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Abstract

A key challenge in program synthesis concerns how to effi-
ciently search for the desired program in the space of possi-
ble programs. We propose a general approach to accelerate
search-based program synthesis by biasing the search to-
wards likely programs. Our approach targets a standard for-
mulation, syntax-guided synthesis (SyGuS), by extending the
grammar of possible programs with a probabilistic model dic-
tating the likelihood of each program.We develop a weighted
search algorithm to efficiently enumerate programs in order
of their likelihood. We also propose a method based on trans-
fer learning that enables to effectively learn a powerful model,
called probabilistic higher order grammar, from known solu-
tions in a domain. We have implemented our approach in a
tool called Euphony and evaluate it on SyGuS benchmark
problems from a variety of domains. We show that Euphony
can learn good models using easily obtainable solutions,
and achieves significant performance gains over existing
general-purpose as well as domain-specific synthesizers.

CCS Concepts • Computing methodologies → Trans-

fer learning; • Software and its engineering→Domain

specific languages; Programming by example;

Keywords Synthesis, Domain-specific languages, Statisti-
cal methods, Transfer learning
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1 Introduction

The goal of program synthesis is to automatically synthesize
a program that satisfies a given high-level specification. A
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central challenge in program synthesis concerns how to effi-
ciently search for the desired program in the space of possible
programs. Various strategies have been proposed to address
this challenge [3, 4, 13, 17, 32]. As a result, recent years have
witnessed a surge of interest in applying this technology to
a wide range of problems, including end-user programming
[12], intelligent tutoring [27], circuit transformation [9], and
program repair [20], among many others.
Despite significant strides, however, a key limitation of

these strategies is that they do not bias the search towards
likely programs. As a result, they explore many undesirable
candidates in practice, which hinders their performance and
limits the kinds of programs they are able to synthesize.

It is well known that desired programs contain repetitive
and predictable patterns [15]. We propose a new approach
to accelerate search-based program synthesis based on this
observation. Our key insight is to learn a probabilistic model
of programs and use it to guide the search. To this end, our
approach modularly addresses two orthogonal but comple-
mentary challenges: 1) how to guide the search given a proba-
bilistic model, and 2) how to learn a good probabilistic model.
We next elaborate on each of these challenges.

To address the first challenge, we target a standard formu-
lation, syntax-guided synthesis (SyGuS) [3], that has estab-
lished various synthesis benchmarks through annual compe-
titions. SyGuS employs a context-free grammar to describe
the space of possible programs. We extend the grammar
with a probabilistic model that determines the likelihood
of each program. We reduce the problem of enumerating
programs by likelihood to the problem of enumerating target
nodes by shortest distance from a source node in an infinite
weighted graph. We solve the resulting problem efficiently
using A* search [14]. While A* is significantly faster than
other path finding algorithms, however, it requires a good
cost-estimating heuristic to guide its search. We show how
to automatically derive such a heuristic for a given grammar
and probabilistic model. Our algorithm supports awide range
of probabilistic models, including n-gram [2], probabilistic
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context-free grammar [21], probabilistic higher-order gram-
mar [6], a log-bilinear model [1], a decision tree model [28],
and a neural network [5].
To address the second challenge, we target probabilistic

higher order grammars (PHOG) [6], a powerful probabilistic
model that generalizes probabilistic context-free grammars
by allowing conditioning of each production rule beyond the
parent non-terminal. It thereby allows capturing rich con-
texts to effectively distinguish likely programs from unlikely
ones. We learn the model from known solutions of synthesis
problems that were solved by existing techniques. A direct
application, however, suffers from overfitting the model to
specifications in those synthesis problems. We propose a
novel learning method inspired by transfer learning [23, 24]
to learn the model from features of specifications. The fea-
tures are provided by a domain expert and are akin to domain
knowledge used to guide synthesis in existing techniques,
such as features of input-output examples [21] or abstract
semantics of programs [33].
We implemented our approach in a tool called Euphony

that we built atop EUSolver [4], an open-source state-of-the-
art search-based synthesizer. We evaluate Euphony on 1,167
benchmark problems from three widely applicable domains:
string manipulation (end-user programming problems), bit-
vector manipulation (efficient low-level algorithms), and cir-
cuit transformation (attack-resistant crypto circuits). For
each of these domains, we observe that it suffices to train
Euphony using easily obtainable solutions—those that can
be generated by EUSolver in under 10 minutes. These solu-
tions comprise 762 (∼ 65%) of our benchmark problems.
The trained Euphony is able to solve 236 new problems

in 11 minutes on average per problem, compared to only 87
by EUSolver using 29 minutes on average. EUSolver fails
to solve the remaining problems even after 6 hours—a conse-
quence of the fact that the search space grows exponentially
with program size, despite the use of powerful techniques
to optimize the search (see Section 3.4). We also compare
Euphony to FlashFill [12], a synthesizer tailored to the
string manipulation domain that is shipped with Microsoft
PowerShell. Euphony outperforms FlashFill on 20 out of
22 synthesis problems and is 10x faster on average. Euphony
thus provides significant performance gains that are comple-
mentary to those achieved by existing general-purpose and
domain-specific synthesizers.

We summarize the main contributions of our work:
• A general approach to accelerate search-based program
synthesis by using a probabilistic model to guide the search
towards likely programs. It targets the widely-used SyGuS
formulation and supports a wide range of models.

• Amethod based on transfer learning that enables to learn a
powerful model called probabilistic higher order grammar
(PHOG) from known solutions without overfitting.

Iter. Enumerated programs Counterex.

1 “.” “-.”
2 “.”, “-”,x︸   ︷︷   ︸

size 1

, “-” + “-”, “.” + “-”, · · · , “.” + “.”︸                                  ︷︷                                  ︸
size 3

“308-916”

3 “.”, “-”,x , · · · ,x + “.”, Rep(x , “.”, “-”), Rep(x , “-”, “.”)

Table 1. Enumeration using an unguided search.

