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Regular Languages 

 

 Natural 

 Intuitive operational model of finite-state automata 

 Robust 

 Alternative characterizations and closure properties 

 Analyzable 

 Algorithms for emptiness, equivalence, minimization, learning … 

 Applications 

 Algorithmic verification, text processing … 

What is the analog of regularity for defining functions? 
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Do we really need such a concept ? 



Input  Output 

Vechev, Martin Martin Vechev 

Martin Abadi Martin Abadi 

Rinard, Martin C. Martin Rinard 

FlashFill: Programming by Examples  
     Ref: Gulwani (POPL 2011) 

 Infers desired Excel macro program 
 Iterative: user gives examples and corrections 
 Already incorporated in Microsoft Excel  
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 Learning regular languages   : L* (Angluin’92) 
 Learning string transformation : ??  



function delete 
  input ref curr; 
  input data v; 
  output ref result; 
  output bool flag := 0; 
  local ref prev; 
   
  while (curr != nil) & (curr.data = v) { 
      curr := curr.next; 
      flag := 1; 
      } 
  result := curr; 
  prev:= curr; 
  if (curr != nil) then { 
     curr := curr.next; 
     prev.next := nil; 
     while (curr != nil) { 
         if (curr.data = v) then { 
             curr := curr.next; 
             flag := 1; 
             } 
         else { 
             prev.next := curr;  
             prev := curr; 
             curr := curr.next;  
             prev.next := nil; 
             } 
  } 

Typically a simple function D*  D* 
 Insert 
 Delete 
 Reverse … 

Verification of List-processing Programs 

head tail 

3 8 2 
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curr 

But finite-state verification 
algorithms not applicable, only lots 
of undecidability results ! 



@inproceedings{AC11, 
 author = {Alur and Cerny}, 
 conference = {POPL 2011} 
} 
 
@inproceedings{AFR14, 
 title = {Streaming transducers}, 
 conference = {LICS 2014}, 
 author = {Alur and Freilich and Raghothaman} 
} 
 
@inproceedings{ADR15, 
 author = {Alur and D’Antoni and Raghothman}, 
 title = {Regular combinators}, 
 conference = {POPL 2015} 
} 
 

Task: Shift titles one entry up 

Document Transformation 
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Should we use Perl ? sed ? 
But these are Turing-complete languages with no “analysis” tools  



Complexity Classification of Languages 

What if we consider functions? 
 From strings to strings 

 

--- Recursive 

 

--- NP 

--- P 

 

--- Linear-time 

--- Regular 

No essential change for  
 Recursive, NP, P, linear-time… 
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Natural starting point for regular functions: 
 Variation of classical finite-state automata 



Finite-State Sequential Transducers 

 Deterministic finite-state control + transitions labeled by 
(input symbol / string of output symbols) 

 

 

 Examples:  

Delete all a symbols 

Duplicate each symbol 

Insert 0 after first b 

 

 Theoretically not that different from classical automata, and 
have found applications in speech/language processing 

 

q q’ 
a/010 
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Expressive enough ? What about reverse ? 



Deterministic Two-way Transducers 

 

 Unlike acceptors, two-way transducers more  expressive than 
one-way model (Aho, Ullman 1969) 

Reverse 

Duplicate entire string (map w to w.w) 

Delete a symbols if string ends with b (regular look-ahead) 

 

 

q 

a  c  b  a  b  b  c 
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Theory of Two-way Finite-state Transducers 

 Closed under sequential composition (Chytil, Jakl, 1977) 

 

 Checking functional equivalence is decidable (Gurari 1980) 

 

 Equivalent to MSO (monadic second-order logic) definable 
graph transductions (Engelfriet, Hoogeboom, 2001) 

 

 Challenging theoretical results 

Not like finite automata (e.g. Image of a regular language 
need not be regular !) 

Complex constructions 

No known applications  

 

9 



Talk Outline  

 

  Machine model: Streaming String Transducers 

 

  DReX: Declarative language for string transformations 

 

  Regular Functions: Beyond strings to strings 
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Example Transformation 1: Delete 

 

Dela(w) = String w with all a symbols removed 

 

 

 

output x 

a / x := x 

x := e 

b / x := x.b 
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a / e 

b / b 

Traditional transducer Finite-state control + 
Explicit string variable to 
compute output 



Example Transformation 2: Reverse 

 

Rev(w) = String w in reverse 

 

 

 

output y 

a / y := a.y 

y := e 

b / y := b.y 
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String variables updated at each step as in a program 
 
Key restriction: No tests ! Write-only variables ! 



