expressiveness (DReX captures exactly reqular functions)

O Consistency can be checked in poly-time in size of program

[ For a consistent DReX program P, output P(w) can be computed in
single-pass in time O(|w|) (and poly-time in |P|)
» Intuition: To compute split(f,g)(w), whenever a prefix of w
matches Dom(f), a new thread is started to evaluate g.
Consistency is used to kill threads eagerly to limit the number

of active threads
41



DReX Prototype Status

O Prototype implementation
» Type checking
» Linear-time evaluation

d Evaluation
» How natural is it o write consistent DReX programs?
» How does type checker / evaluator scale ?

d Ongoing work
» Syntactic sugar with lots of pre-defined operations
» Support for analysis (e.g. equivalence checking)
» Integration in Python/Java ?

42



Talk Outline

v Machine model: Streaming String Transducers

v DReX: Declarative language for string transformations

<@ Regular Functions: Beyond strings to strings
» Parameterized Definition of Regularity
» Additive Cost Register Automata
» Regular functions over a semi-ring

43



Mapping Strings to Numerical Costs

C: Buy Coffee C/2 C/1
S: Fill out a survey {\ S
M: End-of-month 4’@
M
M S

Maps a string over {C,S5,M} to a cost value:

Cost of a coffee is 2, but reduces to 1 after filling out a
survey until the end of the month

Can we generalize expressiveness using SST-style model?

Potential application: Quantitative analysis
44



Finite Automata with Cost Registers

C / xi=x+2 C / xi=x+1
x:=0 {\ > @
X
v
M S

Cost Register Automata:
Finite control + Finite number of registers
Registers updated explicitly on transitions
Registers are write-only (no tests allowed)
Each (final) state associated with output register



CRA Example

C / xi=x+2 C / xi=x+1

x:=0 {\ >

5
M / x:=0

M / x:=0 S

At any time, x = cost of coffees during the current month

Cost register x reset to O at each end-of-month

46



CRA Example

C / xi=x+2

yi=y+l C/ xi=x+1

Xy:=0 {‘ S /X7y
X

_)@ M/ y:=x

M/ yi=x S

Filling out a survey gives discount for all coffees during that month

47



CRA Example

C/ y::y+1

M / x:=min(x,y); y:=0
Output = minimum number of coffees consumed during a month
Updates use two operations: increment and min

Can we define a general notion of regularity
parameterized by operations on the set of costs ?

48



Cost Model

Cost Grammar G to define set of terms:
Inc: t:=c | (t+c)
Plus: = ¢ | (1+1)
Min-Inc: t := ¢ | (++c) | min(t,1)
Inc-Scale: t:= ¢ | (t+c) | (1*d)

Interpretation [] for operations:
Set D of cost values
Mapping operators to functions over D

Example interpretations for the Plus grammar:
Set N of natural numbers with addition
Set I'* of strings with concatenation 49



Regular Function

Definition parameterized by the cost model C=(D,5,[])

A (partial) function f:£*->D is regular w.r.t. the cost model C if
there exists a string-to-tree transformation g such that

(1) for all strings w, f(w)=[g(w)]
(2) g is a regular string-to-tree transformation

50



MSO-definable String-to-tree Transformations

d MSO over strings
® = a(x) | X(x) | x=y+1 | ~D | ® & @ | Exists x. ® | Exists X. @

[ MSO-transduction from strings to trees:
1. Number k of copies
For each position x in input, output-tree has nodes x;, ...x,
2. For each symbol a and copy ¢, MSO-formula @, .(x)
Output-node x, is labeled with a if @, (x) holds for unique a
3. For copies ¢ and d, MSO-formula @ 4(x,y)
Output-tree has edge from node x. to node x4 if @ 4(x.,y) holds

51



Example Reqgular Function

Cost grammar Min-Inc: t:= c | (++¢) | min(t,t)

Interpretation: Natural numbers with usual meaning of + and min
>={C,M}

f(w) = Minimum number of C symbols between successive M's

Inputw= CCMCCCM

Tree: min @
Value = 2 () (D=
Tt (@O O OOO O

52



Regular String-to-tree Transformations

O Definition based on MSO (Monadic Second Order Logic) -
definable graph-to-graph transformations (Courcelle)

0 Studied in context of syntax-directed program transformations,
attribute grammars, and XML transformations

O Operational model: Macro Tree Transducers (Engelfriet et al)

O Recent proposal: Streaming Tree Transducers (ICALP 2012)

