
Automated Refinement Checking of
Asynchronous Processes

Rajeev Alur

University of Pennsylvania
www.cis.upenn.edu/~alur/

Intel Formal Verification Seminar, July 2001

Refinement Checking
Problem

Given two descriptions of the same design Imp and Spec,
check if every behavior of Imp is allowed by Spec:

Imp < Spec

Why relevant ?
Writing Spec as another state machine may be easier than

listing all temporal logic formulas of interest
Promotes hierarchical design by successive refinements

Examples
Cache-coherent memory < Abstract serial memory
Pipelined implementation < ISA spec

Point-to-Point Protocol

! Popular networking protocol for
establishing connections remotely

! Goal: To verify the actual implementation
! Specification: RFC 1661 (standard)

– Specified in tabular format
! Implementation: ppp version 2.4.0

– available in various Linux distributions
– C code

Why Modular Reasoning?

! Behavior of a
component can be
computed from
behaviors of its parts

! Components can be
analyzed in isolation

!Assume-guarantee rules
-> Scalable analysis

Goal: Composable Behavioral Interfaces!

Model Checker MOCHA

Joint project with UC Berkeley
Innovations aimed at exploiting modularity

Modeling language: Reactive Modules
Requirements: Alternating Temporal Logic
Symbolic model checking
Game-based abstractions
Hierarchical reduction algorithms
Assume guarantee reasoning

Available from www.cis.upenn.edu/~mocha
www.eecs.berkeley.edu/~mocha

Talk Outline

" Motivation
! Refinement check as Reachability
! Assume-Guarantee Reasoning
! Hierarchical Reduction
! Case studies

Reactive Modules
• Hierarchic modeling using composition, hiding,

and instantiation
• Well-typed communication interface
• Compositional semantics

module = (inputs, outputs, traces)

• Proof calculus for simplifying verification goals

• Both synchronous and asynchronous systems

• Modeling of open systems

Weak Refinement
• Standard Refinement: inclusion of

trace sets (set of traces of Imp is
included in the set of traces Spec)

• Modeling of Asynchrony: a process may
idle or take a step in each round
(speeds of different components are
independent)

• Weak refinement: Trace inclusion, but
traces differing only due to stuttering
are equivalent

Refinement Check by Search
Suppose all vars of Spec are part of Imp

Imp (x1,x2,…,xk,y1,y2,… ym) < Spec(x1,x2,…,xk)
Then, for every reachable state s of Imp, check

Search can be performed enumeratively or symbolically
If Spec has additional variables, user must supply their

definitions in terms of Imp variables
Imp inherits all properties of Spec

Refinement -> Reachability

• Goal: To check I < S
• If S has private variables, complexity

of automatic check too high
• Solution: Introduce a module W that

defines private vars of S in terms of
vars of I (Cospan, Mocha, SMV)

• Checking I || W < S involves
reachability analysis

• Can construction of W be automated ?

Automatic Witness Construction

• First strategy: Pick W to be Priv(S) (part
of S that controls its private vars)

• Doesn’t work for asynchronous processes
• Our strategy: Pick W to be Eager(Priv(S))

(stutter only when all else is disabled)

P=0
I=0

P=1
I=1

Spec transition

true

P=1

P=0

I=0 & I’=1

Witness transition

else

Witness Construction

! Eager(P) can be viewed as a locally
determinized version of P

! If S is deterministic, checking I<S reduces
to reachability of analysis of IxS (i.e. update
rules for union of variables of I and S)

! Sound, but incomplete, method
! Eager(P) can be constructed easily by

syntactic transformation
! Works surprisingly well

Talk Outline

" Motivation
" Refinement check as Reachability
! Assume-Guarantee Reasoning
! Hierarchical Reduction
! Case studies

Decomposing Refinement Check

! Goal: Reduce I < S to simpler subgoals
! Strategy: I is a composition of many

components, so exploit that structure
!If I is I1||I2, rewrite S as S1||S2, so that

S1 is abstraction of I1 and S2 is abstraction
of I2

! Powerful technique, but requires expertise
and “clean” interfaces

Compositional Rule
To prove

refinesI1 I2 S2

It suffices to prove

< <andI1 I2 S2
S1

S1

Assume Guarantee

! Intuition: Proving I1<S1 may require assumptions
about the inputs to I1

! Strategy: Use S2 (the specification of I2) as the
assumption about the inputs to I1

! Circularity: S1 is established assuming S2 and S2
is established assuming S1

! Not always valid! (key to proof is “non-blocking”
interaction, and non-empty trace-sets)

! Long history: Starks85, ChandyMisra88,
AbadiLamport93, AlurHenzinger96, McMillan97…

Assume-Guarantee Rule
To prove

refinesI1 I2 S2

It suffices to prove

and

<

<

I1

I2

S2

S2S1

S1

S1

Talk Outline

" Motivation
" Refinement check as Reachability
" Assume-Guarantee Reasoning
! Hierarchical Reduction
! Case studies

Hierarchic Reduction
• Typical on-the-fly search strategies do not

exploit architectural hierarchy
• Compositional minimization works bottom-up
• Can we combine the advantages of the two?

• Solution based on transition hierarchies
Simple reduction strategy based on compressing

internal moves (AW: Concur’99)

Tree Architecture

Root

Join

Join0 Join1

Client00 Client10Client01 Client11

E = Root||Join||Join0||Join1||Client00||Client01||Client10||Client11

Definition of next operator
Next ΘΘΘΘ for P executes P transitions until it

encounters a transition in ΘΘΘΘ.

