
50

ModularQuantitative Monitoring

RAJEEV ALUR, University of Pennsylvania

KONSTANTINOS MAMOURAS, Rice University

CALEB STANFORD, University of Pennsylvania

In real-time decisionmaking and runtimemonitoring applications, declarative languages are commonly used as

they facilitate modular high-level specifications with the compiler guaranteeing evaluation over data streams in

an efficient and incremental manner. We introduce the model ofData Transducers to allowmodular compilation

of queries over streaming data. A data transducer maintains a finite set of data variables and processes a

sequence of tagged data values by updating its variables using an allowed set of operations. The model

allows unambiguous nondeterminism, exponentially succinct control, and combining values from parallel

threads of computation. The semantics of the model immediately suggests an efficient streaming algorithm for

evaluation. The expressiveness of data transducers coincides with streamable regular transductions, a robust
and streamable class of functions characterized by MSO-definable string-to-DAG transformations with no

backward edges. We show that the novel features of data transducers, unlike previously studied transducers,

make them as succinct as traditional imperative code for processing data streams, but the structuring of

the transition function permits modular compilation. In particular, we show that operations such as parallel

composition, union, prefix-sum, and quantitative analogs of combinators for unambiguous parsing, can be

implemented by natural and succinct constructions on data transducers. To illustrate the benefits of such

modularity in compilation, we define a new language for quantitative monitoring, QRE-Past, that integrates

features of past-time temporal logic and quantitative regular expressions. While this combination allows

a natural specification of a cardiac arrhythmia detection algorithm in QRE-Past, compilation of QRE-Past

specifications into efficient monitors comes for free thanks to succinct constructions on data transducers.

CCS Concepts: • Information systems→ Data streaming; • Software and its engineering→ Domain
specific languages; • Theory of computation→ Quantitative automata;

Additional Key Words and Phrases: quantitative monitoring, data stream processing, runtime verification

ACM Reference format:
Rajeev Alur, Konstantinos Mamouras, and Caleb Stanford. 2019. Modular Quantitative Monitoring. Proc. ACM
Program. Lang. 3, POPL, Article 50 (January 2019), 31 pages.

https://doi.org/10.1145/3290363

1 INTRODUCTION

Applications ranging from network traffic engineering to runtime monitoring of autonomous

control systems require computation over data streams in an efficient and incremental manner.

Declarative programming is a particularly appealing approach to specify the desired logic in such

applications as it can provide natural and high-level constructs for processing streaming data with

guaranteed bounds on computational resources used by the compiled implementation. This has

motivated the development of a number of declarative query languages. For example, in runtime

verification, a monitor observes a sequence of events produced by a system, and issues an alert

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2019 Copyright held by the owner/author(s).

2475-1421/2019/1-ART50

https://doi.org/10.1145/3290363

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 50. Publication date: January 2019.

https://doi.org/10.1145/3290363
https://doi.org/10.1145/3290363

50:2 Rajeev Alur, Konstantinos Mamouras, and Caleb Stanford

when a violation of a safety property is detected, where the safety property is described in a

temporal logic with past-time operators such as always-in-the-past and since [Havelund and Roşu

2004; Manna and Pnueli 2012]. In quantitative monitoring, a monitor associates a numerical value

with an input stream of data values, where the desired computation is described using quantitative
regular expressions (QREs) that combine regular patterns with numerical aggregation operations

such as min, max, sum, and average [Alur et al. 2016; Mamouras et al. 2017; Yuan et al. 2017]. In

each such case, the declarative specification is automatically compiled into a monitor that adheres

to the streaming model of computation [Muthukrishnan 2005]: memory and per-item processing

time is polynomial in the size of the specification of the query and, roughly speaking, does not

grow with the length of the input stream.

In existing query languages over streaming data, while a programmer can specify the desired

computation in a modular fashion using constructs of the query language, the compiler generates

monolithic code for a given query. What is lacking though is an intermediate representation for

streaming computations that supports composition operations with succinct constructions so that

high-level queries can be compiled modularly. The motivation for such a model is two-fold. From

a practical viewpoint, it can facilitate the design of new query languages. For instance, suppose

a user wants to specify a monitoring property using past-time temporal logic, where the atomic

predicates involve comparing quantitative summaries defined using QREs. Such a specification

contains combinators from two different languages (QREs and past-temporal logic), and we could

try to design a compiler from scratch for streaming evaluation of the more expressive, integrated

language. However, if we have a modular compilation algorithm for the combinators of the two

component languages, we get a compiler for the integrated language for free. From a theoretical

viewpoint, designing such a representation is a technical challenge since it needs to support both

combining values from parallel threads of computation (i.e. parallel composition) and unambiguous

regular parsing. In particular, although QREs can be compiled into quantitative automata known

as cost register automata [Alur et al. 2013], since this compilation has provably exponential lower

bound, it is not employed by current QRE evaluation algorithms, and in fact, no existing formalism

can support modular compilation of QREs. The main contribution of this paper is the model of Data
Transducers (DT) as this desired modular intermediate representation for streaming computations.

A data transducer processes a data stream—a sequence of tagged data values—and produces a

numerical (or Boolean) value using a fixed set of data variables that are updated using a constant

number of operations as it processes each tagged data value. A DT can be viewed as a quantitative

generalization of (unambiguous) NFAs. Whereas an NFA configuration consists of a finite set of

states, each of which is either inactive or active, a DT configuration consists of a finite set of

data variables, each of which can be inactive (undefined), active with a value (defined), or in a

special “conflict” mode (conflicted). A DT configuration thus consists of succinctly represented

finite control integrated with data values. As a DT computes by consuming tagged data values, it

updates its variables using a specified allowed set of operations. The values of defined variables can

be combined using operations to form new values, but there is also the possibility of a “collision”.

This is analogous to how two tokens of active NFA states can be merged into one token during

evaluation when they are placed on the same state. Since the merging of data values is not in

general a meaningful operation, a collision of values results in a variable being set to conflict. Since

multiple transitions can write to the same data variable while processing a single tagged data

value, and the updated value of a variable can depend on the updated values of the others, the

semantics is defined using fixed points. We show how this semantics can be implemented by an

efficient streaming algorithm for evaluation that executes a linear (in the size of DT) number of

data operations while processing each tagged data value.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 50. Publication date: January 2019.

Modular Quantitative Monitoring 50:3

The language of a DT, i.e. the set of stream histories for which its output is defined, is a regular

language over the tags of the input stream. In fact, DTs capture a robust class of functions with an

elegant logical characterization: MSO-definable string-to-DAG transformations with a special “no

backward edges” requirement. This class, which we call streamable regular transductions, has been
studied in [Alur et al. 2018; Courcelle 1994; Engelfriet and Maneth 1999], and the closure properties

of this class, as opposed to some specific constructs supported by query languages in the existing

literature, guide the choice of operations over DTs for which we seek succinct constructions.

In particular, we show that DTs are closed under quantitative concatenation, quantitative iteration,

union, and parallel composition operations, and that the corresponding constructions are succinct.

We also consider the prefix-sum operation that combines the outputs on all prefixes using a specified

aggregator; this also has a simple and succinct construction on DTs. Temporal operators such

as “always in the past”, “sometime in the past”, and “since” can be implemented using prefix-

sum. The design choices in the precise formal definition of the model turn out to be critical in

these constructions. A key restriction on DTs, which we call restartability, that is required for

constructions related to unambiguous parsing is identified. This restriction says that it is possible

to “restart” the automaton during a computation by placing new data values at its initial states.

Then, although we only need to store a single automaton configuration in memory, the output

is the same as if multiple copies of the automaton were computing independently on multiple

stream suffixes as long as only one of these copies ultimately contributes to the final output. This

ability is necessary for efficient unambiguous parsing: several parsing possibilities are explored

simultaneously, but the required space is constant.

To illustrate the benefits of modular compilation, we define a new query language, called QRE-

Past, that combines the features of past-time temporal logic and QREs. We specify a cardiac

arrhythmia detection algorithm [Abbas et al. 2018; Zdarek and Israel 2016] in QRE-Past to illustrate

how the combination of features leads to a natural high-level specification. The theory of DTs

immediately leads to a streaming evaluation algorithm for QRE-Past, since every construct in

QRE-Past maps to a corresponding construction on component DTs without causing blow-up. In

fact, there is nothing sacred about QRE-Past: the designer of a high-level query language over

streaming data for a specific domain can introduce new combinators, in addition to the ones in this

paper, as long as there are corresponding succinct constructions on the low-level model of DTs.

Finally, while there are existing models with identical expressiveness, DTs are exponentially

more succinct (for instance, compared to unambiguous cost register automata). To gain a better

understanding of the expressiveness and succinctness of DTs, consider a (generic) streaming

algorithm that maintains a fixed number of Boolean and data variables, and processes each tagged

data value by updating these variables by executing a loop-free code. While such algorithms capture

all streaming computations, the class of all streaming computations is not suitable for modular

specifications. For instance, consider the quantitative concatenation operation: given transductions

f and д, and a binary data operation op, h = split(f ,д, op) splits the inputs stream w uniquely

into two parts w = w1w2 and returns h(w) = op(f (w1),д(w2)). While DTs are closed under this

operation, the class of all streaming algorithms is not. We can enforce regularity of a generic

streaming algorithm by requiring, for instance, that the updates to the Boolean variables are not

influenced by the values of the data variables. We show that streaming algorithms with these

restrictions can be translated to DTs without any blow-up, thus establishing that DTs are the most

succinct (up to a constant factor) representation of streamable regular transductions. The structure

of a DT—as variables ranging over undefined/defined/conflict values and update code as a set of

transitions of a particular form, as opposed to traditional loop-free update code—not only enforces

regularity, but is also what allows us to define succinct constructions on the representation.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 50. Publication date: January 2019.

50:4 Rajeev Alur, Konstantinos Mamouras, and Caleb Stanford

Outline of paper. §2 introduces the model of data transducers with illustrative examples. In

§3 we consider a number of semantic operations with corresponding succinct constructions on

DTs, and we define and study the key property of restartability necessary for some of them. In

§4, we define the query language QRE-Past, and show how constructions on DTs immediately

yield modular compilation into a streaming evaluation algorithm. We also show how QRE-Past

is useful in specifying a cardiac arrhythmia detection algorithm. §5 discusses the expressiveness

and succinctness of DTs compared to cost register automata, to finite automata, and to general

streaming computations. We compare with related work in §6, and conclude in §7.

2 DATA TRANSDUCERS

2.1 Preliminaries

To model data streams we use data words [Bouyer et al. 2003]. Let D be a (possibly infinite) set of

data values, such as the set of integers or real numbers, and let Σ be a finite set of tags. Then a data
word is a sequence of tagged data valuesw ∈ (Σ × D)∗. We writew ↓ Σ to denote the projection of

w to a string in Σ∗. We use bold u,v ,w to denote data words. We reserve non-bold u,v,w for plain

strings of tags in Σ∗. We write d,di for elements of D. We use σ to denote an arbitrary tag in Σ, and
in the examples we write particular tags in typewriter font, e.g. a, b.

A signature is a tuple (D,Op), where D is a set of data values andOp is a set of allowed operations.
Each operation has an arity k ≥ 0 and is a function from Dk to D. We use Opk to denote the

k-ary operations. For instance, if D is all 64-bit integers, we might support 64-bit arithmetic,

as well as integer division and equality tests. Alternatively we might have D = N with the

operations + (arity 2), min (arity 2), and 0 (arity 0). In general, we may have arbitrary user-defined

operations on D. Given a signature (D,Op), and a collection of variables Z , the set of terms Tm[Z]
consists of all syntactically correct expressions with free variables in Z , using operations Op. So
min(x , 0) +min(y, 0) and x + x are terms over the signature (N, {+,min, 0}) with Z = {x ,y}.

We define two special values in addition to the values in D: ⊥ denotes undefined and ⊤ denotes

conflict. We let D := D ∪ {⊥,⊤} be the set of extended data values, and refer to elements of D as

defined. We lift Op to operations on D by thinking of ⊥ as the empty multiset, elements of D as

singleton multisets, and ⊤ as any multiset of two or more data values. The specific behavior of

op ∈ Op on values in D is illustrated in the table below for the case op ∈ Op2. We also define a

union operation ⊔ : D×D→ D: if either of its arguments is undefined it returns the other one, and

in all other cases it returns conflict. This represents multiset union. Note that d1 ⊔ d2 = ⊤ even if

d1 = d2. This is essential: it guarantees that for all operations on extended data values, whether the

result is undefined, defined, or conflict can be determined from knowing only whether the inputs

are undefined, defined, or conflict. (For instance, we rely on this guarantee for the theorems in §2.5

and for the translation from QRE-Past in §4.2. It’s not needed for most of the constructions in §3.)

⊔ ⊥ d2 ⊤

⊥ ⊥ d2 ⊤

d1 d1 ⊤ ⊤

⊤ ⊤ ⊤ ⊤

op ⊥ d2 ⊤

⊥ ⊥ ⊥ ⊥

d1 ⊥ op(d1,d2) ⊤

⊤ ⊥ ⊤ ⊤

D is a complete lattice, partially ordered under the relation ≤ which is defined by ⊥ ≤ d ≤ ⊤
for all d ∈ D, and distinct elements d,d ′ ∈ D are incomparable. For a finite set X , we write the

set of functions X → D as D
X
; its elements are un-tagged data vectors, denoted x , y. The partial

order extends coordinate-wise to an ordering x ≤ y on data vectors x ,y ∈ D
X
. All operations in

Op are monotone increasing w.r.t. this partial order. Union (⊔) is commutative and associative, with

identity ⊥ and absorbing element ⊤, and all k-ary operations distribute over it.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 50. Publication date: January 2019.

Modular Quantitative Monitoring 50:5

2.2 Syntax and semantics

Let (D,Op) be a fixed signature. A data transducer (DT) is a 5-tuple A = (Q, Σ,∆, I , F), where:

• Q is a finite set of state variables (states for short) and Σ is a finite set of tags. We write Q ′ for
a copy of the variables in Q : for q ∈ Q , q′ ∈ Q ′ denotes the copy. When the states of the DT

are updated, q′ will be the new, updated value of q.
• ∆ is a finite set of transitions, where each transition is a tuple (σ ,X ,q′, t).
◦ σ ∈ Σ ∪ {i}, where i < Σ, and if σ = i this is a special initial transition.
◦ X ⊆ Q ∪Q ′ is a set of source variables and q′ ∈ Q ′ is the target variable.
◦ t ∈ Tm[X ∪ {cur}] gives a new value of the target variable given values of the source

variables and given the value of “cur”, which represents the current data value in the input

data word. Assume that cur < X . We allow X to include some variables not used in t . For
initial transitions, we additionally require that X ⊆ Q ′ and that cur does not appear in t .

• I ⊆ Q is a set of initial states and F ⊆ Q is a set of final states.

The number of states of A is |Q |. The size of A is the the number of states plus the total length

of all transitions (σ ,X ,q′, t), which includes the length of description of all the terms t .