Example Transformation 3: Regular Choice 

f(w)= If input ends with b, then Rev(w) else Dela(w)  

 

 

output x 

a / y := a.y 

x,y := e 

output y 

b / x:=x.b; y:=b.y 

b/ x:=x.b; y:= b.y 

a/ y := a.y 
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Multiple string variables used to compute alternative outputs 
 
Model closed under “regular look-ahead” 



Example Transformation 4: Swap 

f(u1 : v1 # u2 : v2 # ...) = v1 : u1 # v2 : u2 # ...  ui and vi : {a,b}*  

 

 

s / y := y.s 

x,y := e 

output x : y 

s / x := x.s 

: 

# / x := x.:.y.#; y:= e 
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Concatenation of string variables allowed (and needed) 
 
Restriction: if x := x.y then y must be assigned a constant 



Streaming String Transducer (SST) 

1. Finite set Q of states 

2. Input alphabet S 

3. Output alphabet G 

4. Initial state q0 

5. Finite set X of string variables 

6. Partial output function F : Q -> (G U X)* 

7. State transition function d : Q x S -> Q 

8. Variable update function r : Q x S x X -> (G U X)* 

 

 Output function and variable update function required to be 
copyless: each variable x can be used at most once 

 Configuration = (state q, valuation a from X to G*) 

 Semantics: Partial function from S * to G*  
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SST Properties 

 At each step, one input symbol is processed, and at most a 
constant number of output symbols are newly created 

 

 Output is bounded: Length of output = O(length of input) 

 

 SST transduction can be computed in linear time 

 

 Finite-state control: String variables not examined 

 

 SST cannot implement merge 

         f(u1u2….uk#v1v2…vk) = u1v1u2v2….ukvk 

 

 Multiple variables are essential 

        For f(w)=wk, k variables are necessary and sufficient 
16 



Decision Problem: Type Checking 

Pre/Post condition assertion: { L }  S  { L’ } 

 Given a regular language L of input strings (pre-condition), an 
SST S, and a regular language L’ of output strings (post-
condition), verify that for every w in L, S(w) is in L’ 

 

Thm: Type checking is solvable in polynomial-time 

 Key construction: Summarization 
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Decision Problem: Equivalence 

 

Functional Equivalence; 

 Given SSTs S and S’ over same input/output alphabets,  

 check whether they define the same transductions. 

 

Thm: Equivalence is solvable in PSPACE 

 (polynomial in states, but exponential in no. of string variables) 

 

Open problem: Lower bound / Improved algorithm 
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Expressiveness 

Thm: A string transduction is definable by an SST iff it is regular 

  

    1. SST definable transduction is MSO definable 

    2. MSO definable transduction can be captured by a two-way 

            transducer (Engelfriet/Hoogeboom 2001) 

    3. SST can simulate a two-way transducer 

 

Evidence of robustness of class of regular transductions 

 

Closure properties with effective constructions 

 1. Sequential composition: f1(f2(w)) 

    2. Regular conditional choice: if w in L then f1(w) else f2(w)  
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From Two-Way Transducers to SSTs 

q 

Two-way transducer A visits each position multiple times 

What information should SST S store after reading a prefix? 

 

 

 

 

f(q) 
xq 

For each state q of A, S maintains summary of computation of A 
started in state q moving left till return to same position 

          1. The state f(q) upon return 

          2. Variable xq storing output emitted during this run 
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Challenge for Consistent Update 

q 

Map f: Q -> Q and variables xq need to be consistently updated at 
each step   

If transducer A moving left in state u on symbol a transitions to 
q, then updated f(u) and xu depend on current f(q) and xq 

Problem: Two distinct states u and v may map to q 

Then xu and xv use xq, but assignments must be copyless ! 

