
Dispatch Sequences for Embedded Control

Models ?

Rajeev Alur and Arun Chandrashekharapuram

Department of Computer and Information Science, University of Pennsylvania,

Philadelphia, PA 19104-6389, U.S.A.

Abstract

We consider the problem of mapping a set of control components to an executable
implementation. The standard approach to this problem involves mapping control
blocks to periodic tasks, and then generating a schedule. This schedule is platform-
dependent, and its execution requires real-time operating system support. We pro-
pose an alternative approach which involves generating a dispatch sequence of con-
trol blocks in a platform-independent manner. Our solution relies on assigning rela-
tive complexity and relative importance measures to control components, and is an
adaptation of the classical scheduling algorithms such as earliest-deadline-�rst. We
show the bene�ts of our approach using simulation experiments on two case studies.

Key words: Embedded software, Real-time scheduling, Model-based design

1 Introduction

Contemporary industrial control design already relies heavily on tools such as
Simulink for mathematical modeling and simulation. Even though many such
tools support implementation via automatic code generation from the model,
many issues relevant to correctness and optimality of the implementation with
respect to the timed semantics of the model are not satisfactorily addressed,
and is tailored to a speci�c platform. Consequently, analysis results established

? A preliminary version of this paper appears in Proceedings of the 11th IEEE Real-

Time and Embedded Technology and Applications Symposium (RTAS), pp. 508{518,
2005. This research was partially supported by the US National Science Foundation
under awards ITR/SY 0121431 and CCR-0410662.
Email address: alur,arunc@cis.upenn.edu (Rajeev Alur and Arun

Chandrashekharapuram).

Preprint submitted to Elsevier Science 8 December 2005

for the model are not meaningful for the implementation and the code cannot
be ported across platforms posing challenges for system integration. These
challenges motivate our research.

In this paper, we focus on generating an executable implementation from a
set B of control blocks. A control block computes outputs that inuence other
blocks or the environment being controlled. The control model has a well-
de�ned timed semantics (either continuous or discrete) that can be used for
simulation and analysis. Typically, the implementation relies on the support
o�ered by a real-time operating system for scheduling periodic tasks. Each
control block Bi is compiled into an executable code in a host language such
as C, and the control designer speci�es a period �i for the corresponding task.
To implement the resulting periodic tasks on a speci�c platform, one needs
to determine the worst-case-execution-time �i for each block Bi, and check
whether the task set is schedulable using standard scheduling algorithms such
as earliest-deadline-�rst (EDF) or rate monotonic scheduling (c.f. [4,17]).

While the real-time scheduling based implementation o�ers a separation of
concerns using the abstraction of real-time tasks with periods and deadlines,
it can hinder portability of control designs across platforms. As a concrete
example, consider vision-based navigation of an autonomous robot trying to
reach a target in a room full of obstacles. One control block computes the
estimates of the obstacles while the other decides the trajectory based on the
current estimates. Mapping these blocks to two tasks with speci�c periods
introduces an abstraction that is not relevant to the high-level model or its
goals. There are no hard real-time requirements in this application, and the
performance can be measured by the time taken by the robot to reach the
target. If the WCET (worst-case execution time) analysis on a particular pro-
cessor reveals that the tasks are not schedulable, then in fact, the periods
should be increased. If the analysis says that the tasks are schedulable, then
it produces a schedule, which is a mapping from time slots to the tasks. This
schedule is platform-dependent as it depends on the platform-speci�c WCET
estimates. Moreover, executing the schedule requires real-time support from
the operating system while the current trend in many application domains
such as robotics is to employ commonly available computing platforms such
as .NET [6]. Furthermore, since the scheduler views the tasks as periodic, it
may leave the processor idle, thereby preventing improved performance.

In the proposed solution, our goal is to produce a dispatch sequence of blocks,
rather than periodic tasks. The dispatch sequence is simply a string of control
blocks, and is platform-independent. Unlike a schedule, a dispatch sequence
has no notion of time slots or other real-time requirements. Ideally, we would
like the sequence to be such that, on any given platform, it follows the ref-
erence trajectory of the continuous time model as best as one can on that
platform. This goal is hard to quantify abstractly, and even if one could �nd

2

a concrete measure for speci�c applications (for instance, the total distance
traveled in the above robot example), we are not aware of any methods to
generate sequences that optimize this measure in an eÆcient way. In this pa-
per, we formulate the sequence generation problem, and propose a possible
solution. We associate with each control block Bi a measure � ri of relative
complexity and a measure �ri of relative importance. The � ri value is supposed
to capture the computation time of Bi relative to the other blocks, and the �ri
value is supposed to capture in a relative manner, how updating the output
of Bi impacts the environment. We use the appropriately tightly scaled ver-
sions of �r values as periods and of � r values as WCET estimates to generate
sequences of blocks using the classical real-time scheduling algorithms such as
non-preemptive EDF and EDF. Since EDF is preemptive and we want to gen-
erate an executable sequence of blocks, this step requires model transformation
via block-code-splitting. The output of our strategy is a platform-independent
and untimed sequence of blocks: executing this sequence does not require pre-
emption or any support from real-time scheduler, and its ability to follow the
reference trajectory on a particular platform depends on the processing power
of the platform.

The rest of the paper is organized as follows. Section 2 describes our model
for control blocks along with a continuous time and a discrete time seman-
tics for the same. Section 3 describes the classical real-time scheduling based
approach by formalizing schedules, schedule semantics and strategies for gen-
erating schedules using periods and WCET estimates. Section 4 de�nes the
notion of a dispatch sequence, the associated semantics, and proposes strate-
gies for generating dispatch sequences inspired by scheduling techniques, but
using the notions of relative complexity and relative importance. Section 5 de-
scribes simulation experiments on two examples, one for robot navigation, and
one for controlling heaters across multiple rooms, demonstrating the bene�ts
of the proposed approach. We conclude with directions for future research in
Section 6.

Related Work:

Bridging the gap between high-level modeling or programming abstractions,
and implementation platforms has been identi�ed as a key challenge for em-
bedded software research by many researchers (c.f. [19,18]). Programming
abstractions for embedded real-time controllers include synchronous reactive
programming (languages such as Esterel and Lustre [3,10,9]), and the re-
lated Fixed Logical Execution Time (FLET) assumption used in the Giotto
project [12,13]. While these provide schedule-independent semantics, they do
not address the problem of mapping continuous time controllers to an exe-
cutable implementation. Recently, the problem of generating code from timed
and hybrid automata has been considered in [1,14,21], but in these papers

3

the focus has been on choosing the sampling period so as to avoid errors due
to switching and communication. The work on mapping Simulink blocks to
Lustre focuses on signal dependencies [5]. Model-based development of em-
bedded systems is also promoted by other projects with orthogonal concerns:
Ptolemy supports integration of heterogeneous models of computation [7] and
GME supports integration of multiple views of the system [16]. There is a rich
literature on sampled control systems with a focus on understanding the gap
between continuous and discrete controllers, determining the correct sampling
period, and compensating for the computation delays in the design of control
laws (c.f. [2]). In scheduling literature, while many variations of the basic pe-
riodic scheduling problem have been explored, the focus is on determining a
platform-dependent mapping from time slots to tasks. The most relevant of
these is control-aware scheduling [20], where periods for tasks are determined
by optimizing a performance index.

