
Streaming Transducers for Algorithmic Verification
of Single-pass List-processing Programs ∗

Rajeev Alur
University of Pennsylvania

alur@cis.upenn.edu

Pavol Černý
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Abstract
We introduce streaming data string transducers that map input data
strings to output data strings in a single left-to-right pass in linear
time. Data strings are (unbounded) sequences of data values, tagged
with symbols from a finite set, over a potentially infinite data do-
main that supports only the operations of equality and ordering. The
transducer uses a finite set of states, a finite set of variables ranging
over the data domain, and a finite set of variables ranging over data
strings. At every step, it can make decisions based on the next in-
put symbol, updating its state, remembering the input data value in
its data variables, and updating data-string variables by concatenat-
ing data-string variables and new symbols formed from data vari-
ables, while avoiding duplication. We establish that the problems
of checking functional equivalence of two streaming transducers,
and of checking whether a streaming transducer satisfies pre/post
verification conditions specified by streaming acceptors over in-
put/output data-strings, are in PSPACE.

We identify a class of imperative and a class of functional pro-
grams, manipulating lists of data items, which can be effectively
translated to streaming data-string transducers. The imperative pro-
grams dynamically modify a singly-linked heap by changing next-
pointers of heap-nodes and by adding new nodes. The main re-
striction specifies how the next-pointers can be used for traversal.
We also identify an expressively equivalent fragment of functional
programs that traverse a list using syntactically restricted recursive
calls. Our results lead to algorithms for assertion checking and for
checking functional equivalence of two programs, written possibly
in different programming styles, for commonly used routines such
as insert, delete, and reverse.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification—Formal Methods, Model
Checking; F.3.1 [Logics and Meanings of Programs]: Specify-
ing and Verifying and Reasoning about Programs—Mechanical
verification

General Terms Verification, Theory, Algorithms
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1. Introduction
We propose streaming transducers as an abstract and analyzable
model for programs that access and modify sequences of data
items in a single pass. The idea of using transducers for modeling
such programs is a natural one. However, the class of regular
transductions, which has appealing theoretical properties such as
MSO characterization, is defined by two-way transducers. As an
example, consider the reverse transduction that reverses the input
string. It is not definable using classical one-way transducers (such
as Mealy machines), we need a second (backward) pass during
which the output is produced. On the other hand, this transduction
can easily be computed by a single-pass program that traverses
a list both in the settings of imperative programs manipulating
heap-allocated lists and functional programs using tail recursion.
Our streaming transducer model can capture such computations
naturally. Furthermore, we show that verification problems such as
checking functional equivalence, assertion checking, and checking
correctness with respect to pre/post conditions, are decidable for
this transducer model, even in the presence of values from an
unbounded data domain.

In the proposed model, a (deterministic) streaming data-string
transducers map input data strings to output data strings in a sin-
gle left-to-right pass in linear time. A data string is a sequence of
items of type data × tag, where data is a potentially infinite set
of data values, and tag is a finite set of labels. The only operations
allowed on the type data are tests for equality and ordering, and
this restriction is essential for decidability. The transducer uses a
finite set of states, a finite set of variables ranging over data, and a
finite set of variables ranging over data strings. At every step, it can
make decisions based on the current state, the tag of the next input
symbol, and the ordering relationship of the data of the next input
symbol with the data values stored in data variables. It can update
the state, modify data variables using the input data value, and up-
date the data-string variables using assignments whose right-hand-
sides are concatenations of data-string variables and new symbols
formed using data variables. A key restriction is that a data-string
variable can be used at most once in a right-hand-side expression
at each step. Multiple data-string variables are necessary for the
transducer to compute different possible chunks of the output, and
the restriction on how they can be used ensures that at every step
there is merely a rearrangement of outputs computed so far without
duplication.

We consider the following two decision problems for streaming
transducers: (1) Equivalence: given two streaming transducers, do
they define the same (partial) functions? (2) Pre-post condition
checking: given a streaming transducer, a pre-condition and a post-
condition, both expressed by similarly defined streaming acceptors
over data strings, is it the case that for every input satisfying the pre-
condition, the corresponding transducer output satisfies the post-



condition? We show both problems to be in PSPACE. We also show
that extending the model along several possible directions leads
quickly to undecidability of basic problems such as reachability.

We then identify a class of programs that precisely correspond
to the streaming data-string transducers. The input to a program
is a single list with elements of type data × tag, possibly with
additional arguments of types data, tag, and bool, and the output
is a single list, possibly with additional returned values of types
data, tag, and bool. The key restriction, needed for decidability
of verification problems, is that the program computes the output
in a single pass processing the next item of the list at each step.
A number of commonly used routines such as insertion, deletion,
membership, reversal, sorting with respect to tags (but not data
values), naturally satisfy this restriction.

For heap-manipulating imperative programs, the input list is
stored in a heap of nodes each of which can store a tag, a data
value, and a next-node pointer. During the computation of the
program, the next-pointers induce an unranked forest structure over
the nodes. The program accesses the heap using a finite number of
pointer variables and uses a finite number of data variables. The
program can add new nodes to the heap, change values stored
at nodes referenced by pointer variables, and also modify next-
pointers of such nodes. A key restriction on the traversal of the heap
using next-pointers is that the only legal use of the next-field on the
right-hand-side is in the assignment curr := curr.next, where curr
is the unique pointer initially pointing to the head of the input list.
We also show that for this class of programs, a variety of assertion
checking problems (such as “is a program location reachable,” and
“does the heap stay acyclic”) are solvable in PSPACE.

Finally, we present a class of list-processing functional pro-
grams which traverse an input list from left to right using recursive
calls. The key restriction is that a call to the function f with input
list l can recursively call f with input tail l, and returns value
obtained by composing its input arguments and the values returned
by the recursive call without examining them. We show that this
class precisely corresponds to the streaming data string transducers.
Thus, the results of this paper show how to automatically compile
two list-processing programs, one written in imperative style, and
one written in functional style, into an intermediate low-level trans-
ducer model, and algorithmically check if the two are semantically
equivalent.

2. Streaming transducers
2.1 Data strings and transductions
A data domain is a totally ordered, possibly infinite, set D of
data values. We will use < to denote the strict total order over D.
Throughout this paper, assume D to be fixed. A data symbol over
Σ, where Σ is a finite set of symbols or tags, is a pair (σ, d) with
σ ∈ Σ and d ∈ D. A data string w over Σ is a finite sequence
(σ1, d1), (σ2, d2), . . . (σk, dk) of data symbols over Σ. A data
language over Σ is a set L of data strings over Σ. A (deterministic)
data transduction from an input alphabet Σ to an output alphabet Γ
is a partial function F from data strings over Σ to data strings over
Γ. For a data transduction F from an input alphabet Σ to an output
alphabet Γ, the domain of F is the data language over Σ consisting
of data strings w such that F (w) is defined.

As an example, let D be the set of strings over ASCII charac-
ters ordered by the standard lexicographic ordering. Let Σ contain
two tags private and public. A data symbol denotes an entry in an
address-book consisting of a name tagged either as private or pub-
lic. A data string represents an address-book. Here are a few exam-
ples of data languages: language L1 consists of all data strings in
which names appear in the alphabetic order (that is, data symbols
are sorted in an increasing order according to < over data values);

and language L2 consists of all data strings that do not contain du-
plicate entries. A few examples of useful data transductions are:
transduction F1 maps a data string to its reverse; transduction F2

maps a data string w to w1.w2, where w1 is the subsequence of w
containing private entries, and w2 is the subsequence of w contain-
ing public entries; and transduction F3 deletes an entry (private,d)
from the input data string if the string also contains (public,d). To
model operations such as insertion and deletion that take data val-
ues/symbols as inputs in addition to a data string, we can encode
all inputs in a single data string. For example, the transduction F4,
given an input data string (σ, d).w checks if names appear in the
alphabetic order in the tail w, and if so, it returns w with (σ, d)
inserted in the correct position to maintain the output string sorted
(F4 is undefined if the input string is empty, or if the tail of the
input string is not sorted).

2.2 Transducer definition
We now describe our model of deterministic transducers. The trans-
ducer reads an input data string left-to-right in a single pass, and
computes an output data string. The transducer uses a finite set of
states, a finite set of data variables that range over data values, and
a finite set of data string variables that range over data strings over
the output alphabet. At each step, the transducer reads the next data
symbol of the input string, and chooses a transition depending on
the current state, the tag of the input symbol, and the ordering re-
lationship of the data value of the input symbol with values of all
its data variables. The transition updates the state, updates the data
variables possibly using the input data value, and updates the data
string variables in parallel using assignments whose right-hand-
sides are concatenations of data string variables and new data sym-
bols formed using data variables. When the transducer consumes
the entire input string, the final output string is produced by simi-
larly concatenating data string and data variables. A key restriction
is that a data string variable can be used at most once in a right-
hand-side expression in a transition, and thus, at every step, there is
merely a rearrangement of output chunks computed so far, without
duplication.