Semantics. The input to a DT has two components. First, an initial vector x ∈ D
I
, which assigns

an extended data value to each initial state. Second, an input data word w ∈ (Σ × D)∗, which is a

sequence of tagged data values to be processed by the transducer. On input (x ,w), the DT’s final
output vector is an extended data value at each of its final states. Thus, the semantics of A will be

JAK : D
I
× (Σ × D)∗ → D

F
.

A configuration is a vector c ∈ D
Q
. For every σ ∈ Σ, the set of transitions (σ ,X ,q′, t) collectively

define a function ∆σ : D
Q
× D→ D

Q
: given the current configuration and the current data value

from the input data word, ∆σ produces the next configuration. We define ∆σ (c,d)(q) := c ′(q′),

where c ′ ∈ D
Q∪Q ′∪{cur}

is the least vector satisfying c ′(cur) = d ; for all q ∈ Q , c ′(q) = c(q); and

for all q′ ∈ Q ′, c ′(q′) =
⊔

(σ ,X ,q′,t)∈∆

JtK(c ′ |X), (1)

where we define JtK(c ′ |X) to be ⊥ if there exists x ∈ X such that c ′(x) = ⊥; otherwise, ⊤ if there

exists x ∈ X such that c ′(x) = ⊤; otherwise, if all variables in X are defined, then JtK(c ′ |X) is the
value of the expression t with variables assigned the values in c ′. So, JtK(c ′ |X) produces ⊥ or ⊤

if some variable in X is ⊥ or ⊤. The above union is over all transitions with label σ and target

variable q′. Since D is a complete lattice, this least fixed point exists by the Knaster-Tarski theorem.

The case of initial transitions (∆i) is slightly different. The purpose of initial transitions is to

compute an initial configuration c0 ∈ D
Q
, given the initial vector x ∈ D

I
. There is no previous

configuration, and no current data value, which is whywe requiredX ⊆ Q ′ for initial transitions and

cur was not allowed. We define the function ∆i : D
I
→ D

Q
with the same fixed point computation

from Equation (1), except that the initial states are additionally assigned values given by the vector

x . Define that x(q) = ⊥ if q < I . Then define ∆i(x) = c ′, where c ′ is the least vector satisfying, for
all q ∈ Q , c ′(q′) = x(q) ⊔

⊔
(i,X ,q′,t)∈∆JtK(c ′ |X).

Now A is evaluated on input (x ,w) ∈ D
I
× (Σ × D)∗ by starting from the initial configuration

and applying the update functions in sequence as illustrated in Figure 1. Finally, the output y ∈ D
F

is given by y = c |F , the projection of c to the final states.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 50. Publication date: January 2019.

50:6 Rajeev Alur, Konstantinos Mamouras, and Caleb Stanford

x1

x2

y∆i ∆a

d1

∆b

d2

∆a

d3

∆a

d4

c4c0 c1 c2 c3

Fig. 1. Example evaluation of a data transducer A with two initial states and one final state on initial vector
(x1,x2) and an input data wordw consisting of four characters (tagged data values): (a,d1), (b,d2), (a,d3),
(a,d4), to produce output y. Here c0,c1,c2,c3, and c4 are configurations; di ∈ D; and x1,x2,y ∈ D. Each ∆σ
is a set of transitions, collectively describing the next configuration in terms of the previous one.

Why both initial states and initial transitions? Initial states I give the DT the ability to take an

arbitrary initial vector x as input. Initial transitions ∆i give the DT the ability to compute initial

values for its non-initial states. Particularly, this includes the possibility of producing output by

initializing the final states F . If the desired computation does not require an initial input, then it is

appropriate to take I = � and instead initialize only with initial transitions (see examples in §2.4).

Why do variables in X unused in t affect the semantics? All variables in X control whether the

transition evaluates to undefined, defined, or conflict. However, this is not strictly necessary, because

the same thing can be achieved by using the unused variable in a no-op operation, e.g. for an unused

variable x , replacing term t with t + 0 · x . We do not employ unused variables in the examples of

§2.4, but they are convenient and do arise in the constructions of §3 and §4.

Generalizing to multiple data types. To keep the presentation simple, we have assumed that every

state (if defined) takes values in the same set D. It’s possible to allow states with multiple data

types; then, the signature would include operations between the various types.

2.3 Streaming evaluation algorithm

Complexity assumptions. We are interested in evaluation in the streaming setting, where the

input data wordw arrives character-by-character and must be processed in real-time without being

stored. After processing each character (i.e. tagged data value), we should produce the output on

the current prefix ofw . The complexity bounds of interest in this setting are (1) the maximum time
to process each element ofw and (2) the maximum space usage while reading the entire word. Both

should be very small compared to the large inputw (ideally constant or poly-logarithmic).

For DTs, we do not provide such unconditional bounds, as evaluation costs depend on the precise

data type and operations supported. Instead, we provide a constant bound on (1) the number of data
operations in Op to process each element and (2) the number of data registers of type D that need

to be stored. In many cases, these can translate to efficient streaming complexity bounds when

instantiated with a particular signature (D,Op). These bounds assume a sequential implementation.

Theorem 2.1. Evaluation of a data transducer A, with number of states n and sizem on input
(x ,w), requiresO(n) data registers to store the state, andO(m) operations and additional data registers
to process each element in Σ × D, independent ofw .

Proof. The evaluation algorithm is given in Figure 2. First, we know that we can process each

element (σ ,d) of the stream by applying ∆σ with cur = d and the previous configuration as input,

as in Figure 1. At each step we can produce the output y given by the extended data values of the

final states. Therefore, the nontrivial remaining task is to compute ∆σ (c,d) from c and d , for a given

σ ∈ Σ and configuration c , which in particular means computing the least vector c ′ ∈ D
Q∪Q ′∪{cur}

defined in Equation (1). Computing the initial configuration ∆i(x) can be done similarly.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 50. Publication date: January 2019.

Modular Quantitative Monitoring 50:7

c ← ∆i(x); produce output y = c |F
for each character (σ , d) in w do

for each state q ∈ Q do val(q) ← c (q); val(q′) ← ⊥
for each transition τ ∈ ∆σ do val(τ) ← ⊥; num_undef (τ) ← |X |
worklist ← Q ′ ∪ ∆σ
while worklist is nonempty, get item from worklist and do

if item is a transition τ = (σ , X , q′, t) ∈ ∆σ : then
val(τ) ← JtK(val |X)
if val(q′) , ⊤ then add q′ to worklist

else if item is a state q′ ∈ Q ′ then
if val(q′) = ⊥ then

for each τ ∈ ∆σ with source variable q′ do num_undef (τ) ← num_undef (τ) − 1

val(q′) ←
⊔
τ=(σ ,X ,q′,t) val(τ)

for each τ ∈ ∆σ with target variable q′ do
if val(τ) ∈ D or (val(τ) = ⊥ and num_undef (τ) = 0) then add τ to worklist

for each q ∈ Q do c (q) ← val(q′)
produce output y = c |F

Fig. 2. Data transducer evaluation algorithm (Theorem 2.1). On input A = (Q, Σ,∆, I , F) over (D,Op), an

initial vector x ∈ D
I
, and a data streamw ∈ (Σ×D)∗, produces the output vectory ∈ D

F
on each prefix ofw .

To compute the least fixed point, we maintain current values val(q′) for each variable q′ in Q ′

and val(τ) for each transition τ in ∆σ , as well as a worklist of values (in Q
′
or ∆σ) that need to be

updated. While the worklist is nonempty, we pick a value to visit. If it is a transition (respectively,

state), we update its value and add the state (respectively, each transition) which depends on it to

the worklist only if its value will increase in the lattice. This guarantees that each state or transition

can only be added to the worklist at most 3 times (once initially, and at most twice when its value

increases). Moreover, we can determine whether the value of a state or transition will increase in

constant time. For a state, this is because it will always increase unless its current value is ⊤. For a

transition, we have to additionally maintain a count of how many of its source states are ⊥, which

we do in the map num_undef . The transition’s value will increase if it is currently defined, or if it
is currently undefined and the number of undefined source states has just dropped to 0.

This whole process to compute ∆σ (c,d) requires O(m) operations: we visit each transition at

most 3 times; and we visit each (state, transition) pair, where the state is one of the transition’s

source states, at most 3 times (once for each time that state is added to the worklist). □

An instructive special case of Theorem 2.1 is when the transitions ∆σ , for all σ ∈ Σ ∪ {i}, are
acylic. By this we mean that the following directed graph is acyclic: take vertices Q ∪Q ′, with an

edge from x to q′ if there is a transition (σ ,X ,q′, t) with x ∈ X . If the transitions ∆σ are acyclic for

all σ then we say this is an acyclic DT. Then the least fixed point is also the only fixed point and

can be obtained by iterating over the states q′ ∈ Q ′ in a single pass, in a topologically sorted order,

and assigning the value of c ′(q′). This is anO(m) algorithm, so in this easier case we can match the

result of Theorem 2.1 without using a worklist.

2.4 Examples

We do not envision that DTs would be directly programmed by users, due to the conceptual difficulty

of tracking undefined, defined, and conflicted values. Rather, DTs would be a low-level, back-end

model for streaming and monitoring. The purpose of this section is mainly to illustrate, informally

and through examples, the basic features and execution semantics of the model.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 50. Publication date: January 2019.

50:8 Rajeev Alur, Konstantinos Mamouras, and Caleb Stanford

Q = {sum1, sum2,sum3, avg}, I = �, F = {avg}

transitions(i) = �

transitions(a) = ∥ sum1′ := cur

∥ sum2′ := sum1 + cur

∥ sum3′ := sum2 + cur

∥ avg′ := sum3′ / 3

transitions(b) = ∥ sum1′ := sum1

∥ sum2′ := sum2

∥ sum3′ := sum3

transitions(#) = �

Example evaluation on input

w = (a, 6)(a, 5)(a, 7)(b, 2)(a, 8)(#, 0)(b, 2)(a, 7).

w (input) sum1 sum2 sum3 avg (output)

⊥ ⊥ ⊥ ⊥

(a, 6) 6 ⊥ ⊥ ⊥

(a, 5) 5 11 ⊥ ⊥

(a, 7) 7 12 18 6.000

(b, 2) 7 12 18 ⊥

(a, 8) 8 15 20 6.667

(#, 0) ⊥ ⊥ ⊥ ⊥

(b, 2) ⊥ ⊥ ⊥ ⊥

(a, 7) 7 ⊥ ⊥ ⊥

Fig. 3. Data transducer A1 monitoring a stream of purchase events for two types of items, tagged a and b,
and # to represent the end of each day. Throughout the day we output the average price in a sliding window
of the last three a-items. The language of strings on which A1 produces output is (a ∪ b ∪ #)∗ab∗ab∗a.

We present only acyclic DTs in this section, and we take I = �: all initialization is done with

initial transitions ∆i. Additionally, we use the abbreviation q
′

:= t to denote a transition (σ ,X ,q′, t),
whereX is exactly the set of variables present in the term t (in contexts where σ is clear). In general,

X may include other variables unused in t , and the semantics of the transition does depend on the

unused variables as well (see §2.2, “Why do variables in X unused in t affect the semantics?”).

Pattern matching. DTs are based on the idea of merging data registers and finite control into the

single set of “state variables” Q . Suppose we wish to monitor a stream of a-events, b-events, and
#-events, where each a- or b-event is the price at which an item was bought, and # indicates the end
of a day. We thus have D = Q and Σ = {a, b, #}. For the operations Op, we allow +,−, ·,max,min,

division / (this must return a default value on division by 0), and integer constants. Suppose we

want to output the average price of a sliding window containing the last three a prices, which

resets at the end of the day. This is essentially a pattern match over the input tags to locate the last

three, which are then averaged. A1 in Figure 3 is based on this idea. The transitions listed under

transitions(σ) are those labeled with σ ; we use ∥ to emphasize that the transitions are not ordered.

The machine A1 uses state variables sum1, sum2, and sum3 to keep track of the sum of the last 1,

2, and 3 a prices (in the current day). Each variable matches a certain pattern of tags in the input

stream, namely, strings with at least 1, 2, and 3 a’s so far. In addition to pattern-matching, the

variables are updated to keep track of the sum. For example, the transition sum2′ := sum1 + cur
indicates that if sum1 was defined before then sum2 should now be defined and equal to the sum

plus the current data value. The transition avg′ := sum3′ / 3 indicates that if sum3 is now defined

(note the sum3′), then avg should be set to the average of the last three prices.

Multiple transitions with a single target. The machine A1 has a simplifying syntactic property

that for every σ ∈ Σ and for every state q′, there is only one transition q′ := t . In other words, there

is only one rule stating how to assign q′ a value. In general, there may be multiple rules, and the

resulting value of q′ will be the union (⊔) over all transitions. For instance, suppose we have the

same input stream over Σ = {a, b, #}, and we want to output the average price of an a-item at the

end of each day. However, if there are no a-items on a given day, we instead want to output the

average from the previous day. A machine implementation of this is provided by A2 in Figure 4.

In A2, sum and count store the sum of a-items and number of a-items on each day, respectively,

and are defined only if there has been at least one a. On the other hand, prev_avg stores the

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 50. Publication date: January 2019.

Modular Quantitative Monitoring 50:9

Q = {sum, count, avg, prev_avg}, I = �, F = {avg}

transitions(i) = ∥ prev_avg′ := 0

transitions(a) = ∥ sum′ := prev_avg · 0 + cur

∥ sum′ := sum + cur

∥ count′ := prev_avg · 0 + 1

∥ count′ := count + 1

transitions(b) = ∥ sum′ := sum

∥ count′ := count

∥ prev_avg′ := prev_avg

transitions(#) = ∥ avg′ := sum / count

∥ avg′ := prev_avg

∥ prev_avg′ := avg′

Example evaluation on input

(b, 2)(a, 6)(b, 2)(a, 8)(a, 7)(#, 0)(b, 2)(#, 0)(a, 7)(a, 6).

w sum count avg prev_avg

(input) (output)

⊥ ⊥ ⊥ 0

(b, 2) ⊥ ⊥ ⊥ 0

(a, 6) 6 1 ⊥ ⊥

(b, 2) 6 1 ⊥ ⊥

(a, 8) 14 2 ⊥ ⊥

(a, 7) 21 3 ⊥ ⊥

(#, 0) ⊥ ⊥ 7.0 7.0

(b, 2) ⊥ ⊥ ⊥ 7.0

(#, 0) ⊥ ⊥ 7.0 7.0

(a, 7) 7 1 ⊥ ⊥

(a, 6) 13 2 ⊥ ⊥

Fig. 4. Data transducerA2 monitoring the stream to produce, at the end of each day, either the average price
of an a-item (if there was at least one a) or the previous average (if there was no a). When there are multiple
transitions q′ := t1 and q′ := t2, the semantics is such that we assign q′ := t1 ⊔ t2.

previous average, but it is defined only if there has not been any a yet. (We also initialize this to 0

arbitrarily on the very first day.) The state avg stores the output, and is only defined after a # event.