• Implementation atop an open-source tool and evaluation
on benchmark problems from a variety of widely applica-
ble domains. The results demonstrate significant perfor-
mance gains over existing synthesis techniques.

2 Overview

We illustrate our approach on the problem of synthesizing a
certain string transformation program. The desired program
is a function f that takes as input a string denoted x and
outputs a string with each hyphen in x replaced by a dot.
We formulate this problem as an instance of the syntax-

guided synthesis (SyGuS) problem [3]. The formulation com-
prises a syntactic specification, in the form of a context-free
grammar that constrains the space of possible programs,
and a semantic specification, in the form of a logical formula
which defines a correctness condition that f must satisfy.
The syntactic specification for f is the grammar:

S → x | “-” | “.” | S + S | Rep(S, S, S) (1)
where S is the start symbol, + is the string concatenation
operator, and Rep(s, t1, t2) is a new string where each oc-
currence of substring t1 in s is replaced by string t2. The
semantic specification for f follows the programming by ex-
ample (PBE) paradigm and comprises input-output examples
given as a logical formula:1

f (“-.”) = “..” ∧ f (“308-916”) = “308.916” ∧ f (“1”) = “1” (2)
A solution to this synthesis problem is Rep(x , “-”, “.”).

We next illustrate how a typical search-based synthesizer
finds this solution using the CEGIS procedure that combines
a search algorithm with a verification oracle. It maintains
a finite set of program inputs pts that is initially empty. In
each iteration, it searches for a candidate program that is
correct on the inputs in pts, and verifies the correctness of
the program according to the given semantic specification.
If correct, it returns the program; otherwise, it adds new
counterexample inputs to pts and repeats the process. The
overall performance of this procedure depends heavily on
the search algorithm it uses to find candidate programs.

Table 1 shows an execution of a state-of-the-art such algo-
rithm [32] on our example problem. It enumerates programs
generated by the given grammar in order of size. We step
through its execution of the CEGIS iterations.

1Our approach is also applicable to SyGuS instances that use semantic
specification ∀x : ... instead of input-output examples; we evaluate it on
both kinds of synthesis problems.
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Iter. Enumerated programs Counterex.

1 x + “.” “-.”
2 x + “.”,x + “-”, · · · , Rep(x , “-”, “.”)

Table 2. Enumeration using our weighted search.

In the first iteration, the candidate program proposed is
the first program that is generated, the expression “.”, because
pts is empty. Checking the correctness of this program with
respect to specification 2 yields a counterexample input “-.”,
since the output of expression “.” on this input does not match
the desired output “..”. As a result, pts becomes {“-.”}.
In the second iteration, the algorithm first enumerates

all expressions of size 1. Since none of them are correct on
pts, it proceeds to enumerate expressions of size 3 (there
are no expressions of size 2). Finally, the algorithm reaches
the expression “.” + “.” which is correct on pts. However, it
still fails to verify and yields counterexample input “308-916”
(because the desired output is “308.916” whereas the output
is “..”). As a result, pts becomes {“-.”, “308-916”}.
In the third iteration, the algorithm eventually finds the

desired program Rep(x , “-”, “.”), which is correct on with re-
spect to the given specification.
In general, the number of programs enumerated by the

above algorithm grows exponentially in program size, de-
spite a powerful optimization to avoid enumerating unneces-
sary programs that are equivalent under inputs in pts. Our
main hypothesis is that existing search-based synthesizers
suffer this limitation because they assume that all possible
programs are equally likely. For example, “.” + “.” explored in
the second iteration above is an unlikely program.
Our main idea is to guide the search towards likely pro-

grams. We propose a weighted enumerative algorithm to
achieve this objective. Table 2 depicts an execution of this
algorithm on our example. Our algorithm is essentially the
same as the existing enumerative algorithm except that it
enumerates programs in order of likelihood instead of size.
Therefore, instead of enumerating all the smallest expres-
sions (e.g., “.”, “-”, x ), it first proposes x + “.”, which is found
only in the third iteration by the existing enumerative search.
In the next iteration, it quickly finds the solution because it
avoids enumerating many unlikely programs (e.g., “.” + “.”).

2.1 A* Search for Weighted Enumeration

The first key contribution of our approach is an efficient al-
gorithm based on A* search to enumerate programs in order
of decreasing probability. The algorithm is applicable to a
wide range of statistical program models, characterized in
Section 3. Figure 1(a) depicts one such model called PCFG
for the CFG of our synthesis problem, shown in (1). The
model takes a current non-empty sequence of terminal/non-
terminal symbols (i.e., a sentential form) and returns a prob-
ability for each production rule. For example, the probability

S
x

Repl(S,S,S)
S+S

Rep(x,"-",".")

. . .

Rep(x,”-“,S)

. . . . . .

Rep(x,"-","-")

� log2(0.001) � log2(0.72)

(a) A probabilistic program model (b) Graph of sentential forms weighted by 
the probabilistic model

Pr(S ! “.” | Rep(x, “-”, S)) = 0.72
Pr(S ! “-” | Rep(x, “-”, S)) = 0.001

· · ·

Figure 1. Graph of sentential forms derived from a PCFG.

of the production rule S → “.” is 0.72 when the current
sentential form is Rep(x , “-”, S).

Our algorithm conceptually works on a directed weighted
graph—constructed on demand—of sentential forms derived
from the given model. An example such graph for the PCFG
model above is shown in Figure 1(b). Each node of the graph
represents a sentential form that can be derived from the
start symbol S of the grammar. Each directed edge si → sj
means that si expands to sj by applying a production rule to
the leftmost non-terminal symbol in si . Each edge is asso-
ciated with a real-valued weight which is the negative log
probability of its corresponding production rule provided by
the given model. The sum of the weights on a path from S
to a goal node is the negative log probability of the corre-
sponding program. Then, enumerating programs in order
of decreasing probability corresponds to enumerating goal
nodes by shortest (weighted) distance from the source node.

