
C
o

n
si

st

en
t *

 Complete * W
e
ll D

o
cu

m
ented * Easy to

 R

eu
se

 *

 *
 Evaluated *

 S
A

S
 *

 A

rtif
act * A

E
C

Block-Size Independence for GPU Programs

Rajeev Alur, Joseph Devietti and Nimit Singhania

University of Pennsylvania

Abstract. Optimizing GPU programs by tuning execution parameters
is essential to realizing the full performance potential of GPU hardware.
However, many of these optimizations do not ensure correctness and
subtle errors can enter while optimizing a GPU program. Further, lack
of formal models and the presence of non-trivial transformations prevent
verification of optimizations.
In this work, we verify transformations involved in tuning the execution
parameter, block-size. First, we present a formal programming and execu-
tion model for GPUs, and then formalize block-size independence of GPU
programs, which ensures tuning block-size preserves program semantics.
Next, we present an inter-procedural analysis to verify block-size inde-
pendence for synchronization-free GPU programs. Finally, we evaluate
the analysis on the Nvidia CUDA SDK samples, where 35 global kernels
are verified to be block-size independent.

1 Introduction

Graphics Processing Units (GPUs) have emerged as an important data-parallel
compute platform. They are high-throughput, scalable, and useful for a wide
variety of data-intensive applications like deep learning, virtual reality, and bio-
informatics. However, programmers often struggle with tuning their GPU appli-
cations. The programmer has to repeatedly tune various execution parameters
and rewrite parts of the program to achieve significant speedups compared to
the CPU version. To add to the programmer’s burden, performance is often not
portable and the application needs to be re-tuned for another GPU.

Tuning GPU applications can introduce subtle errors into the application
which can be difficult to debug and resolve. We need tools that can automati-
cally detect such errors and ensure transformations performed while tuning an
application are correct. Existing tools for GPU verification help identify cor-
rectness issues like data-races and barrier-divergence [12, 11, 2], but none verify
correctness of transformations. Furthermore, synthesizing optimal execution con-
figuration at compile-time is difficult since the optimization space is large and
non-convex [21]. Hence, tuning applications by trying out different values for
parameters is unavoidable. This makes it essential to have automatic tools to
verify the correctness of transformations.

In this work, we focus on the correctness of tuning an execution parameter,
block-size. A GPU program consists of a large number of threads that execute the
same sequence of instructions. The threads are organized in a two-level hierarchy

2 Rajeev Alur, Joseph Devietti and Nimit Singhania

where individual threads are grouped into thread-blocks and the thread-blocks
together form a thread-grid. The parameter block-size represents the number of
threads in each thread-block and is specified during program invocation, along
with the total number of threads. The block-size determines how resources re-
quired by the program are allocated on GPU cores, and is often tuned to maxi-
mally utilize each core for performance while balancing performance across cores
in a GPU. For instance, a 75% improvement in performance is achieved for a
benchmark “SobolQRNG” on tuning block-size from 64 to 256.

We present an analysis to verify block-size independence of GPU programs
which ensures modifying block-size is a valid transformation and does not intro-
duce errors into the program. In the GPU execution model, sharing of data is
permitted between threads of a thread-block, and changing the block-size alters
the sets of threads allowed to share data, making program equivalence hard to
reason about. Therefore, we only consider synchronization-free programs, where
each thread executes independently of the other threads, and any sharing of data
between threads is prohibited and leads to a data-race.

For synchronization-free programs, the analysis only needs to ensure that
the execution of each thread is independent of block-size. Each thread in a GPU
program is provided with a block-id, bid, a thread-id within the block, tid, and
the block-size, bdim, which helps distinguish its execution from other threads.
These values get modified when the block-size is modified, and the analysis
tracks the flow of these values through variables in the program. Interestingly,
the expression (bid.bdim + tid) identifies a globally unique id for each thread,
and remains unchanged when the block-size is modified. Hence, the analysis
further tracks the sub-expressions of this expression and whenever a variable is
observed to be a function of this expression, it is marked independent of block-
size. Further, to gain precision, the analysis also tracks block-size independent
multipliers, so that expressions of the form (k.bid.bdim+k.tid), where k is a block-
size independent value, can be proven block-size independent. Finally, if none of
the block-size dependent values flow into the final state of any thread, then the
program is block-size independent. The analysis uses a novel abstraction to track
these values, where the symbolic constants track multipliers while the abstract
constants track sub-expressions. This combination of abstract interpretation [18,
7] with symbolic execution [8, 3] helps scale the analysis while retaining good
precision.

To understand this further, consider the function cudaProcess() in Fig-
ure 1 from a GPU program ‘simpleCUDA2GL’. The function initializes pixels
in an image represented by the array g odata. Each thread initializes a glob-
ally unique location (x, y) with a value that is only a function of these coordi-
nates. The coordinates x and y are independent of block-size. Also, the function
is synchronization-free and each thread executes independently. Therefore, the
function must be block-size independent. To prove this, the analysis tracks the
flow of block-size dependent values bid, bdim, and tid through program variables.
Note that, to mirror the 2-dimensional nature of the image, the threads are or-
ganized in a 2-dimensional grid, where the first and second dimensions identify

Block-Size Independence for GPU Programs 3

__global__ void cudaProcess (unsigned *g_odata , int imgw) {
int tx = t i d [0]; int ty = t i d [1];
int bw = bdim [0]; int bh = bdim [1];
int x = b i d [0]* bw + tx;
int y = b i d [1]* bh + ty;
uchar4 c4 = make_uchar4 ((x & 0x20)?100:0 , 0,

(y & 0x20)?100:0 , 0);
g_odata [y*imgw+x] = rgbToInt (c4.z, c4.y, c4.x);

}

Fig. 1: Example illustrating Block-Size Independence.

the x and y coordinates, respectively. During the analysis run, imgw is first as-
signed a block-size independent value. Next, tx is assigned tid0, ty is assigned tid1
and so on. Importantly, variables x and y are assigned (bid0.bdim0 + tid0) and
(bid1.bdim1 + tid1), respectively, both of which are block-size independent. Fur-
ther, calls to functions make uchar4 and rgbToInt return block-size independent
values. Therefore, writes to array g odata by threads are block-size independent,
and the analysis verifies the program to be block-size independent.

We have implemented our tool in the LLVM open-source compiler. We imple-
ment an inter-procedural analysis and evaluate it on 34 sample programs from
the Nvidia CUDA SDK 8.0 [19] samples. We observe that a large number of pro-
grams are synchronization-free and can be proven block-size independent. A few
programs were trivially fixed to be block-size independent. Overall, the analysis
verifies a total of 35 global kernels in 11 programs to be block-size independent,
where a global kernel is an independent unit of execution in a GPU application.
To summarize, the paper makes the following contributions.

– Identifies and formalizes the problem of block-size independence for GPU
programs (Section 2).

– Presents a scalable inter-procedural analysis to verify block-size indepen-
dence for the class of synchronization-free GPU programs (Section 3).

– Demonstrates the relevance of the problem through an extensive evaluation
on the Nvidia CUDA SDK 8.0 samples (Section 4).

Lastly, we present some related work in Section 5 and conclude in Section 6.