2 Modeling Controllers

In this section, we describe the model of a real-time control system and the
desired semantics for the model.

2.1 Model

Let X be a �nite set of environment variables modeling the physical world
to be controlled, and U be a �nite set of control variables to be computed by
the control software. Each variable has a type, which typically is IR, the set
of reals. A state over a set W of variables is a mapping from W to values. We
use QW to denote the set of all states over W . A control model is given by
M = hMC ;MEi, where MC is the controller model andME is the environment
model.

The controller model MC consists of a �nite set B of control blocks, where
each control block Bi in B has the following components:

� A set of input variables Yi � (X [U), which the block reads to do its
computation.

� A set of output variables Ui � U , which the block writes after its computa-
tion.

� A relation fi � QYi �QUi , de�ning the computation of the block.
� A set of initial states Q0

i � QUi for the output variables of the block.

The following properties must be satis�ed by MC :

4

� Every output variable must be computed by a unique block. That is, for all
i; j with i 6= j, Ui \ Uj must be empty, and [jUj must equal U .

� Consider a directed graph BG whose nodes are control blocks and where
there is an edge from Bi to Bj if Bj reads an output variable computed by
Bi. Then BG must be acyclic.

The environment model ME is given by

� A relation gx � QX �QU � IR for every environment variable x 2 X. This
relation is used to de�ne the rate of change of x in terms of the current
state.

� A set of initial states Q0 � QX for the environment variables.

We have allowed our models to be nondeterministic, but this choice is not
central to this paper, and in many cases, the computation of each control
block Bi is de�ned by a function fi : QYi ! QUi , and the rate of change of an
environment variable x is given by a function gx : QX �QU ! IR.

2.2 Robot Navigation Example

Consider a robot R which can move on a 2-D plane (see Figure 1). Initially
R is at the (�xed) starting point S. Its goal is to reach a (�xed) target point
T , without colliding with any of the stationary circular obstacle-disks O1; O2

and O3 on the plane. The robot moves in the direction � at a constant speed
vR. It can estimate the obstacles only approximately, and we assume that
the estimate is a circle whose center coincides with the center of the obstacle
(xc; yc) and whose radius r is always larger than the actual radius r0. The
estimation rule is given by

r = r0 + (
q
(xc � x)2 + (yc � y)2 � r0)

2=500

where (x; y) is the current position of R. The estimate r is smaller if R is
closer to the obstacle. Based on the estimated radii of the 3 obstacles from the
current position, the robot computes � as follows : �rst, it checks if the direct
path from the current position (x; y) to the target T faces no obstruction | if
so, it proceeds in that direction. If not, it computes the slopes of the tangents
from the current position to the estimated obstacle circles, and checks whether
rays along the tangents face any obstruction. Then, among the rays without
any obstruction, it chooses to go along that ray which makes the least angle
with the direct path to the target. Figure 1 shows a snapshot of the robot
position during its motion, along with the estimated obstacle radii and the
selected direction of motion.

5

e

e

e

0

1

2

B

B

B

B

0

1

2

3

x

y

Controller

Environment

S

R

T

(x, y)

e

e

e

1

2

3

O

O

O
1

2

3
R

v

Fig. 1. Robot navigation example

Figure 1 also shows a block diagram of the model. The environment variables
are the coordinates (x; y) of the robot position. The initial values of (x; y) are
the coordinates of S. The di�erential equations governing the rates of change
of x and y are :

_x = vR cos �; _y = vR sin �:

The control variables are e0; e1; e2; and �, where ei is the estimate of the radius
of obstacle Oi. There are four control blocks B0; : : : ; B3. The control block Bi,
for 0 � i � 2, is used to estimate radius of the obstacle Oi. Its input variables
are x and y, and its output variable is ei. The control block B3 is used to
calculate �. Its input variables are e0; e1; e2; x; and y, and its output variable
is �. The initial values of ei are the estimates from S, and that of � is the angle
computed using the initial values of ei.

2.3 Semantics

Given a modelM over variables X and U , a trajectory forM is a function :
IR! QX[U . A semantics for a modelM , denoted [[M]], is a set of trajectories
for M . Two semantics, continuous time and parameterized discrete time, are
described below.

2.3.1 Continuous Time Semantics

The continuous time semantics for a model M , denoted [[M]]C , evaluates all
control variables at every point in the continuous time domain. It consists of
the trajectories satisfying the following constraints: for all t 2 IR; t � 0 and

6

for all Bi 2 B we have

 (0)(X) 2 Q0; ((t)(X); (t)(U); _ (t)(X)) 2 gx; (1)

and

 (0)(Ui) 2 Q
0
i ; ((t)(Yi); (t)(Ui)) 2 fi: (2)

2.3.2 Parameterized Discrete Time Semantics

The parameterized discrete time semantics for a modelM evaluates the control
variables with a sampling period of �, and a zero-order hold. So, all control
outputs are piecewise-constant, the pieces being of length �.

Let tk = k� for k 2 IN. Given a � > 0, the discrete time semantics for M ,
denoted by [[M]]�D, is a set of trajectories satisfying the following constraints,
besides (1) : for all Bi 2 B and for all k 2 IN,

 (0)(Ui) 2 Q
0
i ; ((tk)(Yi); (tk)(Ui)) 2 fi;

and for tk�1 � t < tk; t 2 IR,

 (t)(Ui) = (tk�1)(Ui):

We note that the continuous time semantics is the ideal semantics for any
given model. The discrete time semantics introduces an error into the model
because of the zero-order hold for � intervals. We may want to de�ne the
error using some metric over trajectories, but it is diÆcult to quantify the
errors abstractly. For speci�c applications, such as those evaluated in this
paper, we can �nd some concrete measures to quantify the performance of
a trajectory, and use them to compare any two trajectories. In our robot
navigation example, total distance traveled from the start position to the
target is a reasonable measure of performance.

3 Schedule-based Implementation

In this section, we discuss some standard implementation strategies to gener-
ate real-time tasks from a given model M = hMC ;MEi. We �rst de�ne the
notion of a schedule and then discuss the standard platform-dependent ways
of computing schedules.