53



Properties of Regular Functions

Known properties of regular string-to-tree transformations imply:

A If f and g are regular w.r.t. a cost model C, and L is a reqular
language, then "if L then f else g" is regular w.r.1. C

Q Reversal: define Rev(f)(w) = f(reverse(w)).
If f is regular w.r.t. a cost model C, then so is Rev(f)

 Costs grow linearly with the size of the input string:
Term corresponding to a string w is O(|w|)

54



Regular Functions for Non-Commutative Monoid

O Cost model: T'* with binary function concatenation

A Interpretation for . is non-commutative, associative, identity ¢
Q Cost grammar 6(.): t:=c | (t.1) c is a string

QA Cost grammar 6(c):t:=c | (t.0) | (c.1)

O Thm: Regular functions w.r.t G(.) is a strict superset of regular
functions w.r.t. 6(.c)

O Classical model of Sequential Transducers captures only a
subset of regular functions w.r.t. G6(.c)

1 SSTs capture exactly regular functions w.r.t. 6(.)

55



Regular Functions over Commutative Monoid

Cost model: D with binary function +
Interpretation for + is commutative, associative, with identity O

Cost grammar G(+): t:= ¢ | (t+1)
Cost grammar G(+c): t := ¢ | (t+c)
Thm: Regularity w.r.t. 6(+) coincides with regularity w.r.t. G(+c)

Proof intuition: Show that rewriting terms such as (2+3)+(1+5) to
(((2+3)+1)+b) is a regular tree-to-tree transformation, and use
closure properties of tree transducers

56



Additive Cost Register Automata

C / xi=x+2, y:=y+l C / x:=x+1
x,y:=0 [\ s/x=y
X

—)9 M/ y:i=x
M / y:=x ’ S

Additive Cost Register Automata:
DFA + Finite number of registers
Each register is initially O
Registers updated using assignments x =y + ¢
Each final state labeled with output term x + ¢

Given commutative monoid (D,+,0), an ACRA defines a partial
function from X* to D




Regular Functions and ACRAs

a Thm: Given a commutative monoid (D,+,0), a function f:X*->D is
definable using an ACRA iff it is regular w.r.t. grammar G(+).

[ Establishes ACRA as an intuitive, deterministic operational
model to define this class of regular functions

O Proof relies on the model of SSTT (Streaming string-to-tree
transducers) that can define all regular string-to-tree
transformations

58



Single-Valued Weighted Automata

d Weighted Automata:

Nondeterministic automata with edges labeled with costs
d Single-valued:

Each string has at most one accepting path
Q Cost of a string:

Sum of costs of transitions along the accepting path

d Example: When you fill out a survey, each coffee during that
month gets the discounted cost.

Locally nondeterministic, but globally single-valued

O Thm: ACRAs and single-valued weighted automata define the
same class of functions

59



Decision Problems for ACRAs

Qd Min-Cost: Given an ACRA M, find min {M(w) | w in =*}
Solvable in Polynomial-time
Shortest path in a graph with vertices (state, register)

d Equivalence: Do two ACRAs define the same function

Solvable in Polynomial-time
Based on propagation of linear equalities in program graphs

[ Register Minimization: Given an ACRA M with k registers, is
there an equivalent ACRA with < k registers?

Algorithm polynomial in states, and exponential in k

60



Towards a Theory of Additive Regular Functions

O Goal: Machine-independent characterization of regularity

Similar to Myhill-Nerode theorem for regular languages
Registers should compute necessary auxiliary functions

d Example: = = {C,S}
f(w)= if w contains S then |w| else 2|w|
f1(C)=i and f,(C)=2i are necessary and sufficient

d Thm: Register complexity of a function is at least k iff there
exist strings oy, ... o, loop-strings 1;,..1,,, and suffixes wy,..w,,
and k distinct vectors cq,...c, such that for all numbers x;,...x,,,
f(oo 1 01 1% . o W) = Z; ¢ X + d;

61



Regular Functions over Semiring

O Cost Domain: Natural numbers + Infty
d Operation Min: Commutative monoid with identity Infty
[ Operation +: Monoid with identity O
d Rules:
a + Infty = Infty + a = Infty
a+min(b,c) = min (a+b, a+c); min(b,c)+a = min(b+a,c+a)

QA Cost grammar MinInc: t:= ¢ | min(t,1) | (t+c)