2 Formalization

In this section, we present a formalization for the problem of block-size inde-
pendence. We first define a formal semantics for the GPU programming model
(Section 2.1) and the GPU execution model (Section 2.2). This establishes a
framework under which we can reason about the correctness of transformations.
We formalize block-size independence in Section 2.3. Finally, we discuss some
design choices and limitations for the above formalization (Section 2.4).

4 Rajeev Alur, Joseph Devietti and Nimit Singhania

2.1 GPU Programming Model

GPUs follow a Single Instruction Multiple Threads (SIMT) programming model,
where a large number of threads execute the same sequence of instructions, called
kernels. The threads are organized in a two-level hierarchy, where a set of threads
form a thread-block, and set of blocks forms a thread-grid. The thread-grid can
be multi-dimensional, where each thread is assigned a multi-dimensional thread-
id and block-id. Further, threads have access to thread-private local memory,
block-level shared memory, and a grid-level global memory. Each thread has
access to its thread-id (tid), block-id (bid), number of threads per block (bdim)
and the total number of threads (gdim). Finally, threads within a block can
synchronize via a syncthreads() barrier.

Formally, a GPU program is the tuple 〈d, VL, VS , VG, C,K〉, where d repre-
sents the number of dimensions in the thread-grid, VL, VS , VG represent the sets
of local, shared and global variables in the program, C = {tid, bid, bdim, gdim}
represents a set of local constants, and K is the kernel or the sequence of instruc-
tions executed by each thread. Let l ∈ VL be a local variable and v ∈ VS ∪ VG

be a shared/global array. Let E be a computable expression. The kernel K is
defined by the grammar:

S := AS | if 〈test〉 then S1 else S2 | while 〈test〉do S | syncthreads() | S1; S2

AS := [l := E(l0, . . . , ln)] local assignments
| [l := v[l0, . . . , ln]] multi-dimensional array reads
| [v[l0, . . . , ln] := l] multi-dimensional array writes

Thread-Grid. Given the total number of threads (i.e. grid-size) and the
number of threads per block (i.e. block-size), represented by d-dimensional vec-
tors N and B respectively, we define the structure for the thread-grid. The
thread-grid is d-dimensional where each dimension i is divided into dN i/Bie
blocks. The total number of threads along ith dimension is N i, and therefore,
the first (dN i/Bie − 1) blocks consist of Bi threads, whereas the last block
consists of (N i − (dN i/Bie − 1)Bi) threads. The blocks and threads are as-
signed a d-dimensional block-id b and thread-id t. The block-ids range from
0 to dN i/Bie − 1 for each dimension i, while the thread-ids range from 0 to
min(Bi,N i−biB)− 1 and identify the positions of threads within their blocks.

Figure 2 presents an example 2-dimensional thread-grid with 22 × 10 total
threads, with 4× 3 threads per block. There are in total 6× 4 blocks. Also, the
last block along each dimension has fewer threads than the first few blocks to
preserve the total number of threads along the dimension.

2.2 GPU Execution Model

We next present the semantics of executing a GPU program. Given a global state
σG that maps each global variable to a specific value, and a thread-grid config-
uration, given by the grid-size N and the block-size B, let JKKG(σG,N ,B)

Block-Size Independence for GPU Programs 5

0 1 2 3 4 5
0

1

2

3

Fig. 2: An example 2-dimensional thread-grid with 22 × 10 total threads and
4 × 3 threads per block. Each solid block represents a thread-block, while each
cell represents a thread. The darkened cell corresponds to a thread with block-id
(3, 2) and thread-id (1, 2).

represent the global state obtained after the execution of kernel K. Let τ rep-
resent a thread in the thread-grid. Let t = tid(τ) and b = bid(τ) be the
thread-id and block-id for the thread. Let G(N ,B) represent the set of all
threads in the grid. Let T (b,N ,B) be the set of all threads with block-id b,
i.e. {τ ∈ G(N ,B) : bid(τ) = b}. We first present the semantics for execut-
ing threads within a block, and then the semantics of composing executions for
blocks.

Fine-grained execution for threads. We use a fine-grained semantics to ex-
ecute threads within a block, where all threads execute instructions in lock-step.
Given a block-id b, the threads in the block are T = T (b,N ,B). We simulta-
neously maintain state for all threads. Each thread has access to a private copy
of local variables and a common copy of shared and global variables. Therefore,
the execution state σ consists of the local state σL : VL × T → V that maps
local variables in each thread to their values, the shared state σS : VS → V that
maps shared variables to their values, and the global state σG : VG → V that
maps global variables to their values. Further for each thread τ ∈ T , the local
constants bdim(τ) and gdim(τ) are assigned block-size B and grid-size N , re-
spectively. We now present the semantics. Let JSK(σ,Π) represent the execution
of a statement S for a set of threads Π starting in state σ. The semantics of
executing kernel K for threads with block-id b is given by JKK(σ,T (b,N ,B)).
Note the resulting state consists of all variables and not just global variables.
We define semantics by structural induction on S.

Assignments. We first define semantics of executing an assignment state-
ment for a single thread τ . Let σ′ ≡ JASK(σ, τ) represent the semantics. For
local computations, [l := E(l0, . . . , ln)], the semantics updates the value of l in
state σ′ to the value E(σ(l0, τ), . . . , σ(ln, τ)). For array reads, [l := v[l0, . . . , ln]],
the semantics updates the value of variable l with the value at location x =
(σ(l0, τ), σ(l1, τ), . . . , σ(ln, τ)) in array v, i.e. σ′(l, τ) = σ(v)(x). Finally, for
array writes, [v[l0, . . . , ln] := v], the semantics updates the value at location

6 Rajeev Alur, Joseph Devietti and Nimit Singhania

x = (σ(l0, τ), σ(l1, τ), . . . , σ(ln, τ)) in array v to the value σ(l, τ):
σ′(v)(x) = σ(l, τ), and for all y 6= x, σ′(v)(y) = σ(v)(y).

Note that the constants tid, bid, bdim, and gdim can also appear on the right-
hand side of these assignments. Next, we present the semantics of executing the
assignment for a set of threads Π = {τ0, . . . , τn}. The semantics sequentially
compose the execution of individual threads, ordered by their thread-ids. Hence,
JASK(σ, {}) = σ, and for all 0 ≤ i ≤ n,

JASK(σ, {τi, . . . , τn}) = JASK(JASK(σ, τi), {τi+1, . . . , τn}).
Sequences. The semantics of executing sequence of statements S1;S2 con-

sists of executing S1 for all threads, followed by executing S2:
JS1;S2K(σ,Π) = JS2K(JS1K(σ,Π),Π).

Conditionals. The semantics for conditionals serializes the execution of
the two branches. First all threads for which the test, given by a local boolean
variable l, is true, execute S1. Then the remaining threads execute S2 to produce
the desired state. Let Π1 = {τ ∈ Π : σ(l, τ) = true}. The semantics are:

Jif l then S1 else S2K(σ,Π) = JS2K(JS1K(σ,Π1),Π \Π1).
Loops. The semantics for loops are similar to that for conditionals, except

the execution repeats until the test condition, given by a local boolean variable,
becomes false for all threads. Let σ0, . . . , σn and Π0, . . . ,Πn be a series of states
and sets of threads, such that σ0 = σ, Π0 = {τ ∈ Π : σ(l, τ) = true}, σi =
JSK(σi−1,Πi−1), Πi = {τ ∈ Πi−1 : σi(l, τ) = true}, and Πn = {}. If such a series
exists, then the final state σn is the desired result of executing the loop.