We now define the model formally. A (deterministic) streaming
data-string transducer (SDST) S from an input alphabet Σ to an
output alphabet Γ consists of a finite set of states Q, an initial state
q0 ∈ Q, a finite set of data variables V , a data variable curr ∈ V
used to refer to the data value of the current input symbol, a finite
set of data string variables X , a partial output function O from
Q to ((Γ × V ) ∪ X)∗, a finite set E of transitions of the form
(q, σ, ϕ, q′, α), where q ∈ Q is a source state, σ ∈ Σ is an input
tag, ϕ is a Boolean formula over atomic constraints of the form
v < curr and curr < v with v ∈ V , q′ ∈ Q is a target state,
and α is an assignment mapping data variables V to V and data
string variables X to ((Γ × V ) ∪ X)∗. It is required that (1) for
each q ∈ Q and x ∈ X , there is at most one occurrence of x in
O(q), and (2) for each transition (q, σ, ϕ, q′, α), for each x ∈ X ,
x appears at most once in the set of strings {α(y) | y ∈ X}, and
(3) for each pair of transitions (q, σ, ϕ, q′, α) and (q, σ, ϕ′, q′′, α′)
with the same source state and input tag, the tests ϕ and ϕ′ are
mutually exclusive (that is, ϕ ∧ ϕ′ is unsatisfiable).

A valuation β for such a transducer S is a partial function
over data and data string variables such that for each data variable
v ∈ V , either β(v) is undefined or is a data value in D, and for
each data string variable x ∈ X , either β(x) is undefined or is a
data string over the output alphabet Γ. Such a valuation naturally
extends to a partial Boolean function to evaluate tests. Each test ϕ
is a Boolean formula over atomic constraints of the form v < curr
and curr < v with v ∈ V . The value β(ϕ) is defined if β(v)
is defined for all data variables v occurring in ϕ, and if so, ϕ
is evaluated using the values β assigns to these data variables. A



valuation β also extends to strings in ((Γ × V ) ∪ X)∗: given a
string u in ((Γ×V )∪X)∗, the valuation β(u) is defined when β is
defined for all the data and data string variables occurring in u, and
if so, β(u) is the data string over the output alphabet Γ obtained by
replacing each data string variable x in u with the data string β(x)
and each data variable v in u with the data value β(v).

Given an SDST S, a configuration of S is a pair (q, β), where q
is a state in Q, and β is a valuation for S. The initial configuration
is (q0, β0) where q0 is the initial state of S, β0(v) is undefined
for each data variable v, and β0(x) is the empty string for each
data string variable x. The one-step transition relation over the set
of configurations is defined as follows. Consider a configuration
(q, β) and an input data symbol (σ, d). The transducer first updates
the valuation β to β′ by setting curr to the input data value d. Next,
let (q, σ, ϕ, q′, α) be a transition such that β′ satisfies the test ϕ.
If there is such a transition, then the updated state is q′, and the
updated value of each data and data string variable x is obtained by
evaluating the right-hand-side α(x) according to the valuation β′.
That is, if there exists a transition (q, σ, ϕ, q′, α) such that β′(ϕ) =

1, for β′ = β[curr 7→ d], then (q, β)
σ,d−→ (q′, β′ ·α). Determinism

ensures that each configuration has at most one successor for a
given input data symbol. The transition relation extends to a multi-
step relation over input data strings in the natural way. Given an
input data string w over Σ, (q0, β0)

w−→ (q, β) means that the
configuration of the transducer after reading the input data string w
is (q, β) (if no such configuration exists that means no transition is
enabled at some step). The semantics of S is then defined to be the
transduction [[S]] defined as: for an input data string w over Σ, if
(q0, β0)

w−→ (q, β) and O(q) is defined then [[S]](w) is defined to
be β(O(q)), otherwise [[S]](w) is undefined.

We call a data transduction F from an input alphabet Σ to an
output alphabet Γ to be streaming-regular if there exists an SDST
S such that [[S]] = F .

2.3 Examples
To illustrate our definition of transducers, let us consider the trans-
ductions mentioned in Section 2.1. The transduction F1 to reverse
the input data string can be implemented by a streaming data-string
transducer S1 with a single state, a single data variable curr, and
a single data string variable x. The input tag σ is processed by
the self-loop transition with update x := (σ, curr).x (by default, a
variable that is not explicitly updated, remains unchanged; we omit
such assignments for readability). The output function outputs x.
No tests on input data values are needed. Notice that classical defi-
nitions of transducers allow adding output symbols only at the end
of the output computed so far. Adding a symbol to the front of the
string variable x at each step is crucial to implement reverse in a
single left-to-right pass.

Now let us consider the transduction F2 that maps a data string
w to w1.w2, where w1 and w2 are the subsequences of w con-
taining private and public entries, respectively. This can be imple-
mented by an SDST S2 that maintains two data string variables x1

and x2, and a single data variable curr. At each step, if the tag of
current input symbol is private, the symbol is added to x1 (the pre-
cise assignment is [x1, x2] := [x1.(private, curr), x2]), otherwise
the symbol is added to x2 in a symmetric manner. The output func-
tion outputs the concatenation x1.x2. Note that it is not possible to
implement this transduction by an SDST using just one variable.

The transduction F3 deletes a private entry from the input data
string if the string also contains a public entry with a matching
data value. When reading an input symbol with data value d, the
streaming algorithm needs to figure out if a private entry with the
same data value has been encountered before. An SDST with k
variables can effectively use only k data values for tests at any step,

q0 q1

q2

q3

[x, u] :=
[(curr, σ), curr]

u > curr→
[v, y] :=

[curr, (curr, σ)]

u ≤ curr→
[v, y] := [curr, x(curr, σ)]

(u ≤ curr)
&(v ≤ curr)→

[v, y] :=
[curr, yx(curr, σ)]

(v ≤ curr)→
[v, y] :=

[curr, y(curr, σ)]

(u > curr)&(v ≤ curr)→
[v, y] := [curr, y(curr, σ)]

Figure 1. Transduction F4

and since the number of possible data values in an input string is
unbounded, F3 is not streaming-regular.

Consider the transduction F4 that inserts the head symbol of the
input string in its tail, provided that the tail is sorted. The transducer
S4 uses three data variables: u to remember the head data value,
v to remember the previous data value, and curr to refer to the
current data value. It uses a data string variable x to remember the
first data symbol, and y to compute the output. The transducer is
shown in Figure 1. The transducer is in state q0 initially, in state
q1 after reading one symbol, in state q2 after reading 2 or more
symbols provided the tail so far is sorted and all its data values are
smaller than the head data value (stored in u), and in state q3 after
reading 2 or more symbols provided the tail so far is sorted and the
head symbol has already been inserted in the output. In states q2
and q3, the variable v stores the previous data value, and the test
v ≤ curr checks for sortedness of the input (v gets updated to curr
at each step). If this test does not hold, no transition is enabled, and
the output will be undefined. The transition to q3 inserts the data
symbol stored in x in the output y. The output function is undefined
in state q0, and is x in state q1, y.x in state q2, and y in state q3.

2.4 Streaming acceptors
A streaming data-string acceptor (SDSA) is a streaming data-
string transducer S with an empty set of data string variables. Such
an acceptor S has a finite set of data variables that can remember
the data values from the input string, and can make decisions based
on their relative ordering. The output alphabet plays no role in
the behavior of an acceptor. Given an input data string w, either
the output [[S]](w) is defined or undefined, and the domain of the
transducer is the data language associated with the acceptor S. This
is the same as saying that the output function O marks states of S
as accepting or rejecting based on whether the output function O is
defined or undefined at a state. We call a data language L over an
alphabet Σ to be streaming-regular if L is accepted by a streaming
data-string acceptor.

The data language L1 consisting of sorted data strings can be
defined by such an acceptor using one data variable that remembers
the previous data value, along with the data variable curr needed to
refer to the data value of the currently read symbol. Thus L1 is a
streaming-regular data language. The data language L2 consisting
of data strings without duplicate entries is not streaming-regular by
an argument similar to the one for the transduction F3.

Among different types of automata over data strings that have
been studied, data automata [3] have emerged as a good candidate
for the notion of regularity for languages of data strings. However,
data automata are too expressive for our purpose as they have an
undecidable emptiness problem in the presence of ordering on data
values [3].



2.5 Properties
In this section, we note some properties of streaming transducers
aimed at understanding their expressiveness. First, observe that a
streaming data-string transducer S cannot output “new” data val-
ues. That is, for every input data string w, any data value appearing
in the output data string [[S]](w) must appear in some symbol in
w. Second, streaming transducers are bounded in the sense that the
length of the output string is within at most a constant factor of the
length of the input string.

Proposition 1. If F is a streaming-regular transduction from Σ to
Γ, then for all input data strings w over Σ, |F (w)| = O(|w|).