Solution requires careful analysis of sharing (required value of 
each xq maintained as a concatenation of multiple chunks) 

 

f(q) 
xq 

a 

u 

f(u) 
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Heap-manipulating Programs 

  Sequential program + 

  Heap of cells containing data and next pointers + 

  Boolean variables + 

  Pointer variables that reference heap cells 

 

  Program operations can add cells, change next pointers, and 
traverse the heap by following next pointers 

 

 

 

 

 

How to restrict operations to capture exactly regular transductions 

 

 

    

 

head prev 

3 8 2 5 

curr 

4 new 
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Representing Heaps in SST 

x 

y 

z 

Shape (encoded in state of SST): 

        x :  u1 u2 z ;  y :  u4 u2 z ;  z:  u3 

String variables: u1, u2, u3, u4 

Shape + values of string vars enough to encode heap 

u3 
u2 

u1 

u4 
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Simulating Heap Updates 

x 

y 

z 

Consider program instruction 

                  y.next := z 

How to update shape and string variables in SST? 

 

u3 
u2 

u1 

u4 
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Simulating Heap Updates 

x 

y 

z 

New Shape:   x:  u1 z ;  y :  z ; z :  u3 

Variable update: u1 := u1 u2 

Special cells:  
       Cells referenced by pointer vars 

       Cells that 2 or more (reachable) next pointers point to 

Contents between special cells kept in a single string var 

Number of special cells = 2(# of pointer vars) - 1 

 

u3 

u1 
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Regular Heap Manipulating Programs 

Update 

x.next := y         (changes heap shape destructively) 

x := new (a)        (adds new cell with data a and next nil) 
 

Traversal 

curr := curr.next  (traversal of input list) 

x := y.next            (disallowed in general) 

 

Theorem: Programs of above form can be analyzed by compiling 
into equivalent SSTs 

Single pass traversal of input list possible 

Pointers cannot be used as multiple read heads 
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Manipulating Data 

 Each string element consists of (tag t, data d) 
     Tags are from finite set 

     Data is from unbounded set D that supports = and < tests 

         Example of D: Names with lexicographic order 

 SSTs and list-processing programs generalized to allow 
         Finite set of data variables 

         Tests using = and < between current value and data vars 

          Input and output values 

 Checking equivalence remains decidable (in PSPACE) !  

 Many common routines fall in this class 
     Check if list is sorted 

     Insert an element in a sorted list 

         Delete all elements that equal input value  
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function delete 
  input ref curr; 
  input data v; 
  output ref result; 
  output bool flag := 0; 
  local ref prev; 
   
  while (curr != nil) & (curr.data = v) { 
      curr := curr.next; 
      flag := 1; 
      } 
  result := curr; 
  prev:= curr; 
  if (curr != nil) then { 
     curr := curr.next; 
     prev.next := nil; 
     while (curr != nil) { 
         if (curr.data = v) then { 
             curr := curr.next; 
             flag := 1; 
             } 
         else { 
             prev.next := curr;  
             prev := curr; 
             curr := curr.next;  
             prev.next := nil; 
             } 
  } 

Decidable Class of List-processing Programs 

head tail 

3 8 2 
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curr 

Decidable Analysis: 
  1. Assertion checks 
  2. Pre/post condition 
  3. Full functional correctness 



Potential Application: String Sanitizers 

 BEK: A domain specific language for writing string manipulating 
sanitizers on untrusted user data 

 

 Analysis tool translates BEK program into (symbolic) 
transducer and checks properties such as 

Is transduction idempotent: f(f(w)) = f(w) 

Do two transductions commute: f1(f2(w)) = f2(f1(w)) 

 

 Recent success in analyzing IE XSS filters and other web apps 

 

 Example sanitizer that BEK cannot capture (but SST can): 

 Rewrite input w to suffix following the last occurrence of “dot” 

Fast and precise sanitizer analysis with BEK. 
 Hooimeijer et al. USENIX Security 2011 
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Talk Outline  

 

  Machine model: Streaming String Transducers 

 

  DReX: Declarative language for string transformations 

 

  Regular Functions: Beyond strings to strings 
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Search for Regular Combinators 

 Regular Expressions 
Basic operations: e, a, Union, Concatenation, Kleene-* 

Additional constructs (e.g. Intersection) : Trade-off between 
ease of writing constraints and complexity of evaluation 

 

 What are the basic ways of combining functions? 
Goal: Calculus of regular functions 

 

 Partial function from S* to G* 
Dom(f): Set of strings w for which f(w) is defined 

In our calculus, Dom(f) will always be a regular language 
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Base Functions 

 For a in S and g in G*,  a / g  
If input w equals a then output g, else undefined 

 