The logic of this computation involves two places where we need to have multiple transitions

targeting a state. First, on receiving an a, we set sum to be equal to the previous sum plus the

current value, but we also set it to be equal to 0 · prev_avg + cur. This works because exactly one

of these two values will be defined, and the other will be ⊥: either we have seen an a already, in
which case we can update the sum, or we haven’t seen one yet, in which case prev_avg is still

defined. Second, the overall output avg has two possible values, either sum/count or prev_avg,
and again, exactly one of these two values will be defined, and the other will be ⊥. Thus, we have

designed A2 so that each union operation (⊔) never produces a conflict (⊤).

Combining output from parallel threads of computation. Our final example attempts to illustrate

the feature which gives DTs their succinctness (see §5): the ability to update multiple computations

independently and then combine their results. Suppose we want to compute, at the end of each day,

the difference between the maximum price of a and the maximum price of b, if there was at least
one a and at least one b. The DT A3 in Figure 5 implements this computation. The state a_init of

A3 stores 0 and is only defined if we haven’t seen an a yet; similarly for b_init.

2.5 Regularity

Data transducers define regular transductions on data words (see §5.1). Here, we show regularity in

a simpler sense: whether an output value is defined (or undefined, or conflict) depends only on

whether the input values are undefined, defined, or conflict, together with some regular property

of the string of tags. For data vectors x1,x2 ∈ D
X
, we say that x1 and x2 are equivalent, and write

x1 ≡ x2, if for all x ∈ X , x1(x) and x2(x) are both undefined, both defined, or both conflict.

Theorem 2.2. Let A = (Q, Σ,∆, I , F) be a DT over (D,Op). Then: (i) For all initial vectors x1,x2 ∈

DI , and for all input wordsw1,w2, if x1 ≡ x2 andw1 ↓ Σ = w2 ↓ Σ, then JAK(x1,w1) ≡ JAK(x2,w2).
(ii) For every equivalence class of initial vectors x and equivalence class of output vectors y, the set of
stringsw ↓ Σ such that JAK(x ,w) ≡ y is regular.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 50. Publication date: January 2019.

50:10 Rajeev Alur, Konstantinos Mamouras, and Caleb Stanford

Q = {a_init, a_max, b_init, b_max, ab_diff}

I = �, F = {ab_diff}

transitions(i) = ∥ a_init′ := 0

∥ b_init′ := 0

transitions(a) = ∥ a_max′ := a_init + cur

∥ a_max′ := max(a_max, cur)

∥ b_max′ := b_max

∥ b_init′ := b_init

transitions(b) = ∥ b_max′ := b_init + cur

∥ b_max′ := max(b_max, cur)

∥ a_max′ := a_max

∥ a_init′ := a_init

transitions(#) = ∥ ab_diff′ := a_max − b_max

∥ a_init′ := 0

∥ b_init′ := 0

Example evaluation on input

(b, 2)(a, 6)(b, 3)(b, 1)(a, 8)(#, 0)(b, 2)(#, 0)(a, 7)(b, 1).

w a_init a_max b_init b_max ab_diff

(input) (output)

0 ⊥ 0 ⊥ ⊥

(b, 2) 0 ⊥ ⊥ 2 ⊥

(a, 6) ⊥ 6 ⊥ 2 ⊥

(b, 3) ⊥ 6 ⊥ 3 ⊥

(b, 1) ⊥ 6 ⊥ 3 ⊥

(a, 8) ⊥ 8 ⊥ 3 ⊥

(#, 0) 0 ⊥ 0 ⊥ 5

(b, 2) 0 ⊥ ⊥ 2 ⊥

(#, 0) 0 ⊥ 0 ⊥ ⊥

(a, 7) ⊥ 7 0 ⊥ ⊥

(b, 1) ⊥ 7 ⊥ 1 ⊥

Fig. 5. Data transducer A3 monitoring the stream to produce, at the end of each day, the difference between
the maximum price of an a-item and the maximum price of a b-item.

Proof. In evaluating a DT we may collapse all values in D to a single value⋆, so each state takes

values in {⊥,⋆,⊤}. This gives a projection from A to a DT P over the unit signature (U,UOp),
where U = {⋆} is a set with just one element, and UOp consists of, for each k , the unique map

ok : Uk → U. The projection homomorphically preserves the semantics. Then, (i) follows because

the computation of P is exactly the same on x1,w1 and x2,w2, and (ii) follows because P has

finitely many possible configurations. □

We can thus define the language ofA to be L(A) = {w ↓ Σ | JAK(x ,w) ∈ DF for some x ∈ DI },
so L(A) ⊆ Σ∗. This is the set of tag strings w ↓ Σ such that, if the initial vector of values is

all defined, after reading in w all final states are defined. We similarly define the set of strings

on which a DT is defined or conflict, on input of the same form: the extended language L(A) is
{w ↓ Σ | JAK(x ,w) ∈ (D∪{⊤})F for some x ∈ (D∪{⊤})I }. An immediate corollary of Theorem 2.2

is that (i) L(A) is regular, (ii) L(A) is regular, and (iii) L(A) ⊆ L(A). Finally, say that DTs A1 and

A2 are equivalent if for all x1 ≡ x2 and for allw , JA1K(x1,w) ≡ JA2K(x2,w).

Theorem 2.3. On input DTs A1, A2, deciding if A1 and A2 are equivalent is PSPACE-complete.

Proof. We first decide if the two are not equivalent in NPSPACE. It suffices to project A1 and

A2 to DTs over the unit signature, P1 and P2, as in the previous proof, and decide if P1 . P2. Let

n be the number of states between P1 and P2, and letm be their combined size. The number of

configurations for P1 and P2 together is 3
n
. Therefore, if there is a counterexample, it is some

string over Σ of length at most 3
n
. Guessing the counterexample one character at a time requires

linear in n space to record the count and O(m) space to update P1 and P2 (by Theorem 2.1).

To show it is PSPACE-hard, it suffices to exhibit a translation from NFAs to DTs which reduces

language equality of NFAs to equivalence of DTs. Specifically, we create A with one final state

which is undefined on strings for which the NFA is undefined, and ⊤ on strings for which the NFA

is defined. The translation works by directly copying the states and transitions of the NFA, except

we add two additional transitions from accepting states of the NFA to the new final state of A. □

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 50. Publication date: January 2019.

Modular Quantitative Monitoring 50:11

3 CONSTRUCTIONS ON DATA TRANSDUCERS

As discussed in the introduction, our primary interest in the DT model is to support a variety of

succinct composition operations which are not simultaneously supported by any existing model.

In particular, such composition operations can enable a quantitative monitoring language like

QRE-Past in §4: language constructs can be implemented by the compiler as constructions on DTs,

rather like how (traditional) regular expressions are compiled to nondeterministic finite automata.

For example, suppose we have DTs implementing two functions f ,д : (Σ × D)∗ → D, and we

would like to implement the function f +д, which applies f and д to the input stream and adds the

results. To do so, we copy the states of the transducers for f and д, and we initialize and update

the states in parallel (they do not interfere). Then, we provide a new final state, and a single new

transition which says that the new final state should be assigned the value of the final state of f
plus the value of the final state of д. This works for every operation, and not just +: the combination

of k computations by applying a k-ary operation op ∈ Opk can be implemented by a corresponding

k-ary construct on the k underlying DTs. Moreover, the size of the DT will only be the sum of the

sizes of the k DTs, plus a constant. In contrast, even this simple operation f + д is not succinctly

implementable using the most natural existing alternative to DTs, Cost Register Automata (see §5).

This construction for f +д requires no assumptions about the DTs implementing f andд. However,
not all operations are this straightforward. Consider the following quantitative generalization of

concatenation. Given f : (Σ × D)∗ → D, д : (Σ × D)∗ → D, and op ∈ Op
2
, we wish to implement

split(f ,д, op): on input w , split the input stream into two parts, w = u ·v , such that f (u) , ⊥
and д(v) , ⊥ (respectively, f matches u and д matches v), and return op(f (u),д(v)). Assume

that the decomposition ofw into u andv such that f (u) , ⊥ and д(v) , ⊥ is unique. In order to

naively implement this operation, on an input stringw , we must not only keep track of the current

configuration of f onw , but for every splitw = uv where f matches u, we must keep track of the

current configuration of д onv . If there are many possible prefixes u ofw such that f (u) , ⊥, we
may have to keep arbitrarily many configurations of д. This naive approach is therefore impossible

using only the finite space that a DT allows, if we treat f and д only as black boxes.

What we need to avoid this is an additional structural condition on д. Rather than keeping

multiple copies of д, we would like to keep only a single configuration in memory: whenever the

current prefix matches f , restart д with new data values on its initial states (keeping any current

data values as well). To motivate this idea, consider the analogous concatenation construction for

two NFAs: every time the first NFA accepts, we are able to “restart” the second NFA by adding a

token to its start state (we don’t need an entirely new NFA every time). This property for DTs is

called restartability. Restartable DTs are an equally expressive subclass consisting of those DTs for

which restarting computation on the same transducer does not cause interference in the output.

The set of strings that a DT “matches” is captured by its extended language, defined in §2.5.

Correspondingly, we assume that whenever a DT is restarted, the new initial vector is either all ⊥,

or all not ⊥ (in D∪ {⊤}). If the output of a DT also satisfies this property (on every input it is either

all ⊥, or all not ⊥), then we say that the DT is output-synchronized. This property is required in the

concatenation and iteration constructions, but it is not as crucial to the discussion as restartability.

We begin in §3.1 by giving general constructions that do not rely on restartability. We highlight

the implemented semantics, the extended language, and the size of the constructed DT in terms of

its constituent DTs. Then in §3.2, we define restartability and use it to give succinct constructions

for unambiguous parsing operations, namely concatenation and iteration. Moreover, we show that

(under certain conditions) our operations preserve restartability, thus enabling modular composition

using the restartable DTs. We also show that checking restartability is hard (PSPACE-complete),

and we mention converting a non-restartable DT to a restartable one, but with exponential blowup.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 50. Publication date: January 2019.

50:12 Rajeev Alur, Konstantinos Mamouras, and Caleb Stanford

3.1 General constructions

Notation. It is convenient to introduce shorthand (ε,X ,q′, t) for the union of |Σ| + 1 transitions:

(σ ,X ,q′, t) for every σ ∈ Σ ∪ {i}. Because this includes an initial transition, this requires that

X ⊆ Q ′ and that cur does not appear in t . We call such a collection of transitions an epsilon transition
because, like epsilon transitions from classical automata, the transition may produce a value at its

target state on the empty data word and on every input character.

For readability, we abbreviate the type of a DT A : D
I
× (Σ × D)∗ → D

F
as A : I ↠ F . This can

be thought of as a function from input variables I of type D to output variables F of type D, which
also consumes some data word in (Σ × D)∗ as a side effect. For sets of variables (or states) X1,X2,

when we write X1 ∪ X2 we assume that the union is disjoint, unless otherwise stated.

We also define a data function to be a plain function D
I
→ D

F
which is given by a collection of

one or more terms t : Tm[I] for each f ∈ F (the output value of f is then the union of the values of

all terms). If G ⊆ F × Tm[I], then we write G : I ⇒ F to abbreviate the semantics JGK : D
I
→ D

F
.

The size of G is the total length of description of all of the terms t it contains.

Parallel composition. Supposewe are givenDTsA1 = (Q1, Σ,∆1, I1, F1) andA2 = (Q2, Σ,∆2, I2, F2),

and assume that the sets of initial states are the same up to some implicit bijections π1 : I → I1,
π2 : I → I2, for a set I with |I | = |I1 | = |I2 |. (It is always possible to benignly extend both DTs with

extra initial states so that they match, so this assumption is not restrictive.) We wish to define a DT

which feeds the input (x ,w) into both DTs in parallel. To do so, we define A = A1 ∥ A2 to be the

tuple (Q, Σ,∆, I , F), where Q = Q1 ∪Q2 ∪ I , F = F1 ∪ F2, and

∆ = ∆1 ∪ ∆2 ∪
{
(ε, i ′,π1(i)

′, i ′) : i ∈ I
}
∪
{
(ε, i ′,π2(i)

′, i ′) : i ∈ I
}
.

Here, the transitions we added (those in ∆ but not in ∆1 or ∆2) copy values from I into both I1 and I2.
This is only relevant on initialization ∆i, since after that states I will not be defined, but we used an
epsilon transition instead of just an i transition to preserve restartability, which will be discussed

in §3.2. Since we added no other transitions, the least fixed point Equation (1) defining the next

(or initial) configuration decomposes into the least fixed point on states Q1, and on states Q2. It

follows that the semantics satisfies JAK(x ,u) = (JA1K(x ,u), JA2K(x ,u)). Here, (y1
,y

2
) denotes the

vector y ∈ D
F
that is y

1
on F1 and y2

on F2. Parallel composition is commutative and associative.

The utility of parallel composition is that it allows us to combine the outputs y
1
and y

2
later on.

This is accomplished by concatenation with another DT which combines the outputs (§3.2).

Parallel composition. If A1 : I ↠ F1 and A2 : I ↠ F2, then A1 ∥ A2 : I ↠ F1 ∪ F2 satisfies

JA1 ∥ A2K(x ,w) = (JA1K(x ,w), JA2K(x ,w)),

such that size(A1 ∥ A2) = size(A1)+ size(A2)+O(|I |). It therefore matches the set of tag strings

L(A1 ∥ A2) = L(A1) ∩ L(A2).

Union. Suppose we are given DTsA1 = (Q1, Σ,∆1, I1, F1) andA2 = (Q2, Σ,∆2, I2, F2), and assume

that the sets of initial and final states are the same up to some bijections: π1 : I → I1, π2 : I → I2,
ρ1 : F → F1, ρ2 : F → F2, for sets I and F with |I | = |I1 | = |I2 | and |F | = |F1 | = |F2 |. We wish to

define a DT which feeds the input (x ,w) into both DTs in parallel and returns the union (⊔) of the

two results. We define A = A1 ⊔ A2 = (Q, Σ,∆, I , F) by Q = Q1 ∪Q2 ∪ I ∪ F and

∆ = ∆1 ∪ ∆2 ∪
{
(ε, i ′,π1(i)

′, i ′) : i ∈ I
}

∪
{
(ε, i ′,π2(i)

′, i ′) : i ∈ I
}

∪
{
(ε, ρ1(f)

′, f ′, ρ1(f)
′) : f ∈ F

}
∪
{
(ε, ρ2(f)

′, f ′, ρ2(f)
′) : f ∈ F

}
.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 50. Publication date: January 2019.