Syncthreads. Due to the lock-step execution of threads, the syncthreads()
barrier does not need special semantics and returns the initial state σ.

Coarse-grained execution for blocks. We next present the semantics of com-
posing executions of individual blocks. We present a coarse-grained semantics
where each block executes independently and the final state is obtained by se-
quentially composing executions of individual blocks, ordered by their block-ids.
The blocks share only the global variables, and the local and shared variables are
initialized to undefined values before the execution for a block begins and dis-
carded after the execution ends. Let JKKG(σG,Γ ,N ,B) represent the execution
for blocks with block-ids in Γ = {b0, . . . , bn} starting in initial global state σG.
We define it as follows. First, JKKG(σG, {},N ,B) = σG. Next, for all 0 ≤ i ≤ n,

JKKG(σG, {bi, . . . , bn},N ,B) = JKKG(Proj(σ′, VG), {bi+1, . . . , bn},N ,B),
where σ′ = JKK(σG ∪ σS

⊥ ∪ σL
⊥,T (bi,N ,B)),

and σL
⊥ and σS

⊥ are local and shared states with undefined values, while Proj(σ, V)
projects the state σ onto the variables in set V . Note that the final state consists
only of the global variables. Now the desired state after the execution of the
GPU program, JKKG(σG,N ,B), is given by JKKG(σG,B,N ,B) where B is the
set of all block-ids in the thread-grid.

Block-Size Independence for GPU Programs 7

Invalidation Semantics. We next describe scenarios under which the execu-
tion of the program is erroneous and produces an error state ⊥. First, a data-race
between threads leads to an error state. A data-race occurs when two threads ac-
cess the same shared/global memory location, and the execution of the accesses
is not separated by a syncthreads() barrier. Second, an execution where only
few of the threads within a block reach a syncthreads() barrier produces an
error state, and is called a barrier divergence. These semantics help incorporate
features of the general GPU execution model into the formalization.

To keep the execution model simple, we discuss the invalidation semantics
informally. The focus of the paper is on proving functional equivalence of the
original and the transformed program. For such a property, precise invalidation
semantics are not necessary. We still rely on the data-race freedom of programs
to prove the correctness of our analysis. However, the informal nature of the
semantics suffices.

2.3 Block-Size Independence

We now define the block-size independence for a GPU program. Let two states
σ and σ′ be equivalent (σ ≡ σ′), if they consist of the same set of variables
and each variable has the same valuation in both states. We state the formal
definition here.

Definition 1. A GPU program 〈d, VL, VS , VG, C,K〉 is block-size independent,
iff for all initial global states σG and grid-sizes N , the execution of the program
is independent of the block-size B, that is:

for all σG,N ,B,B′, JKKG(σG,N ,B) ≡ JKKG(σG,N ,B′).

2.4 Discussion

We have presented so far a formal programming and execution model for GPU
programs and defined block-size independence with respect to this model. The
proposed model closely follows popular programming models like CUDA and
OpenCL. However, there are few restrictions and limitations in the proposed
model that we discuss here:

Lock-step execution. We use a simplified execution model where we assume all
threads in a block to execute in lock-step. This is not true in practice for perfor-
mance reasons. However, we are only concerned with the functional behavior of
programs and proving functional correctness of block-size transformation. Also,
the simplified execution model is functionally equivalent to the model used in
practice when programs are free of data-races.

Data-race freedom. Our formalization assumes that the GPU program being
transformed is free of data-races and other such correctness issues. These issues
have been tackled previously [2, 11, 12], and therefore, we focus only on the
correctness of block-size transformation.

8 Rajeev Alur, Joseph Devietti and Nimit Singhania

Total number of threads. In our formalization, we specify the number of
threads N as one of the invocation parameters. Among the popular models,
OpenCL [24] closely follows this model. CUDA [17], however, specifies the num-
ber of blocks Nb as an invocation parameter and computes the number of threads
along ith dimension as Bi.(Nb)i i.e. the product between the number of blocks
and the block-size. However, specifying the number of threads N provides more
flexibility in defining the total number of threads. Also, the total number of
threads remains unchanged when the block-size is modified, which makes prov-
ing program equivalence easier. Further, when the new block-size B′ is a divisor
the number of threads N along each grid-dimension, our model is also applicable
to CUDA and the new number of blocks along ith dimension can be computed
as Bi.(Nb)i/B

′
i.

Structures and pointers. Our formal model only considers scalars and ar-
rays, while the general models CUDA and OpenCL also support structures and
pointers. The key insights for arrays carry over to structures and pointers, and
therefore for simplicity, we omit them from our model. We address these, how-
ever, in the implementation of our analysis.

3 Analysis for Synchronization-free GPU Programs

This section presents an analysis to verify block-size independence for synchroni-
zation-free GPU programs, where the kernel does not consist of syncthreads()
barriers. In a synchronization-free GPU program, each thread must execute in-
dependently of the other threads (since any dependence on updates from other
threads leads to a data-race). Therefore, the global problem of verifying block-size
independence of the program reduces to the local problem of verifying block-size
independence for the execution of each thread in the program (Section 3.1).

Next, the execution of a thread is independent of block-size if the writes by
the thread to the shared and global variables do not depend on block-size.1 A
write can depend on block-size if either the location accessed, the value written
or the condition under which the write is executed is dependent on block-size.
The only sources of block-size dependence in a thread are the thread’s block-id,
bid(τ), the thread-id, tid(τ), and the block-size itself, bdim(τ) = B. Further,
the expression gid(τ) = (bid.bdim + tid)(τ) is independent of block-size. This is
because gid(τ) identifies a unique global location of the thread in the thread-
grid and remains unchanged when the block-size is modified. For example in
Figure 2, the thread with thread-id (1, 2) and block-id (3, 2) has a unique global-
id (3.4 + 1, 2.3 + 2) = (13, 8), which remains unchanged for all block-sizes. We
incorporate these features into our analysis to check block-size independence for
each thread (Section 3.2).

1 Reads can be ignored because our syncthreads()-free and race-free assumptions
permit a thread to only read values it has written itself or are part of the initial
state.

Block-Size Independence for GPU Programs 9

3.1 Reduction to Thread-local Block-Size Independence

We first define thread-local block-size independence for GPU programs. A GPU
program is thread-local block-size independent if the execution of each thread in
the thread-grid is independent of block-size. Given block-sizes B and B′, let a
thread τ in grid G(N ,B) be equivalent to another thread τ ′ in grid G(N ,B′),
i.e. τ ≡ τ ′, if they have the same unique global location in the thread-grid,
namely:

for all 0 ≤ i < d, (bidi(τ).Bi + tidi(τ)) = (bidi(τ ′).B′i + tidi(τ ′))

We observe this to be a one-to-one relation, where each thread τ in the first grid
corresponds to a unique global thread τ ′ in the second grid. Now, the program
is thread-local block-size independent, if each pair of equivalent global threads
has equivalent executions. Recall JSK(σ,Π) denotes the execution of statement
S for a set of threads Π starting in initial state σ.

