Quantitative Network Monitoring with NetQRE

Yifei Yuan Dong Lin Ankit Mishra
University of Pennsylvania LinkedIn Inc. University of Pennsylvania
yifeiy@cis.upenn.edu dolin@linkedin.com mankit@seas.upenn.edu
Sajal Marwaha Rajeev Alur Boon Thau Loo

University of Pennsylvania
sajalm@seas.upenn.edu

ABSTRACT

In network management today, dynamic updates are required for
traffic engineering and for timely response to security threats. De-
cisions for such updates are based on monitoring network traffic
to compute numerical quantities based on a variety of network
and application-level performance metrics. Today’s state-of-the-art
tools lack programming abstractions that capture application or
session-layer semantics, and thus require network operators to
specify and reason about complex state machines and interactions
across layers. To address this limitation, we present the design and
implementation of NetQRE, a high-level declarative toolkit that
aims to simplify the specification and implementation of such quan-
titative network policies. NetQRE integrates regular-expression-like
pattern matching at flow-level as well as application-level payloads
with aggregation operations such as sum and average counts. We
describe a compiler for NetQRE that automatically generates an ef-
ficient implementation with low memory footprint. Our evaluation
results demonstrate that NetQRE allows natural specification of a
wide range of quantitative network tasks ranging from detecting se-
curity attacks to enforcing application-layer network management
policies. NetQRE results in high performance that is comparable
with optimized manually-written low-level code and is significantly
more efficient than alternative solutions, and can provide timely
enforcement of network policies that require quantitative network
monitoring.

CCS CONCEPTS

» Networks — Network monitoring; Programmable networks;

KEYWORDS

NetQRE, network monitoring language, quantitative regular ex-
pression

ACM Reference format:

Yifei Yuan, Dong Lin, Ankit Mishra, Sajal Marwaha, Rajeev Alur, and Boon
Thau Loo. 2017. Quantitative Network Monitoring with NetQRE. In Proceed-
ings of SIGCOMM 17, Los Angeles, CA, USA, August 21-25, 2017, 14 pages.
DOI: 10.1145/3098822.3098830

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGCOMM 17, Los Angeles, CA, USA

© 2017 ACM. 978-1-4503-4653-5/17/08...$15.00

DOI: 10.1145/3098822.3098830

University of Pennsylvania
alur@cis.upenn.edu

University of Pennsylvania
boonloo@seas.upenn.edu

1 INTRODUCTION

Network management today often requires dynamic updates in
response to traffic engineering and security events. For example, in
data centers, heavy hitters [8, 40] need to be detected in real-time
and bandwidth limits may be imposed on them. Within an enter-
prise network, users can be rate-limited if they exceed quotas on
their application usage. Network traffic anomalies that are detected
require immediate mitigation strategies to block potential security
attacks [22].

Decisions for such updates require quantitative network moni-
toring capabilities, which is a combination of monitoring a variety
of network and application-layer performance metrics with known
traffic patterns, and the real-time computation of quantitative ag-
gregate values that are used as a basis for network configuration
updates in order to meet performance and security goals.

Imperative languages provide low-level abstractions, which makes
it cumbersome to perform complex quantitative analysis on packet
streams. To illustrate this difficult, we consider a quantitative net-
work monitoring task of detecting two well-known denial-of-service
attacks: Slowloris [36] and the SSL renegotiation attack [6]. The
former attack requires tracking TCP connections, and raising an
anomaly when the number of bytes transferred is unusually lower
than normal. The latter attack requires identifying traffic signature
patterns for TLS renegotiations, and counting the number of such
renegotiations across multiple HTTP sessions. Detecting both at-
tacks require identifying HTTP or TCP traffic in packet streams,
extracting out attack patterns, and monitoring quantitative values
to identify possible anomalies. As new packets arrive, state has to
be incrementally updated as TCP sessions are established and torn
down. A more natural and intuitive approach for a programmer
to detect these attacks is to provide a framework to express these
monitoring tasks in a modular way, i.e., define the pattern of a TCP
connection or HTTP request, recognizing data transfer packets for
the connection or TLS renegotiations, and then aggregating traffic
rates or renegotiation counts as connections are established.

Quantitative network monitoring is not only restricted to se-
curity use cases, but are also useful for enforcing network man-
agement policies based on a given application-level metric. For
example, we consider a policy that aims to enforce a particular
bandwidth quota for a given application (e.g. VoIP) on a per-user
basis. This policy requires identifying VoIP traffic in packet streams,
manually maintaining state across packets to detect the start of
each VoIP session, extracting out user information, and monitoring
aggregate VoIP usage per user even as their IP address is updated.
Supporting such monitoring functionality requires identifying VoIP

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

session for each user from input packet streams, monitor usage for
each identified VoIP session, and aggregating usage across all VoIP
sessions grouped-by all users being tracked.

Today, there are several point-solutions to support certain as-
pects of quantitative network monitoring. However, they suffer
from one or more of the following limitations. First, a large ma-
jority of network measurement tools focus on flow-level measure-
ments [15, 18, 19, 39-41] that do not capture application-level or
session-level semantics. This excludes a range of policies that are
application-dependent, for example, tracking security signatures at
the application level or rate-limiting users based on their VoIP call
usage. Second, these tools tend to provide ad-hoc solutions that are
difficult to generalize or customize. Programming frameworks for
software-defined networks (SDN) [21, 30, 32], do not support inte-
gration with queries beyond basic flow-level counters, and none of
these languages support quantitative monitoring at the application
or session level. Finally, tools such as Bro [33] requires network
operators to have significant programming expertise to implement
state machines and reason about state transitions.

To address the above limitations, we present NetQRE, a practical
tool aimed at simplifying the specification and implementation of
quantitative network policies. Our proposal is based on the observa-
tion that traffic patterns such as a TCP connection and a application-
level session can be specified using regular expressions, which are
an abstraction that network operators who may not be well-versed
in programming find natural to use. Regular expressions are widely
used in systems management, for example, in the popular grep tool
for searching for patterns in systems logs, application-level packet
classification [1], signature-based attack detection [3, 34]. We make
the following contributions.
© NetQRE language. We present the NetQRE declarative language
that provides high-level abstractions and express a variety of quan-
titative policies that span multiple packets grouped into flows and
application-level sessions. NetQRE is based on novel theoretical
foundation of parameterized quantitative regular expressions (PQRE).
PQRE extends prior work on QRE [9], which provides a formal foun-
dation of combining traditional regular expressions with numerical
computations. NetQRE integrates regular-expression-like pattern
matching at flow-level and application-level payloads with aggre-
gation operations such as sum and average counts. The language
further supports quantitative network policies by allowing actions
on packets to be generated as output of monitoring applications.
o Compilation and efficient runtime system. We developed a
compiler that can automatically generate efficient NetQRE imple-
mentations with low memory footprint. As part of the compilation
process, the compiler automatically infers the state that needs to
be maintained for NetQRE programs, and optimizes the compiled
imperative code. A NetQRE runtime then executes the generated
code efficiently. In fact, this process also eases the burden on pro-
grammers having to handwrite optimized versions in low-level
code.

o NetQRE implementation and evaluation. We have developed
a NetQRE prototype which we evaluate over a range of quantita-
tive network monitoring tasks. Our evaluation results demonstrate
that NetQRE can express a wide range of quantitative network
policies with no more than 18 lines of code, while specifying them

Y. Yuan, D. Lin, A. Mishra, S. Marwaha, R. Alur, and B.T. Loo

in imperative languages requires at least 100 lines of code. The
compiled implementations incur no more than 9% overhead in
throughput compared with optimized manually-written low-level
code, are able to handle more than 10Gbps of traffic using a single
core (and is amenable to parallelization), and are significantly more
efficient (e.g. 11X) compared to monitoring solutions based on Bro
and OpenSketch [40].

2 OVERVIEW

NetQRE
- il -
Ppl}cy ' compier . Policy '
specification implementation
in NetQRE packets I lacﬁons

|
O raw packets | J updates

Figure 1: NetQRE Architecture.

Fig. 1 shows the architecture of NetQRE. To program a quantita-
tive network monitoring task, a programmer simply specifies this
monitoring task in a declarative fashion by viewing the input as a
stream of packets. The NetQRE compiler automatically generates ef-
ficient low-level imperative code that implements the specification.
Each incoming raw packet from the network is first parsed and pre-
processed by the runtime into a form that can be referenced by the
monitoring implementation. In our deployment, NetQRE relies on
the underlying runtime to handle packet reordering and retries (if
needed) due to losses in TCP connections, and also fragmentation
and defragmentation of IP packets. The stream of processed packets
are then sent to the appropriate NetQRE program for execution.

As the NetQRE compiled program executes, the incoming pack-
ets are processed in a streaming fashion. The output of a NetQRE
program is the generation of analysis results or actions taken to
reconfigure the network. The NetQRE tool can be deployed in differ-
ent settings, for example, a tap on a SPAN port analyzing mirrored
traffic, an inline solution, or running in the cloud as a virtualized
middlebox. Our language design and compiler is agnostic to the
deployment setting. While we focus on packet stream processing
in this paper, the NetQRE language and compilation is agnostic to
the input stream and can handle any item streams (e.g. raw packets,
email messages, video frames).