[ Goal: Understand class of regular functions w.r.t. MinInc 52



Weighted Automata

d Weighted Automata:
Nondeterministic automata with edges labeled with costs

A Interpreted over the semiring cost model:
cost of string w = min of costs of all accepting paths over w
cost of a path = sum of costs of all edges in a path

d Widely studied (Handbook of Weighted Automata, Droste et al)

Minimum cost problem solvable
Equivalence undecidable over (N, min, +)
Not determinizable

Natural model in many applications

Recent interest in CAV/LICS community for quantitative analysis
63



CRA over Min-Inc Semiring

C/ y::y+1
x:=Infty A
y::O
\J

M / x:=min(x,y); y:=0

Output = Minimum number of coffees consumed during a month

64



CRA(min +c) = Weighted Automata

3 From WA to CRA(min,+c):
Generalizes subset construction for determinization
For every state q of WA, CRA maintains a register x,
X, = min of costs of all paths to q on input read so far
Update on a: x, := min{ x, + ¢ | p -(a,c)-> q is edge in WA}

A From CRA(min,+c) to WA:
State of WA = (state q of CRA, register x)
min simulated by nondeterminism
To simulate p - (a, x:=min(y,z)) ->q in CRA,
add a-labeled edges from (p,y) and (p,z) to (q,x)
Distributivity of + over min critical

65



CRA(min +c) > Min-Plus Regular Functions

Input w:w; Mw, M .. Mw,
C/1

/ S/1 Each w; in {C,S}*
’\ M ¢, = Number of C's inw,

s; = Number of S's inw,

S,M C,M COST(W) = man { C1+...+CJ+SJ+1+---+Sn}

Thm: The class of regular functions w.r.t. Min-Inc semiring is a
strict subset of weighted automata

Above function is not regular: cost term is quadratic in input

66



Machine Model for Semiring Regular Functions

1 Updates to registers must be copyless
Each register appears at most once in a right-hand-side
Update [x,y] := [min(x,y),y] not allowed
Necessary to maintain "“linear” growth

 Need ability to simulate substitution
Register x carries two values c and d
Stands for the parameterized expression min(c, ?)+d
Besides min and inc, can substitute ? with a value

[ Resulting model coincides with regular functions over semiring

0 Open: Decidability of equivalence over (N, min , +c)

67



Discounted Cost Regular Functions

 Basic element: (cost ¢, discount d)
d Discounted sum: (¢q,d;)*(c,,d,) = (¢c4*+dic,, did>)
d Example of non-commutative monoid
A Classical Model: Future discounting
Cost of a path: (¢;,dy) * (¢c,,d5) * ... * (¢, d,)
Polynomial-time algorithm for "generalized” shortest path
Q Past discounting
Cost of a path: (¢, d,) * (¢,1,d,1) * ... * (cq,dy)
Same PTIME algorithm works for shortest paths
Q Prioritized double discounting
Cost = (¢;,dy) * .. * (¢, d,) * (¢'1. d) * .. * (¢, d})
Shortest path: NExpTime algorithm
0 Open: Shortest path for Discounted Cost Register Automata

68



Conclusions

0 Streaming String Transducers and Cost Register Automata
» Write-only machines with multiple registers to store outputs

O DReX: Declarative language for string transformations
» Robust expressiveness with decidable analysis problems
» Prototype implementation with linear-time evaluation
» Ongoing work: Analysis tools

O Emerging theory of regular functions
» Some results, new connections
» Many open problems and unexplored directions

69



Acknowledgements and References

Q Streaming String Transducers (with P. Cerny; POPL'11, FSTTCS'10)
O Transducers over Infinite Strings (with E. Filiot, A. Trivedi; LICS'12)
0 Streaming Tree Transducers (with L. D'Antoni; ICALP'12)
0 Regular Functions and Cost Register Automata
(with L. D'Antoni, J. Deshmukh, M. Raghothaman, Y. Yuan; LICS13)
O Decision problems for Additive Cost Regular Functions
(with M. Raghothaman; ICALP'13)
d Infinite-String to Infinite-Term Regular Transformations
(with A. Durand, A. Trivedi; LICS'13: Next session)
d Min-cost problems for Discounted Sum Regular Functions
(with S. Kannan, K. Tian, Y. Yuan; LATA'13)
[ Regular combinators for string transformations

(with A. Freilich and M. Raghothaman, LICS'13)
0 DReX (with L. D'Antoni and M. Raghothaman; POPL'15)

70