Definition 2. A GPU program 〈d, VL, VS , VG, C,K〉 is thread-local block-size
independent, iff for all initial states σG and grid-sizes N , the global state after
the execution of a thread in the thread-grid is independent of block-size, where
the local and shared variables are initialized to undefined values. Formally, the
program is thread-local block-size independent iff:

for all σG,N ,B,B′, τ ∈ G(N ,B), τ ′ ∈ G(N ,B′),
τ ≡ τ ′ =⇒ Proj(JKK(σ, {τ}), VG) ≡ Proj(JKK(σ, {τ ′}), VG),

where σ ≡ (σL
⊥ ∪ σS

⊥ ∪ σG).

We show that if a GPU program is synchronization-free, verifying thread-
local block-size independence is sufficient to verify block-size independence for
the program. We first observe that for a synchronization-free program, the lock-
step execution of threads in a block is equivalent to executing threads one after
another. This is because, to avoid data-races, each thread must operate indepen-
dently and not see updates from other threads. Therefore, the order of execution
between threads does not matter and a fine-grained interleaving (Figure 3a) pro-
duces the same execution as a coarse-grained interleaving (Figure 3b).

Lemma 1. Given a synchronization-free GPU program 〈d, VL, VS , VG, C,K〉 and
a set of threads Π = {τ0, . . . , τk}, the lock-step execution of threads is equivalent
to executing threads sequentially:

for all σ,Π , JKK(σ,Π) ≡ σk+1,

where σ0 = σ and σi+1 = JKK(σi, {τi}) for all 0 ≤ i ≤ k.

10 Rajeev Alur, Joseph Devietti and Nimit Singhania

t0 t1 t2 t3 t4 t5 . . .

i0
i1
i2
i3
i4
i5
...

(a) Fine-grained interleaving

t0 t1 t2 t3 t4 t5 . . .

i0
i1
i2
i3
i4
i5
...

(b) Coarse-grained interleaving

Fig. 3: The figure shows fine-grained vs coarse-grained interleaving of threads in
a block. The rows represent sequence of instructions to be executed, while the
columns represent the threads in a block. The arrows signify the order in which
the threads and the instructions are executed.

By Lemma 1, the lock-step execution of threads in a block can be substituted
with sequential execution of threads. Next, we observe that we can execute each
thread in a state where the local and shared variables are undefined initially.
This is because, the thread must not observe any updates to these variables
from the previously executed threads, or we would have a data-race. Also, these
variables are discarded at the end of the execution of the block, and we need not
retain their values. Remember JKKG(σG,Γ ,N ,B) represents execution of a set
of blocks Γ , where the shared and local variables are undefined initially and the
result of the execution consists only of the global state.

Lemma 2. Given a synchronization-free GPU program 〈d, VL, VS , VG, C,K〉 and
a block-id b, the lock-step execution for block b is equivalent to executing threads
sequentially, with local and shared variables initialized to undefined values:

for all σG, b,N ,B, JKKG(σG, {b},N ,B) ≡ σG
k+1,

where σG
0 = σG and σG

i+1 = Proj(JKK(σL
⊥ ∪ σS

⊥ ∪ σG
i , {τi}), VG),

for all τi in T (b,N ,B).

Finally from Lemma 2, the execution of each thread in the first grid can
be substituted with the execution of equivalent thread in the second grid, and
therefore, thread-local block-size independence of a synchronization-free program
implies block-size independence for the program. We conclude the following the-
orem.

Theorem 1. If a synchronization-free GPU program 〈d, VL, VS , VG, C,K〉 is thread-
local block-size independent, then it is also block-size independent.

Block-Size Independence for GPU Programs 11

3.2 Analysis

We present our analysis to check thread-local block-size independence of GPU
programs and to ensure that the execution of each thread is block-size indepen-
dent. Initially when a thread’s execution starts, only constants bid, bdim and tid
are block-size dependent and the remaining variables are block-size independent.
While bdim is equal to block-size, the thread-id tid and block-id bid of a thread
also depend on the block-size and get updated when the block-size is modified.
Hence, if any of these values potentially flows into a global variable update, then
the final global state after the thread’s execution depends on block-size and the
program is block-size dependent. The analysis defines an abstraction of state and
abstract semantics for kernel instructions to track the flow of block-size depen-
dent values during a thread’s execution. Note that we run the analysis and show
the block-size independence separately for each dimension of thread-grid. So for
the subsequent discussion, consider bid, bdim and tid to be one-dimensional val-
ues. This is not too restrictive, since most programs are block-size independent
with respect to each grid-dimension. Also, this greatly simplifies the analysis
both in its complexity and running time.

Abstraction. The analysis defines an abstraction of program state to track
dependence of local scalar variables on block-size. Let σ̂ be the abstraction of
the program state σ, which maps each local variable to an abstract value, i.e.
VL → V̂. Let l, k0 be local variables. Let f0 be a function that maps each thread
to a block-size independent value. For integer and real variables, the abstraction
is defined as:

σ̂(l) =

cind, for all τ, σ(l, τ) = f0(τ).
k0cbid, σ̂(k0) = cind; for all τ, σ(l, τ) = σ(k0, τ).bid(τ).
k0cbdim, σ̂(k0) = cind; for all τ, σ(l, τ) = σ(k0, τ).bdim(τ).
k0ctid, σ̂(k0) = cind; for all τ, σ(l, τ) = σ(k0, τ).tid(τ) + f0(τ).
k0cbidcbdim, σ̂(k0) = cind;

for all τ, σ(l, τ) = σ(k0, τ).bid(τ).bdim(τ) + f0(τ).
cbsize, otherwise.

The value cind represents all block-size independent values. The abstract value
cbsize represents values with arbitrary dependence on block-size. We observe the
expression (k0.bid.bdim+k0.tid), where k0 is a block-size independent variable, is
independent of block-size. To take this account, our abstraction tracks different
sub-expressions of this expression, k0cbid, k0cbdim, k0ctid, and k0cbidcbdim, where
k0 is the multiplier or a symbolic constant representing a block-size independent
local variable. We assume each local variable has a unique definition (e.g. SSA
form), and the variables are not updated after they are first defined. Hence, the
symbolic constant truly represents the variable used as multiplier in the abstract
value, and we do not differentiate between the variable and the symbolic constant
representing the variable.