2.1 Motivating Example

As a motivating example, we consider a network management pol-
icy where an enterprise monitors the usage of Voice-over-IP (VoIP)
for each user, and alert the user whose usage is significantly higher
than the average usage over all users. The actual language specifica-
tion will be described in later sections. We provide a high-level intu-
ition of programming language features necessary to support this
policy. Note that our examples are not solely limited to VoIP. Sec-
tion 4 provides more examples to showcase the wide-applicability
of NetQRE, and our evaluation section has a detailed listing.

Quantitative Network Monitoring with NetQRE

We use the Session Initiation Protocol (SIP) used in VoIP applica-
tions as our example. Typically, a call based on SIP consists of three
phases, init, call, and end. In the init phase, the caller and the callee
exchange messages (e.g. call ID, user name, the connection channel)
in order to set up the call session. Once established, the call phase
allows VoIP data to be transmitted between the caller and callee
using the channel defined in the first phase. Finally, either side can
end the call as shown in the end phase.

To analyze the SIP call in the midst of network traffic from all
types of protocols, the protocol analyzer is required to (1) identify
all SIP traffic traversing the network, (2) separate the SIP traffic
into different sessions for different caller/callee pairs, (3) group
packets within each session into phases (init, call, and end), and
then perform a count of bytes only within the second (call) phase.

NetQRE offers a natural programming model to implement this
policy. Conceptually, the input to a NetQRE program is modeled as
a stream of packets. The programmer may assume that all received
packets have been stored and presented as the input. Based on
this input, NetQRE then provides programming abstractions for a
programmer to implement various functions to process the stream.
These functions can then be composed in a modular fashion to
implement the quantitative policy. Using the VoIP example, the
programmer specifies a filter function to identify SIP traffic of each
user, an iteration function that splits the SIP traffic stream into a
sequence of VoIP sessions, a split function that further breaks up
each VoIP session into the three phases, and finally, an aggregation
function that sums up the total bandwidth in the call phase.

These functions are specified by users in a declarative fashion,
and composed together in a fashion that requires users to only
think in terms of protocol patterns over multiple packets. Explicit
state maintenance to track session state is handled by the NetQRE
runtime. Note that this programming model is a conceptual one,
and the actual execution is optimized by our compiler. For example,
it will incur unacceptable storage and performance overhead if
the runtime system has to log all incoming packets and present
them as a program input. We have implemented a NetQRE compiler
which compiles a NetQRE program into an optimized imperative
program. The compiler automatically infers the states that needs to
be maintained for the NetQRE program, and generates execution
code that implements a streaming algorithm to update the states
for each input packet, and evaluate the output in an incremental
way at runtime.

2.2 Alternative Approaches

To implement this policy in a low-level language, a programmer
often faces the challenges such as what state needs to be maintained
and updated in order to track the progress of the SIP protocol. The
programmer also needs to track each user’s media traffic based on
the correct SIP state and aggregate the average VoIP usage across all
users. This makes the implementation of the policy highly coupled
with the low-level implementation of the SIP protocol. While indi-
vidual filter, split and aggregation functions can be implemented
in a low-level language, composing them together to implement
the correct functionality is challenging. Although there are tools
today for VoIP monitoring (e.g. [17]), they lack extensibility to sup-
port other applications and policies. For example, if a new policy

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

requires to monitor video usage instead of VoIP, one has to use
other tools.

Recently proposed domain-specific languages and tools cannot
address this problem either. For example, traffic measurement tools
typically focus on per source-destination traffic measurement and
cannot be used to monitor an application’s usage. SDN program-
ming frameworks only offer basic flow statistics based on flow-level
counters on switches, and do not have the abstraction to address
the above mentioned challenge. Event-based intrusion detection
systems (IDS) such as Bro [33] generate high-level events at the
session level and application level from network traffic. However,
their focus is primarily on intrusion detection, and hence lack lan-
guage primitives that make it natural to support a wide range of
quantitative monitoring capabilities. For example, we observe that
it is feasible to implement an analyzer that counts the number of
VoIP calls using Bro, but significantly harder to further identify
the packets corresponding to the call phase to calculate bandwidth
utilization. Bro also requires the user to be an expert programmer
knowledgeable with state machine models.

3 THE NETQRE LANGUAGE

In NetQRE, a packet is modeled as a sequence of bytes, and we use
parsing functions to extract information from the packet. Common
parsing functions include srcip which returns the source IP of the
packet, srcport (source port), syn (SYN bit), data (bytes in payload),
and time (the time stamp on receipt of the packet). The parsing
functions can be customizable by the user, for example, to extract
application-level headers.

Values, variables and functions in NetQRE are typed. NetQRE
offers basic types, such as int, bool, string, as well as a set of domain-
specific types, such as 1p (IP addresses), Port (TCP and UDP ports),
packet (all packets), and action. The action type consists of pre-
defined functions that either generate alerts or send updates to
switches. NetQRE also provides high-level types such as conn (tu-
ples of source IP-port and destination IP-port), which is used for
TCP and UDP packets.

NetQRE offers a convenient way to write stream functions to
process packet streams. A stream function takes as input a stream
of packets, and produces as output values (e.g. monitoring results
to an application), actions (e.g. alerts to the controller), or packets
(e.g. packets filtered from an application). A stream function can be
specified as below.

sfun type func_name(type var) = exp;

The stream function declaration includes the keyword sfun, returned
type of the stream function, followed by the name of the function.
Any other arguments are specified following the function name.
The body of each stream function (right-hand-side to ’=’) consists
of expressions which are used to specify the functionalities of the
stream function.

Figure 2 shows a summary of the syntax of NetQRE expressions.
Expressions in stream functions are based on the theoretical founda-
tions of quantitative regular expressions (QRE) [9], a novel proposal
that integrates regular expressions with numerical computations.
In the rest of this section, we describe the features of NetQRE ex-
pressions in stages. We first introduce how to use an extension to
regular expressions to detect patterns of the input stream. Second,

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

Predicate P =] [field = value]
| [field = variable]
| P&P | (P ||’ P) | 'P

Regular Exp. re ==Plrere|re*|re‘||'re
Conditional cond u=exp?exp|exp?exp:exp
Aggregation agg = aggop { exp | type variable }
aggop :=sum | avg | max | min
Split split == split(exp , exp, aggop)
Iteration iter = iter(exp, aggop)
Composition comp ::=exp >> exp
Expression exp :=value | action | op exp

| exp op exp | re | cond
| agg | split | iter | comp

Figure 2: Syntax of NetQRE expressions.

we discuss how to associate values and actions for the stream. Fi-
nally, we describe a set of high-level operations that allow modular
programming of stream functions.

3.1 Pattern Matching over Streams

The basic feature of NetQRE is to detect the patterns of the input
packet stream. As the basic building block, NetQRE uses an exten-
sion of regular expressions, to which we refer as parameterized
symbolic regular expressions (PSRE), for pattern matching over the
input stream. Regular expressions (RE) are widely used for pattern
matching over strings (sequences of bytes). Typically, a RE uses
a fixed finite alphabet, and the atoms in a RE are symbols in the
alphabet. In NetQRE, a PSRE generalizes a RE in the two ways.

First, the atoms in a PSRE are predicates over packets instead of
single symbols, which allows a PSRE to handle very large and po-
tentially infinite alphabet. This property makes PSRE an appealing
fit for customized network filtering, since the space of packets is
often very large and typically one is only interested in the values
of some fields in a packet (e.g. the source and destination) instead
of the whole packet itself.

Second, PSRE allows the use of parameters to represent unknown
values in the predicate. With this generalization, a PSRE can detect
a variety of patterns using different instantiation of the parameters.
As a result, it allows the programmer to specify applications such
as counting the number of distinct IP addresses appeared in the
stream, which is hard, if not impossible, to be specified without
parameters, because no concrete predicates can be defined without
knowing those IP addresses at runtime.

Predicate. A basic packet predicate [f = v] checks whether the
value in the field f of a packet is v. As an example, the predicate
[srcip="1.0.0.1'] matches all packets whose source IP address is
1.0.0.1. As an example of the use of parameters, [srcip=x] defines
a function from the domain of x (i.e. IP addresses in this case) to
a concrete predicate over packets. We also use . to denote the
predicate that matches all packets. Predicates can be composed
using standard boolean combinations. NetQRE also provides handy
macros for widely used predicates. For example, is_tcp(c) is a short-
hand for the predicate that matches a TCP packet in the connection

C.

Y. Yuan, D. Lin, A. Mishra, S. Marwaha, R. Alur, and B.T. Loo

PSRE. Like REs, the basic operations for a PSRE are concatenation,
union and Kleene star. For example, /[syn=1][syn=01+/ matches a
stream of packets where the first packet is a SYN packet followed
by a sequence of non-SYN packets (including 0 non-SYN packets).
Note that, syntactically, predicates are enclosed in square brackets
and a PSRE is enclosed in a pair of slashes in NetQRE, and = is the
Kleene star operator. To illustrate the use of parameters, consider
the example to count distinct source IP addresses in the stream.
The core PSRE to implement this example is the function exist(x)
which checks whether a source IP x appeared in the stream. The
function can be specified using the PSRE as below.

sfun bool exist(IP x) = /.x[srcip=x].*/;

We defer the discussion of the full expression for this example in
§3.5.