The boundedness depends on the fact that the parallel assign-
ment at each step is copyless: each variable can appear in a right-
hand-side expression at most once. Not only this is crucially needed
for decidability of the equivalence problem, it also allows an effi-
cient implementation: if the data strings corresponding to variables
are stored in linked lists, then the assignment can be executed by
only changing a constant number of pointers (proportional to the
description of the transducer, but independent of the lengths of the
data strings they store, and thus, independent of the length of the
input string).

Proposition 2. If F is a streaming-regular data-string transduc-
tion, then given an input string w, the output F (w) can be com-
puted in time O(|w|).

This also means that the sorting transduction that maps an input
data string to its sorted version is not streaming-regular due to well-
known lower bounds for sorting. Obviously streaming transducers
cannot capture all linear-time streaming algorithms. As a specific
example, let us revisit the transduction F2 that maps a data string
w to w1.w2, where w1 and w2 are the projections of w containing
private and public entries, respectively. Consider the variation F ′2
that maps w to a merge of the two projections w1 and w2 taking
elements from the two lists in an alternate manner. This can be
easily implemented in linear-time if we maintain two read-heads
over the input string, one corresponding to private entries and one
corresponding to public entries. Note that the emptiness problem
of finite automata with multiple read-heads is undecidable, and the
traversal allowed for streaming transducers is restricted by design
to ensure decidability of key analysis problems. In particular, F ′2 is
not streaming-regular.

Let us now consider some closure properties for the class of
streaming-regular transducers. Given two data transductions F1

and F2, and a test L as a data language, suppose we want to
compute F1(w) when w ∈ L and F2(w) otherwise. If all of F1,
F2, and L are specified using SDSTs then we can construct an
SDST for the desired transduction by a suitably modified product
construction.

Proposition 3. If F1 and F2 are streaming-regular data transduc-
tions from Σ to Γ, and L is a streaming-regular data language over
Σ, then the following data transduction F is streaming-regular: for
an input data string w over Σ, if w ∈ L then F (w) = F1(w) else
F (w) = F2(w).

It turns out that streaming-regular data transductions are not
closed under functional composition. That is, given two SDSTs
S1 and S2, we cannot always construct an SDST S such that
S(w) = S2(S1(w)).

Proposition 4. There exist streaming-regular data transductions
F1 and F2 from Σ to Σ such that the following data transduction
F is not streaming-regular: for an input data string w over Σ,
F (w) = F2(F1(w)).

Proof. We choose Σ to be a singleton set, and thus, it plays no role.
Consider the transduction F1 that maps a data string d1d2 · · · dk
to its reverse dkdk−1 · · · d1. F1 is streaming-regular. Consider the
transduction F2 that maps a data string d1d2 · · · dk to (d1)k. That
is, F2 just repeats the first data value for each input symbol read.
It is easy to implement F2 by an SDST. Now consider the compo-
sition F = F1 · F2. The transduction F maps an input data string
d1d2 · · · dk to (dk)k. We can prove that F is not streaming-regular.

Note that the above proof crucially uses the fact that the data
domain D is unbounded, and we can always find a “fresh” data
value that has not appeared in the input string before. If we make
D finite, then the streaming-regular transducers are closed under
composition.

3. Imperative Programs Updating Linked Lists
We consider a class of imperative programs that manipulate heap-
allocated singly-linked list data structures. Each node of the heap
stores a tag, a data value, and a pointer to another node. For clarity,
in this section, we will assume that the output alphabet is the
same as the input alphabet, so we need to consider tags of only
one type. The input data string is stored in such a heap using
one node for each position (null pointer indicates the end of the
list). A list-processing program is invoked with the reference to the
head-node of the list as input. The program traverses the list using
next-pointers, and computes using variables that range over tags,
over data values, over booleans, and over pointers into the heap.
It can create new nodes and add them to the heap, and can also
manipulate the shape of the heap by updating the next-pointers of
the nodes referenced by its pointer variables. The output data string
is returned using a pointer-variable that points to the head of the
list storing that output. During the computation of the program,
next-pointers of two heap-nodes may point to the same node, and
thus, the heap in general has a structure of an unordered forest.
Since the output is computed by possibly reusing the nodes that
store the input, we need careful syntactic restrictions to allow a
single-pass traversal of the input list, while disallowing repeated
or nested traversals. We require that a typical traversal assignment
x := y.next for pointer variables x and y is disallowed. The
only legal use of the next-field on the right-hand-side is in the
assignment curr := curr.next, where curr is the unique input
pointer. Assignments of the form x.next := y to update the heap
structure are allowed, provided x and curr are not referencing the
same heap-node. An attempt to execute x.next := y in a state
where x and curr reference the same heap-node, causes a runtime
error (alternatively we can require each such assignment to be
syntactically guarded by the boolean condition x 6= curr).

A program can have additional input and output parameters, and
each such input/output parameter can be a data value, a boolean
value, or a tag. Before we describe the syntax and the semantics
in detail, let us first consider a couple of examples. The following
function reverses a list in-place, and corresponds to the data trans-
duction F1:

function Reverse
input ref curr; output ref result := curr;
local ref prev := curr;
if curr 6= nil then {

curr := curr.next;
while curr 6= nil {

result := curr; curr := curr.next;
result.next := prev; prev := result;

} }.



Suppose given an input data string w and an input data symbol d,
we want to delete each symbol in w whose data value equals d,
and return the resulting data string along with a boolean flag that
indicates whether or not some symbol was actually deleted. The
following function implements this:

function Delete
input ref curr; input data v;
output ref result; output bool b := 0;
local ref prev;
while (curr 6= nil) & (curr.data = v) {

curr := curr.next; b := 1;
}
result := curr; prev :=curr;
if curr 6= nil then {

curr := curr.next; prev.next := nil;
while curr 6= nil {
if curr.data = v then {

curr := curr.next; b := 1;
} else {

prev.next := curr; prev := curr;
curr := curr.next; prev.next := nil;

}; }; }.

3.1 Syntax
Types: Variables are typed. The possible types are: bool for
Boolean-valued variables, tag for variables ranging over the al-
phabet Σ, data for variables ranging over the data domainD along
with an “undefined” value denoted ⊥, and ref for reference vari-
ables that index into the data heap along with the null reference
nil.

Variable declarations: A program variable is declared along with
its type (bool, tag, data, or ref) and an annotation which can be
either local, input, or output. The input annotation means that
the variable is an input to the function. A function has exactly one
input variable of type ref, and can have multiple input variables of
other types. We will use curr to name this unique input reference
variable. The output annotation means that the variable is an out-
put of the function, and local annotation means that the variable is
neither an input nor an output. There is exactly one output variable
of type ref which is used to return a single data string. The dec-
laration of each output and local variable has an associated value.
The initial value of a variable of type bool or tag can be either a
constant or an input variable of matching type. The initial value of
a data variable can be either ⊥ or an input data variable. The initial
value of a pointer variable can be either curr or nil.

Data expressions and assignments: A data expression is of the
form (1) a variable of type data, or (2) r.data, where r is a
variable of type ref, denoting the data value stored in the heap-
node indexed by r. A data assignment statement assigns a data
expression to a data variable.

Tag expressions and assignments: A tag expression is of the
form (1) a variable of type tag, (2) a constant σ from the alphabet
Σ, or (3) r.tag, where r is a variable of type ref, denoting the
tag value stored in the heap-node indexed by r. A tag assignment
statement assigns a tag expression to a tag variable.

Reference expressions and assignments: A reference expression
re is either a variable of type ref or the constant nil. A reference
assignment statement is either (1) r := re, where r is a local or
a output variable of type ref and re is a reference expression,
(2) r.next := re, where r is of type ref and re is a reference
expression, (3) r := new(te, de, re), where r is a local or a

output variable of type ref and te is a tag expression, de is a data
expression, re is a reference expression, or (4) curr := curr.next.
The first assignment allows reassignment of reference variables,
except for the input variable curr. The second assignment updates
the heap by changing the next-pointer of the heap-node indexed by
r, provided r and curr do not point to the same heap-node. The
third assignment creates a new heap-node with tag value given by
te, data value given by de, and next-pointer given by re. The last
assignment allows traversal, and is syntactically restricted to ensure
that only the unique input reference variable is used to traverse the
input list.

Boolean expressions and assignments: An atomic boolean ex-
pression is either a boolean constant (0/1), or tests equality between
two tag expressions, or tests equality or ordering between two data
expressions, or tests equality between two reference expressions.
A boolean expression is formed from atomic boolean expressions
using standard logical connectives for negation, conjunction, and
disjunction. A boolean assignment statement assigns a boolean ex-
pression to a boolean variable.

Statements: An assignment statement is either a data assign-
ment statement, a tag assignment statement, a reference assignment
statement, or a boolean assignment statement. A statement s is ei-
ther (1) an assignment statement, (2) a conditional statement of the
form if be then s or if be then s1 else s2, where be is a boolean
expression, (3) a while statement of the form while be { s}, where
be is a boolean expression, or (4) a finite sequence of statements.

Program: A single-pass list processing program P consists of a
sequence of variable declarations followed by a statement.