7

We assume henceforth that the minimum time unit of execution of a control
task is 1. That is, the values of the control variables can be updated by any
control function only in intervals of one time unit. This simpli�es the notation,
otherwise we would need de�nitions parameterized by � as in case of discrete-
time semantics.

3.1 Schedule and Schedule Semantics

A schedule is a mapping from time slots to blocks, which indicates the block
that executes in each time slot. The schedule semantics for a schedule is the set
of trajectories obtained by executing the blocks according to the schedule: an
instantiation of a block executes only in the time slots given by the schedule; its
input values are read at the beginning of the �rst time slot of its execution and
the control outputs computed by the block are updated at the end of the last
slot of its execution. This type of predictable execution can be implemented
using the time-triggered architecture [17].

Formally, a schedule sch for M is a function sch : IN! B [B+ [f?g, where
B+ = fB+

i j Bi 2 Bg is used to denote the completion of the current instances
of the corresponding tasks, and ? denotes idle. The connotation of a schedule
is as follows. Let slot k denote the time interval [k � 1; k]. Then for k � 1,

sch(k) =

8>>>>><
>>>>>:

Bi means Bi executes in slot k but fi is not yet computed.

B+
i means Bi executes and �nishes computation of fi in slot k.

? means the processor is idle in slot k.

Given a schedule sch, the semantics associated with the modelM , denoted by
[[M]]sch , is a set of trajectories obtained by executing the blocks according to
sch. For example, consider the schedule B0B1B1 B

+
0 B

+
1 : : :. Block B0 starts

executing at time t = 0 after reading its inputs and executes in time slot 1.
It is then preempted at time t = 1 when B1 starts executing. Block B0 again
executes in time slot 4, and �nishes its execution in that time slot. The values
computed by B0 are updated at the end of slot 4. We assume that reading
and updating take zero computation time. Therefore, (t)(U0) = q0 for some
q0 2 Q

0
0 for 0 � t < 4, and (4)(U0) = f0((0)(Y0)).

Formally, [[M]]sch consists of the trajectories satisfying the following con-
straints, besides (1): for all k 2 IN and all Bi 2 B,

8

 (0)(Ui) 2 Q0
i

 (t)(Ui) = (k � 1)(Ui) for (k � 1) < t < k

 (k)(Ui) 2 fi((l)(Yi)) if sch(k) = B+
i , where l is the smallest l0 such that

sch(l') = Bi and 8j : l
0 < j < k : sch(j) 6= B+

i ;

l = k if no such index l0 exists.

 (k)(Ui) = (k � 1)(Ui) otherwise :

3.2 Algorithms for Computing Schedules

Given a model M , the following steps are typically followed:

(1) We �rst generate one task Ti for each block Bi in the model. The code
executed by the task will be the function fi, and the values used as input
for variables in Yi will be the most recently computed values for those
variables.

(2) We then assign a period �(Bi), where � : B ! IN, to each task Ti. The
period �(Bi), also denoted by �i, is independent of the platform on which
the tasks are going to be executed. That is, as long as the task set is
schedulable, the periods remain the same. They are usually assigned by
control engineers to satisfy the performance requirements of the control
model such as stability, ability to track a given trajectory, etc. (c.f. [2]).
The relative deadline of Ti is equal to �i, and this means that the task
must be executed once every period.

(3) Then, given an execution platform F , we compute � : B ! IN, where
�(Bi), also denoted as �i, is the Worst-Case-Execution-Time (WCET)
of Bi on F . The WCETs can be estimated using well-known WCET
estimation methods (c.f. [11]).

(4) Given � and � , we can execute the tasks using a real-time operating
system (RTOS) that includes a real-time scheduler for periodic tasks.

The RTOS typically uses well-known hard real-time scheduling algorithms
for executing the tasks. We use two scheduling algorithms in this paper:
the earliest-deadline-�rst (EDF) algorithm and the non-preemptive earliest-
deadline-�rst (NPEDF) algorithm. The EDF (c.f. [4]) algorithm is a preemp-
tive algorithm.When a new task is released or when the current task completes
execution, it schedules the task with the earliest deadline among all active
tasks. The NPEDF algorithm (c.f. [15]) schedules the task with the earliest
deadline among all active tasks, if the processor is idle or the currently exe-
cuting task has �nished execution.

9

� �

Task F1 F2 F3

T0 120 ms 12 ms 24 ms 28 ms

T1 120 ms 12 ms 24 ms 28 ms

T2 120 ms 12 ms 24 ms 28 ms

T3 24 ms 3 ms 6 ms 7 ms

Fig. 2. Sample periods and execution times for robot navigation example

For a given � and � , if the task set is schedulable by EDF, it produces a periodic
schedule sch, and the semantics [[M]]EDF (�;�) is de�ned to be [[M]]sch . If the task
set is not schedulable using EDF, then the semantics [[M]]EDF (�;�) is unde�ned.
The semantics associated with the NPEDF algorithm [[M]]NPEDF (�;�) is de�ned
in a similar way.

We call this approach platform dependent since the schedule depends on the
concrete values of the WCET estimates � . Note that the only feature of the
platform relevant in our context is its processing power, which is captured by
the WCET estimates � .

Consider the robot navigation example again. For this model, four tasks would
be generated: Ti, 0 � i � 2, for estimating the radii of the obstacles, and T3
for calculating � based on the estimates. An assignment of periods for the
tasks, and WCET estimates on three di�erent platforms F1, F2 and F3 is
given in Figure 2. Platform F1 is the fastest while F3 is the slowest. The tasks
are schedulable by NPEDF (a schedulability test for NPEDF can be found
in [15]) on F1 and F2 but not on F3. For t 2 [1::120] (120 is the LCM of
the periods of the tasks), the schedule produced by NPEDF on F1 and F2 is
shown in Figure 3. The schedule produced by EDF on F2 is also shown. The
notation [i : t1� t2] means that block Bi executes continuously from time slot
t1 to time slot t2 but without completing its execution, and [i : t1� t

+
2] means

that Bi executes continuously from time slot t1 to time slot t2 and completes
its execution at t2.