Correctness: If ΘΘΘΘ includes all “visible” transitions
Then P and Next ΘΘΘΘ for P are weakly-similar

0

2

3

1

4

ΘΘΘΘ

ΘΘΘΘ

P

1

4

0

Next ΘΘΘΘ for P

State-Space Reduction

P
0

2

3

1

4

ΘΘΘΘ

ΘΘΘΘ

A

B

C

Q

ΣΣΣΣ

0A

1A

3A

2A

4A

0B

1B

3B

2B

4B

0C

1C

3C

2C

4C

P || Q

R(next ΘΘΘΘ for P || next ΣΣΣΣ for Q) has blue nodes
R(P || Q) has blue and green nodes

Methodology

• Given E = P || Q || R … and an invariant φφφφ,

check whether “E satisfies φφφφ”?

• Transform E to E’ by inserting hide and next so

that “E satisfies φφφφ” reduces to “E’ satisfies φφφφ”

• Basis for computation of E’:

weak simulation preorder and what is visible.

• Search algorithm is used to solve “E’ satisfies φφφφ”

Symbolic Search Algorithm
! Problem:

– How to search an expression with nested
applications of next and parallel composition?

! Goals:
– On-the-fly: states should be explored on

demand
– Avoid precomputing transitive closures
– Store only states
– Early detection of violation of requirements

Parity Computer Example
Root

Join

Join0 Join1

Client00 Client10Client01 Client11

req ack

req0 req1

req00 req01 req10 req11

ack0 ack1

ack00 ack10ack01 ack11

E’ = Root||NEXT[Join||
NEXT(Join0||Client00||Client01)

NEXT(Join1||Client10||Client11)
]

Space Comparison (MDD nodes)

PPP H.R. IWLS
No sift 1,007,719 1,171,598

sift 186,589 166,320

4 5 6 7
H.R. 3804 7200 8971 9516
IWLS 3452 12133 25536 15725

DME

PPP

Automatic Hierarchical Partitioning

For a set of processes, which architectural hierarchy
is “better”?

DCBA DCBA

Influences the order of composition and hiding
• Relevant for compositional minimization
• Affects performance of hierarchical reduction

Optimization Problem

Processes as vertices: { A, B, C, D}
Variables as hyperedges: x:{A,B} y:{C,D} z:{A,B,C}

Cost = 4
x:1, y:1, z:2

DCBA

x y

z

Cost = 5
x:1, y:3, z:1

D

C

BA

x

y

z

Hierarchical Partitioning

! Input: Hypergraph (V,E)
– V: set of processes
– Each edge corresponds to a variable, and is a subset of V

(processes that access it)
! Output: Tree T over V (hierarchical partition)
! Cost of T: sum of heights of all edges

– Ht of e: ht of lowest node where e is visible
! Goal: Optimize cost of T
! Problem is NP-hard
! Greedy heuristic (implementation + experiments)

Talk Outline

" Motivation
" Refinement check as Reachability
" Assume-Guarantee Reasoning
" Hierarchical Reduction
! Case studies

Refinement Verification
! Goal: Given two models Imp and Spec,
verify that Imp refines Spec

! Methodology:
Step 1: Using compositional rules, generate
simpler subgoals

Step 2: For each subgoal I < S, introduce a
witness module W, and reduce the check to
reachability analysis of I || W

Step 3: Apply an efficient reachability check

DME Example

• High-level description:
– A virtual token is passed around a ring of cells.
– Any cell which gets the token has the right to

access the critical section.
– A cell asks its right neighbor for the token.
– A cell passes the token to the left when done.

• Low-level description:
– The implementation is built on logic gates.
– No virtual token is defined in the implementation.

DME Refinement
Automatic witness construction works

W|| <

Point-to-Point Protocol

! Popular networking protocol for
establishing connections remotely

! Goal: To verify the actual implementation
! Specification: RFC 1661 (standard)

– Specified in tabular format
! Implementation: ppp version 2.4.0

– available in various Linux distributions
– C code

PPP Verification

! Focus on option negotiation aspect of
protocol

! Manually constructed module I from C-code
! Manually translated RFC spec to module S
! Goal: To verify I < S
! Result: Discovered an inconsistency in the

code wrt specification

Assume Guarantee Reasoning

GOAL:

I0 I1 < S0 S1

LINK

REDUCES TO

I0 S1 < S0

LINK

More Case Studies

! DHCP: Dynamic host configuration protocol
for mobile networks
– Specification: RFC 2131
– Implementation: dhcp version 2.0 patch 5

! Traditional examples in refinement setting
– DME
– Leader election
– Tree-structured req-ack template

! Hierarchical reduction can be beneficial

References

! Mocha: A model checker that exploits design
structure (ICSE’01)

! Automatic refinement checking for asynchronous
processes (A,Grosu,Wang, FMCAD’00)

! Verifying network protocol implementations by
symbolic refinement checking (A,Wang, CAV’01)

! Heuristics for hierarchical partitioning (A,
Moller, CHARME’01)

Analysis of hierarchical state machines

! Transition relation is indexed by control points
• generalization of conjunctively partitioned bdds,

! Transition type exploited
• for early quantification in the symbolic search,

! Reached state space indexed by control points
• pool of variables is not global,

Modes: Mode M1

Submode
M2

Reads: x
Writes: y
Local: z