We similarly define an abstraction for local boolean variables, which tracks
dependence of the condition on block-size. Let b0 be a block-size independent

12 Rajeev Alur, Joseph Devietti and Nimit Singhania

Sum1

l := l0 + l1 σ̂(l0) = cind
σ̂(l1) ∈ {k0ctid, k1cbidcbdim}

σ̂′(l) := σ̂(l1)
Sum2

l := l0 + l1 σ̂(l0) = k0ctid
σ̂(l1) = k1cbidcbdim k0 ≡ k1

σ̂′(l) := cind

Prod1

l := l0.l1 σ̂(l0) = cind
σ̂(l1) ∈ {cbid, cbdim, ctid, cbidcbdim}

σ̂′(l) := l0σ̂(l1)
Prod2

l := l0.l1 σ̂(l0) = cbid
σ̂(l1) = k0cbdim

σ̂′(l) := k0cbidcbdim

Prod3

l := l0.l1 σ̂(l0) = k0cbid
σ̂(l1) = cbdim

σ̂′(l) := k0cbidcbdim
Read

l := v[l0, . . . , ln]
σ̂(l0) = cind . . . σ̂(ln) = cind

σ̂′(l) := cind

Arith

l := l0 op l1
σ̂(l0) = cind
σ̂(l1) = cind

σ̂′(l) := cind
Rel

l := l0 rel l1
σ̂(l0) = cind
σ̂(l1) = cind

σ̂′(l) := bind
Bool

l := l0 bop l1
σ̂(l0) = bind
σ̂(l1) = bind

σ̂′(l) := bind

Fig. 4: Abstract semantics for different assignment statements and initial ab-
stract states. State σ̂ is the incoming abstract state while σ̂′ is the updated state
after the assignment. The the rules are valid only when the path-predicate π̂
is bind. Lastly, op, rel and bop are arithmetic, relational and boolean operators,
respectively.

boolean function. The abstraction for boolean variables is:

σ̂(l) =
{

bind, for all τ, σ(l, τ) = b0(τ).
bbsize, otherwise.

Finally, we do not track shared and global variables or arrays in our abstrac-
tion. We compensate by tracking each write to these variables and ensuring that
the writes are independent of block-size.

We further define a path-predicate, π̂, which is the condition under which a
statement is executed. The value of π̂ is an abstract boolean value, representing
whether the condition is dependent on block-size or not.

Abstract Semantics. We now define some abstract semantics for propa-
gating abstract state σ̂ and path-predicate π̂ through statements in the kernel.
Figure 4 defines updates to abstract states for different assignment statements
and initial states. Note the rules in Figure 4 are only valid if the path-predicate
π̂ is bind. Also, we only show rules for scenarios where the result is non-trivial
and not cbsize/bbsize. Otherwise, if π̂ = bbsize or the rule is not shown, the updated
value for arithmetic/boolean variables is cbsize/bbsize. The path-predicate remains
unchanged after each statement, unless specified.

We now briefly describe the rules shown in Figure 4. Note when the multiplier
k for an abstract value is constant 1, we drop the multiplier, e.g. cbid in rule
Prod1. The rules ensure that the abstraction is preserved. For example, in rule
Sum2, abstract values k0ctid and k1cbidcbdim are added together, where k0 equals

Block-Size Independence for GPU Programs 13

k1. This is equivalent to the expression (k0.tid + k0.bid.bdim), which we know is
block-size independent. Hence, the final result is assigned the value cind. Similarly,
the other rules update the abstract state while preserving the abstraction. An
important point to note here is that during the product operation (rules Prod1,
Prod2, Prod3), the multiplier for at least one of the operands must be constant
1, so that the multiplier for the other operand is set as the final multiplier.
Otherwise, the result is set to cbsize. This ensures that the set of symbolic values
for the multiplier is limited to the set of variables in the program and we do
not consider complex expressions on variables for the multiplier. While this is
imprecise, it is necessary to scale the analysis.

We next consider writes to shared/global arrays [v[l0, . . . , ln] := l], where
the analysis checks if the accessed location, the value written and the path-
predicate are independent of block-size, i.e. the values σ̂(l0), . . . , σ̂(ln) and σ̂(l)
must be cind and the path-predicate π̂ must be bind. If this is not the case, the
write is potentially a function of block-size and the analysis reports the write,
and the kernel itself, to be block-size dependent. This also ensures the values
in shared/global arrays are always block-size independent, and thus, the array
reads return a consistent value in rule Read in Figure 4.

For conditionals [if l then S1 else S2], the analysis sets the path-predicates
for S1 and S2 to (π̂ ∧ σ̂(l)) and (π̂ ∧ ¬σ̂(l)), respectively, and propagates the
same initial abstract state σ̂ to both statements. Further, the final state after
the conditional is a merge of states after S1 and S2. If the values for a variable
are identical in both states (i.e. the type and the multiplier are equal), then this
is set as the merged value for the variable. Otherwise, the merged value is set to
cbsize/bbsize. The path-predicate after the conditional is the same as the predicate
π̂ before the conditional.

The semantics for loops are defined similarly to conditionals, but we must
additionally ensure that the analysis terminates. We observe that the set of
abstract values and the merge operation define a finite upper semi-lattice, with
a small number of different value types and the multiplier ranging over the finite
set of local variables. Further, the abstract semantics are monotonic over the
semi-lattice. Therefore, the fixed point computation on loops must terminate.

Algorithm. The overall algorithm is as follows. We initialize local variables
to cind/bind in the initial abstract state σ̂, while the path-predicate π̂ is initial-
ized to bind. The constants bid, bdim and tid are assigned values cbid, cbdim and
ctid, respectively, while gdim is independent of block-size and assigned cind. The
analysis executes the kernel for the abstract state σ̂ and the path-predicate π̂
with the abstract semantics defined above. If it encounters a potentially block-
size dependent shared or global write, it terminates with block-size dependence.
Otherwise, it reports the kernel to be block-size independent.

Inter-procedural analysis. Our analysis also supports inter-procedural analy-
sis, where a kernel can call other kernels. We do a bottom-up traversal on the
call-graph, where the callees are analyzed before the callers. We analyze each
kernel assuming the parameters are set to cind/bind initially and reuse this analy-
sis result for all calls to the kernel with call arguments as cind/bind. For calls with

14 Rajeev Alur, Joseph Devietti and Nimit Singhania

block-size dependent arguments, we conservatively report the call to be block-
size dependent and return cbsize/bbsize. For library calls (where the source code is
not linked) and inline assembly instructions, we conservatively assume the func-
tion to be block-size dependent and to return value cbsize/bbsize. However, for
specific cases, like library calls to Math functions sinf, cosf, sqrtf etc.,
where the result is a trivial function of inputs, we assume the call to be block-size
independent, and also return cind/bind if the call-arguments are cind/bind. Note
that we do not support recursive procedures in our analysis, which are rarely
present in GPU programs.

Example. We illustrate our analysis using the example in Figure 1. We run
the analysis separately for the two thread-grid dimensions. For the first thread-
grid dimension, the analysis initializes variables as σ̂(bid0) = cbid, σ̂(bdim0) =
cbdim, σ̂(tid0) = ctid, σ̂(bid1) = σ̂(bdim1) = σ̂(tid1) = σ̂(imgw) = cind. Also, it
initializes the path-condition to bind, which is never modified. Next, it executes
the statement [tx := tid0], and sets σ̂(tx) to ctid. It similarly assigns values to
variables ty, bw, bh. When computing x, it first computes the product bid0.bw
which is equal to cbidcbdim, and then computes x as the sum of values cbidcbdim
and ctid, which we know is cind. The execution for the remaining statements
continues similarly. Finally, the global write to image g odata is executed with
block-size independent abstract values and path-condition, and hence, the write
is block-size independent. Therefore, the analysis declares the program block-size
independent along this thread-grid dimension. The analysis repeats a similar
process for the other thread-grid dimension and concludes the program to be
block-size independent.