3.2 Semantics
Recall that a program has a single input variable of type ref and
a single output variable of type ref. The semantics of a program
is defined as a partial function from an input data string together
with values for input data/tag/boolean variables to an output data
string together with values for output data/tag/boolean variables.
For example, the semantics of Delete is a partial function from
(Σ×D)∗ ×D to (Σ×D)∗ × {0, 1}.
Configurations: Given a program P , its configuration is com-
pletely described by (1) the values of its data, tag, boolean, and
reference variables, (2) the program counter indicating the next
statement to be executed, and (3) the data-heap. Let Loc be the
set of locations in P (this can be the set of vertices in the control-
flow graph of the program). A data-heap h consists of a finite set
N of heap-nodes, a data function fd : N 7→ D that gives the
data element stored at each node, a tag function ft : N 7→ Σ
that gives the tag element stored at each node, and a next-pointer
function fn : N 7→ N⊥ that gives the next-pointer of each node,
where N⊥ is the set N together with the constant nil. A program-
configuration c of P then consists of a location ` ∈ Loc, a data heap
h = (N, fd, ft, fn), and a partial function β over all the program
variables that maps each data variable toD, each reference variable
to N , each boolean variable to {0, 1}, and each tag variable to Σ.

Initialization: Given an input data string (σ1, d1) · · · (σk, dk),
the initial heap h0 consists of the set N = {n1, . . . nk} of nodes,
one per each data symbol of the input string. The data function is
given by fd(ni) = di, the tag function is given by ft(ni) = σi,
and the next-pointer function is given by fn(ni) = ni+1 for i < k
and fn(nk) = nil. The initial location `0 is the unique entry
location of the control-flow graph. For the initial valuation β0,
β0(curr) = n1. For all other input variables x, β0(x) is set to
the corresponding input value. For all local and output variables x,
β0(x) is defined according to the initialization in the declaration
for x. The initial configuration c0 of the program is (`0, h0, β0).



Transition relation over configurations: The operational seman-
tics of programs is defined by a transition relation over the con-
figurations. First, given a configuration c = (`, (N, fd, ft, fn), β),
there is a natural way to evaluate a data expression de to obtain
a data value c(de) ∈ D, a tag expression te to obtain a tag value
c(te) ∈ Σ, a reference expression re to obtain a value c(re) ∈ N⊥,
and a boolean expression be to obtain a boolean value c(be). Every
program configuration c = (`, (N, fd, ft, fn), β) can have at most
one successor configuration, determined by the statement s at loca-
tion `. The details are standard, and we illustrate them using a few
cases.

Suppose the statement is a conditional statement ` : if b then
`1 : s1 else `2 : s2. Then, if c(b) = 1 then the successor
configuration of c is (`1, h, β), and if c(b) = 0 then the successor
configuration of c is (`2, h, β).

Suppose the statement s is a reference assignment statement
` : r := new(te, de, re). The effect of executing the statement s
updates the control location from ` to the unique successor location
`′ of the statement s. For the updated data heap h′, the set of nodes
is N ∪ {n}, where n 6∈ N is a “new” heap-node, the data function
is fd[n 7→ c(de)], the tag function is ft[n 7→ c(re)], and the next-
pointer function is fn[n 7→ c(re)]. The updated valuation β′ is
β[r 7→ n].

Suppose the statement s is a reference assignment statement
` : r.next := re. If c(r) = c(curr) then this is an error and the
configuration c has no successor. Otherwise, the successor configu-
ration is c′ such that the location `′ is the unique successor location
of ` in the control-flow graph, the valuation β stays unchanged,
and the updated heap is (N, fd, ft, fn[c(r) 7→ c(re)]) (that is, the
next-pointer of the node c(r) in the heap changes to c(re) which
may be nil or a heap-node).

Termination and output: An execution of the program is ob-
tained by starting in the initial configuration c0 and continuing with
the successor configuration as long as possible. If this execution is
infinite, then the program is non-terminating, and the output is un-
defined. Suppose the execution is finite and ends in the configura-
tion cf = (`f , hf , βf ). If the location `f is not the unique exit lo-
cation of the control-flow graph, then again the output is undefined.
Otherwise, the returned value of each output data/tag/boolean vari-
able is given by the final valuation βf of program variables. For the
unique output reference variable r, let (σ1, d1)(σ2, d2) · · · be the
unique sequence of tag/data values stored in the heap hf starting
at the node βf (r) following the next-pointers until the nil value
is encountered. If this sequence is infinite, this indicates that the
program created a cycle in the heap during its computation, and the
output is again undefined. If this sequence is finite, it is the returned
output data string.

3.3 Streaming transducers with ε-transitions
We extend the model of streaming data-string transducers by al-
lowing the transducer to update its state, data variables, and data
string variables using an ε-transition that does not consume an in-
put symbol. We will first show that it is possible to eliminate such
ε-transitions, and then we will translate list-processing programs to
transducers with ε-transitions.

The definition of a (deterministic) streaming data-string trans-
ducer S with ε-transitions extends the definition of SDSTs as fol-
lows: in a transition (q, σ, ϕ, q′, α), σ can now also be ε, provided
there is no transition of the form (q, σ′, ϕ′, q′′, α′) with σ′ ∈ Σ.
The restriction is needed for ensuring determinism: in a state q,
either all outgoing transitions are ε-transitions, or all outgoing tran-
sitions have non-ε tags (and thus consume the next input symbol).
Note that the original determinism requirement still applies: if there
are multiple transitions with same source state and same input tag
(which now may be ε), their tests must be mutually exclusive.

n0 n1 n2 n3

n4

n5 n6 n7 n8 n9 n10

r1 r2

r3

r4

w1 w2

curr

Figure 2. Storing heap in data strings

As in case of SDSTs, a configuration consists of a state q and a
valuation β for the data and data string variables. The definition of
the transition relation (q, β)

σ,d−→ (q′, β′), for σ ∈ Σ and d ∈ D, is
unchanged. The ε-transitions are defined by: if there exists a transi-
tion (q, ε, ϕ, q′, α) such that β(ϕ) = 1 then (q, β)

ε−→ (q′, β · α).
A run over the input data string w is obtained by starting in the ini-
tial configuration (q0, β0), and applying either an ε-transition or a
transition corresponding to the next input data symbol until all the
input data symbols are consumed and no more ε-transitions are pos-
sible. This ensures determinism: for a given input string w, there is
at most one configuration (q, β) such that (1) (q0, β0)

w−→ (q, β)
and (2) (q, β) has no ε-successor. The semantics [[S]](w) is defined
to be β(O(w)) in such a case, provided O(q) is defined, and is
undefined otherwise. Note that it is possible that such a transducer
keeps on executing ε-transitions without terminating, and in such a
case, the corresponding output is undefined.

It turns out this extension does not add to the expressiveness:

Proposition 5. Given a streaming data-string transducer S with
ε-transitions, one can effectively construct a streaming data-string
transducer (without ε-transitions) S′ such that [[S]] = [[S′]] with
the same number of states, same number of data variables, and the
same number of data string variables.

3.4 From single-pass programs to streaming transducers
In this section, we describe how to translate single-pass list process-
ing programs to streaming data-string transducers. The first step is
to view the semantics of a single-pass list processing program as a
partial function from data strings to data strings. To associate such
a data string transduction [[P ]] with a program P , we encode input
parameters in the same manner as described in Sec. 2.1. If P has
ki input boolean/data/tag variables and ko output boolean/data/tag
variables, then we prefix the input data string with ki symbols each
encoding one input argument, and prefix the output data string with
ko symbols each encoding one output value.

The main challenge in the construction is to store the informa-
tion in the data heap used by the program P using a bounded num-
ber of data and data string variables in the corresponding trans-
ducer S. Figure 2 shows a possible configuration of the data heap
that the program accesses using the reference variables curr and
r1, r2, r3, r4. The first observation is that the heap-nodes that are
not accessible from any of the reference variables are not relevant
to the execution of the program, and can be ignored. Second, nodes
such as n9 and n10 that are accessible from curr.next can contain
only input symbols that the program has not processed so far. These
nodes have not influenced the execution of the program so far, and
information in these nodes does not need to be stored. When the
program executes the statement curr := curr.next, the node n9

becomes relevant. This step is analogous to the transducer S pro-
cessing the next input symbol.