3.2 Conditional Expressions

Given the pattern matching capability for the input stream, it is
natural to use conditional expressions to incorporate PSRE with
other values and actions in order to assign cost/generate actions to
the stream.

In NetQRE, a conditional expression has the form exp? expy,
where, exp is an expression that returns boolean values such as
a PSRE defined above, and exp; is an expression in NetQRE. A
stream evaluated to true by exp will be applied to exp1, otherwise
this expression is not defined and returns undef.

For example, the expression /./?1 returns 1 if the stream matches
the PSRE /./ (i.e. the stream consists of a single packet), otherwise
it returns undef; the expression /.x/?size(last) returns the size of
the last packet in the stream. The keyword 1ast denotes the last
received packet in the input stream. As another example, (count>k)?
alert returns an action alert when the total number of packets in the
stream is larger than k. Here, count is a stream function that counts
the number of packets in the stream, and alert is a pre-defined
action to generate an alert event, for example, to a controller node.
These actions are a basis for implementating quantitative network
policies using NetQRE.

A conditional expression can also be specified as exp? exp; : expa,
which applies exps to the stream if exp is not satisfied. To ensure
the consistency, exp; and exps should return the same type for
the stream. As an example, the expression /[srcip="1.0.0.1'1/?1:0

returns 1 if the stream contains a single packet with source IP
1.0.0.1, and it returns o if the stream contains multiple packets, or
the only packet in the stream does not have the source IP.

3.3 Stream Split

In many network applications, the input stream consists of multiple
phases. For example, a VoIP call splits into three phases as shown in
the motivating example. It is convenient to handle different phases
of the stream separately, and combine the results of each phase in
a modular way. Following the operators defined in Quantitative
Regular Expressions [9], NetQRE uses the split operator to split
the stream and compose two stream functions.

A stream split expression has the form split(f,g,aggop), where
f and g are two expressions, and aggop is an aggregation operator
such as sum, avg (average), max, and min.

Quantitative Network Monitoring with NetQRE

For an input stream p, a split function splits p into two sub-
streams p; and py, such that f is defined on the first substream p;
and g is defined on py. f and g are applied respectively to the two
substreams, and the returned value is aggregated using aggop, as
the return value of split(f,g,aggop). The split operation is a natural
quantitative generalization of the concatenation operation in regu-
lar expression, and Fig. 3 illustrates how a split expression works.

P1 Unique spIitl P2

~ | +
f g
1 : 3

Returns: aggop (v1 , v2)

Figure 3: Illustration of split.

Note that, in order to return a unique value for a split expression,
it is required that the splitting is unambiguous. That is, for all
input streams and all values of parameters in the expression, there
is at most one way to split stream for f and g. The property of
unambiguity can be checked efficiently at compile time [9]. When
no unambiguous splitting is possible, the split expression returns
undef for the input stream.

As an example of split, consider the example of counting the
number of packets since the last SYN packet in the stream. Naturally,
one can split the stream into two substreams separated by the
last SYN packet, and count the number of packets in the second
substream, as shown in the following expression.

split(any?0, last_syn?count, sum)

Here, any is the PSRE /.x/ that matches any packet streams, and
last_syn is the PSRE /[syn=11[syn=01%/ that matches a stream that
starts with a SYN packet followed by non-SYN packets. Putting
together, the split expression splits the input stream before the
last appearance of a SYN packet. Note that the first substream is
assigned the value 0, while the second substream is applied to the
count function (defined later in §3.4) to count the number of packets.

3.4 Stream Iteration

A network application often requires to iterate over the input stream.
For example, counting the number of packets in the stream requires
to iterate over all single packets.

Similar to the split expression, NetQRE offers the iter opera-
tor to iterate over the stream. An iter expression is of the form
iter(f,aggop), where f is an expression in NetQRE and aggop is an
aggregation operator. The iter expression splits the input stream
into multiple substreams, such that f is defined on each substream.
It then iterates through all substreams and evaluates f on each sub-
stream, and finally aggregates the return value on each substream
using the aggregation operator. The iter operator is a quantitative
generalization of the Kleene star operation, and Figure 4 illustrates
this process. Again, the splitting is required to be unambiguous for
all input streams to f.

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

P1 P2 | Pr

DA D DA D~ DI PP XK
- \(S ‘%VQ“ ‘ﬁ—/
f ‘ f ‘ ‘ f
I 2 I
aggop(v; V, . e v,)

Figure 4: Illustration of iter.

As an example, the function count that counts the number of
packets in the stream can be specified below.

sfun int count = iter(/./?1, sum)

This function splits the stream into single packets, and the inner
expression returns 1 for each single packet. As a result, the whole
iter expression counts how many packets in the stream.

3.5 Aggregation over Parameters

Aggregation is a common feature that many network monitoring
applications share. For example, computing the average flow size
needs to aggregate the average size across multiple flows. NetQRE
offers high-level aggregation expressions to aggregate functions
over parameters.

Aggregation expressions are of the form aggop{f | T x}, where
x is a parameter with its type T, and f is an expression where the
parameter x appears in it. Intuitively, the aggregation expression
goes through all possible values of x, and evaluate f using the
substituted value for x, and finally aggregates all valid return values
using the aggregation operator aggop. Revisiting the example of
counting distinct source IP addresses in a stream, we can use the
expression sum{exist(x)?1:@ | IP x}.

3.6 Stream Composition

Typically the input stream consists of packets from multiple sources
and destinations. Oftentimes, the programmer only wants to handle
a stream from a particular source, for example. NetQRE offers the
stream composition operator >> that allows to preprocess the stream
before applying another stream function.

Stream composition expressions are of the form f >> g where f
and g are two stream functions. The stream composition allows the
processing of a stream using the first stream function f repeatedly
on every prefix of the stream, and the returned outputs yield a new
stream that is then piped as the input stream to a second stream
function g. For example, if the stream contains two packets (P1, P2),
f is first applied to P; as a single-packet stream, and then (P, Py).
The output of f on the two substreams is then piped to g.

Stream composition is useful when the stream of packets need
to be preprocessed in order to filter related packets for further
processing. For example, counting the number of all packets in
a TCP connection ¢ can be specified using filter_tcp(c)>> count,
which first filters all TCP packets in the connection c using the
function filter_tcp, and then counts the filtered stream using count.
The function filter_tcp is defined as follows:

sfun packet filter_tcp(Conn c) =
/.x[is_tcp(c)]1/?last;

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

Filter functions are convenient and used extensively in our use
cases. As a short-land, NetQRE uses filter(p) for the filter function
that filters packets satisfying the predicate p. For example, the above
filter function can be abbreviated as filter(is_tcp(c)).

Stream composition can also be used to filter packets according
to timestamps. NetQRE builds in two filter functions based on
timestamps. The recent(t) function filters the stream in the recent t
seconds, and the every(t) function periodically filters the stream in
every t seconds. For example, recent(5)>>count counts the number
of packets in the recent 5 seconds. Since the two build-in filter
functions are not in the core of NetQRE, we only allow the use
of time-based filtering outside the high-level NetQRE operations
described above.

4 USE CASES

We provide use cases, ranging from flow-level traffic measurements,
to complex examples involving application-level content analysis
and dynamic updates. Since the high-level constructs in NetQRE
language is based on regular expressions, we can only support
queries for regular traffic patterns. Nevertheless, we note that this
covers a wide range of useful queries, as we will show in this section.
More examples can be found in our technical report.

4.1 Flow-level Traffic Measurements

We highlight two measurement tasks that have been proposed
recently as a means to do flow scheduling and attack detection.
Heavy hitter. Heavy hitters [19] are flows that consume band-
width larger than a threshold 1. A key step to identify a heavy hitter
is to count the size of a flow. In this example, we consider a flow as a
source-destination pair. A natural way to specify this functionality
is to first filter all packets from a source x to a destination y, and
then count the size of the filtered stream.

sfun int hh(IP x, IP y) =
filter(srcip=x, dstip=y) >> count_size;

hh first filters packets based on the source and destinations IP, and
second, the filtered stream is piped into count_size which counts
the size of all packets in the stream. Due to space limits, we do not
show the definition of count_size which is similar to that of count.

Second, to alert a heavy hitter in real time to the controller, we
can use the following program.

sfun action alert_hh =
(hh(last.srcip, last.dstip)>T) ?
alert(last.srcip, last.dstip);

The function alert_hh checks for every newly received packet (i.e.

last in the stream) that whether its flow reaches the threshold 1, and
issues an alert correspondingly. By further applying the time-based
filtering every(5)>>alert_hh, one can detect heavy hitters in every 5
seconds.
Super spreader. A super spreader [40] is the host that contacts
more than k distinct destinations during a time interval. Like the
use case of heavy hitter detection, a key step is to count how many
distinct destinations a source x contacted. The following NetQRE
program does this counting.

sfun int ss(IP x) =
sum{ exist_pair(x, y)?1:0 | IP y};

Y. Yuan, D. Lin, A. Mishra, S. Marwaha, R. Alur, and B.T. Loo

The function exist_pair(x,y) checks whether the source-destination
pair (x,y) appeared in the stream. The ss function uses an aggre-
gation function sum to aggregate all possible destinations, and thus
gives the total number of distinct destination addresses x contacted.