 For g in G*, e / g 

If input w equals e then output g else undefined 
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Choice 

  f else g  
Given input w, if w in Dom(f), then return f(w) else return g(w) 

 

 Analog of union in regular expressions 

Asymmetric (non-commutative) nature ensures that the result 
(f else g)(w) is uniquely defined 

 

 Examples: 

Id1 = (a / a) else (b / b) 

Dela1 = (a / e) else Id1 
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Concatenation and Iteration 

 split (f, g) 
Given input string w, if there exist unique u and v such that w=u.v 
and u in Dom(f) and v in Dom(g) then return f(u).g(v) 

Similar to “unambiguous” concatenation 

 

  iterate (f)  
Given input string w, if there is unique k and unique strings u1,…uk 
such that w = u1.u2…uk and each ui in Dom(f) then return f(u1)…f(uk) 

 

  left-split (f, g) 
Similar to split, but return g(v).f(u) 

 

  left-iterate (f) 

Similar to iterate, but return f(uk)…f(u1) 
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Examples 

 Id1 = (a / a) else (b / b) 

 Dela1 = (a / e) else Id1 

 

  Id = iterate (Id1) : maps w to itself 

 

 Dela = iterate (Dela1) : Delete all a symbols 

 

 Rev = left-iterate (Id1) : reverses the input 

 

 If w ends with b then delete a’s else reverse  

   split (Dela, b / b) else Rev 

 

 Map u#v to v.u 

   left-split ( split ( Id, # / e), Id ) 
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Function Combination 

  combine (f, g)  
If w in both Dom(f) and Dom(g), then return f(w).g(w) 

 

 combine(Id, Id) maps an input string w to w.w 

 

 Needed for expressive completeness 

 

 Reminiscent of Intersection for languages 
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@inproceedings{AC11, 
 author = {Alur and Cerny}, 
 conference = {POPL 2011} 
} 
 
@inproceedings{AFR14, 
 title = {Streaming transducers}, 
 conference = {LICS 2014}, 
 author = {Alur and Freilich and Raghothaman} 
} 
 
@inproceedings{ADR15, 
 author = {Alur and D’Antoni and Raghothman}, 
 title = {Regular combinators}, 
 conference = {POPL 2015} 
} 
 

Task: Shift titles one entry up 

Document Transformation Example 
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Does not seem expressible with combinators discussed so far… 
Cannot compute this by splitting document in chunks, transforming 
them separately, and combining the results 



Chained Iteration 

chain (f, r) : Given input string w, if there is unique k and unique strings 
u1,…uk such that w = u1.u2…uk and each ui in Dom(r) then return 
f(u1u2).f(u2u3)…f(uk-1uk) 
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Thm: A partial function f : S*->G* is regular iff it can be constructed using 
base functions, choice, split, left-split, combine, chain,  and left-chain. 

Matches r Matches r Matches r Matches r Matches r 

Apply f to get v1 

Input w 

Apply f to get v2 

Apply f to get v3 

Apply f to get v4 

Output v1.v2.v3.v4 



Towards a Prototype Language 

  Goal: Design a DSL for regular string transformations  
 

  Allow “symbolic” alphabet 

Symbols range over a “sort” 

Base function: j(x) / g 

Set of allowed predicates form a Boolean algebra 

Inspired by Symbolic Automata of Veanes et al 

 

 Given a program P and input w, evaluation of P(w) should be fast! 

Natural algorithm is based on dynamic programming: O(|w|3) 
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Consistency Rules 

  In f else g, Dom(f) and Dom(g) should be disjoint 

 

 In combine(f,g), Dom(f) and Dom(g) should be identical 

 

 In split(f,g), for every string w, there exists at most one way to 
split w = u.v such that u in Dom(f) and v in Dom(g) 

 

 Similar rules for left-split, iterate, chain, and so on 
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DReX: Declarative Regular Transformations 

  Syntax based on regular combinators + Type system to enforce 
consistency rules 

 

 Thm: Restriction to consistent programs does not limit the 
expressiveness (DReX captures exactly regular functions) 

 

 Consistency can be checked in poly-time in size of program 

 

 For a consistent DReX program P, output P(w) can be computed in 
single-pass in time O(|w|) (and poly-time in |P|) 

Intuition: To compute split(f,g)(w), whenever a prefix of w 
matches Dom(f), a new thread is started to evaluate g. 
Consistency is used to kill threads eagerly to limit the number 
of active threads 
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DReX Prototype Status 

  Prototype implementation 

Type checking 

Linear-time evaluation 

 

 Evaluation 

How natural is it to write consistent DReX programs? 