A straightforward way to perform this enumeration is to
employ uniform cost search algorithms such as Dijkstra’s
algorithm. This algorithm repeatedly chooses the next node
that is at the least distance from the start node until a solu-
tion is found. Since the least-distance path is always the one
chosen for an extension, it is guaranteed to enumerate goal
nodes in order of increasing distance (i.e., decreasing proba-
bility). However, as our evaluation in Section 5 shows, uni-
form cost search performs poorly in practice by expanding
a huge number of paths before reaching the solution node.

We address this problem by employing A* search [14] in-
stead of uniform cost search. A* significantly improves upon
uniform cost search by first expanding nodes that appear to
lead to the next closest goal node. It identifies such nodes by
using not only their (known) distance from the start node but
also an estimate of their (unknown) distance to the closest
goal node. The more accurate this estimate, the smaller the
number of nodes expanded by A*, and is typically a small
fraction of that explored by uniform cost search. We show
how to obtain accurate estimates in Section 3.3.

2.2 Transfer Learning for PHOG

The second key contribution is a new learning method based
on a state-of-the-art probabilistic model called probabilis-
tic higher-order grammar (PHOG) [6]. Figure 2(a) depicts
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S

Rep(x,"-",".")

. . .

Rep(x,"-",S)

Rep(x,"-","-")

(1)

(2) (3)
� log2(0.001) � log2(0.72)

x

Rep

"-"

(c) AST and                    which is symbols
at left sibling and parent

A[context] ! �

(a) PHOG when                is symbols
at left sibling and parent

P
S[“-”, Rep] ! “.” 0.72
S[“-”, Rep] ! “-” 0.001
S[“-”, Rep] ! x 0.12
S[“-”, Rep] ! S + S 0.02

· · ·

context

S

P
S[“.”, Rep] ! “.” 0.001
S[“.”, Rep] ! “-” 0.002
S[“.”, Rep] ! x 0.01
S[“.”, Rep] ! S + S 0.19

· · ·

(b) Graph of sentential forms weighted
by PHOG

context

Figure 2. Graph of sentential forms derived from a PHOG.

a PHOG for the original CFG. It allows the non-terminal
symbol on the left side of each production rule to be pa-
rameterized by a context that captures contextual informa-
tion around a production position. The context is a list of
terminal/non-terminal symbols that can be collected from
the abstract syntax tree (AST) of a sentential form.

A PHOG can be learned from known solutions of synthesis
problems that were solved by existing techniques. In this
example, we assume that a learner (detailed in Section 4)
infers that the symbols at the left sibling and the parent of
a production position provide meaningful information. In
Figure 2(c), arrows ↗ show the movement over the AST
that leads to computing the context. The obtained context
is [“-”, Rep], and the probability of the production rule S →

“.” is 0.72. Therefore, the edge from (1) to (3) has weight
− log2(0.72) = 0.47. Under that same context, the probability
of the production rule S → “-” is 0.01. Therefore, the edge
from (1) to (2) has weight − log2(0.001) = 9.97. Note that
now we avoid enumerating node (2) because the solution
node (3) is explored first as it is closer to the start node.

However, blindly using PHOGs for guiding synthesis hin-
ders their performance, because of the problem of overfitting.
Consider another synthesis problem of finding a function f
following a semantic specification comprising input-output
examples as follows:

f (“12.31”) = “12-31” ∧ f (“01.07”) = “01-07”. (3)

The syntactic specification is the same as before. Suppose
we use the PHOG in Figure 2(b) to guide the search towards
the desired solution: Rep(x , “.”, “-”), which is the inverse of
the previous solution Rep(x , “-”, “.”). Let us assume that we
are in the middle of the search, and a current sentential form
Rep(x , “.”, S). We explain how we encounter overfitting in
this situation. Note that the context is [“.”, Rep], the symbols
at the left sibling and the parent of the non-terminal symbol
S , respectively. To reach the solution, the production rule
S → “-” should be applied to the current sentential form.
However, since the probability of the rule conditioned by

(b) A pivot PHOG learned using
the pivot grammar  

(a) A pivot grammar for string 
manipulation tasks

A[context#] ! �#

S ! x | S + S

| Rep(S, S, S)

| constIO | constI

| constO | const?

P
S[constO, Rep] ! constO 0.001
S[constO, Rep] ! constI 0.002
S[constO, Rep] ! x 0.01
S[constO, Rep] ! S + S 0.19

· · ·

P
S[constI , Rep] ! constO 0.72
S[constI , Rep] ! constI 0.001
S[constI , Rep] ! x 0.12
S[constI , Rep] ! S + S 0.02

· · ·

Figure 3. PHOG learned using our transfer learning method.

the context is small (P(S[“.”, Rep] → “-”) = 0.002) compared
to the other rules, the search will not be guided toward it.

To solve this problem,we introduce a new learningmethod
inspired by transfer learning [23, 24], that enables PHOGs to
generalize well across synthesis problems whose solutions
have different probability distributions. Our key idea is to
design a feature map that transforms sentences both in the
training and testing data into a common feature space. In
this example, we assume a feature map that transforms the
original constant symbols into featured terminal symbols
representing certain types of constant strings. Let I andO be
sets of strings that appear as input examples and output ex-
amples in the semantic specification, respectively. Consider
the following categories of all possible constant strings:
• constIO represents the set of substrings of all the strings
in I ∩O

• constI represents the set of substrings of the strings in I
• constO represents the set of substrings of the strings inO
• const⊥ represents all the remaining strings.
In the training phase, we learn a PHOG of a pivot gram-

mar that uses the above symbols instead of the constant
strings. The pivot grammar is depicted in Figure 3(a). In
contrast to learning the previous PHOG that only requires
the syntax of solutions of other existing synthesis problems,
we need semantic specifications as well for training. Using
a corresponding semantic specification, each existing so-
lution can be transformed into one in which the original
constant symbols are replaced with the above symbols. For
example, the solution Rep(x , “-”, “.”) can be transformed into
Rep(x , constI , constO ) since “-” and “.” appear in the input
and output examples depicted in (2), respectively. Using the
transformed programs, we learn a PHOG depicted in Fig-
ure 3(b), which we call a pivot PHOG.
Returning to the overfitting problem, we can guide the

search appropriately using the pivot PHOG. The current sen-
tential form Rep(x , “.”, S) is transformed into Rep(x , constI , S)
since the string “.” appears in the input examples in (3).
The context, comprising symbols at the left sibling and par-
ent of S in the AST of the transformed sentential form, is
[constI , Rep]. Now the probability of the production rule
S → “-” is assigned the probability of S[constI , Rep] →
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constO since “-” appears in the output examples. Now that
the assigned probability is higher than that of the other pro-
duction rules, the search is guided toward the solution.
The rest of the paper is organized as follows. Section 3

presents our weighted search algorithm. Section 4 describes
how a PHOG is learned from training data. Section 5 presents
our experimental results. Section 6 discusses related work
and Section 7 concludes. Proofs of all stated theorems are
provided in the Appendix.