Similar to heavy hitter detection, we can use stream composition
to filter the input stream based on time as well as traffic types. For
brevity of the paper, we omit the discussion of these functionalities.

4.2 TCP State Monitoring

We next showcase applications that rely on monitoring the states
within a TCP flow.

SYN flood attacks. In this example, NetQRE is used to detect SYN
flood attacks by counting the number of incomplete TCP hand-
shakes in a time interval. We consider an incomplete TCP hand-
shake as a packet trace consisting of a SYN packet and a SYNACK
packet, with corresponding sequence number and acknowledge
number, but does not have a further ACK packet to complete the
handshake. As the key step, the following program counts the
number of incomplete handshakes, assuming that the input stream
consists of TCP packets between the same source and destination.

sfun int bad_tcp_pat(int x, int y) =
concat(syn(x), synack(y,x+1), no_ack(y+1));

sfun int incomplete_handshake_num =
sum{bad_tcp_pat(x,y)?1 | int x, int y};

The function bad_tcp_pat specifies the pattern of an incomplete
handshake: there is a SYN packet with a sequence number x in the
stream, followed by a SYNACK packet with acknowledge number
x+1 and sequence number y, and then followed by packets that do
not include an ACK with acknowledge number y+1 to complete the
handshake. The sum aggregation in incomplete_handshake_num sums up
the number of appearances of such patterns for all x and y. Using
the stream composition of filtering functions based on time and
packet type, the complete function can be specified as follows:

sfun int syn_flood(Conn c) =
recent (5) >>
filter_tcp(c) >>
incomplete_handshake_num>T?block(c.srcip);

Completed flows. Our next example counts the number of legiti-
mate flows that are completed, delineated by a SYN at the beginning,
and ending with a FIN. Note that the last iter uses the regular ex-
pression which matches a stream ending with a SYN and a FIN
packets, and no SYN-FIN pairs appear before. Therefore, the iter
expression splits the entire (filtered) stream into sessions where
each session contains exactly one complete flow.

sfun int count_flow(Conn c) =
filter_tcp(c) >>
filter (flag=SYN || flag=FIN) >>
iter (/[fin=11*[syn=11*[syn=1][fin=1]/?1, sum);

Slowloris attacks. We describe a detection of the aforementioned
Slowloris attack in NetQRE, based on computing the average rate
of packet transferring in all legitimate TCP connections, shown
below.

sfun double conn_rate = iter(tcp_pattern?rate, sum);
sfun double avg_rate =

sum{filter_tcp(c) >> conn_rate | Conn c}

/ sum{count_flow(c) | Conn c};

Quantitative Network Monitoring with NetQRE

First, to compute the rate of a legitimate TCP connection, we can
simply specify the pattern of a legitimate TCP connection using
RE, and compute its transferring rate (the rate function can be
specified easily and thus not shown here). Then we can iterate
all TCP connections given a 5-tuple, and compute the aggregated
transferring rate, as shown in the function conn_rate.

Second, we use sum operation to aggregate transferring rate across
traffic on all 5-tuples. Dividing the aggregated rate by the number
of flows computed using the function defined above gives us the
average transferring rate over all connections, as shown in avg_rate.

4.3 Application-level Monitoring

Our final example revisits the Voice-over-IP (VoIP) usage usecase
in §2.

Let us first focus on the function to monitor the usage of a VoIP
call based on a SIP connection sip_conn and media connection m_conn.
As introduced in §2, a VoIP call consists of three phases; and a
modular programming way is to handle the three phases using
three stream functions, and then compose them using the split
operator. The function is shown below.

sfun int usage_per_call(Conn sip_conn, Conn m_conn,

string user, string id) =
split(init(id,user,m_conn)?0,
call(m_conn)?count_size,
end(id)?0, sum);
Here, init, call and end are simply the PSREs that capture the pat-
terns of each phase. Note that the init and the end phase return a
value o, and only the usage of the call phase is counted, as required.

Next, a programmer can view the traffic using the SIP connection
sip_conn and the media connection m_conn as a sequence of calls.
Using the iter operator, the programmer can easily aggregate the
usage of all calls in the traffic, as shown below.

sfun int usage_per_conn(Conn sip_conn, Conn m_conn,

string user, string id) =
filter_sip(sip_conn, m_conn, user, id) >>
iter(split(any?0, usage_per_call(sip_conn, m_conn,
user, id), sum),sum);

Note that we first filter all traffic that belongs to sip_conn or m_conn, in
order to get the stream of interest. This filtering may result in non-
VoIP traffic between two VolIP calls, and thus we simply compose the
PSRE any with usage_per_call inside the iter expression, to handle
any traffic between two calls.

Now we can aggregate the usage for each user across multiple
connections and calls using the aggregation operation, and further
compute the average usage over all users, as shown below.

sfun int usage_per_user(string user) =

sum{usage_per_conn(sip_conn, m_conn, user, id) | Conn
sip_conn, Conn m_conn, string id};

sfun int average_usage =
avg{usage_per_user(u) | string u};

Suppose we need to implement a quantitative network policy
that sends an alert to the controller if a user’s usage is larger than
five times of average usage, we can simply specify the policy as
below.

sfun action alert_high_usage(string user) =

(usage_per_user (user) > 5xaverage_usage) ? alert(user

N

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

5 COMPILATION ALGORITHM

We next describe how to compile a NetQRE program into an effi-
cient executable that can run with low memory footprint. Typically
the stream of packets is very large, thus it is not feasible to store the
entire stream of packets. Therefore, the compiled program should
evaluate incrementally on each single incoming packet without
storing the history of the stream. To achieve this goal, we have to
address the following challenges. First, the compiled program needs
to maintain parameters in NetQRE in a succinct way. Second, in
order to implement the semantics of split and iter, these operations
have to be performed in a single online pass over streaming packets.
Lastly, the compiled program needs to handle aggregation expres-
sions over parameters. In the following subsections, we describe
the compilation of selected NetQRE expressions.

5.1 Compilation of PSRE

First, we describe the algorithm for compiling a PSRE, as the basic
building block for stream functions. Similar to traditional RE, a
PSRE can be translated to an equivalent finite state machine, which
we refer to as parameterized symbolic automaton (PSA). For example,
consider the following PSRE /.#[srcip=x1./. Intuitively this PSRE
checks whether there exists a packet with source IP x in the stream.
Its corresponding PSA is shown in Fig. 5.

sreip |=x true

Figure 5: An Example PSA.

However, PSA cannot be directly updated due to its uninstan-
tiated parameters. To illustrate this challenge, consider a naive
solution which is to instantiate the parameters using all possible
values, and maintain all the instantiated state machine, namely
symbolic automata (SA), for each instantiation of the parameters.
When reading an input packet, we update all the instantiated SA in
the standard way. However, it is not hard to note that this approach
is not feasible due to the large space of parameters. As an example,
the PSA in Fig. 5 with a single IP parameter has up to 232 instan-
tiated symbolic automata. Whereas at runtime, the function only
needs to store the source addresses that appeared in the stream,
which can be significantly less than 232,

To address this challenge, we propose a new algorithm that
updates PSA on-demand. As the high-level idea, suppose we instan-
tiated a PSA to a set of SA using all possible instantiations. Notice
that even though there is a large space of instantiated SA, however,
many of them will keep the same states at runtime given a stream
of packets. As an example, consider feeding a first packet with the
source IP 10.0.0.1 to all SA instantiated from the PSA in Figure 5. It
is easy to see that the only SA that will transition to state g is the
one where x is instantiated by 10.0.0.1; and all other SA will stay at
q0-

Therefore, the compiled program at runtime maintains guarded
states for the PSA, where a guarded state is pair (s, ¢). Here, ¢ is

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

a predicate of the parameters in the PSA (which we will refer as
a guard), and s is a state in PSA. The pair (s, ¢) means that when
reading the input stream, all instantiated SA will be at state s, if they
are instantiated by the values satisfying ¢. For example, initially
there is only one guarded state maintained for the PSA in Figure 5,
which is (qo, true), meaning that all instantiated SA is at the initial
state g of the PSA.

To update the PSA, the key step is to update each guarded state
dynamically when reading packets from the stream. The updating
algorithm for a guarded state is shown in Algorithm 1. This algo-

Algorithm 1 update_psa((s, ¢), packet)

1: for all transitions originated from s do
2. let t be the destinate state, and P be the parameterized predi-

cate
3. let T be the guard instantiated from P using the packet
4 let¢'=¢AT
5: emit (¢, ¢) if ¢ #false
6: end for

rithm iterates through all transitions from the state s, and for the
predicate (with parameters) P on the transition, it instantiates P
using the current packet it receives in the stream. This step simply
replaces the function name in P by the return value of it on the
packet. The obtained predicate T is a predicate over the parameters
in the PSA. Finally, the algorithm emits a new pair (¢, ¢”) if ¢ is not
false. Intuitively, this step accounts the fact that the instantiated
SA under ¢’ will transition to the next state t.