Implementation. We have implemented the analysis as a pass in LLVM
compiler. We define the abstract domain and the abstract semantics, and rely
on an abstract execution engine to execute the program using the abstract se-
mantics during the analysis. To handle pointers, we use abstract values to track
block-size dependence of the address of location represented by a pointer. Hence,
when a pointer is dereferenced, we conservatively return cind/bind if the pointer
is constant, and cbsize/bbsize if the pointer is not a constant. We only update the
value of a pointer variable on pointer assignment and pointer updates through
indexing. Structures are represented similar to arrays in LLVM and hence no
special semantics are necessary.

We represent multipliers in the abstract values as follows. LLVM exposes
each variable in the program as a unique Value* pointer. We use this pointer to
represent the multiplier and compare it against other pointers. Since LLVM uses
the SSA form, the pointer corresponds to a unique definition and the value for
the variable is not updated after it is first defined. Note that the program vari-
ables which are accessed via load/store instructions, do not appear as operands
in regular arithmetic or boolean operations, and vice-versa. Hence, such vari-
ables are never used as multipliers in the abstract domain and the value for the
multipliers is never updated through indirect store operations.

Correctness. We show the correctness of our analysis. The analysis pre-
serves the abstraction and ensures that each variable gets an abstract value

Block-Size Independence for GPU Programs 15

cind/bind only if the value is truly block-size independent, i.e. the assigned value
and the path-predicate are block-size independent. Further, each write to global
variables is guarded by a check for block-size independence. Therefore, if the
analysis does not report any block-size dependent writes, the updates to the
global memory are always block-size independent, and the global state at the
end of each thread’s execution must also be block-size independent. This implies
the program is thread-local block-size independent, and hence, we conclude the
following theorem.

Theorem 2. A synchronization-free GPU program 〈d, VL, VS , VG, C,K〉 is block-
size independent, if the analysis reports the program to be block-size independent.

4 Evaluation

We have implemented the block-size independence analysis in LLVM 7.0, a popu-
lar open-source compiler framework, and evaluate it on the Nvidia CUDA SDK
8.0 sample programs. The SDK consists of 62 applications, out of which 28
benchmarks rely on texture memory fetches and the Thrust library and could
not be compiled with LLVM. Hence, we analyze the remaining 34 benchmarks.
For each benchmark, we analyze global kernels which are entry-points into the
call-graph and are invoked directly from CPU code. For each global kernel, the
analysis reports whether the kernel is block-size independent (BSI), and if not,
the potential block-size dependent accesses in the kernel. We run the analysis
on an Amazon EC2 machine with 4-core Intel Xeon 2.3GHz CPU and 16GB
memory running Ubuntu 16.04 LTS (OS).

How many BSI kernels are found by the analysis? Table 1 shows
the results for the analysis. The graph shows the the total number of global
kernels and the number of BSI kernels reported by our analysis. Note that in
few of the benchmarks, the global kernels are instantiations of templated kernels.
The global kernels have similar functionality, and hence, the numbers are slightly
bloated. For example, in benchmarks “reduction”, “threadFenceReduction”, and
“alignedTypes”, the total number of kernels is 132, 40 and 16, though these are
instantiations of 7, 2 and 1 templated kernels, respectively. Yet, the analysis is
able to verify a large number of kernels as BSI. It finds 35 BSI kernels in 11
benchmarks, and runs in a few seconds for most benchmarks, rarely taking more
than a minute.

Are there truly non-BSI kernels? We manually investigated the bench-
marks and found a few non-BSI kernels. These kernels asymmetrically distribute
computation between blocks and threads, and hence, are block-size dependent.
For example, benchmarks “binomialOptions” and “MonteCarloMultiGPU” allo-
cate an ‘option’ per block while the threads collaborate to compute the value for
the option. Similarly, “scalarProd” allocates a vector-pair per block while the
threads multiply and add individual elements to get the scalar product.

What class of kernels could not be verified? We could not verify block-
size independence for kernels where shared memory and thread-synchronization

16 Rajeev Alur, Joseph Devietti and Nimit Singhania

Benchmark # Kernels # BSI Benchmark # Kernels # BSI
Mandelbrot 6 0 concurrentKernels 2 0
simpleGL 1 0 eigenValues 4 0
convolutionSeparable 2 0 fastWalshTransform 3 2
cudaDecodeGL 2 2 FDTD3dGPU 1 0
dwtHaar1D 2 0 interval 1 0
histogram 4 0 mergeSort 7 3
recursiveGaussian 3 2 newDelete 14 4
simpleCUDA2GL 2 2 reduction 132 0
binomialOptions 1 0 scalarProd 1 0
BlackScholes 1 0 scan 3 0
MonteCarloMultiGPU 2 0 shfl scan 4 0
quasiRandomGenerator 2 2 SimpleHyperQ 3 0
SobolQRNG 1 1 sortingNetworks 6 0
nbody 2 0 StreamPriorities 1 1
oceanFFT 3 2 threadFenceReduction 40 0
alignedTypes 12 12 threadMigration 1 0
cdpLUDecomposition 2 0 transpose 8 0

Table 1: Results of BSI analysis for Nvidia CUDA SDK 8.0 samples. # Kernels
represents the total number of global kernels. # BSI represents the number of
these kernels that are block-size independent.

were used to intricately share data between threads within a block. A com-
mon scenario was a parallel reduction operation such as summing elements.
The block-size was hard-coded via #define constants for few of the kernels,
which prevented verification. We observed an interesting pattern in benchmarks
“dwtHaar1D” and “reduction” where each thread operated on two locations in
a global array: (2bid.bdim + tid) and (2bid.bdim + bdim + tid). The locations in-
dividually are block-size dependent. However, cumulatively, the threads operate
on all elements, which makes the operation block-size independent. Finally, we
could not verify kernels in “simpleGL”, “oceanFFT” and “interval” to be BSI,
because library calls containing inline assembly calls and addition between in-
tegers and booleans were inlined into the kernels, which were falsely reported
block-size dependent.

Does tuning block-size for BSI kernels improve performance? We
experimented with benchmark “SobolQRNG” to gauge performance improve-
ment via block-size tuning. The benchmark originally used shared memory to
cache global constants and was reported non-BSI by our analysis. The block-
size was set to 64 threads/block and produced 18.8 Gsamples/s (baseline) on
an Nvidia GTX Titan X GPU. We removed caching to obtain a BSI version.
Here for 64 threads/block, we lost performance by 40% (11.6 Gsamples/s), but
then for 256 threads/block, we regained performance with an improvement of
9% over the baseline (20.5 Gsamples/s). Our analysis helped tune block-size to
gain performance while ensuring correctness, unlike the other optimization.

Block-Size Independence for GPU Programs 17

How many kernels could be easily fixed to become BSI? We fixed 7
kernels to be BSI with our analysis (included in the 35 BSI kernels found by the
analysis). In “quasiRandomGenerator” and “fastWalshTransform”, the number
of blocks for the second grid dimension was set to 1, and thus bid1 was always
set to 0 and dropped from the computation for gid1. In “cudaDecodeGL”, gid
was computed as (bdim).(bid << 1) + (tid << 1), where the ‘<<’ operator was
not supported by our analysis. Finally, in “quasiRandomGenerator”, gid was
computed as (mul(bid, bdim) + tid), where the ‘mul’ method was not supported.