We �rst note here that the periods (and therefore deadlines) assigned to the
tasks are arti�cial. For example, if a task set is not schedulable, the control
engineer might be able to increase the periods without violating the perfor-
mance requirements of the control model. Here, we can increase the periods
slightly to render the tasks schedulable on F3. Further, we observe that there
are a lot of idle times on F1, whereas executing the control tasks without any
idle times (that is, executing the next block in sequence immediately after a
block �nishes execution) can improve performance. The goal in this case is to
approximate the discrete semantics [[M]]1D (and hence the continuous seman-

10

Strategy Platform Schedule in [1::120]

NPEDF F1 [3 : 1� 3+] [0 : 4� 15+] [1 : 16� 27+] [3 : 28� 30+]

[2 : 31� 42+] [? : 43� 48] [3 : 49� 51+] [? : 52� 72]

[3 : 73� 75+] [? : 76� 96] [3 : 97� 99+]

[? : 100� 120]

NPEDF F2 [3 : 1� 6+] [0 : 7� 30+] [3 : 31� 36+] [1 : 37� 60+]

[3 : 61� 66+] [2 : 67� 90+] [3 : 90� 96+]

[3 : 97� 102+] [? : 103� 120]

EDF F2 [3 : 1� 6+] [0 : 7� 24] [3 : 25� 30+] [0 : 31� 36+]

[1 : 37� 48] [3 : 49� 54+] [1 : 55� 66+] [2 : 67� 72]

[3 : 73� 78+] [2 : 79� 96+] [3 : 97� 102+]

[? : 103� 120]

Fig. 3. Schedules generated by NPEDF and EDF

tics [[M]]C) as best as possible given the processing constraints. Abstracting
this goal to scheduling of the tasks with deadlines and periods loses too much
information. The performance measure in this case is the total distance trav-
eled, or equivalently, time to reach the target, and we would like a systematic
and computationally tractable approach which will minimize this performance
measure.

4 Dispatch Sequences

In this section, we discuss our method of implementing controllers without
real-time tasks. We introduce the notion of a dispatch sequence which is a
string of blocks indicating the order in which blocks are to be executed. Then,
after de�ning the semantics associated with dispatch sequences, we describe
strategies to generate them using NPEDF and EDF.

4.1 Dispatch Sequence Semantics

A dispatch sequence � 2 B? is a string over B which indicates the sequence
in which the blocks should be executed repeatedly. The whole block is to
be executed without preemption, and when it completes its execution, the
succeeding block can start executing immediately. Unlike a schedule, there is

11

Block l u

B0 22 ms 24 ms

B1 22 ms 24 ms

B2 22 ms 24 ms

B3 4 ms 6 ms

Fig. 4. l and u for the blocks in robot navigation for platform F2

no notion of time in a dispatch sequence. Hence, dispatch sequences may look
like cyclic executive schedules, but are di�erent.

Given a platform F , let l; u : B ! IN be two functions that specify lower
and upper bounds respectively on the execution time of Bi on F . That is �i,
the execution time of an instance of Bi on F , is such that l(Bi) � �i � u(Bi).
Note that di�erent executions of the same block can take di�erent amounts of
time, and nothing is said about the distribution of �i between the two limits.

Given a triple (�; l; u), the dispatch-sequence semantics associated with a
model M , denoted by [[M]](�;l ;u), is the set of trajectories obtained by exe-
cuting the blocks according to �, where the execution times for the blocks are
chosen according to the bounds. Formally, it can be de�ned as follows.

Let j�j = k, and let �i denote the i
th block in � for i � 1. De�ne Sch(�; l; u),

to be the set of all schedules sch: IN ! B [B+ such that there exists a se-
quence i0=0 � i1 � i2 � : : : for which for all j � 1, if m = j mod k, then

l(�m) � (ij � ij�1) � u(�m) and

sch(n) =

8><
>:
�m for (ij�1 + 1) � n < ij

�+m for n = ij:

The semantics [[M]](�;l ;u) is de�ned to be the union
S
sch2Sch(�;l;u)[[M]]sch .

For example, consider the round-robin (RR) dispatch-sequence �RR = (B0B1B2B3)
�

for the navigation example. The blocks are to be executed repeatedly in the
order B0B1B2B3. Figure 4 gives the l and u values for the platform F2.
This means that Bi for i = 0; 1; 2 can execute for anytime between 22 ms and
24 ms, and B3 for anytime between 4 ms and 6 ms. Here, estimation takes
much longer than computing the direction, and round-robin does not seem to
be a desirable choice.

12

Block � ri �ri

B0 4 5

B1 4 5

B2 4 5

B3 1 1

Fig. 5. Relative execution times and relative periods for blocks of robot navigation

4.2 Relative Execution Times and Relative Periods

Since we do not want to commit to concrete deadlines and periods, we in-
troduce the notion of \relative" periods and \relative" execution times. Let
a controller model MC with n blocks be given. For each block Bi, we assign
a relative execution time � ri 2 IN and a relative period �ri 2 IN such that
gcd(� r1 ; �

r
2 ; : : : ; �

r
n) = gcd(�r1; �

r
2; : : : ; �

r
n) = 1. The relative execution time � ri is

an estimate of the WCET of Bi on any platform, relative to the times taken
by other blocks in the model. We can compute them by several approximate
methods. One method is to scale the execution times of Bi on several platforms
by the speeds of those platforms, and take the average of the scaled times as
the estimate of � ri . The ratio of the WCETs of two blocks can be di�erent on
di�erent platforms due to factors such as cache size and oating-point process-
ing units. The assignment of relative execution times assumes a uniform ratio,
and this implies that we need to be conservative in the estimates of WCETs.
The relative period �ri is an index of the importance assigned to the block,
when compared to the importance of other tasks. These are to be assigned by
the control engineer.

Figure 5 shows a set of relative execution times and relative periods for the
blocks of the robot navigation example. Note that the WCETs of the blocks on
the platform F2 as given in Figure 4 are roughly 6 times the relative execution
times as given by Figure 5. In general, l(Bi) and u(Bi) are expected to be
roughly k times � ri for some scaling factor k.

The dispatch-sequence generation problem can be stated informally as follows.
Given a modelM and relative measures � r and �r, generate a string � of blocks
such that, on any platform F where the lower and upper bounds l and u for
blocks are consistent with the ratios given by � r, the trajectories in [[M]](�;l ;u)
are as close as possible to the trajectories in [[M]]C . There does not seem to
be a computationally tractable way of formulating this as a mathematical
optimization problem. Hence, we settle for heuristics inspired by the classical
scheduling schemes.

13

4.3 Dispatch Sequence Generation using NPEDF

In this section, we explain our strategy to generate dispatch sequences using
NPEDF algorithm from given modelMC and relative measures. The dispatch
sequence, denoted by �NPEDF , is such that a block is always executed in its
entirety.

The main steps to generate �NPEDF are as follows :

(1) Compute the relative utilization U r =
Pn

i=1
�r
i

�r
i

of the blocks. If U r > 1,

then scale the periods �ri by the smallest integer p such that U r=p � 1;
otherwise, let p = 1. Call these new periods, the scaled versions of �ri .