Compressing the heap using a bounded number of strings is
achieved using an encoding similar to [13]. A node is called a
referenced node if a reference variable points to it. In the example,
n0, n4, n7 and n8 are referenced nodes. Information in such nodes



needs to be stored explicitly by S. For each reference variable r of
P , S maintains a data variable dr and a tag variable tr storing the
information in the node that r points to. A node such as n3 is called
an interruption node as two nodes point to it (and both these nodes
are accessible from the program’s reference variables). If P has k
reference variables, then there can be at most 2k − 1 interruption
nodes. The stretches n1, n2 and n3, n5, n6 are uninterrupted heap
segments. In each such segment (1) the first node is either an
interruption node, or is the next-successor of a referenced node,
(2) the next-pointer of each node in the sequence points to the
next node in the sequence, (3) no node other than the first is an
interruption or a referenced node, and (4) the next-pointer of the
last node is either nil or points to an interruption or a referenced
node. If P has k reference variables, then there can be at most
2k−1 uninterrupted heap segments. The sequence of data symbols
stored in an uninterrupted heap segment is stored in a data string
variable by S. In our example, the data string w1 stores the data
symbols in n1, n2 and the data string w2 stores the data symbols
in n3, n4, n5. The finite-state control of S remembers the shape
of the heap: r1 and r2 point to the same node, the next-pointer of
the r1-referenced node points to the data string stored in w1, the
next-pointers of the node referenced by r3 and of the last node
of w1 point to w2, w2 is followed by the r4-referenced node,
which is followed by the curr-referenced node. Such a shape can
be captured by a function fn : Y 7→ Y⊥, where Y contains
all the reference variables of P and all the data string variables
of S that store the data strings in uninterrupted heap segments.
If P executes the assignment r3.next := curr, then n3 is no
longer an interruption node, and in this case, the two uninterrupted
heap segments collapse into one. This is achieved by S by the
assignment [w1, w2] := [w1.w2, ε] to the data string variables,
updating the tag/data variable corresponding to r3, and changing
the shape by updating fn(w1) to r4 and fn(r3) to curr.

Proposition 6. Given a single-pass list-processing program P one
can effectively construct a streaming data-string transducer S with
ε-transitions such that [[P ]] = [[S]]. If P has m locations, kr
reference variables, kb boolean variables, kt tag variables, and kd
data variables, then S has kd + kr data variables, 2kr data string
variables, and O(m · 2kb · kkr

r · |Σ|kt+kr ) states.

Proof. The transducer S has a data variable for each data variable
for P , and also for each reference variable of P (to store the data
values in referenced nodes in the heap). It has 2kr data string
variables to store uninterrupted heap segments. The state of S
stores (1) the location of control of P , (2) the boolean value of
each boolean variable of P , (3) the tag value of each tag variable
of P , (4) a partition of the reference variables of P (two reference
variables are in the same partition if they point to the same heap-
node), (5) for each equivalence class in the partition, either a tag
value stored at the node referenced, or nil, and (6) for each data
string variable and each equivalence class of the partition, a next
value that gives either a data string variable or an equivalence class
of the partition. The last component stores the shape of the heap.
The bound on the possible number of states follows by a simple
counting argument.

If P has data, boolean, or tag input variables, the transducer S
first scans the initial prefix of data symbols setting up the initial
values using ε-transitions. Then the transducer processes the first
input symbol, assigning the tag-component corresponding to curr
in its state to tag of the input symbol, and assigning the data variable
corresponding to curr to data of the input symbol. After this phase,
the control location is set to the unique entry location, all output
strings are empty (there are no uninterrupted heap segments in the
initial heap), and the partition has only two classes (some reference
variables are nil and some are in the class that contains curr).

We now describe transitions of S corresponding to statements of
P . The only statement that causes a non-ε transition is the statement
curr := curr.next. The transition that corresponds to this statement
in S: (1) changes the stored control location of P , (2) changes
the partition of reference variables into equivalence classes: curr
is split from its current equivalent class, (3) a new tag value is
stored for the new equivalence class of curr, (4) for each reference
variable p from the previous equivalence class of curr the new
next value of p (i.e. fn(p)) will be curr, (5) if for any data string
variable x (that stores an uninterrupted heap segment) of S we have
(fn(x) = curr) then we append the current data symbol (from
before the transition is executed) to x. All other statements are
captured by an ε-transition, as they do not correspond to the move
of the head of the automaton. Boolean, tag, and data assignments
can be simulated directly. We have already described using an
example how a statement r.next = curr can affect the shape of the
heap, and how this is captured by assignments that S can perform
in its transitions.

In Section 2.5, we have mentioned that the assignments that a
streaming transducer performs on its data string variables can be
executed by only changing a constant number of pointers. A list-
processing program equivalent to a transducer stores data strings in
list segments on the heap, and keeps pointers to the first and last
nodes of the segment. To perform an assignment of the form x :=
xy, the program performs commands xl.next := yf ;xl := yl,
where xf (xl) is a reference to the first (last) node representing x
(and similarly for y). We obtain the following proposition:

Proposition 7. Given a streaming data string transducer S, one
can effectively construct a single-pass list-processing program P
such that [[S]] = [[P ]].

4. Functional programs on lists
We consider a simply typed functional language with types bool,
tag, data, list, and function types, with letrec recursion and pair
and list constructors. As in the previous section, we assume that
Σ = Γ for ease of presentation. The terms are defined by:

t:= true | false | isTrue t | isFalse t
| S | isS (for all S ∈ tag)
| x | fun x:T.t | t t | if t then t else t
| x = x | x < x | {t,t} | t.1 | t.2
| nil | cons t t | append t t
| isnil t | head t | tail t
| let x=t in t | letrec x:T=t in t

The operators = and < apply to terms of type data. The lists are
of type (list (tag× data)), or list for short. The list and pair
terms are standard.

We defined a class of functional programs that intuitively cap-
tures single-pass functions that process a list by recursing through
it from left to right. The recursion restriction we define is a mi-
nor generalization of tail recursive functions, where we allow the
caller to perform operations on, but not test, the values that the
callee returns. This allows capturing common routines such as in-
sert, delete, and reverse (both tail-recursive and non-tail recursive).
We allow wrapper functions in order to enable the standard pro-
gramming style for tail recursive functions.

A function is a single-pass list processing function iff it is
defined by the following term:

fun a:list × T1.
letrec f:((list × T1 × T2) → (list × T)) = t
in (f a initValues)



This term encodes a wrapper function that can pass some additional
arguments to a recursive function f. The following conditions are
required to hold:
• one list: Let us denote the first argument to f (by definition of

type list) by l. The list l is the only list accessed by isnil,
head and tail. The contents of the other list variables are thus
not examined. However, it is possible to use cons or append
with these variables.

• type restrictions: The types T1 and T are products of types
bool, tag, data, with possibly more than one component of
each type. These are input and output arguments of the list
processing function. The type T2 is a product of types bool,
tag, data, and list, with possibly more than one component
of each type. Intuitively, these are buffers where the recursive
function can store results.

• recursion restriction: The first argument to any recursive call is
the term (tail l), where l is the first argument to f. Every
recursive call to f is enclosed in an expression e defined by
let r =(f (tail l) a) in t. Furthermore, e is the last
expression the caller evaluates, i.e. t is the caller’s result. Using
the type restriction above, we have that r ≡ l1, r1, . . . , rn, and
a ≡ a1 . . . an, and t ≡ l2, t1, . . . tn , where l1 is a list and
l2 is a list expression, each of r1, . . . rn and t1, . . . tn is of
type bool, tag or data, and each of a1, . . . an is of type bool,
tag, data, or list. We have the following restrictions on these
subexpressions: (i) a list variable of f can appear in at most one
expression ai or tj (this is similar to the restriction that requires
the assignments of SDSTs to be “copyless”), (ii) if ti is of type
bool, then the only variable from r it can use is ri, (iii) if ti
is of type tag or data, then we have ti = ri, (iv) the only
variable from r that l2 can use is l1.

• term t: The term t is of the form fun x: (list × T1 ×
T2). t’, where t′ does not contain the function definition term
fun or the recursive definition term letrec.

• initValues: The expression initValues is of type T2. If T2
contains list types, the corresponding values in initValues
are nil.

Note that all the above conditions can be checked syntactically.

4.1 Examples
The data transduction F1 that reverses a list can be encoded as a
single-pass list processing function as follows:

fun l:list.
letrec reverse: (list × list → list)

= fun l:list. fun result:list.
if (isnil l) then result
else (reverse (tail l) (cons (head l) result))

in (reverse l nil)

A function that given a list l and a data value d deletes all
occurrences of d in l is encoded as follows:

fun l:list. d:data.
letrec FuncDelete: (list × data → list)

= fun l:list. fun d:data.
if (isnil l) then nil
else

if (head l).data = d
then (FuncDelete (tail l) d)
else (cons (head l)

(FuncDelete (tail l) d))
in (FuncDelete l d)

One of the recursive calls in FuncDelete is enclosed in an ex-
pression that adds a cell to the front of the list: (cons (head l)
(FuncDelete (tail l) d)). This recursive call is not tail recur-

sive, as the caller function applies an operation to the result returned
by the callee. However, the recursive call satisfies the recursion re-
striction from our definition of single-pass list processing functions
(and it satisfies the other restrictions as well).

The constructions in this paper lead to an algorithm to check
if the imperative function Delete of Section 3 and the above
function FuncDelete are semantically equivalent (i.e., specify the
same transduction). Such a check can be used for full functional
verification of one using the other as the specification.