Modular Quantitative Monitoring 50:13

Similar to the parallel composition construction, the additional transitions here ensure that we

copy values from I into I1 and I2, and copy values from F1 and F2 into F , whenever these values
are defined. In particular, on initialization the initial vector x will be copied into I1 and I2, and on

every data word the output values y
1
and y

2
of A1 and A2 will be copied into the same set of final

states, so that they have to be joined by ⊔. In particular, if both y
1
and y

2
are defined, the output

will be ⊤. We see therefore that the semantics is such that JAK(x ,u) = JA1K(x ,u) ⊔ JA2K(x ,u).
Like parallel composition, union is commutative and associative.

Union. If A1 : I ↠ F and A2 : I ↠ F , then A1 ⊔ A2 : I ↠ F implements the semantics

JA1 ⊔ A2K(x ,w) = JA1K(x ,w) ⊔ JA2K(x ,w),

s.t. size(A1 ⊔A2) = size(A1) + size(A2) +O(|I | + |F |). It matches L(A1 ⊔A2) = L(A1) ∪ L(A2).

Prefix summation. Now we consider a more complex operation. Suppose we are given A1 =

(Q1, Σ,∆1, I1, F1), and a data word w , such that the output on the empty data word is y(0)
1
, the

output after receiving one character of the data word is y(1)
1
, and in general the output after k

characters is y(k)
1
. The problem is to return the sum of these outputs: we want a DT that returns

y(i) = y(0)
1
+· · ·+y(i)

1
after receiving i characters. This is called the prefix sum becausey(k)

1
is the value

ofA on the kth prefix of the data word. In general, instead of +, we can take an arbitrary operation

which folds the outputs of A1 on each prefix. We suppose that this operation is given by a data

functionG which, for some set F , is a functionD
F∪F1

→ D
F
. It takes the previous “sum”y(i−1) ∈ D

F
,

combines it with the new output of A1, y
(i)
1
∈ D

F1

, and produces the next “sum” y(i) ∈ D
F
. So,

we’ll have G(y(i−1),y(i)
1
) = y(i). We want a DT that, on input initial values for I1 and initial values

y(−1)
for F , will return y(i). Formally, we convert G to a DT A2 = (Q2, Σ,∆2, I2, F2), with bijections

π : (F ∪ F1) → I2, ρ : F → F2, which only contains epsilon-transitions: for each term t in G with

variables P ⊆ (F ∪ F1) giving a value of f ∈ F , we create an epsilon transition (ε,π (P)′, ρ(f)′, t).
Then we define the prefix sum ⊕GA1 = (Q, Σ,∆, (I1 ∪ F), F2), where Q = Q1 ∪Q2 ∪ F and

∆ = ∆1 ∪ ∆2 ∪
{
(ε, f ′

1
,π (f1)

′, f ′
1
) : f1 ∈ F1

}
∪
{
(ε, f ′,π (f)′, f ′) : f ∈ F

}
∪
{
(σ , ρ(f),π (f)′, ρ(f)) : f ∈ F ,σ ∈ Σ

}
.

First on the empty data word, the outputs F ′
2
of A1 and the initial vector in F ′ are copied into

I2, and A2 produces the correct output y(0) = JGK(y(−1),y(0)
1
). Now, when we read in a character

in Σ × D, the final states F ′
2
flow back into inputs to A2, and the new output of A1 also flows in.

Because the machineA2 was constructed to be just a set of epsilon-transitions from I2 to F2, it does

not save any internal state, but just computes the output in terms of the input again. So the next

output will be JGK(y(0),y(1)
1
), and then JGK(y(1),y(2)

1
), and so forth.

Prefix sum. IfA1 : I ↠ Z andG : F ∪Z ⇒ F , then ⊕GA1 : I ∪F ↠ F implements the semantics

J⊕GA1K((x ,y), ε) = JGK(y, JA1K(x , ε))
J⊕GA1K((x ,y),w(σ ,d)) = JGK(J⊕GA1K((x ,y),w), JA1K(x ,w(σ ,d)))

such that size(⊕GA1) = size(A1) + size(G) +O(|Z | + |F |).

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 50. Publication date: January 2019.

50:14 Rajeev Alur, Konstantinos Mamouras, and Caleb Stanford

Conditioning on undefined and conflict values. ADT that is constructed using the other operations—

particularly union, and concatenation and iteration from §3.2—may produce undefined (⊥) or

conflict (⊤) on certain inputs. In such a case, wemaywant to perform a computationwhich conditions
on whether the output is undefined, defined or conflict: for instance, we may want to produce 1 if

there is a conflict, or we may want to replace all ⊥ and ⊤ outputs with concrete data values. (In

particular, in §4, we will want to replace ⊥ and ⊤ with Boolean values). We give a construction for

this purpose. To simplify the problem, suppose that we are given A1 = (Q1, Σ,∆1, I1, F1), and we

want to construct a DT A⊥ with no initial states, the same set of final states, and the following

behavior: for all x ∈ DI1 (not D
I1
), all u ∈ (Σ × D)∗, and all f1 ∈ F1, if JA1K(x ,u)(f1) = ⊥ then

JA⊥K(u)(f1) ∈ D, and otherwise, JA⊥K(u)(f1) = ⊥. Here, since I = �, the first argument is omitted.

We similarly want to define AD which is in D if A1 is in D, and ⊥ otherwise, and A⊤ which is

in D if A1 is ⊤, and ⊥ otherwise. So that D is not empty, we assume that there is some constant

operation in Op
0
, say d⋆ (so d⋆ ∈ D).

The idea of the construction is that we replace Q1 with Q1 × {⊥,⋆,⊤}. For each state q ∈ Q1, at

all times, exactly one of (q,⊥), (q,⋆), and (q,⊤) will be d⋆ and the other two will be ⊥. Which state

is d⋆ should correspond to whether q was undefined, defined, or conflict. (This is adapted from the

classic trick of dealing with negation by replacing all values with pairs of either (true, false) or (false,

true).) However, in order for this to work without blowup our DT needs to be acyclic. Therefore we
begin with a preliminary stage of converting the DT to acyclic. Observe that in the semantics of

§2.2, iterating the assignment (1) 2n times would be sufficient to reach the fixed point, where n is

the number of states of the DT. So we create 2n copies of the states of the DT, with the original DT’s

transitions copied 2n times. In this preliminary stage the size of the transducer may be squared,
i.e. there is quadratic blowup. Now assuming A is acyclic, for each variable q′ ∈ Q ′

1
, whether q′ is

undefined, defined, or conflict is a Boolean function of all the source states of transitions that target

q′; this function can be built as a Boolean circuit by adding intermediate states and intermediate

transitions, in number at most the total size of the transitions targeting q′. A⊥, AD, and A⊤ differ

only in which states are final—F1 × {⊥}, F1 × {⋆}, and F1 × {⊤}, respectively.

Support. Let d⋆ ∈ D. If A1 : I ↠ F , then [A1 = ⊥] : � ↠ F , [A1 ∈ D] : � ↠ F , and
[A1 = ⊤] : �↠ F . These constructions implement the following semantics. For all f ∈ F :

J[A1 = ⊥]K(w)(f) = d⋆ if JA1K(x ,w)(f) = ⊥ ∀x ∈ DI ; ⊥ otherwise

J[A1 ∈ D]K(w)(f) = d⋆ if JA1K(x ,w)(f) ∈ D ∀x ∈ DI ; ⊥ otherwise

J[A1 = ⊤]K(w)(f) = d⋆ if JA1K(x ,w)(f) = ⊤ ∀x ∈ DI ; ⊥ otherwise

such that size([A1 = ⊥]) = O(size(A1)
2) and likewise for the other two. Alternatively, if A1 is

acyclic, the size will only be O(size(A1)).

3.2 Unambiguous parsing and restartability

We now want to capture the idea of restartability—that multiple threads of computation may be

replaced by updates to a single configuration—with a formal definition. Recall the example in

the introduction of split(f ,д, op). During the execution of f on inputw , whenever the current

prefix u ofw matches, i.e. f (u) , ⊥, we could (naively and inefficiently) implement split(f ,д, op)
by keeping a separate configuration (thread) of д from that point forward. For example, suppose

that w = (a,d1)(b,d2)(a,d3)(a,d4), and that the output of f is defined after receiving each a-
item, and undefined otherwise. Then f is defined on input (a,d1), on (a,d1)(b,d2)(a,d3), and on

(a,d1)(b,d2)(a,d3)(a,d4). Corresponding to these three inputs, we would have three threads of д: c1

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 50. Publication date: January 2019.

Modular Quantitative Monitoring 50:15

on input (b,d2)(a,d3)(a,d4), c2 on input (a,d4), and c3 on input ε . Suppose that each configuration ci
includes an final state with the value ofyi = op(f (u),д(v)). The value of split(f ,д, op) could then
be computed as the union of the outputs from all these threads: split(f ,д, op)(w) = y

1
⊔y

2
⊔y

3
.

We apply the union here because we expect the splitw = u ·v , where u ∈ L(f) andv ∈ L(д), to be

unique. Thus all but at most one of yi will be ⊥, and the union gives us the unique answer (if any).

A DT will be called restartable if a single configuration c can simulate the behavior of these

several configurations c1,c2, and c3. This is a relation between configurations of д and an arbitrarily

long sequence of configurations of д (we could have used a multiset instead of a sequence). The

relation c ∼ [c1,c2,c3] is intended to capture that c is observationally indistinguishable from the

sequence c1,c2,c3. For starters, we require that the output is the same: if y is the output of c ,
then y = y

1
⊔y

2
⊔y

3
. But we also require that the simulation is preserved when we update the

sequence of configurations of д, by reading in a new input character and/or starting a new thread.

The definition allows the simulation to be undefined on configurations that are never reachable in

an actual execution—it need not be true that every sequence [c1, . . . ,ck] is simulated by some c ,
but it should be true that every sequence that can be reached by a series of updates is simulated.

With this intuition, the simulation relation on configurations of д should satisfy the following

properties (see the definition below). Property (i) addresses the base case before any input characters

are received (i.e. initialization i). Suppose that on initialization, the machine for д is started with

k ≥ 0 threads, given by initial vectors x1, . . . ,xk . (In our example, these threads would arise as the

output of f on initialization.) Then the configuration in a single copy of д on input x1 ⊔ · · · ⊔ xk
should simulate the behavior of k separate copies of д. Property (ii) requires that the simulation

then be preserved as input characters are read in. Suppose that c ∼ [c1, . . . ,ck], and we now read in

a character (σ ,d) to д. Simultaneously, we start zero or more new threads represented by the vector

x (e.g., x is the new output produced by f on input (σ ,d)). Then if we update and re-initialize

the initial states of c with x , that configuration should simulate updating each ci separately, and
adding one or more new threads represented by x . Finally, property (iii) says that our simulation is

sound: for every configuration which simulates a sequence of configurations, the output of the one

configuration is equal to the union of the sequence of outputs.

For property (ii) in particular, we need to define what it means to update a configuration c
and simultaneously restart new threads by placing values x on the initial states I ′. (Such an

update function is only needed for the simulating configuration, not the sequence of simulated

configurations.) For each σ ∈ Σ and for every x ∈ D
I
we define a generalized evaluation function

∆σ ,x : D
Q
× D→ D

Q
. This represents executing ∆σ and then starting zero or more new threads,

by initializing the new initial states with x . We modify the least fixed point definition of c ′ in
Equation 1) to include the new initialization on states I ′: c ′ is the least vector satisfying

c ′(q′) = x(q) ⊔
⊔

(σ ,X ,q′,t)∈∆

JtK(c ′ |X),

where x(q) = ⊥ if q < I . This resembles the way we already incorporated x into the definition of

∆i. We restrict the vector x in each restart to be in the space X = {⊥}I ∪ (D ∪ {⊤})I , which is

closed under ⊔. Let ®⊥ be the vector with every entry equal to ⊥.

Definition 3.1 (Restartability). Let A = (Q, Σ,∆, I , F) be a DT over signature (D,Op); let C = D
Q

be the set of configurations of A, and [C] the set of finite lists of configurations of A. Let X =

{⊥}I ∪ (D ∪ {⊤})I be the set of possible initializations for a restarted thread. A is restartable if
there exists a binary relation ∼⊆ C × [C] (called a “simulation”) with the following properties:

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 50. Publication date: January 2019.

50:16 Rajeev Alur, Konstantinos Mamouras, and Caleb Stanford

i. (Base case) For all x1, . . . ,xk ∈ X, ∆i

(⊔k
i=1

x i
)
∼ [∆i(x1), . . . ,∆i(xk)]. (If k = 0, we get

∆i(®⊥) ∼ [], where [] ∈ [C] denotes the empty list.)

ii. (Update with restarts) For all (σ ,d) ∈ (Σ × D), for all x ∈ X, and for all c , c1,c2, . . . ,ck ,
ĉ1, ĉ2, . . . , ĉl , if c ∼ [c1,c2, . . . ,ck] and ∆i(x) ∼ [ĉ1, ĉ2, . . . , ĉl] then

∆σ ,x (c,d) ∼ [∆σ (c1,d), . . . ,∆σ (ck ,d), ĉ1, ĉ2, . . . , ĉl].

iii. (Implies same output) If c ∼ [c1,c2, . . . ,ck], and the output vectors for these configurations
(extended data values at the final states) are y,y

1
,y

2
, . . . ,yk , respectively, then we have

y = y
1
⊔y

2
⊔ · · · ⊔yk .

A simple example (and counterexample) are in order. First, consider the following DT A with

two states:Q = {i, f }, Σ = {a, b}, I = {i}, F = { f }, and one transition on input a, f ′ := i + cur. The
DT on input (x , (a,d)) returns x + d , and on every other input is undefined. Then A is restartable.

We can represent configurations as ordered pairs (x ,y), where x ∈ D is the value of i and y ∈ D is

the value of f . We define that c ∼ [c1, . . . ,ck]whenever c =
⊔k

i=1
ci . Then (i), (ii), and (iii) hold. For

example, the base case says that x =
⊔k

i=1
xk , then (x ,⊥) ∼ [(x1,⊥), . . . , (xk ,⊥)], which is true by

definition. The intuition is that, in this simple case, we can say that a configuration of A simulates

a set of configurations (threads) if the configuration is the union of all those threads. The semantics

just takes (x ,y) to (z,x) on updating and restarting with z, so it preserves this relation.

For a counterexample, consider a DTA which sums the value of a single initial state and the last

a: take Q = {i, f }, I = {i}, F = { f }, and the following transitions on input a: i ′ := i , f ′ := i ′ + cur.
We may represent configurations as (x ,y), for the values at i, f , respectively. To see this is not

restartable, consider starting A with a single input x1 ∈ D, then reading in (a,d) and starting a

second input x2 ∈ D (i.e. applying ∆a,x2
). Starting with x1 results in the configuration (x1,⊥); then

reading in (a,d) and starting with x2 results in (⊤,⊤). However, if A were restartable, then by

property (ii), we could instead read in (a,d) and add the second input x2 separately: we thus would

have (⊤,⊤) ∼ [(x1,x1 + d), (x2,⊥)]. The problem is that this violates (iii): the output of A is ⊤,

which is not the same as (x1 + d) ⊔ ⊥ = x1 + d .
What is relevant for properties (i), (ii), and (iii) is actually only the configurations, input, and

output up to equivalence, i.e., where we replace D with {⊥,⋆,⊤}. There are only finitely many

configurations up to equivalence. This is why restartability is decidable (see Theorem 3.3).