How does type checker / evaluator scale ? 

 

 Ongoing work 

Syntactic sugar with lots of pre-defined operations 

Support for analysis (e.g. equivalence checking) 

Integration in Python/Java ? 
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Talk Outline  

 

  Machine model: Streaming String Transducers 

 

  DReX: Declarative language for string transformations 

 

  Regular Functions: Beyond strings to strings 

Parameterized Definition of Regularity 

Additive Cost Register Automata 

Regular functions over a semi-ring 
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Mapping Strings to Numerical Costs 

C: Buy Coffee 

S: Fill out a survey 

M: End-of-month 

 

 

 

C / 2 C / 1 

S 

M 

M 

Maps a string over {C,S,M} to a cost value: 

 Cost of a coffee is 2, but reduces to 1 after filling out a 
 survey until the end of the month 

Can we generalize expressiveness using SST-style model? 
Potential application: Quantitative analysis  

S 
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Finite Automata with Cost Registers 

C / x:=x+2 C / x:=x+1 
S 

M 

M 

Cost Register Automata: 

 Finite control + Finite number of registers 

 Registers updated explicitly on transitions 

 Registers are write-only (no tests allowed) 

 Each (final) state associated with output register 

 

x 
x:=0 

x 

S 

45 



CRA Example 

C / x:=x+2 C / x:=x+1 
S 

M / x:=0 

M / x:=0 

 

At any time, x = cost of coffees during the current month 

 

Cost register x reset to 0 at each end-of-month 

x 
x:=0 

x 

S 
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CRA Example 

C / x:=x+2 

C / x:=x+1 
S / x:=y 

M / y:=x  

M / y:=x 

Filling out a survey gives discount for all coffees during that month 

 

x 
x,y:=0 

x 

y:=y+1 

S 
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CRA Example 

C / y:=y+1 

M / x:=min(x,y); y:=0 

 

Output = minimum number of coffees consumed during a month 

 Updates use two operations: increment and min 

 

min(x,y) y:=0 

x:=Infty 

48 

Can we define a general notion of regularity 
parameterized by operations on the set of costs ?  



Cost Model 

Cost Grammar G to define set of terms: 

 Inc:  t := c | (t+c) 

 Plus: t := c | (t+t) 

 Min-Inc: t := c | (t+c) | min(t,t) 

 Inc-Scale: t := c | (t+c) | (t*d) 

 

Interpretation [] for operations: 

 Set D of cost values 

 Mapping operators to functions over D 

 

 Example interpretations for the Plus grammar: 

  Set N of natural numbers with addition 

  Set G* of strings with concatenation 49 



Regular Function 

Definition parameterized by the cost model C=(D,G,[]) 

 

A (partial) function f:S*->D is regular w.r.t. the cost model C if 
there exists a string-to-tree transformation g such that 

 (1) for all strings w, f(w)=[g(w)] 

 (2) g is a regular string-to-tree transformation 
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MSO-definable String-to-tree Transformations 

 

 MSO over strings 

 F := a(x) | X(x) | x=y+1 | ~ F | F & F | Exists x. F | Exists X. F 

 

 MSO-transduction from strings to trees: 

    1. Number k of copies 

 For each position x in input, output-tree has nodes x1, …xk 

    2. For each symbol a and copy c, MSO-formula Fa,c(x) 

 Output-node xc is labeled with a if Fa,c(x) holds for unique a 

    3. For copies c and d, MSO-formula  Fc,d(x,y) 

 Output-tree has edge from node xc to node xd if Fc,d(x,y) holds 
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Example Regular Function 

Cost grammar Min-Inc: t := c | (t+c) | min(t,t) 

Interpretation: Natural numbers with usual meaning of + and min 

S={C,M} 

f(w) = Minimum number of C symbols between successive M’s 

 

 

Infty 0 1 1 0 1 1 1 

+ + + + + 

min min 

Input w=   C C M C C C M 

 

Tree: 

 

Value = 2 
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Regular String-to-tree Transformations 

 

 Definition based on MSO (Monadic Second Order Logic) –
definable graph-to-graph transformations (Courcelle) 

 

 Studied in context of syntax-directed program transformations, 
attribute grammars, and XML transformations 

 

 Operational model: Macro Tree Transducers (Engelfriet et al) 

 

 Recent proposal: Streaming Tree Transducers (ICALP 2012) 
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Properties of Regular Functions 

Known properties of regular string-to-tree transformations imply: 

 

 If f and g are regular w.r.t. a cost model C, and L is a regular 
language, then “if L then f else g” is regular w.r.t. C 

 

 Reversal: define Rev(f)(w) = f(reverse(w)). 