4.2 From list processing functions to streaming transducers
Semantics The simply-typed functional language we defined
contains standard terms. The values of the language, as well as the
typing rules, and the evaluation relation t1 → t2 for all the terms
are omitted here, as they can be found in a standard textbook [16].
The operational semantics is given by a transition system, whose
states are subterms of f, whose transitions are given by the evalua-
tion relation t1 → t2, and whose initial state is the term f.

As for imperative programs, the semantics of a single-pass list
processing function can be viewed as a data string transduction, that
is, a partial function from data strings to data strings. To associate
a transduction [[f]] with a single-pass list processing function f :
(list× T1)→ T, we encode input parameters in the same way as
in Section 3. Given a data stringw, its first ki symbols can represent
ki input boolean/data/tag variables, and the rest represents the input
list (converting a data string to a list term of type list is straight-
forward). Given a data string, the function decode param(w, ki)
returns the parameter values, and the function decode list(w, ki)
returns the tail of the input string represented as a list term. Sim-
ilar encoding to data strings can be used for output values and
output lists. Given a tuple {l1, r1, . . . , rn} of type list × T,
enc res({l1, r1, . . . , rn}) returns the corresponding data string.
Given a single-pass list processing function f, we have that
[[f]](w) = w′ iff (f decode list(w) decode param(w)) →∗
{l1, r1, . . . , rn} and enc res(l1, r1, . . . , rn) = w.

Proposition 8. Given a single-pass list processing function f :
(list × T1) → T, one can effectively construct a streaming data
string transducer S, such that [[f]] = [[S]]. Let g be the recursive
function used by f. If g has kb boolean variables, kt tag variables,
kd data variables, and kl list variables, then S has O(2kb · |Σ|kt)
states, kd data variables, and kl + 1 data string variables.

We note that the construction used in the proof of Proposition 8
is more direct than the one used in the proof of Proposition 6. The
list variables (apart from the list that is traversed) and data variables
are modeled directly by data string variables and data variables of
the transducer, and the control state of the transducer encodes the
value of boolean and tag variables.

Given an SDST S, we can construct an equivalent list-processing
program f. We first describe the arguments of the recursive func-
tion g the function f uses: its boolean arguments encode state of
S, its data arguments correspond to data variables of S, and its list
arguments correspond to the data string variables of S. A transition
(q, σ, ϕ, q′, α) is translated by making the function g test whether
the current boolean arguments correspond to q, whether the current
tag is σ, and whether ϕ holds for the current data arguments. If so,
the function makes a recursive call with parameters encoding q′

and the assignments from α. The function we obtain in this way is
tail recursive. The next proposition follows:

Proposition 9. Given a single-pass data string transducer S, one
can effectively construct a single-pass list processing function f,
such that [[S]] = [[f]].



5. Decision Problems
In this section, we prove that the equivalence problem and the
pre/post condition checking problem are decidable for streaming
data string transducers. We also show that, for a number of exten-
sions of the streaming transducer model, already the basic analysis
problem of reachability is undecidable.

5.1 Sound and complete abstraction for order and equality
In proofs of decidability of equivalence and pre/post condition
checking of SDSTs that operate on an infinite data domain D,
we will construct finite state systems that do not store values of
the data variables of the SDSTs, but only keep track of order and
equality predicates. In order to prove that such an abstraction is
both sound and complete for analysis problems, we will need the
lemma presented in this subsection.

Let V be a set of variables that range over D. We fix V and an
infinite D for this subsection. We will consider pairs of the form
(V d, ρ), where the set V d ⊆ V represents the set of variables
with a defined value, and where ρ is an ec-order on V d (short for
order on equivalence classes). An ec-order ρ = (≡ρ, <ρ) is a pair
where the first component is an equivalence relation on V d, and the
second component is a strict total order on equivalence classes of
≡ρ. For data variables v1, v2, we write v1 <ρ v2, if v1 belongs to
an equivalence class c1, v2 belongs to an equivalence class c2, and
c1 <ρ c2. For example, if V = {v1, v2, v3}, all variables have a
defined value, then a possible ec-order on V d can be represented as
v1 ≡ρ v3 <ρ v2. Let β be a valuation of data variables as in the
definition of SDSTs. A pair (V d, ρ) represents a set of valuations.
We write β |= (V d, ρ) iff β is defined precisely for the variables
in V d, and for all v1, v2 ∈ V d we have that β(v1) < β(v2) iff
v1 <ρ v2, and β(v1) = β(v2) iff v1 ≡ρ v2. Let ϕ be a Boolean
combination of constraints of the form v1 < v2 and v1 = v2
for variables v1, v2 ∈ V . Let α be a map from V to V modeling
assignments, as in the definition of transitions of SDSTs. We write

β1
(ϕ,α)−−−→ β2, if β1 satisfies ϕ and β2 = β1 · α, similarly to

the definition of SDSTs. For pairs (V d, ρ), we define a transition

relation (V d, ρ)
(ϕ,α)−−−→ (V ′d, ρ′) iff (a) V ′d contains the variables

which were assigned to by α from variables in V d, (b) ρ implies ϕ,
and (c) ρ′ is the ec-order obtained from ρ by executing α. Let ua

be a sequence of pairs (V d1 , ρ1)(V d2 , ρ2) . . . (V dn , ρn). Let u be a
sequence of valuations β1β2 . . . βn. Let upd be a sequence of pairs
(ϕ1, α1)(ϕ2, α2) . . . (ϕn−1, αn−1). The sequence ua conforms to

the sequence upd if for all i if 1 ≤ i < n, then (V di , ρi)
(ϕi,αi)−−−−−→

(V di+1, ρi+1). Similarly, the sequence u conforms to the sequence

upd if for all i if 1 ≤ i < n, then βi
(ϕi,αi)−−−−−→ βi+1.

The proof of the following lemma crucially uses the fact that
the infinite totally-ordered data domain D contains chains, that is,
sequences of elements in an increasing order, of unbounded length.
The proof is omitted here in the interest of space. A similar proof
is a part of the proof of Theorem 1 of [2].

Lemma 10. Let upd be a sequence of pairs (ϕ1, α1)(ϕ2, α2) . . .
(ϕn−1, αn−1). Let ua be a sequence of pairs (V d1 , ρ1)(V d1 , ρ1) . . .
(V dn , ρn), such that ua conforms to upd . Then there exists a se-
quence of valuations u = β1β2 . . . βn such that u conforms to upd
and for all i, if 1 ≤ i ≤ n, then ui |= uai .

5.2 Equivalence checking
Given two streaming data-string transducers S1 and S2 from Σ to
Γ, the streaming transducer equivalence problem is to determine
whether [[S1]] = [[S2]].

In order to show that the problem can be solved in PSPACE
we reduce the problem to a reachability problem in 1-counter

machines. A 1-counter machine M is a tuple (QM , δM , q
M
0 , FM ),

where QM is a set of states, qM0 is the initial state, and FM ⊆ QM
is a set of final states. The transition relation δM is a relation in
QM ×QM ×{−1, 0, 1}. Note that 1-counter machines do not test
the content of the counter. A configuration of the 1-counter machine
is a pair in Q × Z, that is, it consists of a state and the value of
a counter. A transition relation → on configurations is defined as
follows: (q, z) → (q′, z′) iff (q, q′, c) ∈ δM and z′ = z + c. The
1-counter 0-reachability problem is to decide whether there exists
a state q ∈ FM such that (qM0 , 0)→∗ (q, 0). This is a special case
of the empty-stack reachability problem for pushdown automata.
While the latter is PTIME-complete, the following lemma shows
that the former is in NLOGSPACE.

Lemma 11. The 1-counter 0-reachability problem is in
NLOGSPACE.

Proof. Consider a 1-counter machine M = (QM , δM , q
M
0 , FM ).

We observe that for all q, q′ ∈ QM , if there is a path (q, 0) →∗
(q′, 0), then there is such a path with stack depth bounded by
n2. This is a consequence of a summarization-based reachability
algorithm (easily adapted from summarization-based reachability
algorithm for pushdown automata), which computes summaries
for pairs (q, q′). The iteration in which a pair (q, q′) gets added
is the minimum absolute value of counter needed to reach from
(q, 0) to (q′, 0). The number of iterations is at most the number
of summaries, that is, n2. Note that this observation holds for all
pushdown automata.

We can thus assume that the counter ranges over (−n2, n2).
State of a 1-counter machine is (q, z), where z is the value of
a counter. Therefore we need to consider only O(n3) possible
configurations. (This statement does not hold for general pushdown
automata). Thus our reachability problem is a reachability problem
in a graph with O(n3) states. The problem can be therefore solved
in space O(logn3).

Theorem 12. The streaming data-string transducer equivalence
problem is in PSPACE.

Proof. Let us consider two streaming data-string transducers S1

and S2 from Σ to Γ. They are not equivalent if there exists an input
data stringw over Σ such that one of the following three conditions
hold: (i) [[S1]](w) is defined, but [[S2]](w) is not (or vice-versa),
(ii) [[S1]](w) and [[S2]](w) are defined, but have different lengths,
(iii) [[S1]](w) and [[S2]](w) are defined and have the same lengths,
but there exists a position p such that the data strings [[S1]](w) and
[[S2]](w) differ at the position p.