Concatenation. Suppose we are given two DTsA1 = (Q1, Σ,∆1, I1, F1) andA2 = (Q2, Σ,∆2, I2, F2),

where F1 and I2 are the same up to bijection (say, π : F1 → I2). Now we want to compute the

following parsing operation: on input (x ,w), consider all splits ofw into two strings,w = w1w2.

ApplyA1 to (x ,w1) to get a result y1
, and applyA2 to (y1

,w2) to get y2
. Return the union (⊔) over

all such splits of y
2
. In particular, assuming there is only one way to splitw = w1w2 such that y

2

does not end up being undefined, this operation splits the input string uniquely into two parts such

that A1 matchesw1 and A2 matchesw2, and then applies A1 and A2 in sequence.

We implement this by takingA = A1 · A2 = (Q, Σ,∆, I , F) withQ = Q1 ∪Q2, I = I1, F = F2, and

∆ = ∆1 ∪ ∆2 ∪
{
(ε, { f ′

1
},π (f1)

′, f ′
1
) : f1 ∈ F1

}
.

The idea is very simple; every output of A1 (i.e. a value produced at a state in F1) should be copied

into the corresponding initial state of A2. This happens on initialization, and on every update.

However, the semantics is not so simple, because every time we read in a character, A2’s initial

states I2 are being re-initialized with new values (the values from F1).

This “re-initialization” is exactly captured by our generalized update function ∆σ ,x from earlier.

Let us represent configurations of A by (c1,c2), where ci is the component restricted to Qi , i.e. the

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 50. Publication date: January 2019.

Modular Quantitative Monitoring 50:17

induced configuration ofAi . Now consider an input (x ,w) toA.We see that for the ith configuration

of A (c(i)
1
,c(i)

2
), c(i)

1
is the same as the ith configuration of A1 on input (x ,w). Moreover, if y(i)

1
is

the ith output of A1, this is used to reinitialize A2; so we see that c(i)
2
= ∆σ ,y (i)

1

(c(i−1)

2
,d) (where

this is the update function of A2). The output y
(i)
2
= c(i)

2
|F of A2 is the output of A.

Assume that A1 is output-synchronized: this means that each y(i)
1
∈ X, i.e., all values are ⊥ or all

values are in D∪ {⊤}. And assume thatA2 is restartable. Then the simulation relation allows us to,

at every step, replace c2 by a list of configurations where each configuration is A2 on a different

suffix ofw . In particular, we recursively replace ∆σ ,y (i)
1

(c(i−1)

2
,d) with the list of configurations for

∆σ (c
(i−1)

2
,d) and a single new thread ∆i(y

(i)
1
). Because y(i)

1
∈ X, this is guaranteed by property (ii)

of restartability. Property (iii) then implies the semantics given in the following summary.

Concatenation. Let A1 : I ↠ Z and A2 : Z ↠ F , such that A1 is output-synchronized and A2

is restartable. Then A1 · A2 : I ↠ F implements the semantics

JA1 · A2K(x ,w) =
⊔

w=w 1w 2

JA2K(JA1K(x ,w1),w2).

such that size(A1 · A2) = size(A1) + size(A2) +O(|Z |). It matches L(A1 · A2) = L(A1) · L(A2).

Concatenation with data functions. A special case of concatenation can be described which does

not require restartability, and which we use in §4. Suppose we are givenA1 = (Q1, Σ,∆1, I1, F1) and

we want to concatenate with a data functionG2 : F1 ⇒ F2: on input (x ,w), return JG2K(JA1K(x ,w)).
This can be implemented by converting G2 into a DT A2 on states F1 ∪ F2 (as in the prefix sum

construction), and then simply constructing A1 · A2. Even if A2 is not restartable, we can see

directly that on every input, the final states F2 are equal toG2 applied to the output ofA1. Similarly,

if G1 : I1 ⇒ I2 and A2 : (Q2, Σ,∆2, I2, F2), then we may convert G1 into a DT A1 on states I1 ∪ I2.
Then the construction A1 · A2, on every input (x ,w), returns JA2K(JG1K(x),w). We overload the

concatenation notation and write these constructions asA1 ·G2 andG1 ·A2. For these constructions,

as with prefix sum, we do not write out the extended language of matched strings explicitly.

Concatenation with data functions. If A1 : I ↠ Z and G2 : Z ⇒ F , then A1 · G2 : I ↠ F
implements the semantics

JA1 ·G2K(x ,w) = JG2K(JA1K(x ,w)),

such that size(A1 ·G2) = size(A1) + size(G2) +O(|Z |). Likewise, if G1 : I ⇒ Z and A2 : Z ↠ F ,
then G1 · A2 : I ↠ F implements the semantics

JG1 · A2K(x ,w) = JA2K(JG1K(x),w),

such that size(G1 · A2) = size(G1) + size(A2) +O(|Z |).

Iteration. Now suppose we are given A1 = (Q1, Σ,∆1, I1, F1), where I1 and F1 are the same up to

some bijection. On input (x ,w), we want to splitw intow1w2w3 . . ., then apply JA1K(x ,w1) to get

y
1
, JA1K(y1

,w2) to get y
2
, and so on. Then, the answer is the union over all possible ways to write

w = w1w2 . . .wk of yk . Let I be a set the same size as I1, F1 with bijections π : I → I1, ρ : F → F1.

Then we implement this by taking A = (A1)
∗ = (Q, Σ,∆, I , I) with Q = Q1 ∪ I and

∆ = ∆1 ∪
{
(ε, {i ′},π (i)′, i ′) : i ∈ I

}
∪
{
(ε, {ρ(i)′}, i ′, ρ(i)′) : i ∈ I

}
.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 50. Publication date: January 2019.

50:18 Rajeev Alur, Konstantinos Mamouras, and Caleb Stanford

The idea is again very simple; we have a set of states I that is both initial and final; we always copy

the values of these states into the input of A1 and copy the final states of A1 back into I . But the
semantics is again more complicated. Here (unlike all other constructions), we do not necessarily

preserve acyclicity. When we copy F2 into I and back into I2, this may then propagate back into F2

again. Essentially, if A1 produces output on the empty data word, then (A1)
∗
will always be ⊤, as

this will create a cycle with least fixed point ⊤.

We assume that A1 is both output-synchronized and restartable. We can write configurations

of A as (c,y), where c is a configuration of A1. On an input word w = (σ1,d1), . . . , (σk ,dk), let
the sequence of configurations be (c0,y0

), (c1,y1
), . . ., (ck ,yk), so the output of A is yk . Then

the least-fixed-point semantics of Equation (1) implies that, for i = 1, . . . ,k , yi is the least vector
satisfying yi =

(
∆σi ,yi (ci−1,di)

)
|F1
. Similarly, for i = 0, y

0
is the least vector satisfying y

0
=(

∆i(y0
)
)
|F1
. Now we want to show by induction that ci simulates the list, over all possible splits of

w = w1w2 · · ·wk , of the configuration of A1 obtained by sequentially applying A1 k times. The

proof of the inductive step is to take the property yi =
(
∆σi ,yi (ci−1,di)

)
|F1

and decompose the

configuration ∆σi ,yi (ci−1,di) using the simulation relation, and see that it simulates the list of all

splitsw = w1 · · ·wk wherewk has size at least 1, plus the additional initialized thread ∆i(yi).

Iteration. Let A : I ↠ I be output-synchronized and restartable. Then A∗ : I ↠ I satisfies

JA∗K(x ,w) =
⊔

w=w 1w 2 · · ·w k

JAK(. . . JAK(JAK(x ,w1),w2) . . . ,wk),

s.t. size(A∗) = size(A) +O(|I |). It matches L(A∗) = L(A)∗.

Properties of restartability. All operations except “support” preserve restartability. The “output-
synchronized” property is also preserved by union, concatenation, and iteration, but is not guaran-

teed with parallel composition: A1 ∥ A2 is output-synchronized only if L(A1) = L(A2).

Theorem 3.2. IfA1 andA2 are restartable, then so areA1 ∥ A2 andA1⊔A2. IfA1 is additionally
output-synchronized, thenA1 ·A2 andA1

∗ are restartable. IfA1 is restartable and output-synchronized
and additionally L(A1) = Σ∗, and if G is a data function where each output value is given by a single
term over the input values, then ⊕GA1 is restartable.

Proof. For A1 ∥ A2 and A1 ⊔ A2, we represent configurations of the machine has pairs

(c1,c2), and we define (c1,c2) ∼ [(c1,1,c2,1), . . . , (c1,k ,c2,k)] if both c1 ∼ [c1,1, . . . ,c1,k] and c2 ∼

[c2,1, . . . ,c2,k]. For prefix sum, the restartability holds for somewhat trivial reasons: if we restart

with only ®⊥, the output is ⊥: if we restart with only one non-®⊥ thread, the output is the prefix-sum,

and if we restart with two or more non-®⊥ threads, the output is ⊤ everywhere. For concatenation,

we have configurations that are pairs (c1,c2) of a configuration in A1 and one in A2. We define

(c1,c2) ∼ [(c1,1,c2,1), . . . , (c1,k ,c2,k)] if c1 ∼ [c1,1, . . . ,c1,k] and there exists sequences l2,1, l2,2, . . .,
l2,k , such that c2,i simulates l2,i and c2 simulates the entire sequence of sequences, l2,1◦l2,2◦· · ·◦l2,k .
The idea is that a configuration in A = A1 · A2 simulates a list of configurations where each

configuration consists of only a single thread in A1, but may have many threads in A2 (since one

thread in A1 may cause A2 to be restarted several times). However, we still need that there exists
some further simulation of the configuration in A2 into a set of individual threads, such that the

overall configuration of A2 in A simulates all of these individual threads. For iteration A = A1

∗
,

we have to do this recursively. The simulation onA includesA1 but extends it to the least relation

such that whenever ci ∼ [ci,1, . . . ,ci,k] for each i , if c ∼ [c1, . . . ,ck] then c ∼ [ci, j]i, j . □

Theorem 3.3. Given a DT A as input, checking if A is restartable is PSPACE-complete.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 50. Publication date: January 2019.

Modular Quantitative Monitoring 50:19

Proof. Construct P as in the proof of Theorem 2.2, a DT over (U,UOp) where U = {⋆}. Use ci
and pi to denote configurations of A and P, respectively.

We first prove a lemma: that A is restartable iff P is restartable. The forward direction is

immediate: define the relation p ∼ [p1,p2, . . . ,pk] if there exists c ∼ [c1, c2, . . . , ck] such that pi is
the projection of ci to U; then facts (i), (ii), and (iii) are homomorphically preserved. The backward

direction is nontrivial. We need to define the simulation relation between configurations and lists

of configurations. We define the reachable relation R ⊆ C × [C] to be the minimal relation that is

implied by properties (i) and (ii), i.e. the set of pairs (c, [c1, c2, . . . , ck]) reachable from initialization

followed by some sequence of updates-with-restarts ∆σ ,x . We will show that R is a simulation

by showing that (iii) holds of all reachable pairs. The key observation—which holds even if A

is not restartable—is that for every reachable pair (c, [c1, c2, . . . , ck]), c ≥ ci for all i (where ≥ is

the coordinate-wise partial ordering on data vectors defined in §2.1). This is proven inductively.

Using this we claim that R satisfies (iii). Let (c, [c1, c2, . . . , ck]) be reachable. Fix f ∈ F . Since P is

restartable, we know that c(f) and c1(f) ⊔ · · · ⊔ ck (f) are either both undefined, both defined, or

both conflict. Thus the only way they can be unequal (violating (iii)) is if they are both in D, and
distinct. If they are both in D, then ci (f) = ⊥ for all i except one, say c j (f) = d

′
. But from the key

observation above, c(f) ≥ c j (f), and since c(f), c j (f) ∈ D, we have equality c(f) ≥ c j (f).
We give a coNPSPACE algorithm to check restartability of a DT A. By the above lemma, it is

enough to work with P instead. So we need to check if there exists a reachable pair (p, [p1, . . . ,pk]),
where p and pi are configurations of P, such that F (p) = F (p1)⊔ F (p2)⊔ · · · ⊔ F (pk). But choose k to

be minimal; then we do not need to keep track of p1, . . . ,pk−1, but can instead collapse these into a

single configuration p ′. Specifically, before the kth restart, suppose we are at (p ′, [p ′
1
,p ′

2
, . . . ,p ′k−1

]);

then rather than keeping p ′
1
through p ′k−1

, we know the output will always be the same as taking p ′,
so we keep track only of p ′. Using this trick, the space required to store (p, [p1, . . . ,pk]) is constant:
three configurations of P. Overall, we guess a sequence of moves to get to (p ′, [p ′

1
, . . . ,p ′k−1

], then

guess a sequence of moves to get to p from there, and guess a place to stop and try checking if

p(f) = p1(f)⊔p2(f)⊔ · · · ⊔pk (f) for all f ∈ F . The total space is bounded and some thread accepts

if and only if there is a counterexample, meaning the machine is not restartable.

PSPACE-hardness can be shown by a reduction from the problem of universality for NFAs. We

carefully exploit that if NFAs N1 and N2 are translated to DTs which always output ⊥ or ⊤, and G
is a single binary operation, the DT construction (N1 ∥ N2) ·G is restartable iff there do not exist

strings u,v such that u ∈ L(N1), u < L(N2), uv < L(N1), uv ∈ L(N2), or vice versa. □

Converting to restartable. It is shown in Theorem 5.1 that a DT of sizem can be converted to a

deterministic CRA of size exp(m); and that a deterministic CRA of sizem can be converted into a

restartable DT of size O(m). This gives a procedure to convert DT to restartable DT, unfortunately

with exponential blowup. Fortunately, Theorem 3.2 guarantees that such exponential blowup does

not arise in the compilation of the QRE-Past language of §4.

4 PROPOSED MONITORING LANGUAGE: QRE-PAST

In this section we present the QRE-Past query language for quantitative runtime monitoring

(Quantitative Regular Expressions with Past-time temporal operators). Each query compiles to a

streaming algorithm, given as a DT, whose evaluation has precise complexity guarantees in the size

of the query. Specifically, the complexity is a quadratic number of registers and quadratic number

of operations to process each element, in the size of the query, independent of the input stream.

Our language employs several constructs from the StreamQRE language [Mamouras et al. 2017].

To this core set of combinators we add the prefix-sum operation, fill and fill-with operations,
and also past-time temporal logic operators which allow querying temporal safety properties: for

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 50. Publication date: January 2019.