3 Weighted Search Algorithm

In this section, we describe our weighted search algorithm
based on A* search. We first formulate our problem of guid-
ing search-based synthesis using the CEGIS procedure with
a probabilistic program model. We then present a basic algo-
rithm that prioritizes likely solution candidates. Lastly, we
extend it with two orthogonal optimizations that are widely
used by existing search strategies.

3.1 Preliminaries

Context-free Grammar. A context-free grammar G is a
quadruple ⟨N , Σ,R, S⟩ where N is a finite set of nonterminal
symbols, Σ is a finite set of terminal symbols, R is a finite
subset of N × (N ∪ Σ)∗ where each member (A, β) is called a
production and is written asA → β , and S is the start symbol
in N . A sequence of non-terminal and terminal symbols in
(N ∪ Σ)∗ is called a sentential form. Throughout the paper,
for brevity, we only consider leftmost derivations, that is,
derivations in which productions are always applied to the
leftmost non-terminal symbol. Furthermore, we assume the
grammar is unambiguous in the sense that for all sentences,
there exists a unique leftmost derivation.

Syntax-Guided Synthesis. The syntax-guided synthesis
problem [3] is to find a program P that implements a de-
sired specification Φ. Programs are written in a language P
described by a context-free grammarG , and specification in a
decidable theory T . We assign a deterministic semantics JPK
to each program P ∈ P = L(G). A specification is a formula
Φ(x , JPK (x)) in theory T that relates program inputs to out-
puts. Given a specificationΦ, the program synthesis task is to
find a program P ∈ P such that the formula ∀x .Φ(x , JPK (x))
is valid modulo T .

3.2 CEGIS with Guided Search

Our synthesis problem is the same as the syntax-guided
synthesis problem except that a statistical program model is
given instead of a CFG, which is defined as follows.

Statistical Program Model. A statistical program model
Gq = ⟨G,C,p,q⟩ of a context-free grammarG is a probability
distribution over programs in a language generated by G
where C is a finite conditioning set, p is a function of type
(N ∪ Σ)∗ → C , and q : R × C → R+ scores rules such
that they form a probability distribution, i.e., ∀A ∈ N , c ∈

Algorithm 1 CEGIS with Guided Search
Function cegis(Gq ,Φ)

1: pts := ∅

2: repeat
3: P := weighted_search(Gq ,pts,Φ)
4: cex := verify(P ,Φ)
5: if cex = ⊥ then

6: return P
7: end if

8: pts := pts ∪ {cex}
9: until false

C .
∑

A→β ∈R q(A → β | c) = 1. In other words, the context
can be computed by applying the function p on a current
sentential form, and it allows conditioning the expansion of
a next production rule associated with a probability.

The function q allows assessing the probability of a given
program. Suppose G is unambiguous and S(= s0) ⇒ s1 ⇒

· · · ⇒ P(= sn) is a unique derivation of a program P where
r0, · · · , rn−1 are the rules applied at each step. Then, the
probability of a program P under a statistical program model
Gq is defined to be Pr (Gq , P) =

∏n−1
i=0 q(ri | p(si )). This form

of probabilistic models is general enough to capture various
statistical program models such as n-grams [2], PCFG [21],
PHOG [6], and a neural network-based model [5].
Algorithm 1 depicts the CEGIS procedure with a slight

difference. Instead of a CFG, the algorithm takes a statistical
program model Gq , which is used to guide the search. In
each iteration, the algorithm calls the weighted_search
procedure which returns the next element correct on pts

from P (line 3). Then the result expression P is verified by
the verify procedure (line 4). If the expression P satisfies the
specification Φ, it is returned (line 6). Otherwise, a counterex-
ample input point cex (i.e., an input on which P is incorrect)
is picked and added to the set of points pts (line 8), and the
process is repeated.
Let σ be a (possibly infinite) sequence of candidate solu-

tions generated byweighted_search at each iteration, and
ptsi the set of inputs in the i-th iteration.weighted_search
should satisfy three criteria:
• Prioritization : ∀i ≤ j . Pr (Gq ,σi ) ≥ Pr (Gq ,σj ).
• Correctness : ∀i . ∀x ∈ ptsi . Φ(x , Jσi K (x))
• Completeness : ∃P ∈ P. ∀x . Φ(x , JPK (x)) =⇒ ∀x . Φ(x , Jσ⊣K (x)).
where σ⊣ denotes the last element of σ . In other words, a
desirable procedure should generate candidates in order of
likelihood and eventually find a solution if one exists.