(2) Compute l = lcm(p �r1; p �
r
2; : : : ; p �

r
n). This is the lcm of the scaled peri-

ods.
(3) Run the NPEDF algorithm from time t = 0 to time t = l with � ri as the

execution time and p �ri as the period of each task Bi to get a schedule
sch(NPEDF) of length l. Since U r � 1, all the instances of the blocks
released before t = l are executed before t = l.

(4) In sch(NPEDF), there may be some idle times. Collapse the schedule
by disregarding the idle times to obtain a dispatch sequence �0 from
sch(NPEDF). That is, if there is any idle time between two successive
blocks Bi and Bj in sch(NPEDF) then Bj follows immediately after Bi in
�0, and the idle time after the execution of the last block in sch(NPEDF)
is discarded. The desired dispatch sequence �NPEDF is �0. It is easy to see
that �NPEDF as obtained above is indeed a string over B.

For example, consider the relative execution times and periods for the robot
navigation example given in Figure 5. The relative utilization U r is 17

5
. We

scale this by p = 4. We then obtain l = lcm(4; 20; 20; 20) = 20. We then
simulate it using NPEDF algorithm from t = 0 to t = 20 to get the schedule

[3 : 1� 1+] [0 : 2� 5+] [3 : 6� 6+] [1 : 7� 10+] [3 : 11� 11+]

[2 : 12� 15+] [3 : 16� 16+] [3 : 17� 17+] [? : 18� 20]:

We then get �0 from the above schedule by removing idle times : there are
three slots of idle time at the end for this schedule, and so �NPEDF is

(B3 B0 B3 B1 B3 B2 B3 B3):

A property of �NPEDF is that if the above algorithm was executed with � � ri for
some � 2 IN as the execution times instead of � ri , then the dispatch sequence
produced is the same irrespective of �. In other words, if the execution times
are scaled by � and the periods by p: �, where p is as in the above algorithm,

14

and the tasks are scheduled using NPEDF, then the schedules obtained are
the same as the schedules corresponding to the dispatch sequence �NPEDF .
This means that the dispatch-sequence generation algorithm needs to be run
only once, regardless of the platform on which the dispatch sequence is going
to execute.

Theorem 1 (Scaling Theorem) Let M be a given model with relative exe-
cution times � ri and relative periods �ri for each block Bi, and let �NPEDF be
the corresponding dispatch sequence. Let p 2 IN be the least integer such thatP

i(
�r
i

p: �r
i

) � 1. Given an � 2 IN, let �; � : B ! IN such that �(Bi) = � :� ri and

�(Bi) = �: p: �ri . Then, for any schedule sch, sch 2 Sch(�NPEDF ; �; �) i� sch
is generated by NPEDF(�; �).

Proof. Call the set of assignments of execution times � ri and periods p: �ri the
un-scaled version and the concrete set of assignments � and � as the scaled
version. Then it is enough to prove that

Claim 1 For all j � 1, if the jth block scheduled by the NPEDF algorithm
when run on the un-scaled version is the kth instance of Bi for some k and
i, then the jth block scheduled by NPEDF when run on the scaled version is
the kth instance of Bi. Moreover, if the jth block is scheduled at time tj in the
un-scaled version, then it is scheduled at time t0j = �: tj in the scaled version.

Without loss of generality, let the periods �ri be in non-decreasing order. The
proof is by induction on j.

Base case : For j = 1, the �rst block scheduled in un-scaled version is the
�rst instance of B1, since B1 has the least period p: �

r
1 and hence the earliest

deadline. It is scheduled at time t1 = 0. In the scaled version, B1 still has the
least period namely �: p: �r1, and hence its �rst instance is scheduled �rst by
the algorithm. It is scheduled at time t01 = 0 = �: tj. Hence, the claim holds
for j = 1.

Induction step : Let the claim hold for all j < m. We will prove that it
holds for j = m.

Let the mth block scheduled by the algorithm at tm in the un-scaled version be
the kth instance of some block Bi. By the induction hypothesis, t

0
m�1 = �: tm�1,

and the (m � 1)th block scheduled is the same in both the un-scaled and the
scaled versions. Since the computation times, and the periods are both scaled
by �, the time elapsed from the end of execution of the (m � 1)th block in
the scaled version and t0m is � times the corresponding time in the un-scaled
version. Therefore, t0m = �: tm.

Now, the number of instances of any block Bl released at or before before tm

15

is
�

tm
p: �r

l

�
. The number of instances of Bl released at or before t0m is

�
�: tm
�: p: �r

l

�
=�

tm
p: �r

l

�
. Thus, in both the unscaled and scaled versions, the same number of

instances of every block is released. By the induction hypothesis, since the
same instances of each block have been executed before tm in the un-scaled
version and before t0m in the scaled version, the set of instances from which the
next task to be scheduled at tm and t0m in the un-scaled and scaled versions is
the same. Call this set �. | (a)

Now, note that if an instance I in � is released at some time tI in the un-scaled
version, then it is released at time �: tI in the scaled version. Therefore, if the
deadline of I in the un-scaled version is tI+p: �

r
i , then its deadline in the scaled

version is �: (tI + p: �ri in the scaled version. Therefore, for any two instances
I1 and I2 in �, if deadline(I1) < deadline(I2) in the un-scaled version, then the
same holds in the scaled version also. | (b)

Therefore, from the (a) and (b) above, the mth instance to be scheduled by
both the un-scaled and the scaled versions is unique, namely, the instance
with the earliest deadline among the blocks in � (assume that the algorithm
has a deterministic choice when two instances have the same deadline, say,
the instance with the lower index in the listing of blocks). 2

4.4 Dispatch Sequence Generation using EDF

The dispatch-sequence generation algorithm using EDF is similar to the one
using NPEDF, except that when we use EDF, the resulting sequence is no
longer a string over B since some blocks might be preempted. In other words,
the block-code of Bi (that is, the code implementing fi) may need to be split.
We �rst discuss how to handle splitting of block-code before proceeding to
dispatch-sequence generation.

Given a block Bi, we assume that we can split the block-code of Bi into �
r
i

contiguous portions such that the relative execution times of each contiguous
portion is approximately the same. We can then create � ri blocks Bi1; : : : ; Bi�r

i

such that Bil executes the l
th contiguous portion, and � ril = 1 for all l. The

inputs of Bi1 are the inputs of Bi, and the inputs of Bil for l > 1 are the
outputs of Bi(l�1); the outputs of Bi are the outputs of Bi�r

i
. Call Bij the split-

block of Bi and the new model M 0 with B0 = fBijg as the set of blocks as
the split-model of M . Note that M 0 is a semantics-preserving transformation
of M .

16

The main steps to generate �EDF are as follows:

(1) Compute the utilization U r =
Pn

i=1
�r
i

�r
i

of the blocks. If U r > 1, then scale

the periods �ri by the smallest integer p such that U r=p � 1; otherwise,
let p = 1. Call these new periods, the scaled versions of �ri .