50:20 Rajeev Alur, Konstantinos Mamouras, and Caleb Stanford

example, “is the average of the last five measurements always more than two standard deviations

above the average over the last two days?” We have picked constructs which we believe to be

intuitive to program and useful in the application domains we have studied, but we do not intend

them to be exhaustive; there are many other combinators which could be defined, added to the

language, and implemented using the back-end support provided by the constructions of §3.

By compiling to the DT machine model, we show that the compiled code has the same precise

complexity guarantee of the code produced by the StreamQRE engine of [Mamouras et al. 2017],

including the additional temporal operators. Since compiled StreamQRE code was shown to have

better throughput than popular existing streaming engines (RxJava, Esper, and Flink) when deployed

on a single machine, this is good evidence that QRE-Past would see similar success with more

flexible language constructs.

4.1 Syntax of QRE-Past

Expressions in the language are divided into three types: quantitative queries of two types, either

base-level (α) or top-level (β), and temporal queries (φ). Base-level quantitative queries specify

functions from data words to quantities (extended data values D), and are compiled to restartable
DTs with a single initial state and single final state, of quadratic size. These queries are based

on StreamQRE and the original Quantitative Regular Expressions of [Alur et al. 2016]. Top-level

quantitative queries also specify functions from data words to quantities, but the compiled DT

may not be restartable. Temporal queries specify functions from data words to Booleans, may be

constructed from quantitative queries, and are compiled to DTs which output Booleans. Temporal

queries are based on the operators of past-time temporal logic [Manna and Pnueli 2012] and

informed by successful existing work on monitoring of safety properties [Havelund and Roşu 2004],

which adapts to our setting via constructions on DTs.

We model Booleans as elements in D. Thus, we assume that 0, 1 ∈ D, and that ≤, ≥,= ∈ Op
2
:

these are comparison operations on data values returning 0 or 1. We also assume that we have

Boolean operators ¬ ∈ Op
1
and ∧,∨,→,↔∈ Op

2
, which treat 0 as false and every d , 0 as true.

Each query has an associated regular rate L(α), given by a regular expression on Σ defined

recursively with the query. The rate expresses the set of strings on which the compiled DT is

defined or conflict. For temporal queries φ, the rate is Σ∗. We also may refer to the language
L(α) ⊆ L(α), which is the set of strings on which the compiled DT is defined . There are a few

typing restrictions, mainly constraints on the rates of the queries. Because each rate is given by

a regular expression, the typing restrictions are type-checkable in polynomial time. The typing

restrictions arise in order to guarantee restartability so that the constructions of §3 apply.

4.2 Semantics and compilation algorithm

We describe each construction’s semantics, and how it is directly implemented as a DT. For technical

reasons, for each quantitative query (not for temporal queries) α or β we produce two DTs. The
first is Aα : X ↠ Y , where |X | = |Y | = 1. The semantics will be such that JAα K(x ,w) is the
value of query α on inputw , if x is defined. So x is not really used, except to allow the machine to

be restartable (at least one initial state is needed for restarts). The second is Iα : X ↠ Y , where
|X | = |Y | = 1, which has the following identity semantics: JIα K(x ,w) = x if JAα K(x ,w) ∈ D, ⊤
if JAα K(x ,w) = ⊤, and ⊥ if JAα K(x ,w) = ⊥. In particular, Iα is equivalent to Aα (definition in

§2.5). We use this second machine Iα to save values for using later. For example, to implement

split(f ,д, op) we concatenate the machine for f with a machine which both saves the output

of f and starts д; then when д is finished we combine the saved output of f with the output of д

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 50. Publication date: January 2019.

Modular Quantitative Monitoring 50:21

α := | atom(σ , t) {σ } σ ∈ Σ, t ∈ Tm[cur]

| eps(t) {ε} t ∈ Tm[�]

| or(α1,α2) L(α1) ∪ L(α2)

| split(α1,α2, op) L(α1) · L(α2) op ∈ Op
2

| iter(α1, init, op) (L(α1))
∗ init ∈ D, op ∈ Op

2

| combine(α1, . . . ,αk , op) L(α1) ∩ · · · ∩ L(αk) op ∈ Opk ; well-typed if L(α1) = · · · = L(αk)

| prefix-sum(α1, init, op) Σ∗ init ∈ D, op ∈ Op
2
; well-typed if L(α1) = Σ∗

β := | α1 L(α1)

| fill(α1) L(α1) · Σ
∗

| fill-with(α1,α2) L(α1) ∪ L(α2)

φ := | β1 comp β2 Σ∗ comp ∈ {≤, ≥,=}; well-typed if L(β1) = L(β2) = Σ∗

| φ1 bop φ2 | ¬φ1 Σ∗ bop ∈ {∧,∨,→,↔}

| ⊙φ1 | �φ1 | ·̂ φ1 Σ∗

| φ1 Sw φ2 | φ1 Ss φ2 Σ∗

Fig. 6. Summary of the QRE-Past language: syntax for quantitative queries α , β and temporal queries φ. The
second column gives the rate of the query as a regular expression.

via op. We will guarantee in the translation that Iα has size only linear in the query, but Aα has

worst-case quadratic size.

Atomic expressions: atom, eps. The atomic expressions are the building blocks of all queries. For

t ∈ Tm[cur], the query atom(σ , t) matches a data word containing a single character (σ ,d), and
returns t evaluated with cur = d . Similarly, the query eps(t) matches the empty data word and

returns the evaluation of t . Both of these are implementable using a DTwith two states,Q = {qi ,qf },
with I = {qi } and F = {qf }. Aatom(σ ,t) uses one transition from {qi } to q

′
f with term t , and Aeps(t)

uses an epsilon transition from {q′i } to q
′
f with term t . These machines are restartable by a similar

argument as the example immediately following Definition 3.1 (alternatively, if they aren’t, just

convert to an equivalent restartable DT as in §3.2, last paragraph). The definition of Iatom(σ ,t) is the

same as Aatom(σ ,t) except that the term t in the transition is replaced by qi ; and likewise for Ieps(t).

Regular operators: or, split, iter. These regular operators are like traditional union, concatena-
tion, and iteration (respectively), except that if the parsing of the string (data word) is not unique,

the result will be ⊤. The union operation or(α1,α2) should match every data word that matches

either α1 or α2; if it matches only one, its value is that query, but if it matches both, its value is ⊤.

In particular, conflict values “propagate upwards” because even if only one of α1,α2 matches, if the

value is ⊤ then the result is ⊤. This is exactly the semantics of the DT construction Aα1
⊔ Aα2

.

It is restartable because Aα1
and Aα2

are restartable, by Theorem 3.2. Similarly, we can take

Ior(α1,α2) = Iα1
⊔ Iα2

. Both of these constructions add only a constant to the size.

The operation split(α1,α2, op) splits a data word w into two parts, w1 · w2, such that w1

matches α1 and w2 matches α2. If there are multiple splits, the result is ⊤; otherwise, the result

is op(α1(w1),α2(w2)). Here, we have to do some work to save the value of α1(w1) in the DT

construction. We implement split as Asplit(α1,α2,op) := (Aα1
· (Iα2

∥ Aα2
)) ·Gop, where Gop is a

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 50. Publication date: January 2019.

50:22 Rajeev Alur, Konstantinos Mamouras, and Caleb Stanford

data function with two inputs y1,y2 which returns one output op(y1,y2), where y1 is the final state

of Iα2
and y2 is the final state ofAα2

. Let’s parse what this is saying. We split the stringw into two

parts w1 ·w2 such that w i ∈ L(αi), and apply α1 to the first part; for the second part, we have a

transducer which takes the output of α1 as input and produces both that value as y1, as well as the

new output of α2 as y2. Then both of these are passed to Gop which returns op(y1,y2). To define

Isplit(α1,α2,op) is much easier: we take Iα1
· Iα2

.

The operation iter(α1, init, op) splits w into w1 · · ·wk such that w i ∈ L(α1) and then folds op
over the list of outputs of α1, starting from init, to get a result: for instance if k = 3, the result is

op(op(op(init,α1(w1)),α1(w2)),α1(w3)). If the parsing is not unique, the result is ⊤. We implement

this asAiter(α1, init,op) := Ginit ·
(
(Iα1
∥ Aα1

) ·Gop
)∗
, whereGinit is a data function which outputs the

initial value init. The idea here is that (Iα1
∥ Aα1

) ·Gop takes an input, both saves it and performs

a new computation Aα1
, and then produces op of the old value and the new value. When this is

iterated, we get the desired fold operation. For Iiter(α1, init,op) we can simply take (Iα1
)∗.

We claim that these constructions preserve restartability. For concatenation, we need that the ∥

is output-synchronized: we need that Aα2
and Iα2

have the same rate. This is true by construction:

I is equivalent to A and only differs in that it is the identity function from input to output. So

the three DTs concatenated are all output-synchronized. Restartability is preserved because the

data function Gop is converted to a restartable DT in the concatenation construction. The size

of the concatenation construction is bounded by a quadratic polynomial because we have added

additional size equal to the size of Iα2
, which is bounded by a linear polynomial. For iteration, ∥ is

similarly only applied to equivalent DTs, and Gop is converted to a restartable DT in concatenation.

As with split, the size of our construction includes the size of Aα1
but adds a linear size due to

inclusion of Iα1
, so we preserve a quadratic bound on size. The constructions Iα1

· Iα2
and (Iα1

)∗

preserve a linear bound and are restartable because Iα1
and Iα2

are restartable.

Parallel combination: combine. This is the first operation in our language which requires a typing

restriction. For combine(α1, . . . ,αk , op), the computation is simple: apply every αi to the input

stream to get a result, then combine all these results via operation op. The implementation as a

DT is Acombine(α1, ...,αk ,op) :=
(
Aα1
∥ · · · ∥ Aαk

)
· Gop, where Gop applies op to the k final states

of the ∥ . For Icombine(α1, ...,αk ,op), we do the same thing but replace op by the term y1 (i.e. we use

Gy1
: {y1, . . . ,yk } ⇒ {y} where y is the final output variable). The construction for combine is

well-defined even if the typing restriction is not satisfied, but does not preserve restartability in

that case. We use the non-restartable version in some other constructions. If the typing restriction

is satisfied, then this exactly states that the left part of the concatenation is output-synchronized,

and given that the right data function is converted to a restartable DT, restartability is preserved.

The size of bothAcombine(α1, ...,αk ,op) and Icombine(α1, ...,αk ,op) are linear in the sizes of the constituent

DTs, so these constructions preserve the quadratic and linear bound on size, respectively.

Prefix sum: prefix-sum. The prefix sum prefix-sum(α1, init, op) is defined only if α1 is defined

(not conflict) on all input. Its value should be op(init,α1(ε)) on the empty string, and then fold op
over the outputs of α1 after that. This is implemented directly using the prefix-sum constructor.

Aprefix-sum(α1, init,op) := Ginit, init ·

(
⊕GopAα1

)
.

Here,Ginit, init is a data function to return two copies of init. It can be seen thatAeps(init) ∥ Aeps(init)
is equivalent to the DT obtained from a data function which returns (init, init), so this concatenation
is concatenation with a data function.

Fill operations: fill, fill-with. These operations are ways to fill in the values which are ⊥

and ⊤ with other values. This will not preserve restartability, so it is only allowed in top-level

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 50. Publication date: January 2019.

Modular Quantitative Monitoring 50:23

queries; however, it is useful to do this in order to get a query defined on all input data words, so

that comparison β1 comp β2 can be applied. The query fill(α1) always returns the last defined
value returned by α1. For instance, if the sequence of outputs of α1 is ⊥,⊤, 3,⊤, 4, 5,⊥, the outputs
of fill(α1) should be ⊥,⊥, 3, 3, 4, 5, 5. The query fill-with(α1,α2), instead of outputting the last

defined value returned by α2, just outputs the value returned by α2 if α1 is not defined. So, if α2 is the

constant always returning 0, the sequence of outputs of fill-with(α1,α2) should be 0, 0, 3, 0, 4, 5, 0.
To accomplish these constructions, we first obtain twoDTsA+ andA− which are definedwhenα1

is defined and when α1 is not defined, respectively:A+ = [Iα1
∈ D] andA− = [Iα1

= ⊥]⊔[Iα1
= ⊤].

Here, [= ⊥] and [= ⊤] have quadratic blowup, but because we use I in the argument to those

constructions instead of A, A+ and A− only have quadratic size. Now, let fst, snd : D2 → D be

the first and second projection operations. Then we implement the fill operations as:

fill-with(α1,α2) := combine(Aα1
,A+, fst) ⊔ combine(Aα2

,A−, fst)

fill(α1) := ⊕G
(
combine(Aα1

,A+, fst) ∥ A−
)
,

where G is a data function which expresses how to update the fill result based on the previous fill

result, and whether Aα1
is defined or not: if defined, we should take the new defined value, and

otherwise, we should take the old fill result.

Comparison: ≤, ≥,=. The semantics of β1 comp β2 is just to apply comp: for example if comp is <,
and if y1 and y2 are the outputs of β1 and β2 (which are always defined), then β1 < β2 should output

y1 < y2 (which is 0 or 1). Therefore, this construction can be implemented as combine(β1, β2, comp).
We do not need to worry about restartability for temporal queries, and we also don’t define I.

Boolean operators: ∧,∨,→,↔,¬. Similarly, the Boolean operators are implemented by applying

the corresponding operation. For example, φ1 ∨ φ2 is implemented as combine(φ1,φ2,∨).

Past-temporal operators: ⊙,�, ·̂ ,Sw ,Ss . These have the usual semantics on finite traces: for

example ⊙(φ1) says that φ1 was true at the previous item, and is false initially, and ·̂ (φ1) says

that φ1 was true at some point in the trace up to this point (including at the present time). The

implementation of ⊙ uses concatenation while the others all use prefix sum. Define A⊙(φ1) :=

Aφ1
· IΣ, where we define IΣ to be a DT which matches any data word of length 1, and has the

identity semantics (returns the initial value as output). This concatenation is defined because IΣ is

restartable; it has the correct semantics because ⊙ means to look at the prefix of the input except

the last character. For the prefix-sum temporal operators, we illustrate only the example of ·̂ (φ1);

the other cases are similar. Define a data function G which computes the truth value of ·̂ (φ1) on

input w(σ ,d) given its truth value on w and given the truth value of φ1 on input w(σ ,d) (so, G
is just disjunction). Define A ·̂ (φ1) := G0,0 · ⊕GAφ1

, where G0,0 is a data function outputting two

copies of 0 (false) to initialize the computation.

Complexity of QRE-Past evaluation. Our implementations give us the following theorem. In

particular, combining with Theorem 2.1, the evaluation of any query on an input data stream

requires quadratically many registers and quadratically many operations per element, independent

of the length of the stream.

Theorem 4.1. For every well-typed base-level quantitative query α , the compilation described above
via the constructions of §3 produces a restartable DT Aα of quadratic size in the length of the query.
For every well-typed top-level quantitative query β or temporal query φ, the compilation produces a
DT of quadratic size which implements the semantics.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 50. Publication date: January 2019.