3.3 Weighted Enumerative Search

In this section, we present an instance of the abstract pro-
cedure weighted_search used in Algorithm 1. We call the
instance weighted enumerative search. Let us begin by in-
troducing necessary notations.
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3.3.1 Notations

A weighted directed graph consists of a set of vertices and a
set of edges with real-valued weights. An edge from p to q
with a label X is denoted p

X
→ q. A path p

Y
⇝ q is a sequence

of vertices and edges leading from p to q with a sequence
Y of labels on the edges. Each edge has the associated cost.
Letters A,B denote non-terminal symbols, letters a,b denote
terminal symbols, and letters α , β denote sentential forms.
Our weighted enumerative algorithm operates on a weighted
directed graph of sentential forms defined as follows:

Definition 3.1 (DerivationGraph of Sentential Forms). Given
a statistical program model Gq = ⟨G,C,p,q⟩ where G =
⟨N , Σ, S,R⟩, a graph G(Gq) is a weighted directed labeled
graph ⟨N , E⟩ where N ⊆ (N ∪ Σ)∗, E ⊆ N × N × R, and
w : E → R+ ∪ {∞} defined as follows:

E = {αAγ
A→β
−→ αβγ | A → β ∈ R,α ∈ Σ∗, β ,γ ∈ (N ∪ Σ)∗}

w(n1
A→β
−→ n2) =

{
− log2 q(A → β | p(n1)) (q(A → β | p(n1)) , 0)
∞ (otherwise)

The graph has a start node S and (possibly) infinitely many
goal nodes, which are all the programs in P.

3.3.2 A* based Search

We use A* search [14] over the derivation graph of sentential
forms. A* is a best-first graph search algorithm. It expands
nodes that appear to lead to the next closest goal node. It iden-
tifies such nodes n by using not only their (known) distance
f (n) from the start node but also an estimateд(n) of their (un-
known) distance to the closest goal node. Using f (n)+д(n) as
the estimated least distance from the start node to the closest
goal node from n, the algorithm repeatedly chooses the next
node n′ whose f (n′) + д(n′) is minimum. It always finds the
shortest path from the start node to a goal node when such
a path exists if д(n) never overestimates the actual distance
д∗(n) to the closest goal node, i.e., д(n) ≤ д∗(n). The function
д is called the heuristic function.

Algorithm 2 depicts our algorithm. Not only the inputs
required by the abstract procedure weighted_search, but
also a heuristic function д is provided as input to the algo-
rithm. For a given statistical program model, the heuristic
function can be automatically derived once and for all, and it
is used throughout the search. How to derive such a function
will be described in the following Section 3.3.3. Also, note
that the derivation graph of sentential forms is not explicitly
constructed and then traversed, but built on the fly.
We detail the algorithm next. The priority queue main-

tained throughout the search is initialized at line 1. The queue
contains triples of a sentential form n, the shortest distance
from the start node to n, and a guessed distance from n to
the closest goal node. At every iteration of the loop, most
promising sentential form n is picked from the queue (line
3). If n is a correct sentence (i.e., a program) with respect
to pts, it is returned (lines 4-5). Otherwise, we continue the

Algorithm 2 Weighted Enumerative Search
Function weighted_searche (Gq ,pts,Φ,д)

// д is a heuristic function described in Section 3.3.3.
1: Q := {(S, 0,д(S))}
2: while Q is not empty do

3: remove (n, cf , cд) whose cf + cд is minimal from Q .
4: if n ∈ Σ∗ ∧ ∀x ∈ pts. Φ(x , JnK (x)) then
5: return n
6: end if

7: for all n′ s.t. n
r
→ n′ do

8: insert (n′, cf +w(n
r
→ n′),д(n′)) into Q

9: end for

10: for all ⟨(n, cf , cд), (n
′, c ′f , c

′
д)⟩ ∈ Q ×Q do

11: if n ≈pts n
′ ∧ cf + cд > c ′f + c

′
д then

12: remove (n, cf , cд) from Q
13: end if

14: end for

15: end while

search. The neighborhoods of n are expanded and added into
the queue and the distances are updated (lines 7-9). As an
optimization that will be described in Section 3.4, we remove
redundant sentential forms from the queue by applying the
notion of equivalence classes of sentential forms to abstract
the search space (lines 10-14).
In the rest of this section, we explain how to obtain the

functionд and how to apply the notion of equivalence classes.

3.3.3 Heuristic Function

Ideally, we can achieve the best performance (in terms of
expanded nodes) if we use the exact distance д∗(n) for each
node n, formally: д∗(n) = min

s ∈Σ∗,n
r
⇝s

w(n
r
⇝ s) where

w(n
r
⇝ s) is the sum of the weights associated with the

edges on the path n
r
⇝ s . However, it is infeasible to com-

pute д∗(n) because there are possibly infinitely many goal
nodes reachable from n and we cannot evaluate all of them.
Instead, we use an underapproximation д of д∗. Intuitively,
we compute guessed future distances without considering
contexts that will condition future productions. The function
д is defined as:

д(n) =

{
0 (n ∈ Σ∗)

−
∑

ni ∈N
log2 h(ni ) (otherwise)

where ni refers to the i-th symbol in the sentential form
n. If a given node is a sentence, then д returns 0 because
we have already reached a goal node. Otherwise, for each
non-terminal symbol in n, we compute a guessed distance
to the closest goal node reachable from n using a function
h, and then we sum up the computed values. For a non-
terminal symbol A ∈ N , h(A) refers to an upper bound of
the probabilities of expressions that can be derived from A.
For all A ∈ N , h(A) should satisfy the following:
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∀A ∈ N . h(A) = max
A→β ∈R,c ∈C

(
q(A → β | c) ×

∏
βi ∈N

h(βi )

)
.

The functionh can be obtained by the following steps: i) start
with h(A) = 0 for allA ∈ N ; ii) repeatedly update h using the
above equation until saturation. Note that i) the conditioning
set C should be finite to do the above fixpoint computation,
and ii) we can arbitrarily choose any non-terminal at each
iteration. After a finite number of iterations, the estimate h
always converges.

Example 3.2. Consider the following PCFG in which each
production rule is associated with a probability.

S → aSb (0.9) S → c (0.1)

where a,b, and c are terminal symbols. At the beginning, h(S)
is set to be 0. At the 1st iteration, h(S) = max(0.9× 0, 0.1) =
0.1. At the 2nd iteration, h(S) = max(0.9 × 0.1, 0.1) = 0.1. It
converges in two iterations.

To conclude, our heuristic function д always underesti-
mates the exact future distances.

Theorem 3.3. ∀n ∈ (N ∪ Σ)∗. д(n) ≤ д∗(n).