(2) Compute l = lcm(p �r1; p �
r
2; : : : ; p �

r
n). This is the lcm of the scaled peri-

ods.
(3) Produce the split-model M 0 of M .
(4) Run the EDF algorithm from time t = 0 to time t = l with � ri as the exe-

cution time, and p: �ri as the period of task Bi to get a schedule sch(EDF)
of length l. Since U r � 1, all the instances of the blocks released before
t = l are executed before t = l. Now, the EDF algorithm can split the
block Bi by preempting it. Thus, sch(EDF) is a mapping from IN to
B [B+ [?, and it can be viewed as a mapping from IN to B0 [?, by
replacing � ri time slots allocated to an instance of Bi by the �

r
i split blocks

Bij.
(5) In sch(EDF), there may be some idle times. Collapse the schedule by

disregarding the idle times to obtain a dispatch sequence �0 2 (B0)? from
sch(EDF). That is, if there is any idle time between two successive blocks
Bil and Bjk in sch(EDF) then Bjk follows immediately after Bil in �0;
further, the idle time after the execution of the last block in sch(EDF) is
discarded.

(6) Now, note that a block Bi need not be split by the EDF algorithm
into � ri split-blocks. In other words, Bi(l+1) may always follow Bil in �

0.
Therefore, we can optimize splitting of M by �nding maximal sequences
BilBi(l+1) : : : Bi(l+j) of split-blocks of Bi which always execute contigu-
ously in �0, and combine all the blocks in a sequence into a single block.
Let B00 be the new set of blocks obtained after performing this optimiza-
tion step, and the �nal schedule �EDF is in (B00)?.

Note that all the steps above can be automated. As an illustration, consider
again the robot navigation model, whose relative execution times and periods
are given in Figure 5. The utilization U r is 17

5
. We scale this by p = 4. We then

obtain l = lcm(4; 20; 20; 20) = 20. We then simulate it using EDF algorithm
from t = 0 to t = 20 to get the schedule

[3 : 1� 1+] [0 : 2� 4] [3 : 5� 5+] [0 : 6� 6+] [1 : 7� 8] [3 : 9� 9+]

[1 : 10� 11+][2 : 12� 12][3 : 13� 13+][2 : 14� 16+][3 : 17� 17+][? : 18� 20]:

We then get �0 2 B0 from the above schedule by removing the three idle
slots from the end of the schedule. We then obtain B00 from B0 as follows :
B3 2 B00 since � r1 = 1. Since B0 is split into two parts whose relative exe-
cution times are 3 and 1 respectively, the �rst three split-blocks of B0 can
be combined into a single block B0

01. Similarly, B11 and B12 can be com-

17

bined into a single block B0
11, and B13 and B14 can be combined into B0

12.
Again, last three blocks of B2 can be combined into a single block B0

22. Thus,
B00 = fB0

01; B03; B
0
11; B

0
12; B21; B

0
22; B3g. Therefore, �

0 can be written as

(B3 B
0
01 B3 B03 B

0
11 B3 B

0
12 B21 B3 B

0
22 B3)

to give the �nal dispatch sequence �EDF .

We note here that the exact splitting of block-codes to get B00 is non-trivial.
However, since there are no hard real-time requirements, and the purpose of
the intended strategy is to improve performance, there is no need for exact
splitting. To ensure that splitting a block does not change its meaning, ade-
quate information must be stored and retrieved acorss the splitting boundary.
Implementing this split correctly is challenging, but this issue is beyond the
scope of this paper.

5 Evaluation and Experimental Results

In this section, we evaluate the performance of dispatch sequences generated
using NPEDF and EDF, against those of round-robin dispatch sequences and
the schedule-based platform-dependent implementation strategies. We �rst
describe the simulator used to perform our experiments. We then examine the
results in the case of two case studies: the �rst being the robot navigation
example used in the previous sections, and the second, a house-heater system.
In our analysis, we focus on the impact of scheduling on the performance of
the system assuming the scheduling overhead is negligible. Since our method
computes the schedules statically, and the schedules are independent of the
platform, it is clear that the scheduling overhead of our approach is less than
the classical methods.

5.1 Simulator

The inputs to the simulator are the following :

� Model M = hMC ;MEi: An input �le provides information about the struc-
ture of the model. It lists the environment variables, the control blocks
Bi 2 B in the order given by topological sort of BG and Ui, Yi, �

r
i , �

r
i ,

l(Bi), and u(Bi) for every Bi. The �le also indicates the function to be
used. Finally, the simulator needs initial values of all the variables.

� Simulation step Æ : To approximate the continuous-time semantics, the
simulator needs an integration step Æ such that 0 � Æ < 1.

18

� Simulation time N : It simulates from t = 0 to t = N .

The simulator simulatesM as per the continuous time and parameterized dis-
crete time semantics, as per the concrete NPEDF and EDF scheduling strate-
gies as described in Section 3, and by using the dispatch sequences generated
by the round-robin, NPEDF, and EDF strategies as described in Section 4.
Each of these cases is briey discussed below :

Continuous-time semantics (cont) : The simulation is carried out in steps
of Æ. At the end of each Æ-interval, all the environment variables are evaluated
in parallel, and then the control outputs serially as per the topological sort of
the blocks. The Euler method of integration is used for updating the environ-
ment variables in steps of an integration step Æ. In all the other cases below,
the environment variables are evaluated in the same way.

Discrete-time semantics (disc) : This is same as the cont case except that
the control variables are updated only in intervals of the parameter �. The
simulator uses � = 1.

Round-robin dispatch sequence (rr) : The blocks are executed as per the
dispatch sequence �RR. The order of blocks in �RR is given by the topological
sort of BG. The execution time of Bi is chosen uniformly at random between
l(Bi) and u(Bi) for each instance of Bi. The block Bi samples the values of
Yi when it starts execution, and the variables in Ui are updated at the end of
the execution.

NPEDF dispatch sequence (npedf ds) : The execution of this is the same
as that of rr except that the dispatch sequence used is �NPEDF .

EDF dispatch sequence (edf ds) : This case is interesting because of the
need to simulate splitting of block-codes. Let the split-blocks produced for Bi

be Bij (after optimization). Let the relative execution time of Bij be �
r
ij. As-

suming that the relative execution time � ri corresponds to an actual execution
time of u(Bi), the execution time of Bij is (�

r
ij � u(Bi))=�

r
i . Now, for any

particular execution of Bi, the execution time �i may be less than u(Bi). In
such a case, we execute the blocks in the order Bi1; Bi2; : : : until an execution
time of �i is consumed, and the remaining blocks are not executed.