Using Algorithm 1, the overall updating algorithm is straight-

forward. Initially, the compiled program only contains a guarded
state (qo, true), where qq is the initial state of the PSA. Every time
reading a new packet from the stream, we call Algorithm 1 on every
guarded state, and the new guarded states consists of all the ones
emitted from Algorithm 1. To check the state given concrete values
for parameters, we simply go through all maintained guarded states,
and return the state if the guard is satisfied.
Example. Using the example in Figure 5, we illustrate the execu-
tion of Algorithm 1 given the pair (g, true) and the packet with
source IP 10.0.0.1. Consider the transition from g to ;. By sub-
stituting srcip in the predicate with the source IP of the packet,
we get the guard T which is x=10.0.0.1. Since ¢ is true now, ¢’ is
simply x=10.0.0.1. At the end, the algorithm will emit the pair (g1,
x=10.0.0.1). Similarly, for the other transition the algorithm emit the
pair (qo, x!=10.0.0.1). Therefore, there are two new guarded states,
namely, (g1, x=10.0.0.1) and (qo, x!=10.0.0.1). The updated guarded
states account for the fact that 10.0.0.1 has appeared and thus the
corresponding instantiated SA transitioned to state qj.

5.2 Compilation of sp1it

We next discuss how to compile a split expression which is of the
form split(f, g, aggop). First, we highlight the key insight from [9]
to compile split without parameters, and then describe how to
generalize this idea to compile split with parameters.

Without parameters. The challenge of compiling split is to split
the stream dynamically at runtime without revisiting the entire
history of the stream. For example, in the split example in §3.3, we

Y. Yuan, D. Lin, A. Mishra, S. Marwaha, R. Alur, and B.T. Loo

need to split the stream at the last appearance of the SYN packet. A
natural way to implement the semantics of split is to maintain all
cases to split the stream. For example, Fig. 6 shows two cases to split
the stream consisting of a non-SYN and a SYN packet at runtime
for the example in §3.3. Moreover, the following two observations
ensure that the compiled code only uses a constant space. First, each
case can be represented using a triple (sf, sg, F), where F is a flag
indicating whether the stream is split, and sf(sg, resp.) is the state
of f(g, resp.) on evaluating the prefix(suffix, resp.) of the stream.
Second, the number of maintained (distinct) cases is bounded by a
constant only related to g at any time point.

Case 1
N—

Case 2: [nonSYN] SYN |
1
—

f g f
Figure 6: Example run of split.

With parameters. Similar to PSRE compilation, in the general
scenario, we need to maintain guarded cases. That is, we maintain
a set of (T, ¢) pairs, where T is a triple (sf, sg, F) corresponding
to a case as defined above, and ¢ is a guard. It means that if the
parameters are instantiated by values satisfying ¢, there is a case
of splitting the stream, which can be represented as T.

Algorithm 2 update_split((T, ¢), packet)

1: suppose T = (Sf, Sg» F)
2: if F is false then
3. for all emitted (s}, ¢’) from update_f((sf, ¢), packet) do

4 if f is defined on s} then

5 emit ((s}, sg, true), ¢’) {sg is the initial state of g }

6: end if

7: emit (s}, sq, false), §”)

8: end for

9: else

10: for all emitted (s;, ¢”) from update_g((s4, ¢), packet) do
11: emit ((sf, s_[], true), ¢’)

122 end for

13: end if

Algorithm 2 shows the algorithm to update a pair (T, ¢). The
algorithm feeds the input packet to f or g corresponding to whether
the stream has been split as indicated by F. For example, when
F is false, namely the stream has not been split yet in this case,
the algorithm need to update f on the packet (line 2-9). In this
case, for each emitted guarded state (s}, ¢’) from the update of f,

a corresponding guarded case is emitted (line 7). Moreover, if f is
defined on sj}, we may split the stream at the current position and
thus emit the guarded case ((s]'c, sg, true), ¢’) (line 4-6). Here, 32 is
the initial state of g, and the flag F is set to true to indicate that
the stream is split. For the else branch from line 10 to 12 in the
algorithm, we need to update (s4.4) using g’s updating procedure,
which may emit a set of guarded states of g. Correspondingly, the
guard needs to be refined.

Quantitative Network Monitoring with NetQRE

Given concrete values for parameters, evaluating a split expres-
sion is as follows. First, we check if there exist a guarded case ((sf,
sg, F),¢) such that ¢ is satisfied and both f and g are defined on the
states in the case. Then we evaluate the two expressions based on
their states in the case, and finally aggregate the evaluated values
using aggop. If no such guarded cases exist, the split expression is
not defined.

5.3 Compilation of iter

We first review the key ideas of evaluating an iter expression when
there are no parameters [9], and then describe how to handle pa-
rameters.

Consider an iter expression iter(f, aggop) without any param-
eters. Similar to split expressions, the iter expression needs to
maintain all possible cases of splitting the input stream. Though
the number of such cases is only determined by f (thus not relevant
to the input stream), how to succinctly represent each case is a
challenge. Specifically, unlike a split expression which only splits
the stream into a prefix and a suffix, an iter expression needs to
split the stream into multiple substreams such that each one can
be applied to the expression f. Therefore, naively maintaining all
the states of f for each substream may use a large space as the
stream grows. Fortunately, our choice of the aggregation operators
allows us to summarizes the application of f to all substreams but
the last one using the aggregated return value. For example, if aggop
is sum, we only need to remember the aggregated sum on these
substreams. Thus, we can represent a case as a pair (v, s), where
v is the aggregated value and s¢ is the state of f on evaluating the
last substream.

In the general scenario with parameters, we simply maintain a
guarded case as ((v, sf), ¢). The update of a guarded case ((v, s7), ¢)
is shown in Algorithm 3. The evaluation of f given guarded cases
is similar to that of a split expression.

Algorithm 3 update_iter((T, ¢), packet)

1: suppose T = (v, s5¢)
2. for all emitted (sj’,, ¢’) from update_f((sf, ¢), packet) do
3. if f is defined on s} then

4: let v’ be the evaluated value of f on s]’c

5: emit ((v”/, s}), ¢’), where v""=aggop (v,v’) and s}or is the
initial state of f

6: end if

7. emit ((v, s}), ¢

8: end for

5.4 Compilation of Aggregation

Now we describe the aggregation function aggop{f | T x}. Following
the definition of the aggregation function, an aggregation function
maintains guarded states (sy,¢). To update the aggregation expres-
sion, we just need to update each guarded state using f’s updating
procedure. To illustrate the evaluation procedure, suppose the ag-
gregation operator is sun. Given values for the parameters, we need
to iterate through all guarded states (s¢,¢). If ¢ is satisfied, we eval-
uate f on sg, say the return value is v; and count the number of

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

values of x which satisfies ¢, say it is k; we sum up v * k into the
aggregated sum. For other aggregation operators, the evaluation
process works similarly.

5.5 Compilation of Stream Composition

Lastly, we discuss stream composition. Recall that stream composi-
tion allows to process the input stream using a function f, and then
apply the second function g on the processed stream. Following its
definition, each time a new packet arrives, we need to first process
it with f, and the returned value (e.g. a filtered packet) is then fed
into g.

Therefore, the stream composition expression f>>g needs to main-
tain guarded states ((sf, g), ¢). Algorithm 4 shows the algorithm to
update a guarded state following the intuition described above. The
evaluation of the expression is similar to that of previous discussed
expressions.

Algorithm 4 update_comp((S, ¢), packet)

1: suppose S = (s, sg)
2. for all emitted (sjf,, ¢’) from update_f((s¢, ¢).packet) do
3. if fis defined on s} then

4 let ret be the returned packet of f on s

5 emit ((s/, s;), ¢""), for all emitted (s;,qﬁ”) from
update_g((sg, ¢"), ret)

6: else

7 emit ((sj}, sg), ¢')

8. endif

9: end for

6 IMPLEMENTATION

We have implemented a prototype of the NetQRE system in C++,
which consists of two main components, namely the compiler for
NetQRE, and the NetQRE runtime.

NetQRE Compiler. The NetQRE compiler implements the com-
pilation algorithm described in §5. The compiler first generates a
C++ program from an input NetQRE program, which is then com-
piled by the gcc compiler into executable. Our compiled program
uses a tree data structure to represent predicates over parameters.
The choice of tree is driven by its simplicity, ease of encoding, and
lookup performance.

In addition to the basic compilation algorithm, we include ad-

ditional optimizations to the compiler. First, we use the standard
minimization algorithm to minimize the state machine for a regular
expression. Second, for aggregation expressions with sum and avg,
we use an incremental updating algorithm to update the expres-
sion: we maintain the running sum as the state of the aggregation
expression, and we update the sum incrementally when the state
of the inner expression is updated.
NetQRE Parallelization. The NetQRE compiler can optionally
compile the NetQRE specification into parallelized implementations
based on the instantiation of parameters in the NetQRE specifica-
tion. For the example described in § 5.1, a packet with source IP
address s can be processed by the hash(s)-th thread, which handles
that instantiation of the parameter x.

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

NetQRE Runtime. The NetQRE runtime includes a packet capture
agent implemented using the pcap library [28]. Each packet that
arrives at the runtime is parsed, and then processed by the compiled
NetQRE program as shown in Figure 1. Currently, our runtime
supports actions that include sending alert events to a controller,
and directly installing a rule on a switch. The NetQRE runtime is
not specifically optimized for fast packet capture and processing,
and as future work, we plan to explore the use of DPDK [24]. Our
current implementation analyzes every packet, though orthogonal
sampling techniques can be also explored in future.