3.4 Optimizations

In this section, we illustrate how to incorporate two pow-
erful orthogonal optimization techniques employed by the
existing search strategies into the basic algorithm.

3.4.1 Pruning with Equivalence Classes

We further improve the search efficiency via the notion of the
equivalence class of sentential forms, which is an extended
notion of the equivalence classes of programs used in the
existing enumerative search strategy.

Definition 3.4 (Equivalence of sentential forms). For a given
derivation graph of sentential formsG(Gq) and a set of inputs
pts, two sentential forms ni ,nj ∈ (N ∪ Σ)∗ are equivalent
modulo pts (denoted ni ∼pts nj ) if all pairs of programs
(Pi , Pj ) derivable from ni and n J respectively have the same
input-output behavior with respect to pts, formally:

∀Pi , Pj ∈ P,x ∈ pts. ni
r
⇝ Pi ∧ nj

r
⇝ Pj =⇒ JPi K (x) =

q
Pj

y
(x).

Computing the above equivalence relation is infeasible
in general because there may be infinitely many programs
reachable from given sentential forms. We instead use the
following relation.

Definition 3.5 (Weak equivalence of sentential forms). For
a given graph of sentential forms G(Gq) and a set of inputs
pts, two sentential forms ni ,nj ∈ (N ∪ Σ)∗ are equivalent
modulo pts (denoted ni ≈pts nj ) iff ni = nj or

∃Pi , Pj ∈ P. Pi < ni , Pj < nj ,∀x ∈ pts. JPiK (x) = JPjK (x)
ni [Pi/ϵ] ≈pts nj [Pj/ϵ]

where < denotes the subsequence relation.

Example 3.6. Consider the second CEGIS iteration of the
weighted enumeration described in Table 2 where pts =

{“-.”}. Supposewe have two sentential formsn1 = (“-”+“.”)+S
and n2 = x + S along with their costs in the priority queue
during the search. Then, n1 ≈pts n2 holds and we can remove
either n1 or n2 from the priority queue for the following
reason. Let P1 = (“-” + “.”) and P2 = x . Then, P1 < n1 and
P2 < n2. In addition, JP1K (“-.”) = JP2K (“-.”) = “-.”. Also,
n1[P1/ϵ] ≈pts n2[P2/ϵ] because n1[P1/ϵ] = n2[P2/ϵ] = +S .
Therefore, n1 ≈pts n2.

The relation is sound in the following sense.

Theorem 3.7. ∀pts. ni ≈pts nj =⇒ ni ∼pts nj

We detail the lines 10-14 in Algorithm 2. We group multi-
ple sentential forms together to abstract search space. For
each equivalence class, only a representative that has the
highest probability is maintained in the queue (line 11). If
any two sentential forms n and n′ are equivalent, we remove
one of the smaller scores from the queue to avoid exploring
all paths reachable from that node. In the implementation,
in order to save computation, we maintain a map that keeps
track of the representatives of equivalence. This map let us
avoiding redundant comparisons between sentential forms.

Theorem 3.8. For a given synthesis problem, assuming P
is finite, weighted_searche generates a sequence of candi-
date programs satisfying the prioritization, correctness, and
completeness properties.

3.4.2 Divide-and-Conquer Enumeration

We can further improve the search efficiency by adopting
the divide-and-conquer enumerative approach [4] when we
aim to synthesize programs with conditionals. This approach
allows synthesizing large conditional expressions. The idea
is to find different expressions that work for different subsets
of the inputs, and unify them into a solution that works for
all inputs. The sub-expressions are found using enumera-
tion techniques and are then unified into a program using
techniques for decision tree learning.

The algorithm enumerates terms and predicates separately
and unifies them into a single large conditional expression.
For example, in the if-then-else expression ite(x ≤ y,y,x),
the terms are x and y, and the predicate is x ≤ y. To this end,
the algorithm initially automatically decomposes a given
context-free grammar G into a pair of grammars ⟨GT ,GP ⟩

where (a) the term grammar GT is a grammar generating
terms of type of target program; and (b) the predicate gram-
mar GP is a grammar generating boolean terms. We refer
the reader to [4] for more details.
Our weighted enumeration with the divide-and-conquer

strategy is described in Algorithm 3. It takes two statistical
programmodels: the termmodelGT

q and the predicate model
GP
q , and the two heuristic functions based on those grammars,

respectively. That means we need to train two statistical
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Algorithm 3 Weighted Enumerative Search with Divide-and-
Conquer Strategy

Function weighted_searcheu (GT
q ,G

P
q ,pts,Φ,д

T ,дP )

// дT and дP are the heuristic functions.
1: ⟨T, P⟩ := ⟨∅, ∅⟩

2: repeat
3: for all pt ∈ pts do

4: T := T ∪ {weighted_searche (GT
q , {pt},Φ,д

T )}

5: end for

6: P := P ∪ {weighted_searche (GP
q , ∅,Φ,д

P )}

7: e := LearnDT(T, P,pts)
8: until e , ⊥

9: return e

models separately using the two grammars. Those models
guide the search for terms and predicates, respectively. To
simultaneously enumerate both terms and predicates, the
algorithm maintains a set of terms (T) and a set of predicates
(P) that are enumerated so far. Initially, they are empty sets
(line 1). In this algorithm, we use the weighted enumerative
search described in Section 3.3. In lines 3-5, we enumerate
terms in order of likelihood by invokingweighted_searche .
Then we generate a predicate at line 6. Using the generated
terms and predicates so far, the algorithm tries to learn a
decision tree at line 7 as described in [4]. We find a solution
if the function LearnDT finds a condition expression using
the terms and predicates. Otherwise, the whole process is
repeated until a correct conditional expression is found.

To useweighted_searche for weighted enumerations of
terms and predicates, we slightlymodifyweighted_searche
into the form of a generator [19] (also called semi-coroutine),
so that it can yield expressions; it stores the last state when
it returns a candidate term/predicate, and resumes the exe-
cution from that point when it is invoked next time.