We construct a 1-counter automaton and designate a state q
such that q is 0-reachable in M if and only if S1 and S2 are not
equivalent. The automaton M nondeterministically chooses which
type of difference (of the three described above) it will find. We
only describe here how M can determine that there is an input
string such that the p-th output symbol of S1 is different from the
p-th output symbol of S2. The construction for the other two cases
uses similar ideas and is simpler.

The automaton M nondeterministically simulates S1 and S2

running in parallel. It keeps track of states of S1 and S2 precisely,
but only keeps some information on the data and data string vari-
ables. Intuitively, M guesses during the course of simulation of S1

(resp. S2) where the position p in the output is, and uses its counter
to check that the guess is the same for S1 and S2.

For each data string variable, M guesses (at each step) where
the contents of the variable will appear in the output with respect
to the position p. More concretely, for each data string variable x
of both S1 and S2, M guesses which of the following categories
the variable is in: (i) left of p (Class L), (ii) center, i.e. position p



is in this string (Class C), (iii) right of p (Class R), (iv) x does not
contribute to the output (Class N).

Maintaining consistency of assignment of data string vari-
ables into these four classes is straightforward. First, consider
the case when at a particular step, S1 performs an assignment
y := (a, v1)z(b, v2) and M guesses that the contents y will ap-
pear to the left of the position p in the output of M1. To verify that
this guess is consistent with previous guesses, M checks that in
the previous step, z was in Class L. The assignment caused two
output symbols (a, v1) and (b, v2) to appear to the left of the po-
sition p, therefore M increases its counter by 2 (outputs of S2 are
taken into account by decreasing the counter rather than increas-
ing). Second, if at a particular step, S1 performs an assignment
x := (a, v1)y(b, v2)z, and M guesses that the symbol (b, v2) in
this assignment will be at the position p, then: (i) M verifies that
at the previous step, y was in Class L, and z was in Class R, (ii)
M increases its counter by two in order to simulate the fact that
S1 outputs (a, v1) and (b, v2) (as before, when simulating S2, M
decreases the counter), and (iii) M assigns x to Class C. Note that
initially, no variable is assigned to Class C, and at each step, at most
one variable is in Class C, because of the copyless assignment re-
striction. The cases when M guesses that a variable to which S1

(resp. S2) assigns is in Class R or Class N are similar.
In the remainder of the proof, we assume that the data domain

D is infinite. If it is finite, the automaton can directly store values
from D in its finite-state control, and the construction is simpler.

For data variables, M keeps track of which variable is defined,
and for the defined variables, it keeps track of the ordering and
equality information. More precisely, let us consider the follow-
ing set of variables V = (V1 \ {curr1}) ∪ (V2 \ {curr2}) ∪
{vp1, vp2, curr}, where V1 and V2 are the sets of data variables
of S1 and S2, and vp1 and vp2 are used by M to store information
about the data value S1 and S2 output at position p. The automaton
M stores a pair (V d, ρ), where V d ⊆ V that contains all of the
variables whose values are defined in computation of S1 and S2,
and ρ is an ec-order on V d. The pair (V d, ρ) is updated as steps
of S1 and S2 are simulated and their transitions are executed. Note
that M maintains only one variable curr common to M1 and M2

because the two automata are running on the same input. The fi-
nal part of the construction is the maintenance of vp1, the variable
used to store the output of S1 at position p. When M guesses that
the output symbol of S1 at position p will be one in the right-hand
side of the assignment (such as x := (a, v1)y(b, v2)z) it is simulat-
ing currently, it assigns x to Class C as above, and if it guesses that
at position p is the symbol (b, v2), then : (i) the value b from Σ is
stored in the finite state control of M , and (ii) vp1 is added to V d,
the set of defined variables, and vp1 is added to the equivalence
class of v2 in ρ. The construction for vp2 is analogous.

To summarize, a state of M consists of (1) a state of S1, (2) a
state of S2, (3) a set V d ⊆ V representing the defined variables,
(4) an ec-order ρ, (5) a partition of the data string variables of S1

and S2 to classes (as described above) and a symbol from Γ at
position p for S1 and S2 (if M guessed that the output to position
p was already performed). The set of states of M is thus a product:
Q1 ×Q2 × 2V × ρ×QB , with the components corresponding to
items (1) to (5). The initial state of M is the tuple containing initial
states of S1 and S2, with the set V d empty — all the variables
are undefined, and the component (5) has a special value i. From
this state there are nondeterministic transitions which choose the
initial assignments of data string variables to classes. The other
transitions are as described above. The set of final states consists
of states where either the variables vp1 and vp2 are defined, but ρ
does not imply vp1 = vp2 or the Γ symbols stored in the finite-
state control of M for position p in output strings of S1 and S2

differ.

We now prove that a final state of M is 0-reachable iff there
exists an input data string w and a position p, such that [[S1]](w)
and [[S2]](w) differ at position p. We will need the following notion
that relates configurations of M to configurations of S1 and S2.
Let c1 = (q1, β1) be a configuration of S1, let c2 = (q2, β2) be
a configuration of S2 and let cM = ((qM1 , qM2 , V d, ρ, qB), e) be
a configuration of M (e is the value of the counter). The configu-
ration cM is an abstraction of configurations (c1, c2) (denoted by
α((c1, c2)) = cM ) iff the following conditions hold:
• States: the states of S1 and S2 are the same in c1 and c2 as they

are in cM .
• Data variables: β1 or β2 are defined for each of the variables

in V d, and the values β1 and β2 assign to variables in V d are
consistent with ρ

• Data string variables: Let e1L be the number of symbols in the
data string variables of S1 that are assigned to Class L in QB .
Class C in QB contains by construction at most one data string
variable of S1. If Class C contains a data string variable x1 of
S1, then we can designate a position p1 in the data string in
x1. Let e1C be the number of characters to the left of p1 in x1.
The values e2L and e2C are defined analogously for S2 and a
position p2 in a data string variable x2. The following equality
is required to hold: e1L + e1C − (e2L + e2C) = e, where e is the
counter value in cM . Furthermore, let d1 be the data value at
position p1. We have that the equality and order relations that ρ
contains on vp1 and the other data variables hold for d1 and the
values of these data variables given by β1 and β2. An analogous
condition holds for the data value at position p2.

Claim 1 The automaton M can reach the configuration cM =
((q1, q2, V

d, ρ,QB), e) in k steps iff there exists an input string w
of length k, such that S1 (S2), after traversing this input, reaches a
configuration c1 (c2), and α((c1, c2)) = cM .

The claim is proven by induction on k. The more difficult part
of the proof of the claim is the left-to-right implication, where we
are required to find an input string w that satisfies the condition.
We need to find a sequence of valuations β that is the same as the
sequence of pairs (V d, ρ) given by the sequence of configurations
of M . It is here that Lemma 10 is used.

Using Claim 1, we now prove that a final state of M is 0-
reachable implies that there exists an input data string w and a
position p, such that [[S1]](w) and [[S2]](w) differ at position p.
A final state of M is a state where we do not have vp1 = vp2

or where the Γ symbols stored for positions p1 and p2 differ. By
Claim 1, this means that there is a position p1 in the output of S1

and a position p2 in the output of S2 where the data values or the
Γ symbols differ. If such a state is 0-reachable, (using Claim 1) we
get that e1L + e1C − (e2L + e2C) = 0, which implies p1 − p2 = 0,
which implies that p1 = p2. The other implication can be also
easily shown using Claim 1.

Complexity Checking whether a particular final state of M is 0-
reachable can be done in NLOGSPACE (Lemma 11). A nondeter-
ministic algorithm first guesses which final state is reachable, and
then checks its reachability in NLOGSPACE. The number of states
of the 1-counter automaton M we constructed is linear in the num-
ber of states of S1 and S2 and exponential in the number of data
string and data variables of S1 and S2. Furthermore, given two
states of M , one can decide (in polynomial time in the number
of variables), whether there is a transition between the two states.
We thus have that the streaming transducer equivalence problem is
in PSPACE.

Theorem 12 implies that checking equivalence is in PSPACE
for list-processing programs from Section 3 and list-processing



functions defined in Section 4. The reason is that the number of
data and output variables of the resulting transducer is linear in
the size of the program (more precisely, in the number of data and
reference variables of the program).

5.3 Checking pre/post conditions and assertions
Let S be a streaming data string transducer S from Σ to Γ. Let
A1 be a streaming data string acceptor on Σ, and let A2 be a
streaming data string acceptor on Γ. The triple {A1}S{A2} holds
iff for all input data strings w over Σ we have that if A1 accepts
w and [[S]](w) = w′, then A2 accepts w′. The pre/post condition
problem for SDSTs is to determine, given A1, S, and A2, whether
{A1}S{A2} holds. Pre-post condition checking is useful in the
context of verification, because we can, for example, ask whether a
transducer that takes a sorted list (with respect to an ordering on Σ)
as an input returns a sorted list (with respect to an ordering on Γ)
as an output. The upper bound in the following theorem is obtained
by reduction to the emptiness problem in nondeterministic finite
automata (NFAs).