7 EVALUATION

We evaluate our NetQRE prototype centered around answering
three key questions. First, can the NetQRE language express a wide
range of quantitative network monitoring applications in a concise
and intuitive manner? Second, is the generated code efficient in
terms of throughput and memory footprint? Third, can NetQRE be
used in a real-time monitoring setting that provides rapid mitigation
based on output of quantitative network monitoring applications?
Unless otherwise specified, all our experiments are carried out on
a cluster of commodity servers, each of which has 10-core 2.6GHz
Xeon E5-2660V3. Each core has a 256KB L2 cache, and shared 25
MB L3 cache. The memory size is 64 GB. The OS is Ubuntu 14.04,
and the kernel version is 4.2.0.

7.1 Expressiveness

We have implemented a set of quantitative network monitoring ap-
plications using NetQRE. The examples are drawn from a literature
survey on quantitative network monitoring applications [13, 18, 35,
40, 41]. Table 1 summarizes the example applications in NetQRE
that we use, as well as and the lines of code of each NetQRE pro-
gram.

LoC
Heavy Hitter (§4.1) 6
Super Spreader (§4.1) 2
Entropy Estimation [40] 6
Flow size dist. [18] 8
Traffic change detection [35] 10
Count traffic [40] 2
Completed flows (§4.2) 6
SYN flood detection (§4.2) 9
Slowloris detection (§4.2) 12

Lifetime of connection
Newly opened connection recently | 11

duplicated ACKs 5
VoIP call 7
VoIP usage (§4.3) 18
Key word counting in emails 11
DNS tunnel detection [12] 4
DNS amplification [20] 4

Table 1: Example monitoring applications NetQRE supports.

Y. Yuan, D. Lin, A. Mishra, S. Marwaha, R. Alur, and B.T. Loo

We make the following observations. First, NetQRE is able to
express a large variety of quantitative network monitoring applica-
tions, ranging from flow-level traffic measurement to application-
level quantitative monitoring. We validate the correctness of our
applications by running them and comparing their output with
hand-crafted implementations. Second, programming in NetQRE is
concise. All example programs can be specified within 18 lines of
code in NetQRE. This count includes commonly used filter functions
as well as regular expressions, which can be built into a library for
reference. As an interesting comparison, we encoded the VoIP call
use case in Bro [33], a well-known intrusion detection system. Bro
required 51 lines of code, as compared to only 7 in NetQRE. How-
ever, Bro is unable to easily support the VoIP usage case written in
NetQRE. In particular, Bro cannot use patterns to separate packets
into different VoIP sessions for the purposes of counting bandwidth
consumption per session. This is not surprising as Bro’s primary
use is that of an intrusion detection system. We validated the cor-
rectness of our implementation on actual SIP traffic by comparing
Bro’s output against NetQRE’s.

7.2 Performance

Our next set of experiments evaluate the performance of NetQRE’s
compiled implementations. NetQRE runs on a single machine based
on the setup described earlier. We use a single core to measure
NetQRE’s performance. As a point of comparison, we compare each
NetQRE program against an equivalent carefully hand-crafted C++
implementation. We note that all our hand-crafted implementations
require at least 100 lines of code, and often times, require users to
explicit manage internal state across packets — a programming task
that NetQRE abstracts away.

Fig. 7 shows the performance of NetQRE implementations (NetQRE
in the figure) compared with manually optimized implementations
(Baseline in the figure) that we spent days optimizing. Our examples
include heavy hitter, super spreader, entropy, SYN flood detection,
completed flows count, and Slowloris use cases presented in §4. As
workload, we use a one-minute CAIDA traffic trace [7] captured
on a high-speed Internet backbone link, which contains 37 million
packets (i.e., about 620k packets/sec). We replay the traffic trace
to the implementations. Since the traffic trace does not contain
payloads, we report the throughput in million packets per second
(MPPS).

We make the following observations. First, the NetQRE imple-
mentations are able to achieve line-rate processing speed without
being the bottleneck. In particular, for three out of six applications,
the throughput of NetQRE implementations is about 20MPPS using
a single thread. The average packet size of our input traffic trace
is 888B. For a 10Gbps network, 1.4M packets of size 888B can be
forwarded per second, which is well below the throughput achieved
by NetQRE. The throughput can be further improved by paralleliza-
tion (presented later in this section). Second, the compiled NetQRE
implementation incurs negligible overhead compared with the man-
ually optimized low-level implementation. The difference between
the throughput of the compiled NetQRE implementation and that
of the manual implementation is within 9% across all use cases we
studied. Third, NetQRE incurs slightly increase (up to 60%) in terms

Quantitative Network Monitoring with NetQRE

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

25 B Baseline NetQRE OpenSketch 1000 mBaseline ®mNetQRE_ = OpenSketch 40 super spreader
£ 20 %) =o—3syn flood
S 1s = 100 & 30 slowloris
g =
Z 10 € 10 =
2 s I 5 = 20
< I = £ g
2 O . 1 5 210 2
£ & @ : o S g & @ & & N S =
F & F &S &S & ¢ & =
. O C“Q & :\Q "\\0\ ® ‘)Nﬁ @Q%Q e &s\ \\0 ~a\° 0
R ' A o 2 4 6 8
(a) Throughput (b) Memory Number of Threads

Figure 7: Performance comparison.

of memory footprint (Fig. 7b) compared with the manually opti-
mized implementation. However, the overall memory footprint of
NetQRE remains low. We have also run the experiments on another
CAIDA traffic [2] and the comparison result is similar.
Comparison with OpenSketch. In addition to comparisons with
our manually optimized code, we also compare with OpenSketch [40],
a popular traffic measurement tool based on sketching techniques.
Given OpenSketch’s limitation in handling stateful monitoring
tasks, we only compare the performance of NetQRE implementa-
tions on the heavy hitter and super spreader examples with that
of OpenSketch (in software). We use the same CAIDA traffic trace
as before, and follow the default setting of the reference code of
OpenSketch [4] for the two examples. The NetQRE compiled imple-
mentations significantly outperform OpenSketch implementations:
The throughput of NetQRE compiled code is 11X and 1.8X as that
of OpenSketch (Fig. 7a). As OpenSketch focuses on optimizing
memory usage, it is not surprising that OpenSketch uses less mem-
ory than NetQRE implementations. Nevertheless, we observe that
NetQRE uses only 11% more memory on the super spreader example
than that of OpenSketch (Fig. 7b). Note that we use an open-source
version of OpenSketch software that runs on a similar x86 machine
as NetQRE, in order to have an “apples-to-apples” comparison on
similar hardware. NetQRE may also exploit similar optimizations
performed by OpenSketch in order to get higher performance on
a NetFPGA. Exploiting a hardware platform such as NetFPGA in
order to further improve NetQRE performance is an interesting
avenue for future work.

Comparison with Bro. We further compare with Bro. Given the
limitations of Bro in handling the complete VoIP use cases, we sim-
plify the use case to simply counting the number of VoIP calls (as
opposed to bandwidth consumption) per user. NetQRE compiled
implementation can finish counting within 1 second, while Bro
takes about 23 seconds for a SIP traffic trace containing 4338 VoIP
calls. Both programs output the same results for this use case. We
believe there are at least two reasons for Bro’s slower performance.
First, Bro is designed for intrusion detection, and not aimed at
and optimized for monitoring tasks. Second, unlike NetQRE which
compiles high-level code to efficient low-level code, Bro uses an
interpreter to execute the script written in Bro’s language, which
could result in considerable overhead.

Parallelization speedup. NetQRE compiler automatically com-
piles parallelized implementations as described in §6. In the con-
sidered examples, parallelization involves sending flows of packets

Figure 8: Throughput with paral-
lelization.

to different NetQRE instances running on different threads. Fig. 8
plots the throughput of the NetQRE implementations with different
numbers of threads for the super spreader, syn flood and slowloris
detection examples. In all examples, the NetQRE parallelized code
is able to achieve at least 3.9% speedup with 8 threads. Note that
linear speedup is not achieved as the traffic (in our finite trace) is
not uniformly distributed across all 8 threads. This is an artifact
of the trace data itself. When we include the overhead of the soft-
ware load balancer that dispatches packet flows to different threads,
the NetQRE implementations achieve at least 2.6x speedup for all
examples. This overhead can be mitigated with a hardware load-
balancer. Overall, we observe that NetQRE’s throughput is more
than sufficient to handle line-rate traffic, and the NetQRE runtime
itself is not the bottleneck.

7.3 End-to-end Validation

In the final set of experiments, we validate the end-to-end use of
NetQRE for enforcing quantitative network policies which applies
actions to quantitative network monitoring programs. We set up
a network of two clients C; and Cy, one server S, and one SDN
switch that mirrors traffic to a NetQRE runtime running the SYN
flood detector presented in §4.2. In addition, a NetQRE controller
based on POX [29] controls the switch. The network is emulated
using Mininet [25] with link bandwidth set to 100Mbps.

In the experiment, C; sends normal traffic to S using iperf at rate
1Mbps, and at the 7th second, Cy starts SYN flood attack generated
using our generator to the same server. The attack is detected by
NetQRE, which generates an alert event to the controller, which
subsequently installs a forwarding rule on the switch to block traffic
from Cy. To illustrate the attack detection and blocking, Figure 9a
(left figure) shows the bandwidth utilization (Mbps) on the server.
We observe that NetQRE successfully blocks Cy’s attacking traffic
in real-time.