4 Transfer Learning for PHOGs

In this section, we introduce a new learning method to learn
PHOGs that generalize well across synthesis problemswhose
solutions have different probability distributions. We first
give preliminaries for PHOG, then present our transfer learn-
ing method, and lastly, provide actual instances of the learn-
ing method used in the experiments.

4.1 Preliminaries

Higher Order Grammar. A higher order grammar (HOG)
Ĝ is a tuple ⟨N , Σ, S,C, R̂,p⟩ where N is a set of non-terminal
symbols, Σ is a set of terminal symbols, C is a conditioning
set, S is the start non-terminal symbol, R̂ is a set of rules of
the form A[c] → β where A ∈ N , β ∈ (N ∪ Σ)∗, and c ∈ C .
And p is a function of type (N ∪ Σ)∗ → C .

The definition of HOG is the same as a context-free gram-
mar except that the left-hand side of a production rule is
parametrized by a context c ∈ C . The context c can be com-
puted by applying the function p on a sentential form. This

function allows the grammar to condition the expansion
of a production rule on richer information than the parent
non-terminal as in CFGs.

Probabilistic HOG. A probabilistic higher order grammar
(PHOG) Ĝq is a tuple ⟨Ĝ,q⟩ where Ĝ = ⟨N , Σ, S,C, R̂,p⟩ is a
HOG and q : R̂ → R+ scores rules that form a probability
distribution, i.e. ∀A ∈ N , c ∈ C .

∑
A[c]→β ∈R q(A[c] → β) = 1.

4.2 Transfer Learning

We present our learning method based on transfer learn-
ing [23, 24]. Transfer learning is a useful technique when
the training and testing data are drawn from different prob-
ability distributions. In our setting, the training data and
testing data are solutions of synthesis problems of which
search space P is defined by a context-free grammar G. The
training and testing data often follow different probability
distributions because of diverse semantic specifications as
already shown in Section 2.
Transfer learning reduces the discrepancy between the

probability distributions of the training and testing data. We
find and construct a common space (other than P) where
the probability distribution of elements corresponding to the
training data is close to those of the testing data.

To this end, we design a feature map that transforms pro-
grams in P to another space in which common features of the
training and testing data are captured. The new space is also
defined by a context-free grammar called a pivot grammar.
We learn a statistical program model of the pivot grammar
that assesses the probability of a given testing instance.
Given a CFG G = ⟨N , Σ, S,R⟩ and a training set D =

{(Φ1,σ1), · · · , (Φn ,σn)} which is a set of pairs of synthesis
problems and solutions, a feature map ⟨αN ,αΣ⟩ generates
the pivot grammar G# = ⟨N #, Σ#, S#,R#⟩ and the featured
training data D# such that

N # = {αN (A) | A ∈ N }, Σ# = {αΣ(t) | t ∈ Σ}
S# = αN (S), R# = {αN (A) → α∆(β) | A → β ∈ R}
D# = {(Φ1,α∆(σ1)), · · · , (Φn ,α∆(σn ))}

where αN is the identity function,

α∆(β) =


ϵ (β = ϵ)
αN (κ1) · α∆(κ2 · · ·κ |κ |) (κ1 ∈ N )

αΣ(κ1) · α∆(κ2 · · ·κ |κ |) (κ1 ∈ Σ)

and κi denotes the i-th symbol of κ. In short, the feature
map ⟨αN ,αΣ⟩ transforms the original terminals and non-
terminals into the corresponding feature symbols (described
in the next section).

Next, we learn a pivot PHOG ⟨Ĝ#,q#⟩ from the pivot gram-
mar G# and featured training data D#:

Ĝ# = ⟨N #, Σ#, S#,C#, R̂#,p⟩

Note that the pivot grammar and pivot PHOG have the same
structures as the ordinary grammar and PHOG. Thus, learn-
ing the pivot PHOG is done by the standard learning process
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for PHOGs following the previous work [6]. The details can
be found in Appendix.

In guiding the search for a solution of a newly given syn-
thesis problem, we use the learned pivot PHOG for a statisti-
cal model. Recall that a statistical program model Gq is used
in the weighted search algorithm as described in Section 3.
We use a statistical model Gq = ⟨G,C,p,q⟩ derived from
the pivot grammar Ĝ# where C ⊆ (N ∪ Σ)∗ and q assigns a
probability for each next possible production A → β ∈ R
given a current sentential form s as follow:

q(A → β | p(s)) = η × q#(A[α∆(p(s))] → αΣ(β)).

where η ∈ [0, 1] is a coefficient for making the sum of the
probabilities 1. The rules instantiated from the same fea-
tured rule are assigned the same probability. This probability
assignment is for making program sentences equivalent mod-
ulo the feature map equally likely.

4.3 Instances

We next describe three instances of feature maps used in
our experiments. Similar to recent synthesis works that use
manually designed abstract semantics [33], domain-specific
languages [5], or clues [21], designing a pivot grammar for a
new synthesis task needs domain knowledge. We conjecture
that the principle behind our feature maps can be reused for
other synthesis tasks. For example, the feature maps for the
bit-vector and circuit tasks share the same idea that is also a
part of the pivot grammar for the string tasks.

Bit-vector manipulation tasks. Figure 4 shows the gram-
mar used in our bit-vector manipulation tasks. Parameter
variables can have bit-vector values. We transform terminal
symbols corresponding to parameter variables into a single
feature terminal symbol param⋆. This transformation en-
ables PHOGs to capture the features for various solutions
that have a different number of parameter variables. Let V
be the set of all possible names for parameters. We define
the feature map as follows:

Σ# = Σ\V ∪ {param⋆}, αΣ(s) =

{
param⋆ (s ∈ V)
s (otherwise)

Circuit manipulation tasks. Figure 5 shows the grammar
used in our benchmarks in the circuit manipulation tasks.
We used a similar transformation as the one used for the bit-
vector domain, i.e., we merge boolean parameter variables
into the featured terminal symbol param⋆.