5 Related Work

Auto-tuning. A rich body of work exists on automatically tuning GPU appli-
cations for specific hardware configurations. Broadly, there are three types of
auto-tuning: empirical tuning [28, 13, 20, 16, 23, 27], where different program
variants are executed and the best variant is identified via exhaustive search
or a hill-climbing approach; model-based tuning [4, 5], where a hand-crafted
model is used to select the best program variant; and predictive model-based
tuning [26, 13, 9, 14, 1], where a predictive model trained via machine learning
techniques like decision trees is used to select the best program variant. All these
approaches either automatically generate the final GPU program, or transform
an existing program to generate the tuned program. A few of these works tune
block-size directly [13, 14, 1, 27], but do not verify correctness of the trans-
formation. A few are domain-specific [28, 20, 5, 16, 23], often using programs
written in a domain-specific languages instead of CUDA and OpenCL. Finally,
many recent works focus on data-layout optimization [26, 9] and data place-
ment [4]. These works segregate specification of data-layout and data-placement
from the actual program by hiding it under a data-abstraction layer. Hence, only
the spec for data-layout and placement is modified during auto-tuning and the
program remains unchanged. This localizes any errors to the implementation of
data-layout specifications, which ensures greater correctness. Tuning block-size
is, however, essential to utilize resources on GPUs effectively, and our work on
validating block-size independence can enable robust auto-tuning for block-size
transformation.

GPU Verification. Several systems exist for verification of GPU programs.
GKLEE [12] and KLEE-CL [6] extend KLEE, a popular symbolic execution
engine, to verify GPU programs against data-races and barrier divergence. Due
to the presence of a large number of threads, these tools do not scale to large
programs. GPUVerify [2] and PUG [11] improve upon GKLEE and KLEE-CL,
by using symbolic threads and SMT-based verification to identify data-races.
The underlying SMT solvers have trouble scaling to very large formulae as well.
Finally, Leung et al. [10] present an approach where they analyze programs for
input-independence, verify safety properties of input-independent programs for
a small set of inputs and then generalize results to all other inputs. The analysis
to verify input-independence is similar to ours, except it tracks the flow of input
variables instead of the block-size dependent constants.

18 Rajeev Alur, Joseph Devietti and Nimit Singhania

Abstract Interpretation + Symbolic Execution. A few works, similar
to our work, use symbolic constants to improve precision of an abstract domain,
while retaining the scalability of the analysis. Sankaranarayanan et al. [22] and
Venet [25] extend the Interval domain with symbolic ranges, where the upper
and lower bounds of an interval are a linear combination of symbolic constants
representing program variables. Miné [15] presents two generic techniques: lin-
earization, which instantiates symbolic variables with abstract constants to ob-
tain a linear expression in symbolic variables, and symbolic constant propagation,
which propagates symbolic constants across expressions to gain precision.

6 Conclusion

The paper formalizes block-size independence for GPU programs and presents an
inter-procedural analysis to verify block-size independence for synchronization-
free programs. The analysis relies on tracking the flow of block-size dependent
values via an abstraction that combines symbolic multipliers with abstract con-
stants representing different dependencies on block-size. It is very efficient and
finds a considerable number of block-size independent global kernels in Nvidia
CUDA SDK.

In future, we would like to extend the analysis to GPU programs with re-
stricted synchronization between threads, by either transforming these programs
into synchronization-free programs or ensuring that the execution of each thread
is independent of the set of threads it synchronizes with, and then the present
analysis would suffice to prove block-size independence of the programs.

We would like to thank the anonymous reviewers and our shepherd Sylvie
Putot for their valuable feedback. We would also like to thank NSF award XPS-
1337174 and hardware donations from Nvidia for supporting this research.

References

1. Bergstra, J., Pinto, N., Cox, D.: Machine learning for predictive auto-tuning with
boosted regression trees. In: 2012 Innovative Parallel Computing (InPar). pp. 1–9
(May 2012)

2. Betts, A., Chong, N., Donaldson, A., Qadeer, S., Thomson, P.: GPUVerify: A
verifier for GPU kernels. SIGPLAN Not. 47(10), 113–132 (Oct 2012), http://
doi.acm.org/10.1145/2398857.2384625

3. Boyer, R.S., Elspas, B., Levitt, K.N.: SELECT – a formal system for testing and
debugging programs by symbolic execution. In: Proceedings of the International
Conference on Reliable Software. pp. 234–245. ACM, New York, NY, USA (1975),
http://doi.acm.org/10.1145/800027.808445

4. Chen, G., Wu, B., Li, D., Shen, X.: PORPLE: An extensible optimizer for portable
data placement on GPU. In: Proceedings of the 47th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture. pp. 88–100. MICRO-47, IEEE Computer
Society, Washington, DC, USA (2014), http://dx.doi.org/10.1109/MICRO.2014.
20

http://doi.acm.org/10.1145/2398857.2384625
http://doi.acm.org/10.1145/2398857.2384625
http://doi.acm.org/10.1145/800027.808445
http://dx.doi.org/10.1109/MICRO.2014.20
http://dx.doi.org/10.1109/MICRO.2014.20

Block-Size Independence for GPU Programs 19

5. Choi, J.W., Singh, A., Vuduc, R.W.: Model-driven autotuning of sparse matrix-
vector multiply on GPUs. In: Proceedings of the 15th ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming. pp. 115–126. PPoPP
’10, ACM, New York, NY, USA (2010), http://doi.acm.org/10.1145/1693453.
1693471

6. Collingbourne, P., Cadar, C., Kelly, P.H.J.: Symbolic testing of OpenCL code. In:
Haifa Verification Conference (HVC 2011) (1 2011)

7. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages. pp. 238–252. POPL ’77, ACM, New York, NY, USA (1977), http:
//doi.acm.org/10.1145/512950.512973

8. King, J.C.: A new approach to program testing. In: Proceedings of the International
Conference on Reliable Software. pp. 228–233. ACM, New York, NY, USA (1975),
http://doi.acm.org/10.1145/800027.808444

9. Kofler, K., Cosenza, B., Fahringer, T.: Automatic data layout optimizations for
GPUs. In: Träff, J.L., Hunold, S., Versaci, F. (eds.) Euro-Par 2015: Parallel Pro-
cessing. pp. 263–274. Springer Berlin Heidelberg, Berlin, Heidelberg (2015)

10. Leung, A., Gupta, M., Agarwal, Y., Gupta, R., Jhala, R., Lerner, S.: Verifying GPU
kernels by test amplification. In: Proceedings of the 33rd ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation. pp. 383–394. PLDI
’12, ACM, New York, NY, USA (2012), http://doi.acm.org/10.1145/2254064.
2254110

11. Li, G., Gopalakrishnan, G.: Scalable SMT-based verification of GPU kernel func-
tions. In: Proceedings of the Eighteenth ACM SIGSOFT International Symposium
on Foundations of Software Engineering. pp. 187–196. FSE ’10, ACM, New York,
NY, USA (2010), http://doi.acm.org/10.1145/1882291.1882320