NPEDF schedule (npedf sch) and EDF schedule (edf sch) : These are
simulated using the NPEDF and EDF scheduling algorithms. A min-priority
queue is used to extract the block with the earliest deadline.

The outputs of the simulator are the following :

� For each variable v, the value of v after each Æ-interval from time t = 0 to
time t = N .

19

I II III

(Bf0;1;2g) = [12; 12]

(B3) = [3; 3]

(Bf0;1;2g) = [24; 24]

(B3) = [6; 6]

(Bf0;1;2g) = [21; 24]

(B3) = [4; 6]

D D D

cont 346.52 346.52 346.52

disc 348.42 348.42 348.42

rr 599.08 967.34 914.78

npedf ds 499.10 428.88 419.46

npedf sch 575.44 428.90 518.54

edf ds 605.80 518.72 512.06

edf sch 579.38 649.50 560.86

Fig. 6. Simulation results for robot navigation example

� The value of a measure opt for each strategy. This measure is used for as-
sessing the performance of the strategies. It is application speci�c, and is
calculated as a function of the plant variables during the course of simula-
tion.

5.2 Robot Navigation Example

The performance measure opt in this case is the total distance D traveled
by the robot from the source S to the target T . The simulation parameters
are N = 500, � = 0:1, S = (0; 0), T = (200; 200), ROBOT SPEED =
2:0, MINRAD = 10:0, O0 = (90; 110), O1 = (260; 50), and O2 = (50; 260).
The relative execution times and relative periods are those in Figure 5. The
concrete periods used are those in Figure 2. The simulation results for three
sets of simulations using the above parameters for di�erent l and u are shown
in Figure 6 for all 7 strategies. The notation used is (Bi) = [l(Bi); u(Bi)].
The execution times for I and II are taken from Figure 2 and in both cases,
l(Bi) = u(Bi). The �

r
i 's are scaled by 3 for I, and by 6 for II. For III, the

� ri 's are scaled roughly by 6 so that l(Bi) < u(Bi).

The lower the value ofD, the better the strategy is. It can be seen, as expected,
that cont and disc always perform much better than the other strategies. In
all cases (except that of edf ds of I), round-robin performs worse than the
other dispatch-sequence generation strategies. These strategies ensure com-
putation of � in between the estimation of obstacle radii, and this helps the
robot to take advantage of recently computed obstacle radii to change its

20

x
x
x

0
1

2

Controller

Environment

hp
hp

hp

0

1

2

hs

hs

hs

0
1

2
B

0
B

1

Fig. 7. Block diagram of heater model

course. This also demonstrates that taking into account the relative periods
of the tasks can improve control performance. Next, observe that in I, the
dispatch-sequence NPEDF strategy performs better than the concrete NPEDF
scheduling strategy because the latter has a lot of idle times, while the former
has none. In III, the dispatch-sequence generation strategies perform better
than the schedule-based ones. This is because while the former schedule the
next block immediately after the current block �nishes execution, concrete
scheduling strategies have to wait for the task to be released at the beginning
of its period. Thus, the former can take advantage of tasks �nishing earlier
than their worst possible execution times.

5.3 Heater Example

Ivancic and Fehnker [8] discuss benchmarks for veri�cation of hybrid systems,
and this example is adapted from one of their benchmarks.

The benchmark deals with a set of rooms in a house being heated by a limited
number of heaters and sharing the heaters so as to maintain some minimum
temperature in all the rooms. The number of heaters is strictly less than the
number of rooms. The temperature xi of a room Ri depends linearly on the
temperatures of the adjacent rooms, on the outside environment temperature
u, and on the discrete variable hi, which is 1 if a heater is present in the room
and switched on, and 0 otherwise. The equation governing the rate of change
of xi is

_xi = cihi + bi(u� xi) +
X
i6=j

ai;j(xj � xi)

where ai;j; bi; ci are constants. Each room Ri has two thresholds oni and o� i

such that the heater, if present in the room, is switched on if xi is below
oni and switched o� if xi exceeds o� i. Each room may have at most one

21

heater. If Ri does not have one, a heater can be fetched from an adjacent
room Rj provided Rj has a heater, xi is below a certain threshold geti and
xj � xi � di� i. If there are more than one such rooms Rj, the strategy can
choose non-deterministically to get a heater from any of those rooms.

Our example has 3 rooms, R0, R1 and R2, where R1 is adjacent to R0 and
R2, and R0 and R2 are not adjacent. There are two heaters, initially switched
on and in R0 and R1. The outside temperature is constant at u = 4, and
xi = 20 initially for all i. The thresholds are the same for all the rooms and
are o� = 21; on = 20; get = 18; and di� = 1.

The environment variables are xi and the di�erential equations governing be-
havior of xi are given by

_x1 = �0:9x1 + 0:5x2 + 0:4u+ 6h1

_x2 = 0:5x1 � 1:3x2 + 0:5x3 + 0:3u+ 7h2

_x3 = 0:5x2 � 0:9x3 + 0:4u+ 8h3

The controller has two blocks, B0 for shifting heaters from one room to another
if necessary and B1 for switching on or switching o� all the heaters. There are
six boolean control variables : hp0, hp1 and hp2 indicating the presence of
heaters in the rooms, and hs0, hs1 and hs2 such that hs i is 1 i� there is a
heater in the room Ri and is switched on. The block diagram of the model is
shown in Figure 7.

We measured the minimum temperature � reached in any of the rooms during
the simulation, and the total duration � for which the the temperature in one
of the rooms was below a certain threshold temperature xmin . The simulation
parameters are N = 100, � = 0:01, xmin = 13, (� r0 ; �

r
1) = (4; 1), (�r0; �

r
1) =

(4; 1), and (�0; �1) = (24; 6). The value of xmin was chosen to be 13, slightly
below the minimum temperature attained by disc. The relative period of B0

is much higher than that of B1 because we expect update of heater state in
a room to be more important than shifting of heaters. However, the actual
results vary a lot depending on the choice of these simulation parameters.

The simulation results for four sets of simulations using the above parameters
for di�erent l and u are shown in Figure 8 for all 7 strategies. The � ri 's are
scaled by 1 in I, and by 2 in II and for both I and II, l(Bi) = u(Bi). In
III, � ri 's are scaled roughly by 2 so that l(Bi) < u(Bi). In IV, the values
are chosen such that the task set was not schedulable using the platform-
dependent NPEDF strategy.