50:24 Rajeev Alur, Konstantinos Mamouras, and Caleb Stanford

4.3 Case study: cardiac arrhythmia detection

We will present now an application of the QRE-Past monitoring language to the medical domain,

in particular for the detection of potentially fatal cardiac arrhythmias. In particular, we consider

Implantable Cardioverter Defibrillators (ICDs), which are devices that continually monitor the

electrical activity of the heart in order to detect potentially fatal arrhythmias. If a dangerous

arrhythmia is detected, then the ICD delivers a powerful electrical shock to the patient in order to

restore the normal rhythm of the heart.

The type of fatal arrhythmia that ICDs detect is called Ventricular Tachycardia (VT), and its

identification is based on the electrical signal that the device records directly from the right ventricle

(lower-right chamber of the heart). As a first step, the heart signal is analyzed by the device to

detect its peaks, which correspond to the ventricular heart beats (contractions). We will assume here

that the input signal already includes the information about peaks. More specifically, we suppose

that the characters of the input stream are of the form (b, seq), where b is a Boolean value, and seq
is a sequence number. The presence (resp., absence) of a heartbeat is indicated with b = 1 (resp.,

b = 0). The signal is uniformly sampled and the sampling period is T . So, the timestamp of (b, seq)
is equal to seq ·T .
The arrhythmia detection algorithm is based on the length of the heartbeat intervals, and uses

several criteria that are called discriminators in the medical literature:

− Initial Rhythm Classification (IRC): The current interval length and the average of the four

most recent interval lengths are both below a threshold TIRC.
− Sudden Onset (SO): This discriminator corresponds to the clinical observation that VT typically

occurs suddenly. It quantifies the suddenness of tachycardia using the last nine interval lengths

I1, . . . , I9 (where I9 is the last interval length). The onset of tachycardia is considered to be

sudden if at least one of the differences I1 − I9, . . . , I8 − I9 is greater than a threshold TSO.
− Rhythm Stability (RS): The heartbeat interval lengths during VT usually display low variability.

The rhythm stability discriminator quantifies variability as the difference between the second

longest and the second shortest interval lengths among the last ten heartbeat intervals. If

this difference is less than a threshold TRS, then the rate is considered to be stable.

At the top level, the query for VT detection is a Boolean combination (in particular, a conjunction)

of the three above discriminators. Each discriminator can be described modularly by specifying a

computation that processes a single heartbeat interval, and then composing these subcomputations

sequentially a fixed or an arbitrary number of times. This high-level structure of the VT detection

algorithm suggests the need for a language that combines Boolean operators with sequence-based

pattern matching and quantitative aggregation. The QRE-Past language provides all these features,

and therefore it facilitates themodular description of the VT detection algorithm. The DT framework

then provides the constructs for compiling the high-level description into an efficient streaming

algorithm with precise bounds on space and per-element time usage: the complexity (for both

resources) is constant in the length of the stream and quadratic in the size of the specification.

We start by describing a query that computes the length of a single heartbeat interval. The

pattern is 0
+ · 1, which describes an arbitrary number of samples that correspond to the absence

of a heartbeat followed by a single heartbeat. The query f0+1 (shown below) matches a heartbeat

interval and outputs its length.

f0 = atom(0, seq) // rate 0

f0∗ = iter(f0, 0, (x ,y) -> 0) // rate 0
∗

f0+ = split(f0, f0∗ , (x ,y) ->x) // rate 0
+

f1 = atom(1, seq) // rate 1

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 50. Publication date: January 2019.

Modular Quantitative Monitoring 50:25

f0+1 = split(f0+ , f1, (x ,y) -> |y − x | ·T) // rate 0
+

1

Now, the query flast (shown below) outputs the length of the last interval:

fprev = iter(f0+1, 0, (x ,y) -> 0) // rate (0+1)∗

flast = split(fprev, f0+1, (x ,y) ->y) // rate (0+1)+

W.l.o.g. we can assume that the input stream always starts with a 0-tagged value (absence of

heartbeat). Now, the average of the last four intervals is given by the query

flast4 = split(fprev, f0+1, f0+1, f0+1, f0+1, (x ,y1,y2,y3,y4) -> (y1 + y2 + y3 + y4)/4)

with rate (0+1)∗ · (0+1)4. The satisfaction of the IRC discriminator is described by the conjunction,

denoted φIRC of the following two QRE-Past formulas:

fill-with(flast,TIRC) < TIRC fill-with(flast4,TIRC) < TIRC

Notice that this conjunction can only be satisfied at the occurrence of a heartbeat. Since the

discriminators SO and RS are similar to IRC in that they are computed using a fixed number of the

most recent heartbeat intervals, we leave it as an exercise to the reader to write the formulas φSO
and φRS. Finally, detection of VT is given by the formula φIRC ∧ φSO ∧ φRS.

Using QRE-Past instead of the QRE (or StreamQRE) language for this application has the

advantage that it directly allows the use of tests on aggregates. In [Abbas et al. 2018] this behavior

was encoded by annotating the stream with additional information, streaming the intermediate

output to another processing stage (using the operation of streaming composition), and then

applying tests on the annotated data values.

Temporal operators for signal invariants. The arrhythmia detection algorithm described in this

case study is based on standard techniques employed by major manufacturers of medical devices

(see, for example, [Zdarek and Israel 2016]). The discriminators IRC, SO and RS can be expressed

easily without the use of past-time temporal operators. There are, however, important invariants

about the cardiac signal that can be conveniently expressed using the “always in the past” temporal

operator. For example, consider the temporal formula

ϕ = �(Tshort < fill-with(iter(f0+1,Tnormal, (x ,y) ->y)) < Tlong),

whereTshort,Tnormal andTlong are constants that correspond to short, normal and long heart interval

lengths respectively, and c < f < d is abbreviation for the conjunction (c < f)∧(f < d). The formula

ϕ asserts the invariant that every heartbeat interval is always within physically realizable bounds.

5 SUCCINCTNESS AND EXPRESSIVENESS

5.1 Comparison with cost register automata

Cost register automata (CRAs) were introduced in [Alur et al. 2013] as a machine-based characteri-

zation of the class of regular transductions, which is a notion of regularity that relies on the theory

of MSO-definable string-to-tree transductions. One advantage of CRAs over other approaches is

that they suggest an obvious algorithm for computing the output in a streaming manner. A CRA

has a finite-state control that is updated based only on the tag values of the input data word, and

a finite set of write-only registers that are updated at each step using the given operations. The

original CRA model is a deterministic machine, whose registers can hold data values as well as

functions represented by terms with parameters. Each register update is required to be copyless,
that is, a register can appear at most once in the right-hand-side expressions of the updates.

In [Alur et al. 2018], the class of Streamable Regular (SR) transductions is introduced, which has

two equivalent characterizations: in terms of MSO-definable string-to-dag (directed acyclic graph)

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 50. Publication date: January 2019.

50:26 Rajeev Alur, Konstantinos Mamouras, and Caleb Stanford

transductions without backward edges, and in terms of possibly copyful CRAs. Since the focus is
on streamability, and terms can grow linearly with the size of the input stream, the registers are

restricted to hold only values, not terms. This CRA model is expressively equivalent to DTs.

Theorem 5.1. The class of transductions computed by data transducers is equal to the class SR.

Proof sketch. It suffices to show semantics-preserving translations from (unambiguously non-

deterministic, copyful) CRAs to DTs and vice versa. Suppose A is an unambiguous CRA with

states Q and registers X . We construct a DT B with states Q × X . In the other direction, suppose

A = (Q, Σ,∆, I , F) is a DT.We construct a deterministic CRAB with states {⊥,⋆,⊤}Q and variables

Q . A configuration of B consists of a state in {⊥,⋆,⊤}Q and an assignment DQ , and therefore

uniquely specifies a configuration of A. For each state in B and each σ , the transition to the next

state can be determined from the set of transitions ∆σ in A. □

However, DTs—even restartable DTs—are exponentially more succinct than (unambiguously

nondeterministic, copyful) CRAs. The succinct modular constructions on DTs are not possible on

CRAs. For example, the parallel composition of CRAs requires a product construction, whereas the

parallel composition of DTs employs a disjoint union construction (∥). This is whymultiple parallel

compositions of CRAs can cause an exponential blowup of the state space, but the corresponding

construction on DTs causes only a linear increase in size.

Theorem 5.2. For some (D,Op), (restartable) DTs can be exponentially more succinct than CRAs.

Proof sketch. Let Σ = {σ1, . . . ,σk }, D = N, and Op = {+} (addition). Suppose that Ai for

i = 1, . . . ,k is a DT that outputs the sum of all values if the input contains σi , and 0 otherwise.

Notice thatAi can be implemented with two state variables. Now,A is the restartable DT withO(k)
states that adds the results of A1, . . . , Ak . A CRA that implements the same function as A needs

finite control that remembers which tags have appeared so far. This implies that the CRA needs

exponentially many states, and this is true even if unambiguous nondeterminism is allowed. □

5.2 Comparison with finite-state automata

Another perspective on succinctness is to compare DTs with finite automata for expressing regular

languages. To simplify this, consider DTs over a singleton data set D = {⋆}, with no initial states

and one final state. Each such DT A computes a regular language L(A). If we further restrict to
acyclic DTs, they are exactly as succinct as reversed alternating finite automata (r-AFA). In particular,

this implies that acyclic DTs (and hence DTs) are exponentially more succinct than DFAs and NFAs.

An r-AFA [Chandra et al. 1981; Salomaa et al. 2000] consists of (Q, Σ,δ , I , F) where the transition
function δ assigns to each state inQ a Boolean combination of the previous values ofQ . For example,

we could assign δ (q3) = q1 ∧ (q2 ∨¬q3). An r-AFA is equivalent to an AFA where the input string is

read in the opposite order. The translation from DT to r-AFA copies the states, and on each update,

sets each state to be equal to the disjunction of the transitions into it, where each transition is the

conjunction of the source variables. Thus, the total size of δ is bounded by the size of the DT. For

the other direction, we first remove negation in the standard way; then, conjunction becomes op
and disjunction becomes ⊔ (multiple transitions with a single target) in the DT.

It is known [Chandra et al. 1981; Fellah et al. 1990] that L is recognized by a r-AFA with n states

if and only if it is recognized by a DFA with 2
n
states. This gives an exponential gap in state

complexity between acyclic DTs and finite automata, both DFAs and NFAs. To see the gap for NFAs,

consider a DFA with 2
n
states which has no equivalent NFA with a fewer number of states. Acyclic

DTs are a special case, so DTs are exponentially more succinct than both DFAs (uniformly) and

NFAs (in the worst case).

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 50. Publication date: January 2019.

Modular Quantitative Monitoring 50:27

5.3 Comparison with general stream-processing programs

Finally, we consider a general model of computation for efficient streaming algorithms. The al-

gorithm’s maintained state consists of a fixed number of Boolean variables (in {0, 1}) and data

variables (in D), where the Boolean variables support all Boolean operations, but the data variables

can only be accessed or modified using operations in Op. The behavior of the algorithm is given by

an initialization function, an update function, a distinguished output data variable and a Boolean

output flag (which is set to indicate output is present). The initialization and update functions

are specified using a loop-free imperative language with the following constructs: assignments to

Boolean or data variables, sequential composition, and conditionals. This model captures all efficient

(bounded space and per-element processing time) streaming computations over a set of allowed data

operations Op. We write Stream(Op) to denote the class of such efficient streaming algorithms.

The problem with the class Stream(Op) is that it is not suitable for modular specifications. As the

following theorem shows, it is not closed under the split combinator.

Theorem 5.3. Let Σ = {a,b}, D = N, and let Op be the family of operations that includes

unary increment, unary decrement, the constant 0, and the binary equality predicate. Define the

transductions f ,д : (Σ × D)∗ ⇀ D as follows:

L(f) = {w ∈ Σ∗ : |w |a = 2 · |w |b } L(д) = {w ∈ Σ∗ : |w |a = |w |b }

f (w) =

{
1, ifw ↓ Σ ∈ L(f)

⊥, otherwise

д(w) =

{
1, ifw ↓ Σ ∈ L(д)

⊥, otherwise

where |w |a is notation for the number of a’s that appear inw . Both f and д are streamable functions

(i.e. are computable in Stream(Op)), but h = split(f ,д, (x ,y) -> 1) is not.

Proof. Both f and д can be implemented efficiently by maintaining two counters for the number

of a’s and the number of b’s seen so far. On the other hand, any streaming algorithm that computes

h requires a linear number of bits (in the size of the stream seen so far). Specifically, consider the

behavior of such a streaming algorithm on inputs of the form a(aab |aba)nab. On these 2
n
distinct

inputs, each of length 3n + 3, the streaming algorithm would have to reach 2
n
different internal

states, because the inputs are pairwise distinguished by reading in a further string of the form bk .
Thus on inputs of size O(n) the streaming algorithm requires at least n bits to store the state. Any

streaming algorithm in Stream(Op), however, employs a finite number of integer registers whose

size (in bits) can grow only logarithmically. □

Theorem 5.3 suggests that some restriction on the domains of transductions is necessary in order

to maintain closure under modular constructions. We therefore enforce regularity of a generic

streaming algorithm by requiring that the values of the Boolean variables depend solely on the

input tags. That is, they do not depend on the input data values or the values of the data variables.

Under this restriction, a streaming algorithm can be encoded as a DT of roughly the same size.

Theorem 5.4. A streaming algorithm of Stream(Op) that satisfies the regularity restriction can

be implemented by a DT over Op. This construction can be performed in linear time and space.

Proof sketch. Consider an arbitrary streaming algorithm of Stream(Op) that satisfies the
regularity restriction. Each data variable is encoded as a DT state that is always defined. Each

Boolean variable b is encoded using two DT states xb and x ¯b as follows: if b = 0 then xb = ⊥ and

x ¯b = d⋆, and if b = 1 then xb = d⋆ and x ¯b = ⊥, where d⋆ is some fixed element of D. □

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 50. Publication date: January 2019.

50:28 Rajeev Alur, Konstantinos Mamouras, and Caleb Stanford

6 RELATEDWORK

6.1 Quantitative Automata

The literature contains various proposals of automata-based models that are some kind of quantita-

tive extension of classical finite-state automata.

Weighted automata, which were introduced in [Schützenberger 1961] (see also the more recent

monograph [Droste et al. 2009]), extend nondeterministic finite-state automata by annotating

transitions with weights (which are elements of a semiring) and can be used for the computation of

simple quantitative properties. A weighted automaton maps an input stringw to the minimum over

costs of all accepting paths of the automaton overw . Extensions such as nested weighted automata
[Chatterjee et al. 2015] enjoy increased expressiveness, but fall short of capturing an arbitrary set of

data types and operations as CRAs and DTs do. We recently studied arbitrary hierarchical nesting

of weighted automata in [Alur et al. 2017], which does allow arbitrary types and operations. We

showed that under certain typing restrictions there is a streaming evaluation algorithm. In contrast,

here we introduce a model that admits streaming evaluation sans typing restrictions; which is “flat”,

i.e. not recursively defined; such that the transition structure makes modular composition feasible;

and for which we have clean succinctness results.