Theorem 13. The pre/post condition problem for SDSTs is in
PSPACE.

The above definition of pre/post condition checking corre-
sponds to partial correctness. We can also check total correctness:
there is a PSPACE algorithm to check, given S,A1, andA2, is it the
case that for all input strings w accepted by A1, [[S]](w) is defined
and A2 accepts [[S]](w).

The constructions discussed so far can also be used to solve
a number of assertion checking problems for single-pass list-
processing programs.
Reachability Given a single-pass list processing program P , a

location ` of P , and a streaming data string acceptor A, is
there a data string w accepted by A such that starting from the
initial heap that stores w, there is an execution of P leading to a
configuration with location `? For this, we need to construct
the SDST corresponding to P as discussed in Section 3.4,
and simulate it on an input together with A. The complexity
is PSPACE. The same construction can be used if additional
constraints are specified on boolean and tag variables of P at
the end of the execution.

Pointer analysis Given a single-pass list processing program P ,
two pointer variables x and y, and a streaming data string
acceptor A, is there a data string w accepted by A such that
starting from the initial heap that stores w, there is an execution
of P leading to a configuration in which both x and y point to
the same heap-node? Recall that the compilation of programs
into SDSTs keeps track of such aliasing relationships, and has
the necessary information to answer such a query. We can
also check if a pointer variable r is guaranteed to be non-null
whenever it is dereferenced (using expressions such as r.next
and r.data).

Heap-cycles detection Given a single-pass list processing pro-
gram P and a streaming data string acceptor A, is there a
data string w accepted by A such that starting from the ini-
tial (acyclic) heap that stores w, there is an execution of P
leading to a configuration in which the heap contains a cycle
(formed by next-pointers of heap-nodes)? Again, the compila-
tion of programs into SDSTs keeps track of the heap shape, and
can be used to solve this problem in PSPACE.

5.4 Undecidable extensions
Two-way data string transducers A two-way (deterministic) data
string transducer (2DST) is an extension of the streaming data
string transducer model, where at each step, the transducer can
decide whether to move left or to move right or to stay put.

More precisely, a transition of a 2DST is defined by a a tuple
(q, σ, ϕ, q′, α, ζ), where q, σ, ϕ, q′ and α are as for SDSTs, and ζ
is in {←, ↓,→}. For 2DSTs, we assume that the input data string
is enclosed by two special symbols `, a. The machine stops when
it reaches a final state. If the machine never reaches a final state,
or if it tries to move left while the tag is ` or it tries to move right
when the tag is a, then the output undefined. Given a 2DST S
and a state q of S, the 2DST reachability problem is to determine
whether there exists a data string w such that S enters the state q
while processing w.

Theorem 14. The 2DST reachability problem is undecidable.

The theorem is proven by reduction from the undecidable prob-
lem of emptiness for two-counter automata. The main step of the
proof is to show that a 2DST can recognize whether the input data
string encodes a computation of a two-counter machine. The proof
uses the fact that the data domain is ordered.

Programs with multiple traversing pointers The class of imper-
ative list processing programs considered in Section 3 restricts how
next pointers of heap nodes can be traversed: there is one special
pointer variable curr, and it is the only pointer variable that can
traverse the next pointer. Now consider the class of programs, de-
noted by PMTP (short for programs with multiple traversal point-
ers), obtained by lifting this restriction, and allowing assignments
x := y.next for any two pointer variables x and y. Given a program
P from the class PMTP and a location `, the PMTP reachability
problem is to determine whether there exists a data string w such
that starting from the initial heap that storesw, there is an execution
of P leading to a configuration with location `.

Theorem 15. The PMTP reachability problem is undecidable.

The proof of the undecidability is again by a reduction from the
reachability problem for two-counter automata. The basic observa-
tion is that if multiple pointers can traverse the heap simultaneously,
the program can check whether two successive parts of the heap en-
code two successive configurations of the two-counter machine.

Data string variable equality While a number of analysis prob-
lems for SDSTs, and assertion checking problems for single-pass
list-processing programs, are decidable, checking whether the
transducer/program can reach a configuration where the contents of
two string variables are the same, is undecidable. Given an SDST
S, a state q of S, and two data string variables x and y of S, the
data string variable equality problem is to determine whether there
exists a data string w such that S reaches a configuration where
x = y and the state is q. The following theorem is proven using a
reduction from Post’s correspondence problem.

Theorem 16. The data string variable equality problem is unde-
cidable.

6. Related Work
We are not aware of any prior decidability results for checking
semantic equivalence of list processing programs, even for the
restricted case of bounded data domains.

The decidability of safety properties for programs with lists was
investigated in [7]. The negative result in [7] holds for a very re-
stricted class of programs: programs with only non-nested loops
which do not modify the list data structure. Compared to the model
of [7], we do not allow general traversal assignments of the form
x := y.next, but allow only one pointer variable curr to traverse
the next pointers of the heap nodes. We also assume that the ini-
tial heap is acyclic (but analysis algorithms can detect if cycles get
introduced during program execution). In previous work [8], we
have presented decidability results for a class of concurrent list ac-
cessing programs. The two models are different: the model in [8]



allows concurrency and nondeterminism, but is not able to capture
for example the list reversal transduction. The restrictions in [8] are
rather intricate, and that is what triggered this study in search of
a robust automata-theoretic model. Extending the streaming trans-
ducer model to capture concurrency is an interesting research di-
rection. There is an emerging literature on automata and logics over
data strings [3, 15] and algorithmic analysis of programs accessing
data strings [2]. While existing literature studies acceptors and lan-
guages of data strings, we want to handle destructive methods that
e.g. delete elements, and thus, a model of transducers is needed.

A number of automata-based techniques have been proposed
for shape analysis [4, 5] (see also [9] for a survey). In particular,
the regular model checking approach [4] employs transducers to
reason about heap-manipulating programs in the following manner.
The set of heaps feasible at a program point is represented by either
a string automaton or a tree automaton, and the transformation on
the heap due to a single statement is captured by a corresponding
transducer model. The transformation of the entire program, then,
corresponds to iterated composition of such transducers. Given a
regular initial set of heaps, the set of heaps reachable after one tran-
sition will be regular. However, regular languages are not closed
under unbounded union, so the set of all reachable heaps need not
be regular. Consider a program that given an input list w outputs
the list ww (note that data values do not play an important role in
this transduction). For such a program, the iterative fixpoint pro-
cedure to compute the set of all reachable configurations does not
terminate (in fact, the set of reachable configurations is not regular,
and cannot be represented by a finite-state automaton). However,
a streaming transducer that computes such a transduction can be
easily defined. It is important to note that our decision procedures
do not attempt to compute the set of reachable configurations (or
heap contents). The literature on regular model checking provides
several techniques for over-approximations of the set of reachable
heaps to ensure termination, such as widening [20] and specialized
abstractions using counters [6].

Analyzing programs that manipulate dynamic linked data struc-
tures is a widely studied problem commonly described as shape
analysis [19]. Proving assertions of such programs is undecid-
able [12, 18], and the bulk of the literature consists of abstraction-
based techniques for verification (see e.g. [10, 14, 17]). The core
problem these techniques focus on is computation of invariants that
often need to quantify over the nodes in the heap. Let us consider
function Delete from Section 3. If the function was called with
the parameter d, a natural postcondition is that all nodes reach-
able from result have values different from d. A quantified in-
variant needed to prove the postcondition could be automatically
computed using for example the approach described in [17]. How-
ever, we emphasize that in contrast to the sound-but-not-complete
abstraction-based methods for checking safety properties, our ap-
proach is sound and complete for a well-defined class of programs
and, in addition to checking of assertions and pre/post conditions,
we presented an algorithm for checking equivalence of programs.

7. Conclusions
We have introduced a streaming transducer model, and showed that
it can serve as a foundational model of single-pass list processing
programs. Our results lead to algorithms for checking functional
equivalence of two programs, written possibly in different pro-
gramming styles, for commonly used routines for processing lists
of data items. We are not aware of any prior decidability results for
checking semantic equivalence of list processing programs, even
for the restricted case of bounded data domains.

We also believe that the streaming transducer model introduced
in this paper is of independent theoretical interest. We have started
the investigation of expressiveness and related theoretical proper-

ties of the transducer model when the data domain is bounded.
Classical string-to-string finite-state transducers need to be “two-
way” to implement an operation such as reverse. In a subsequent
paper, we showed that the streaming string transducer model is
expressively equivalent to two-way transducers [1], and thus, to
MSO-definable string transductions [11]. Learning streaming string
transducers from input/output examples, and defining a similar
streaming transducer model for tree-structured data are potential
fruitful directions for future research.
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