Now, the higher the � value, and the lower the � value, the better the strategy

22

I II III IV

(B0) = [4; 4]

(B1) = [1; 1]

(B0) = [8; 8]

(B1) = [2; 2]

(B0) = [6; 8]

(B1) = [1; 2]

(B0) = [9; 9]

(B1) = [3; 3]

� � � � � � � �

cont 15.74 0 15.74 0 15.74 0 15.74 0

disc 13.31 0 13.31 0 13.31 0 13.31 0

rr 7.79 61.01 6.88 67.78 6.91 58.71 6.58 76.24

npedf ds 11.20 51.59 9.64 48.7 10.88 41.72 7.14 59.44

npedf sch 9.90 50.01 9.64 50.67 9.69 49.08 - -

edf ds 10.99 48.31 9.61 40.71 10.43 43.94 8.66 44.04

edf sch 9.90 50.01 7.35 59.99 8.68 57.31 8.66 52.36

Fig. 8. Simulation results for heater example.

is. It can be seen that the performance of rr is worse than that of npedf ds and
edf ds as in the navigation example. Next, observe that if l(Bi) < u(Bi),
we expect the concrete scheduling strategy to perform worse than the corre-
sponding dispatch-sequence strategy because the former always assumes that
Bi takes u(Bi) time. This can be seen from the results in III. Next, in IV, while
the tasks are not schedulable using NPEDF-scheduling strategy, the NPEDF
dispatch sequence performs quite well, that is, much better than round-robin.

6 Discussion and Conclusions

We have proposed an approach to generate a dispatch sequence, instead of a
schedule based on real-time tasks with deadlines and periods, from a set of in-
teracting control blocks. This proposal is relevant when there are no hard real-
time deadlines, or when the implementation platform does not o�er support
for real-time tasks. The generation strategy itself uses relative measures in-
spired by scheduling algorithms, and our simulation experiments suggest that
it outperforms naive methods such as round-robin in optimizing application-
level performance metrics.

There are many directions for future work. Extensive experimental validation
and �ne tuning of the proposed approach will be necessary. In particular,
we are integrating the dispatch-sequence generation strategy in the system
ROCI developed for robotics applications [6]. In our examples, the dispatch
sequence is supposed to imitate the timed model as best as one can, and

23

there are no hard real-time requirements. However, a more general framework
would integrate dispatch-sequence generation with application-level real-time
constraints. The current generation strategy does not take into account the
interdependence among control blocks due to their inputs and outputs. Also,
we have assumed that there is a single processor dedicated to the controller,
and this can be relaxed. Finally, it is worth exploring if control design and
dispatch-sequence generation can be integrated so that some optimality guar-
antees of performance of the generated dispatch sequence can be obtained.
Some progress towards this goal in the context of time-triggered platforms is
recently reported in [22].

References

[1] R. Alur, F. Ivancic, J. Kim, I. Lee, and O. Sokolsky. Generating embedded
software from hierarchical hybrid models. In Proceedings of the ACM

Conference on Languages, Compilers, and Tools for Embedded Systems, pages
171{182, 2003.

[2] K. Astr�om and B. Wittenmark. Computer-controlled systems: Theory and

Design. Prentice Hall, 1997.

[3] G. Berry and G. Gonthier. The synchronous programming language esterel:
design, semantics, implementation. Technical Report 842, INRIA, 1988.

[4] G. Buttazo. Hard real-time computing systems: Predictable scheduling

algorithms and applications. Kluwer Academic Publishers, 1997.

[5] P. Caspi, A. Curic, A. Maignan, C. Sofronis, and S. Tripakis. Translating
discrete-time Simulink to Lustre. In Proceedings of Third International

Conference on Embedded Software, LNCS 2855, pages 84{99, 2003.

[6] L. Chaimowicz, A. Cowley, V. Sabella, and C. Taylor. ROCI: A distributed
framework for multi-robot perception and control. In Proc. IEEE Intl. Conf.

on Intelligent Robots and Systems, pages 266{271, 2003.

[7] J. Eker, J. Janneck, E. Lee, J. Liu, X. Liu, J. Luvig, S. Neuendor�er, S. Sachs,
and Y. Xiong. Taming heterogeneity{the Ptolemy approach. Proceedings of the
IEEE, 91(1):127{144, 2003.

[8] A. Fehnker and F. Ivancic. Benchmarks for hybrid systems veri�cation. In
Hybrid Systems: Computation and Control, Proceedings of the 7th International

Workshop, LNCS 2993, pages 326{341. Springer, 2004.

[9] N. Halbwachs. Synchronous Programming of Reactive Systems. Kluwer
Academic Publishers, 1993.

[10] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous dataow
programming language Lustre. Proceedings of the IEEE, 79:1305{1320, 1991.

24

[11] R. Heckmann, M. Langenbach, S. Thesing, and R. Wilhelm. The inuence of
processor architecture on the design and the results of WCET tools. Proceedings
of the IEEE, 91(7):1038{1054, 2003.

[12] T. Henzinger, B. Horowitz, and C. Kirsch. Giotto: A time-triggered language
for embedded programming. Proceedings of the IEEE, 91(1):84{99, 2003.

[13] T. Henzinger and C. Kirsch. The embedded machine: Predictable, portable,
real-time code. In Proceedings of the ACM Conference on Programming

Language Design and Implementation, pages 315{326, 2002.

[14] Y. Hur, J. Kim, I. Lee, and J. Choi. Sound code generation from communicating
hybrid models. In Hybrid Systems: Computation and Control, Proceedings of

the 7th International Workshop, LNCS 2993, pages 432{447, 2004.

[15] K. Je�ay, D. F. Stanat, and C. U. Martel. On non-preemptive scheduling of
periodic and sporadic tasks. In Proceedings of the IEEE Real-Time Systems

Symposium, pages 129{139, 1991.

[16] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty. Model-integrated
development of embedded software. Proceedings of the IEEE, 91(1):145{164,
2003.

[17] H. Kopetz. Real-Time Systems: Design Principles for Distributed Embedded

Applications. Kluwer Academic Publishers, 2000.

[18] E. Lee. What's ahead for embedded software. IEEE Computer, pages 18{26,
September 2000.

[19] S. Sastry, J. Sztipanovits, R. Bajcsy, and H. Gill. Modeling and design of
embedded software. Proceedings of the IEEE, 91(1), 2003.

[20] D. Seto, J. Lehoczky, L. Sha, and K. Shin. On task schedulability in real-time
control systems. In Procedings of the IEEE Real-Time Systems Symposium,
1996.

[21] M. D. Wulf, L. Doyen, and J. Raskin. Almost ASAP semantics: From timed
models to timed implementations. In Hybrid Systems: Computation and

Control, Proceedings of the 7th International Workshop, LNCS 2993, pages 296{
310, 2004.

[22] H. Yazarel, A. Girard, G.J. Pappas and R. Alur. Quantifying the gap between
embedded control models and time-triggered implementations. In Proceedings

of the IEEE Real-Time Systems Symposium, 2005.

25