As a second experiment, using a similar setup, our NetQRE heavy
hitter program (§4.1) running at a switch-side NetQRE runtime
monitors the traffic over a sliding window of 5 seconds, and issues
an alert to the controller when detecting a heavy hitter, which
further blocks the traffic. As a point of comparison, we compare
our approach against two alternatives: (1) sending all packets to the
controller which runs an equivalent heavy hitter detection program,
(2) monitoring the flow counters on the switch to detect heavy
hitters, as considered in other languages [30] and systems [31]. In
the second alternative, the controller reads the counter every 1

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

Y. Yuan, D. Lin, A. Mishra, S. Marwaha, R. Alur, and B.T. Loo

® 1 B !
5 _12 — stats _6
@ @ — forward @
g, 510 - 85
=3 = =
£3 c 8 <4
i) g g 23
3 2 2
52 5, 5,
] 5] IS,
@ 4 fia} o
v 2 1
00 2 4 6 8 10 12 14 16 00 2 4 6 8 10 12 14 16 00 20 40 60 80 100
Time (sec) Time (sec) Time (sec)
(a) SYN flood. (b) Heavy hitter. (c) VoIP.

Figure 9: Bandwidth utilization (Mbps) at the server.

second, and compute the bandwidth usage for each flow over a
similar 5 seconds window.

Figure 9b (middle figure) plots the bandwidth utilization of the
server. The above alternative solutions are labeled as forward and
stats respectively. Compared with these two approaches, our pro-
posed approach can detect the heavy hitter and further respond to
it in a more timely fashion. Moreover, compared with the forward
approach, we send significantly fewer traffic to the controller, and
is a more scalable solution.

In our final experiment, we validate the VoIP use case first pre-
sented in our introduction. We use a synthetic VoIP traffic trace
generated using SIPp [5] replay a VoIP call (with accompanying
H.264 MPEG video) made from a single user via client C2. We re-
play the traffic at 5Mbps, and run iperf on C; as the background
traffic. Our NetQRE program enforces a policy that blocks a call
after the user making the call exceeds a SIP bandwidth usage of
18.75MB (around 30 seconds). We configure the NetQRE program
to send an alert to the NetQRE controller which then blocks the
traffic. Figure 9c (right figure) plots the bandwidth utilization of the
server. Again, this verifies that NetQRE can be used to intercept a
SIP session, monitor usage on a per-user basis, and react to high
usage in a timely fashion.

7.4 Summary of Evaluation

Revisiting the questions at the beginning of our evaluation, we
observe that (1) NetQRE can express a wide range of quantita-
tive monitoring applications with a few lines of code, (2) achieves
line-rate throughput performance which is comparable to that of
carefully hand-crafted optimized low-level code while significantly
outperforms other measurement and IDS tools, and (3) can be used
in an SDN setting to monitor network traffic and update switches
in real-time in response to specified NetQRE policies.

8 DISCUSSION

In this section, we discuss some of NetQRE’s limitations and also
some future work.

Expressiveness. As a language focusing on monitoring policy,
NetQRE cannot specify general network policies, such as service
chaining policies and traffic engineering policies. As an interesting

future work, it might be possible to extend NetQRE’s actions in
support of more complex policies.

Given NetQRE’s basis on regular expressions, NetQRE is not
suited for monitoring tasks that can not be specified using regular
traffic patterns. Though this is a fundamental limitation of NetQRE’s
expressiveness, we believe that the high-level constructs in NetQRE
provides a natural programming abstraction to write tasks with
hierarchical regular structures, and NetQRE can specify a wide
range of monitoring tasks as shown in §4.

Handling packet loss/reordering/retransmission. For the perfor-
mance consideration, NetQRE does not buffer packets in the stream,
but processes packets in a streaming fashion. Thus, if packets in
the stream are lost, reordered, or retransmitted, the query specified
in NetQRE might not be evaluated correctly, since the internal state
may transition to a wrong one. Current design of NetQRE relies on
the runtime to handle packet loss, reordering and retransmission.

Network-wide monitoring. For the similar reasons discussed above,
current deployment model of NetQRE is based on a centralize fash-
ion, in order to receive all (ordered) packet in the stream of interest.
For example, a flow counting task has to be deployed at a place
where all packets in a flow can traverse. This is not a fundamental
limitation, as one can easily deploy NetQRE in a distributed fashion
provided that the query is insensitive to packet reordering in the
stream. We leave it as future work to study the decomposition of a
centralized NetQRE program into distributed queries.

9 RELATED WORK

Quantitative regular expressions. NetQRE is inspired by quan-
titative regular expressions (QRE) [9], which provides a theoretical
foundation for regular programming of data streams. NetQRE ex-
tends QRE in the following ways. First, NetQRE introduces param-
eters in support of queries handling unknown values (e.g. counting
distinct sources). Second, NetQRE proposes aggregation operators
to compute aggregated values across parameters. It is shown in
§4 that both extensions are essential to specify a wide range of
interesting network monitoring policies.

StreamQRE [27] is another recently proposed extension to QRE.
NetQRE is different from StreamQRE in several aspects. First, NetQRE
is specialized to networking applications, while StreamQRE focuses
on database application. Second, StreamQRE allows relations as

Quantitative Network Monitoring with NetQRE

types and supports relational operations such as join and key-based
partitioning. These operations cannot be evaluated efficiently in a
streaming fashion in general. NetQRE instead uses parameters and
aggregation over parameters with a focus on efficient evaluation.
Intrusion detection systems and protocol analyzers. There
are a number of key differences between NetQRE and intrusion
detection systems (IDS) and protocol analyzers. First, systems such
as Snort [34] allow regular expression matches on single packets,
but is not perform regular expression matches that span multiple
packets, let alone track sessions across packets. While Bro [33] sup-
ports aspects of NetQRE, the scripting language requires complex
procedural programming where one has to maintain states and
data structures, as opposed to NetQRE'’s declarative programming
approach with high-level constructs over packet streams. As an
IDS, Bro does not lend itself naturally to handle some quantitative
monitoring use cases e.g. the VoIP usage example. While HILTT [37]
uses Bro and offers abstract machine models for traffic analysis, it
requires the operator to implement low-level state machines.
Domain specific languages in networking. There are several
recent proposal on domain specific languages on networks, which
includes Frenetic [21], Pyretic [30], NetKAT [10], Flowlog [32],
Maple [38], Network Datalog [26]. To the best of our knowledge,
none of these systems support monitoring queries beyond basic
flow-level counters provided by OpenFlow.

Recently proposed SNAP [11] and Sonata [23] offer abstrac-
tions for traffic monitoring over packet streams, but in a more
low-level procedural or SQL-like way. NetQRE offers a complemen-
tary abstraction on quantitative queries. It may be interesting to
incorporate NetQRE with these languages in support for complex
quantitative queries.

Streaming database languages. Database-style query languages [14,

16] provide SQL-like language support for running continuous
queries over data streams. While there are constructs to do aggrega-
tion over sliding windows, they are designed with simple relational
queries over packet headers or packet counts, and cannot handle
the complex queries based on traffic patterns that NetQRE supports.

10 CONCLUSION

This paper presents NetQRE, a high-level declarative language and
practical toolkit for quantitative network monitoring. NetQRE of-
fers an intuitive programming model using regular expressions
over streams of packets, and can naturally express flow-level as
well as application-level quantitative policies. We developed a com-
pilation algorithm that can compile NetQRE programs into efficient
imperative programs. Our evaluation results demonstrate the ex-
pressiveness of NetQRE in support a wide range of quantitative
network monitoring applications, its ability to match carefully opti-
mized manually written low level code, and outperform equivalent
implements in Bro and OpenSketch. A proof-of-concept scenario
with an SDN controller and switches demonstrate NetQRE’s ability
to support timely and efficient enforcement of quantitative network
policies.

ACKNOWLEDGEMENT

We would like to thank our shepherd Arjun Guha for his helpful
comments. We also want to thank the anonymous reviewers for

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

their insightful feedbacks on this work. This research was partially
supported by NSF Expeditions in Computing award CCF 1138996,
NSF CNS-1513679 and NSF CNS-1218066.

REFERENCES

[1] Application Layer Packet Classifier for Linux. http://www.mcafee.com/us/

products/network-security-platform.aspx.

[2] CAIDA Traffic Trace. https://data.caida.org/datasets/ security/ddos-20070804/ .

[3] McAfee Network Security Platform. http://17-filter.sourceforge.net/.

[4] OpenSketch reference code. https://github.com/USC-NSL/opensketch.

[5] SIPp. http://sipp.sourceforge.net/.

[6] SSL renegotiation DoS. https://www.ietf.org/mail-archive/web/tls/current/

msg07553.html.

[7] Anonymized 2015 Internet Traces. https://data.caida.org/datasets/ passive-2015/,
2015.

[8] Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan, Nelson
Huang, and Amin Vahdat. Hedera: Dynamic Flow Scheduling for Data Center
Networks. In NSDI, volume 10, pages 19-19, 2010.

[9] Rajeev Alur, Dana Fisman, and Mukund Raghothaman. Regular Programming

for Quantitative Properties of Data Streams. In 25th European Symposium on

Programming. ESOP, 2016.

Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin, Dexter

Kozen, Cole Schlesinger, and David Walker. NetKAT: Semantic foundations for

networks. In Proceedings of the 41st annual ACM SIGPLAN-SIGACT symposium

on Principles of programming languages, pages 113-126. ACM, 2014.

Mina Tahmasbi Arashloo, Yaron Koral, Michael Greenberg, Jennifer Rexford, and

David Walker. Snap: Stateful network-wide abstractions for packet processing.

In Proceedings of the 2016 ACM SIGCOMM Conference, SSIGCOMM ’16, pages

29-43, New York, NY, USA, 2016. ACM.

Kevin Borders, Jonathan Springer, and Matthew Burnside. Chimera: A declarative

language for streaming network traffic analysis. In Proceedings of the 21st USENIX

Conference on Security Symposium, Security’12, pages 19-19, Berkeley, CA, USA,

2012. USENIX Association.

[13] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly Detection: A

Survey. ACM computing surveys (CSUR), 41(3):15, 2009.

Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J. Franklin,

Joseph M. Hellerstein, Wei Hong, Sailesh Krishnamurthy, Samuel R. Madden,

Fred Reiss, and Mehul A. Shah. TelegraphCQ: Continuous Dataflow Processing.

In Proceedings of the 2003 ACM SIGMOD International Conference on Management

of Data, SIGMOD ’03, pages 668-668, New York, NY, USA, 2003. ACM.

Benoit Claise. Cisco systems NetFlow services export version 9. 2004.

Chuck Cranor, Theodore Johnson, Oliver Spataschek, and Vladislav Shkapenyuk.

Gigascope: A Stream Database for Network Applications. In Proceedings of the

2003 ACM SIGMOD International Conference on Management of Data, SIGMOD

’03, pages 647-651, New York, NY, USA, 2003. ACM.

[17] Luca Deri. Open source VoIP traffic monitoring. In Proceedings of SANE, volume

2006, 2006.

Nick Duffield, Carsten Lund, and Mikkel Thorup. Estimating Flow Distributions

from Sampled Flow Statistics. In Proceedings of the 2003 conference on Applications,

technologies, architectures, and protocols for computer communications, pages 325—

336. ACM, 2003.

Cristian Estan and George Varghese. New Directions in Traffic Measurement and

Accounting, volume 32. ACM, 2002.

Seyed K. Fayaz, Yoshiaki Tobioka, Vyas Sekar, and Michael Bailey. Bohatei:

Flexible and Elastic DDoS Defense. In 24th USENIX Security Symposium (USENIX

Security 15), pages 817-832, Washington, D.C., August 2015. USENIX Association.

[21] Nate Foster, Rob Harrison, Michael J Freedman, Christopher Monsanto, Jennifer
Rexford, Alec Story, and David Walker. Frenetic: A Network Programming
Language. In ACM SIGPLAN Notices, volume 46, pages 279-291. ACM, 2011.

[22] Pedro Garcia-Teodoro, J Diaz-Verdejo, Gabriel Macia-Fernandez, and Enrique
Vazquez. Anomaly-based Network Intrusion Detection: Techniques, Systems
and Challenges. computers & security, 28(1):18-28, 2009.

[23] Arpit Gupta, Ridiger Birkner, Marco Canini, Nick Feamster, Chris Mac-Stoker,
and Walter Willinger. Network Monitoring As a Streaming Analytics Problem.
In Proceedings of the 15th ACM Workshop on Hot Topics in Networks, HotNets ’16,
pages 106-112. ACM, 2016.

[24] DPDK Intel. Data Plane Development Kit. http://dpdk.org.

[25] Bob Lantz, Brandon Heller, and Nick McKeown. A Network in a Laptop: Rapid
Prototyping for Software-defined Networks. In Proceedings of the 9th ACM
SIGCOMM Workshop on Hot Topics in Networks, Hotnets-IX, pages 19:1-19:6.
ACM, 2010.

[26] Boon Thau Loo, Tyson Condie, Minos Garofalakis, David E. Gay, Joseph M.
Hellerstein, Petros Maniatis, Raghu Ramakrishnan, Timothy Roscoe, and Ion
Stoica. Declarative Networking. CACM, 2009.

[27] Konstantinos Mamouras, Mukund Raghotaman, Rajeev Alur, Zachary G. Ives,
and Sanjeev Khanna. StreamQRE: Modular Specification and Efficient Evaluation

[10

[11

[12

[14

jperguny
)

[18

[19

[20

http://www.mcafee.com/us/products/network-security-platform.aspx
http://www.mcafee.com/us/products/network-security-platform.aspx
https://data.caida.org/datasets/security/ddos-20070804/
http://l7-filter.sourceforge.net/
https://github.com/USC-NSL/opensketch
http://sipp.sourceforge.net/
https://www.ietf.org/mail-archive/web/tls/current/msg07553.html
https://www.ietf.org/mail-archive/web/tls/current/msg07553.html
https://data.caida.org/datasets/passive-2015/
http://dpdk. org

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

[28]

[29]
[30]

[31]

[32]

[33]
[34]

[35]

of Quantitative Queries over Streaming Data. In Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and Implementation. ACM,
2017.

Steve McCanne, Craig Leres, and Van Jacobson. Libpcap. http:// www.tepdump.org,
1989.

J Mccauley. POX: A Python-based Openflow Controller, 2014.

Christopher Monsanto, Joshua Reich, Nate Foster, Jennifer Rexford, David Walker,
et al. Composing Software Defined Networks. In NSDI, pages 1-13, 2013.
Masoud Moshref, Minlan Yu, Ramesh Govindan, and Amin Vahdat. DREAM:
dynamic resource allocation for software-defined measurement. In Proceedings
of the 2014 ACM conference on SIGCOMM, pages 419-430. ACM, 2014.

Tim Nelson, Andrew D Ferguson, Michael JG Scheer, and Shriram Krishnamurthi.
Tierless Programming and Reasoning for Software-Defined Networks. NSDI,
Apr, 2014.

Vern Paxson. Bro: A System for Detecting Network Intruders in Real-time.
Comput. Netw., 31(23-24):2435-2463, December 1999.

Martin Roesch et al. Snort: Lightweight Intrusion Detection for Networks. In
LISA, volume 99, pages 229-238, 1999.

Vyas Sekar, Michael K Reiter, and Hui Zhang. Revisiting the case for a minimalist
approach for network flow monitoring. In Proceedings of the 10th ACM SIGCOMM

[36]

(37]

[40]

[41]

Y. Yuan, D. Lin, A. Mishra, S. Marwaha, R. Alur, and B.T. Loo

conference on Internet measurement, pages 328-341. ACM, 2010.

David Senecal. Slow DoS on the rise. https://blogs.akamai.com/2013/09/
slow-dos-on-the-rise.html.

Robin Sommer, Matthias Vallentin, Lorenzo De Carli, and Vern Paxson. HILTI:
An Abstract Execution Environment for Deep, Stateful Network Traffic Analysis.
In Proceedings of the 2014 Conference on Internet Measurement Conference, IMC
’14, pages 461-474, New York, NY, USA, 2014. ACM.

Andreas Voellmy, Junchang Wang, Y Richard Yang, Bryan Ford, and Paul Hudak.
Maple: Simplifying SDN Programming using Algorithmic Policies. In Proceedings
of the ACM SIGCOMM 2013 conference on SIGCOMM, pages 87-98. ACM, 2013.
Mea Wang, Baochun Li, and Zongpeng Li. sFlow: Towards resource-efficient and
agile service federation in service overlay networks. In Distributed Computing
Systems, 2004. Proceedings. 24th International Conference on, pages 628-635. IEEE,
2004.

Minlan Yu, Lavanya Jose, and Rui Miao. Software Defined Traffic Measurement
with OpenSketch. In NSDI, volume 13, pages 29-42, 2013.

Lihua Yuan, Chen-Nee Chuah, and Prasant Mohapatra. ProgME: Towards Pro-
grammable Network Measurement. IEEE/ACM Transactions on Networking (TON),
19(1):115-128, 2011.

http://www. tcpdump. org
https://blogs.akamai.com/2013/09/slow-dos-on-the-rise.html
https://blogs.akamai.com/2013/09/slow-dos-on-the-rise.html

	Abstract
	1 Introduction
	2 Overview
	2.1 Motivating Example
	2.2 Alternative Approaches

	3 The NetQRE Language
	3.1 Pattern Matching over Streams
	3.2 Conditional Expressions
	3.3 Stream Split
	3.4 Stream Iteration
	3.5 Aggregation over Parameters
	3.6 Stream Composition

	4 Use Cases
	4.1 Flow-level Traffic Measurements
	4.2 TCP State Monitoring
	4.3 Application-level Monitoring

	5 Compilation Algorithm
	5.1 Compilation of PSRE
	5.2 Compilation of split
	5.3 Compilation of iter
	5.4 Compilation of Aggregation
	5.5 Compilation of Stream Composition

	6 Implementation
	7 Evaluation
	7.1 Expressiveness
	7.2 Performance
	7.3 End-to-end Validation
	7.4 Summary of Evaluation

	8 Discussion
	9 Related Work
	10 Conclusion
	References