 If f is regular w.r.t. a cost model C, then so is Rev(f) 

 

 Costs grow linearly with the size of the input string: 

 Term corresponding to a string w is O(|w|) 
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Regular Functions for Non-Commutative Monoid 

 Cost model: G* with binary function concatenation  

 Interpretation for . is non-commutative, associative, identity e 

 Cost grammar G(.): t := s | (t . t)  s is a string 

 Cost grammar G(.s): t := s | (t . s) | (s . t) 

 Thm: Regular functions w.r.t G(.) is a strict superset of regular 
functions w.r.t. G(.s) 

 Classical model of Sequential Transducers captures only a 
subset of regular functions w.r.t. G(.s) 

 SSTs capture exactly regular functions w.r.t. G(.) 
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Regular Functions over Commutative Monoid 

Cost model: D with binary function + 

Interpretation for + is commutative, associative, with identity 0 

 

Cost grammar G(+): t := c | (t+t) 

 

Cost grammar G(+c): t := c | (t+c) 

 

Thm: Regularity w.r.t. G(+) coincides with regularity w.r.t. G(+c) 

 

Proof intuition: Show that rewriting terms such as (2+3)+(1+5) to 
(((2+3)+1)+5) is a regular tree-to-tree transformation, and use 
closure properties of tree transducers 
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Additive Cost Register Automata 

Additive Cost Register Automata: 

 DFA + Finite number of registers 

 Each register is initially 0 

 Registers updated using assignments x := y + c 

 Each final state labeled with output term x + c 

Given commutative monoid (D,+,0), an ACRA defines a partial 
function from S* to D 

  

C / x:=x+2, y:=y+1 C / x:=x+1 

S / x:=y 

M / y:=x  
M / y:=x 

x 
x,y:=0 

x 

S 
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Regular Functions and ACRAs  

 Thm: Given a commutative monoid (D,+,0), a function f:S*->D is 
definable using an ACRA iff it is regular w.r.t. grammar G(+). 

 

 

 Establishes ACRA as an intuitive, deterministic operational 
model to define this class of regular functions 

 

 Proof relies on the model of SSTT (Streaming string-to-tree 
transducers) that can define all regular string-to-tree 
transformations 
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Single-Valued Weighted Automata  

 Weighted Automata: 

 Nondeterministic automata with edges labeled with costs 

 Single-valued: 

 Each string has at most one accepting path 

 Cost of a string: 

 Sum of costs of transitions along the accepting path 

 Example: When you fill out a survey, each coffee during that 
month gets the discounted cost. 

 Locally nondeterministic, but globally single-valued 

 Thm: ACRAs and single-valued weighted automata define the 
same class of functions 
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Decision Problems for ACRAs 

 

 Min-Cost: Given an ACRA M, find min {M(w) | w in S*} 

 Solvable in Polynomial-time 

 Shortest path in a graph with vertices (state, register) 

 

 Equivalence: Do two ACRAs define the same function 

 Solvable in Polynomial-time 

 Based on propagation of linear equalities in program graphs 

 

 Register Minimization: Given an ACRA M with k registers, is 
there an equivalent ACRA with < k registers? 