Another approach to augment classical automata with quantitative features has been with the

addition of registers that can store values from a potentially infinite set. These models are typically

varied in two aspects: by the choice of data types and operations that are allowed for register

manipulation, and by the ability to perform tests on the registers for control flow.

The literature on data words, data/register automata and their associated logics [Björklund and

Schwentick 2010; Bojańczyk et al. 2011; Demri and Lazić 2009; Kaminski and Francez 1994; Neven

et al. 2004] studies models that operate on words over an infinite alphabet, which is typically of

the form Σ × N, where Σ is a finite set of tags and N is the set of the natural numbers. They allow

comparing data values for equality, and these equality tests can affect the control flow. In DTs,

tests on the data are not allowed to affect the underlying control flow, that is, whether each state

variable is undefined, defined, or conflicted (see Theorem 2.2).

The work on cost register automata (CRAs) [Alur et al. 2013; Alur and Raghothaman 2013] and

streaming transducers [Alur and Cerný 2010; Alur and D’Antoni 2012; Alur and Černý 2011] is

about models where the control and data registers are kept separate by allowing write access to

the registers but no testing. As discussed in §5.1, DTs are exponentially more succinct than CRAs.

The exponential gap arises for the useful construction of performing several subcomputations in

parallel and combining their results. DTs recognize the class of streamable regular transductions,
which is equivalently defined by CRAs and attribute grammars [Alur et al. 2018].

The recent work [Bojańczyk et al. 2018] gives a characterization of the first-order definable and

MSO-definable string-to-string transformations using algebras of functions that operate on objects

such as lists, lists of lists, pairs of lists, lists of pairs of lists, and so on. Monitors with finite-state

control and unbounded integer registers are studied in [Ferrère et al. 2018] and a hierarchy of

expressiveness is established on the basis of the number of available registers. These papers focus

on issues related to expressiveness, whereas we focus here on modularity and succinctness.

6.2 Query languages for runtime monitoring

Runtime monitoring (see the survey [Leucker and Schallhart 2009]) is a lightweight verification

technique for testing whether a finite execution trace of a system satisfies a given specification.

The specification is translated into a monitor, which executes along with the monitored system:

it consumes system events in a streaming manner and outputs the satisfaction or falsification of

the specification. A widely used formalism for describing specifications for monitoring is Linear

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 50. Publication date: January 2019.

Modular Quantitative Monitoring 50:29

Temporal Logic (LTL) [Havelund and Roşu 2004]. Metric Temporal Logic (MTL) has been used for

monitoring real-time temporal properties [Thati and Roşu 2005]. Signal Temporal Logic (STL), which

extends MTL with value comparisons, has been used for monitoring real-valued signals [Deshmukh

et al. 2017]. Computing statistical aggregates of LTL-defined properties, as in [Finkbeiner et al.

2002], is a limited form of quantitative monitoring. The Eagle specification language [Barringer et al.

2004] can also express some quantitative monitoring properties, since it supports data-bindings.

The line of work on synchronous languages [Benveniste et al. 2003] also deals with processing

data streams. The focus in the design of these languages is the decomposition of the computation

into logically concurrent tasks. Here, we focus on the control structure for parsing the input stream

and applying quantitative aggregators. Examples of synchronous languages designed for runtime

monitoring include LOLA [d’Angelo et al. 2005] and its extensions [Bozzelli and Sánchez 2016].

7 CONCLUSIONS

Data transducers are a succinct, implementation-level machine model for general streaming com-

putations. They combine finite control (active vs. inactive states) and register updates (e.g. in

CRAs) into one integrated model, with state variables that can be undefined, defined, or conflicted.

All DTs admit streaming evaluation (Theorem 2.1), but in order to additionally support modular

constructions, we identified an equally-expressive subclass of restartable DTs. We showed that

DTs admit succinct union, concatenation, iteration, parallel composition, prefix-sum, and support
constructions (§3), where restartability is required for concatenation and iteration.

Although converting a DT to a restartable DT may involve exponential blowup, we showed

that because the constructions preserve restartability (Theorem 3.2), such blowup does not arise

in the modular compilation of realistic queries using DTs. To illustrate this point, we proposed a

query language called QRE-Past, which combines elements of StreamQRE [Mamouras et al. 2017]

with past-time temporal logic operators [Havelund and Roşu 2004], such that all queries compile

modularly to quadratic-size DTs via the succinct constructions.

We formally justified that DTs are exponentially more succinct over CRAs (§5.1), and that they

relate to a certain kind of finite automata and are more succinct than DFAs and NFAs (§5.2). In fact,

we showed that DTs are as succinct as general streaming computations, where the update function

is specified using loop-free code, and a regularity restriction is enforced (§5.3). Without such a

restriction, general streaming computations are not closed under concatenation (Theorem 5.3).

One notable operation missing from our constructions in §3 is that of sequential composition,
in which we pass the sequence of outputs of one machine as the input stream to another. This

operation is crucial to many applications, has been included in some previous presentations of

QREs [Alur et al. 2016; Mamouras et al. 2017], and should be considered in future implementations

of this work. We omitted it here because it introduces notational complexity: in order to define

sequential composition, both the input and output streams need to be tagged (not just the input

stream), and (at least) the final states of a DT need to be associated with output tags.

In future work, we hope to explore opportunities for query optimization using the DT model.

The DT framework lends itself more easily to this purpose than QREs or unstructured streaming

algorithms. In the case of NFAs, bisimulation relations can be used to reduce the size of the automata

via a quotient construction, and it seems plausible that an analogous notion can be defined for DTs

to reduce the number of variables. The Java implementation of the StreamQRE language (reported

in [Mamouras et al. 2017]) does not currently use DTs, and could benefit from such optimizations.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their constructive criticism. This research was supported

in part by NSF award CCF 1763514 and by a Simons Investigator award.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 50. Publication date: January 2019.

50:30 Rajeev Alur, Konstantinos Mamouras, and Caleb Stanford

REFERENCES

Houssam Abbas, Rajeev Alur, Konstantinos Mamouras, Rahul Mangharam, and Alena Rodionova. 2018. Real-time Decision

Policies with Predictable Performance. To appear in the Proceedings of the IEEE, Special Issue on Design Automation for
Cyber-Physical Systems (2018).

Rajeev Alur and Pavol Cerný. 2010. Expressiveness of Streaming String Transducers. In IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010), Vol. 8.

Rajeev Alur and Loris D’Antoni. 2012. Streaming Tree Transducers. In 39th International Colloquium on Automata, Languages,
and Programming (ICALP ’12).

Rajeev Alur, Loris D’Antoni, Jyotirmoy Deshmukh, Mukund Raghothaman, and Yifei Yuan. 2013. Regular Functions and

Cost Register Automata. In Proceedings of the 28th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS ’13).
Rajeev Alur, Dana Fisman, Konstantinos Mamouras, Mukund Raghothaman, and Caleb Stanford. In submission, 2018.

Streamable Regular Transductions. (In submission, 2018). arXiv:arXiv:1807.03865

Rajeev Alur, Dana Fisman, and Mukund Raghothaman. 2016. Regular programming for quantitative properties of data

streams. In Proceedings of the 25th European Symposium on Programming (ESOP ’16). 15–40.
Rajeev Alur, Konstantinos Mamouras, and Caleb Stanford. 2017. Automata-Based Stream Processing. In Proceedings of the

44th International Colloquium on Automata, Languages, and Programming (ICALP ’17).
Rajeev Alur and Mukund Raghothaman. 2013. Decision Problems for Additive Regular Functions. In Proceedings of the 40th

International Colloquium on Automata, Languages, and Programming (ICALP ’13).
Rajeev Alur and Pavol Černý. 2011. Streaming Transducers for Algorithmic Verification of Single-pass List-processing

Programs. In Proceedings of the 38th Annual Symposium on Principles of Programming Languages (POPL ’11).
Howard Barringer, Allen Goldberg, Klaus Havelund, and Koushik Sen. 2004. Rule-based runtime verification. In International

Workshop on Verification, Model Checking, and Abstract Interpretation.
Albert Benveniste, Paul Caspi, Stephen A. Edwards, Nicolas Halbwachs, Paul Le Guernic, and Robert de Simone. 2003. The

Synchronous Languages 12 Years Later. Proc. IEEE 91, 1 (2003).

Henrik Björklund and Thomas Schwentick. 2010. On Notions of Regularity for Data Languages. Theoretical Computer
Science 411, 4 (2010).

Mikołaj Bojańczyk, Laure Daviaud, and Shankara Narayanan Krishna. 2018. Regular and First-Order List Functions. In

Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS ’18).
Mikołaj Bojańczyk, Claire David, Anca Muscholl, Thomas Schwentick, and Luc Segoufin. 2011. Two-variable Logic on Data

Words. ACM Transactions on Computational Logic (TOCL) 12, 4 (2011).
Patricia Bouyer, Antoine Petit, and Denis Thérien. 2003. An algebraic approach to data languages and timed languages.

Information and Computation 182, 2 (2003).

Laura Bozzelli and César Sánchez. 2016. Foundations of Boolean stream runtime verification. Theoretical Computer Science
631 (2016).

Ashok K Chandra, Dexter C Kozen, and Larry J Stockmeyer. 1981. Alternation. Journal of the ACM (JACM) 28, 1 (1981).
Krishnendu Chatterjee, Thomas A. Henzinger, and Jan Otop. 2015. Nested Weighted Automata. In Proceedings of the 30th

Annual ACM/IEEE Symposium on Logic in Computer Science (LICS ’15).
Bruno Courcelle. 1994. Monadic Second-Order Definable Graph Transductions: A Survey. Theoretical Computer Science 126,

1 (1994).

Ben d’Angelo, Sriram Sankaranarayanan, César Sánchez, Will Robinson, Bernd Finkbeiner, Henny B Sipma, Sandeep

Mehrotra, and Zohar Manna. 2005. LOLA: Runtime monitoring of synchronous systems. In 12th International Symposium
on Temporal Representation and Reasoning (TIME 2005).

Stéphane Demri and Ranko Lazić. 2009. LTL with the Freeze Quantifier and Register Automata. ACM Transactions on
Computational Logic (TOCL) 10, 3 (2009).

Jyotirmoy V. Deshmukh, Alexandre Donzé, Shromona Ghosh, Xiaoqing Jin, Garvit Juniwal, and Sanjit A. Seshia. 2017.

Robust online monitoring of signal temporal logic. Formal Methods in System Design 51, 1 (2017).

Manfred Droste, Werner Kuich, and Heiko Vogler (Eds.). 2009. Handbook of Weighted Automata.
Joost Engelfriet and Sebastian Maneth. 1999. Macro Tree Transducers, Attribute Grammars, and MSO Definable Tree

Translations. Information and Computation 154, 1 (1999).

Abdelaziz Fellah, Helmut Jürgensen, and Sheng Yu. 1990. Constructions for alternating finite automata. International journal
of computer mathematics 35, 1-4 (1990).

Thomas Ferrère, Thomas A. Henzinger, and N. Ege Saraç. 2018. A Theory of Register Monitors. In Proceedings of the 33rd
Annual ACM/IEEE Symposium on Logic in Computer Science (LICS ’18).

Bernd Finkbeiner, Sriram Sankaranarayanan, and Henny Sipma. 2002. Collecting statistics over runtime executions. Electronic
Notes in Theoretical Computer Science 70, 4 (2002).

Klaus Havelund and Grigore Roşu. 2004. Efficient monitoring of safety properties. International Journal on Software Tools
for Technology Transfer 6, 2 (2004).

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 50. Publication date: January 2019.

http://arxiv.org/abs/arXiv:1807.03865

Modular Quantitative Monitoring 50:31

Michael Kaminski and Nissim Francez. 1994. Finite-memory Automata. Theoretical Computer Science 134, 2 (1994).
Martin Leucker and Christian Schallhart. 2009. A Brief Account of Runtime Verification. The Journal of Logic and Algebraic

Programming 78, 5 (2009). The 1st Workshop on Formal Languages and Analysis of Contract-Oriented Software

(FLACOS’07).

Konstantinos Mamouras, Mukund Raghothaman, Rajeev Alur, Zachary G. Ives, and Sanjeev Khanna. 2017. StreamQRE:

Modular Specification and Efficient Evaluation of Quantitative Queries over Streaming Data. In Proceedings of the 38th
Conference on Programming Language Design and Implementation (PLDI ’17).

Zohar Manna and Amir Pnueli. 2012. The temporal logic of reactive and concurrent systems: Specification. Springer Science &
Business Media.

Shanmugavelayutham Muthukrishnan. 2005. Data Streams: Algorithms and Applications. Foundations and Trends® in
Theoretical Computer Science 1, 2 (2005).

Frank Neven, Thomas Schwentick, and Victor Vianu. 2004. Finite State Machines for Strings over Infinite Alphabets. ACM
Transactions on Computational Logic (TOCL) 5, 3 (2004).

Kai Salomaa, Xiuming Wu, and Sheng Yu. 2000. Efficient implementation of regular languages using reversed alternating

finite automata. Theoretical Computer Science 231, 1 (2000).
Marcel Paul Schützenberger. 1961. On the Definition of a Family of Automata. Information and control 4, 2 (1961).
Prasanna Thati and Grigore Roşu. 2005. Monitoring Algorithms for Metric Temporal Logic Specifications. Electronic Notes

in Theoretical Computer Science 113 (2005). Proceedings of the Fourth Workshop on Runtime Verification (RV 2004).

Yifei Yuan, Dong Lin, Ankit Mishra, Sajal Marwaha, Rajeev Alur, and Boon Thau Loo. 2017. Quantitative NetworkMonitoring

with NetQRE. ACM SIGCOMM Conference on Data Communication (2017).

Jan Zdarek and Carsten W. Israel. 2016. Detection and Discrimination of Tachycardia in ICDs Manufactured by St. Jude

Medical. Herzschrittmachertherapie + Elektrophysiologie 27, 3 (2016).

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 50. Publication date: January 2019.

	Abstract
	1 Introduction
	2 Data Transducers
	2.1 Preliminaries
	2.2 Syntax and semantics
	2.3 Streaming evaluation algorithm
	2.4 Examples
	2.5 Regularity

	3 Constructions on Data Transducers
	3.1 General constructions
	3.2 Unambiguous parsing and restartability

	4 Proposed Monitoring Language: QRE-Past
	4.1 Syntax of QRE-Past
	4.2 Semantics and compilation algorithm
	4.3 Case study: cardiac arrhythmia detection

	5 Succinctness and Expressiveness
	5.1 Comparison with cost register automata
	5.2 Comparison with finite-state automata
	5.3 Comparison with general stream-processing programs

	6 Related Work
	6.1 Quantitative Automata
	6.2 Query languages for runtime monitoring

	7 Conclusions
	References