12. Li, G., Li, P., Sawaya, G., Gopalakrishnan, G., Ghosh, I., Rajan, S.P.: GKLEE:
Concolic verification and test generation for GPUs. In: Proceedings of the 17th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming.
pp. 215–224. PPoPP ’12, ACM, New York, NY, USA (2012), http://doi.acm.
org/10.1145/2145816.2145844

13. Liu, Y., Zhang, E.Z., Shen, X.: A cross-input adaptive framework for GPU program
optimizations. In: 2009 IEEE International Symposium on Parallel Distributed
Processing. pp. 1–10 (May 2009)

14. Magni, A., Dubach, C., O’Boyle, M.: Automatic optimization of thread-coarsening
for graphics processors. In: Proceedings of the 23rd International Conference on
Parallel Architectures and Compilation. pp. 455–466. PACT ’14, ACM, New York,
NY, USA (2014), http://doi.acm.org/10.1145/2628071.2628087

15. Miné, A.: Symbolic methods to enhance the precision of numerical abstract do-
mains. In: Proceedings of the 7th International Conference on Verification, Model
Checking, and Abstract Interpretation. pp. 348–363. VMCAI’06, Springer-Verlag,
Berlin, Heidelberg (2006), http://dx.doi.org/10.1007/11609773_23

16. Monakov, A., Lokhmotov, A., Avetisyan, A.: Automatically tuning sparse matrix-
vector multiplication for GPU architectures. In: Proceedings of the 5th Interna-
tional Conference on High Performance Embedded Architectures and Compil-
ers. pp. 111–125. HiPEAC’10, Springer-Verlag, Berlin, Heidelberg (2010), http:
//dx.doi.org/10.1007/978-3-642-11515-8_10

17. Nickolls, J., Buck, I., Garland, M., Skadron, K.: Scalable parallel programming with
CUDA. Queue 6(2), 40–53 (Mar 2008), http://doi.acm.org/10.1145/1365490.
1365500

http://doi.acm.org/10.1145/1693453.1693471
http://doi.acm.org/10.1145/1693453.1693471
http://doi.acm.org/10.1145/512950.512973
http://doi.acm.org/10.1145/512950.512973
http://doi.acm.org/10.1145/800027.808444
http://doi.acm.org/10.1145/2254064.2254110
http://doi.acm.org/10.1145/2254064.2254110
http://doi.acm.org/10.1145/1882291.1882320
http://doi.acm.org/10.1145/2145816.2145844
http://doi.acm.org/10.1145/2145816.2145844
http://doi.acm.org/10.1145/2628071.2628087
http://dx.doi.org/10.1007/11609773_23
http://dx.doi.org/10.1007/978-3-642-11515-8_10
http://dx.doi.org/10.1007/978-3-642-11515-8_10
http://doi.acm.org/10.1145/1365490.1365500
http://doi.acm.org/10.1145/1365490.1365500

20 Rajeev Alur, Joseph Devietti and Nimit Singhania

18. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer
Publishing Company, Incorporated (2010)

19. Nvidia: Nvidia CUDA SDK, https://developer.nvidia.com/
cuda-code-samples/

20. Ragan-Kelley, J., Barnes, C., Adams, A., Paris, S., Durand, F., Amarasinghe, S.:
Halide: A language and compiler for optimizing parallelism, locality, and recom-
putation in image processing pipelines. In: Proceedings of the 34th ACM SIG-
PLAN Conference on Programming Language Design and Implementation. pp.
519–530. PLDI ’13, ACM, New York, NY, USA (2013), http://doi.acm.org/10.
1145/2491956.2462176

21. Ryoo, S., Rodrigues, C.I., Stone, S.S., Baghsorkhi, S.S., Ueng, S.Z., Stratton, J.A.,
Hwu, W.m.W.: Program optimization space pruning for a multithreaded gpu. In:
Proceedings of the 6th Annual IEEE/ACM International Symposium on Code
Generation and Optimization. pp. 195–204. CGO ’08, ACM, New York, NY, USA
(2008), http://doi.acm.org/10.1145/1356058.1356084

22. Sankaranarayanan, S., Ivančić, F., Gupta, A.: Program analysis using symbolic
ranges. In: Proceedings of the 14th International Conference on Static Analysis.
pp. 366–383. SAS’07, Springer-Verlag, Berlin, Heidelberg (2007), http://dl.acm.
org/citation.cfm?id=2391451.2391476

23. Sørensen, H.H.B.: Auto-tuning dense vector and matrix-vector operations for Fermi
GPUs. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.)
Parallel Processing and Applied Mathematics. pp. 619–629. Springer Berlin Hei-
delberg, Berlin, Heidelberg (2012)

24. Stone, J.E., Gohara, D., Shi, G.: OpenCL: A parallel programming standard for
heterogeneous computing systems. IEEE Des. Test 12(3), 66–73 (May 2010), http:
//dx.doi.org/10.1109/MCSE.2010.69

25. Venet, A.J.: The gauge domain: Scalable analysis of linear inequality invariants. In:
Proceedings of the 24th International Conference on Computer Aided Verification.
pp. 139–154. CAV’12, Springer-Verlag, Berlin, Heidelberg (2012), http://dx.doi.
org/10.1007/978-3-642-31424-7_15

26. Weber, N., Goesele, M.: MATOG: Array layout auto-tuning for CUDA. ACM
Trans. Archit. Code Optim. 14(3), 28:1–28:26 (Aug 2017), http://doi.acm.org/
10.1145/3106341

27. Yang, Y., Xiang, P., Kong, J., Mantor, M., Zhou, H.: A unified optimizing compiler
framework for different GPGPU architectures. ACM Trans. Archit. Code Optim.
9(2), 9:1–9:33 (Jun 2012), http://doi.acm.org/10.1145/2207222.2207225

28. Zhang, Y., Mueller, F.: Auto-generation and auto-tuning of 3D stencil codes on
GPU clusters. In: Proceedings of the Tenth International Symposium on Code
Generation and Optimization. pp. 155–164. CGO ’12, ACM, New York, NY, USA
(2012), http://doi.acm.org/10.1145/2259016.2259037

https://developer.nvidia.com/cuda-code-samples/
https://developer.nvidia.com/cuda-code-samples/
http://doi.acm.org/10.1145/2491956.2462176
http://doi.acm.org/10.1145/2491956.2462176
http://doi.acm.org/10.1145/1356058.1356084
http://dl.acm.org/citation.cfm?id=2391451.2391476
http://dl.acm.org/citation.cfm?id=2391451.2391476
http://dx.doi.org/10.1109/MCSE.2010.69
http://dx.doi.org/10.1109/MCSE.2010.69
http://dx.doi.org/10.1007/978-3-642-31424-7_15
http://dx.doi.org/10.1007/978-3-642-31424-7_15
http://doi.acm.org/10.1145/3106341
http://doi.acm.org/10.1145/3106341
http://doi.acm.org/10.1145/2207222.2207225
http://doi.acm.org/10.1145/2259016.2259037

	Block-Size Independence for GPU Programs