 Algorithm polynomial in states, and exponential in k 
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Towards a Theory of Additive Regular Functions 

 

 Goal: Machine-independent characterization of regularity 

 Similar to Myhill-Nerode theorem for regular languages 

 Registers should compute necessary auxiliary functions 

 

 Example: S = {C,S} 

 f(w)= if w contains S then |w| else 2|w| 

 f1(Ci)=i and f2(Ci)=2i are necessary and sufficient 

 

 Thm: Register complexity of a function is at least k iff there 
exist strings s0, … sm, loop-strings t1,…tm, and suffixes w1,…wm, 
and k distinct vectors c1,…ck such that for all numbers x1,…xm, 
f(s0 t1

x1 s1 t2
x2 … sm wi) = Sj cij xj + di 
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Regular Functions over Semiring 

 Cost Domain: Natural numbers + Infty 

 

 Operation Min: Commutative monoid with identity Infty 

 

 Operation +: Monoid with identity 0 

 

 Rules:  
 a + Infty = Infty + a = Infty 

 a+min(b,c) = min (a+b, a+c); min(b,c)+a = min(b+a,c+a) 

 

 Cost grammar MinInc: t := c | min(t,t) | (t+c) 

 

 Goal: Understand class of regular functions w.r.t. MinInc 
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Weighted Automata  

 Weighted Automata: 

 Nondeterministic automata with edges labeled with costs 

 

 Interpreted over the semiring cost model:   
 cost of string w = min of costs of all accepting paths over w 

 cost of a path = sum of costs of all edges in a path 

 

 Widely studied (Handbook of Weighted Automata, Droste et al) 

 Minimum cost problem solvable 

 Equivalence undecidable over (N, min, +) 

 Not determinizable 

 Natural model in many applications 

 Recent interest in CAV/LICS community for quantitative analysis 
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CRA over Min-Inc Semiring 

C / y:=y+1 

M / x:=min(x,y); y:=0 

 

Output = Minimum number of coffees consumed during a month 

min(x,y) 
y:=0 

x:=Infty 
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CRA(min,+c) = Weighted Automata  

 From WA to CRA(min,+c): 
 Generalizes subset construction for determinization 

 For every state q of WA, CRA maintains a register xq 

 xq = min of costs of all paths to q on input read so far 

 Update on a: xq := min { xp + c | p –(a,c)-> q is edge in WA} 

 

 From CRA(min,+c) to WA: 
 State of WA = (state q of CRA, register x) 

 min simulated by nondeterminism 

 To simulate p – (a, x:=min(y,z)) -> q  in CRA,  

  add a-labeled edges from (p,y) and (p,z) to (q,x) 

 Distributivity of + over min critical 
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CRA(min,+c) > Min-Plus Regular Functions  

Thm: The class of regular functions w.r.t. Min-Inc semiring is a 
strict subset of weighted automata 

 

Above function is not regular: cost term is quadratic in input 

 

 

 

C/1 S/1 

M 

S,M C,M 

Input w: w1 M w2 M … M wn 

Each wi in {C,S}* 

ci = Number of C’s in wi 

si = Number of S’s in wi 

 

Cost(w) = minj { c1+…+cj+sj+1+…+sn} 
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Machine Model for Semiring Regular Functions  

 Updates to registers must be copyless 
 Each register appears at most once in a right-hand-side 

 Update [x,y] := [min(x,y),y] not allowed 

 Necessary to maintain “linear” growth 

 

 Need ability to simulate substitution 
 Register x carries two values c and d 

 Stands for the parameterized expression min(c, ?)+d 

 Besides min and inc, can substitute ? with a value 

 

 Resulting model coincides with regular functions over semiring 

 

 Open: Decidability of equivalence over (N, min , +c) 
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Discounted Cost Regular Functions 
 

 Basic element: (cost c, discount d) 

 Discounted sum: (c1,d1)*(c2,d2) = (c1+d1c2, d1d2) 

 Example of non-commutative monoid 

 Classical Model: Future discounting 
 Cost of a path: (c1,d1) * (c2,d2) * … * (cn,dn) 

 Polynomial-time algorithm for “generalized” shortest path 

 Past discounting 
 Cost of a path: (cn,dn) * (cn-1,dn-1) * … * (c1,d1) 

 Same PTIME algorithm works for shortest paths 

 Prioritized double discounting 
 Cost = (c1,d1) * … * (cn, dn) * (c’1,d’1) * … * (c’n,d’n) 

 Shortest path: NExpTime algorithm  

 Open: Shortest path for Discounted Cost Register Automata 
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Conclusions 

 Streaming String Transducers and Cost Register Automata 
 Write-only machines with multiple registers to store outputs 

  

 DReX: Declarative language for string transformations 
 Robust expressiveness with decidable analysis problems 

 Prototype implementation with linear-time evaluation 

 Ongoing work: Analysis tools 

 

 Emerging theory of regular functions 
 Some results, new connections 

 Many open problems and unexplored directions 
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