String manipulation tasks. Figure 6 shows the grammar
used in our benchmarks in the string domain. Parameter
variables can have either of string, integer, or boolean values.
We transform terminal symbols corresponding to parame-
ter variables to handle solutions having different parameter
variables. Let VS,VZ and VB be the set of all possible names
of parameter variables of string, integer, and boolean types.
In addition, we also transform terminal symbols of string
constants. As shown in Section 2, this transformation is for

Start symbol S → NZ
Bitvector expr NZ → VarZ | ConstZ | NZ Bop NZ

| −NZ | Ite NB NZ NZ
Binary op Bop → + | − | & | ∥ | × | / |<< | >> | mod

Bitvector param VarZ → param1 | · · · | paramn
Bitvector const ConstZ → · · ·

Boolean expr NB → true | false
| NZ = NZ | NB ∧ NB | NB ∨ NB | ¬NB

Figure 4. The grammar for the bitvector domain.

Start symbol S → D1
Gates at depth 1 D1 → D2 ∧ D2 | D2 ∨ D2 | D2 ⊕ D2 | ¬D2
Gates at depth 2 D2 → D3 ∧ D3 | D3 ∨ D3 | D3 ⊕ D3 | ¬D3

· · ·

Gates at depth n Dn → VarB
Boolean param VarB → param1 | · · · | paramn

Figure 5. The grammar for the circuit domain.

Start symbol S → NS | NZ | NB
String expr NS → VarS | ConstS | ConCat(NS, NS)

| Rep(NS, NS, NS) | StrAt(NS, NZ)
| SubStr(NS, NZ, NZ) | IntToStr(NZ)
| IteNB NS NS

String param VarS → · · ·

String const ConstS → · · ·

Integer expr NZ → VarZ | ConstZ | NZ + NZ | NZ − NZ
| Length(NS) | StrToInt(NS)
| StrPos(NS, NS, NZ)

Integer param VarS → · · ·

Integer const ConstZ → · · ·

Boolean expr NB → VarB | true | false | NZ = NZ
| PrefixOf(NS, NS) | SuffixOf(NS, NS)
| Contains(NS, NS)

Boolean param VarB → · · ·

Figure 6. The grammar for the string domain.

dealing with string constants in the context of the input-
output specification to avoid overfitting. Let Φ be a specifica-
tion which is a set of input-output examples and I and O be
string constants appearing in the input and output examples,
respectively. We define the following sets of strings.

SIO = {s ∈S | ∃s ′ ∈ I ∩O . s ⪯ s ′} SI = {s ∈S | ∃s ′ ∈ I . s ⪯ s ′}
S⊥ = {s ∈S | �s ′ ∈ I ∪O . s ⪯ s ′} SO = {s ∈S | ∃s ′ ∈O . s ⪯ s ′}

where S is the set of all strings and ⪯ is the subsequence
relation. We represent constant strings using four symbols
constIO , constI , constO and const⊥ to denote strings be-
longing to the above four sets, respectively.

Putting it all together, we define the abstraction as follows:

Σ# = Σ\(
⋃

⋄∈{S,Z,B} V⋄) ∪ {param⋄ | ⋄ ∈ {S,Z,B}}

\(
⋃

⋄∈{IO, I,O,⊥} S⋄) ∪ {const⋄ | ⋄ ∈ {IO, I ,O,⊥}}

αΣ(s) =


param⋄ (s ∈ V⋄,⋄ ∈ {S,Z,B})
const⋄ (s ∈ S⋄,⋄ ∈ {IO, I ,O,⊥})
s (otherwise).
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5 Evaluation

Wehave implemented our approach in a tool calledEuphony2
that we built atop EUSolver [4], an open-source search-
based synthesizer. Euphony consists of 15,416 lines of Python
code and 4,375 lines of C++ code. Our tool is available for
download at https://github.com/wslee/euphony.
We evaluate Euphony on synthesis tasks collected from

the SyGuS competition benchmarks and online forums. Our
evaluation aims to answer the following questions:

Q1: How does Euphony perform on synthesis tasks from
a variety of different application domains?

Q2: How effective are the probabilistic models learnt by
Euphony from easily obtainable solutions?

Q3: How does Euphony compare with existing general-
purpose and domain-specific synthesis techniques?

Q4: What is the benefit of contextual information and dis-
tance estimation for guiding synthesis in Euphony?

All of our experiments were conducted on Linux machines
with AMD Opteron 3.2GHz CPUs and 128G of memory.

5.1 Experimental Setup

Synthesis Tasks. We chose synthesis tasks from three dif-
ferent application domains: i) string manipulation (String),
ii) bit-vector manipulation (BitVec), and iii) circuit trans-
formation (Circuit). We chose these domains based on the
following criteria:
• Diversity. These domains exercise different logics sup-
ported by synthesis solvers, i.e. SMT theories of strings,
bit-vectors, and SAT, respectively.

• Number of Problems. Since Euphony learns and applies a
probabilistic model within a domain, we require a suffi-
cient number of problem instances in the domain (> 200)
for training and testing purposes.

• Difficulty. Each of these domains contains unsolved prob-
lem instances using existing solvers such as EUSolver.

Benchmarks. We collected all benchmarks from the 2017
SyGuS competition [31] in the above domains.We augmented
the string-manipulation tasks with popular online forums
for programming tasks, Stackoverflow [30] and Exceljet [10]
because of the shortage of SyGus benchmarks.

The String benchmarks comprise 205 tasks, including all
108 from the SyGuS competition, 37 queries by spreadsheet
users in StackOverflow, and 60 articles about Excel program-
ming in Exceljet. All benchmarks correspond to common
data manipulation tasks faced by spreadsheet users. The
grammar we used for this domain is shown in Figure 6, and
the specification comprises between 2 to 400 examples.

2Our solver is a successor of the tool with the same name that participated
in the 2017 SyGuS competition [31]. The competition version did not use
transfer learning (described in Section 4) and suffered from overfitting.

The Bitvec benchmarks comprise 750 problems from
the SyGuS competition. These problems concern finding pro-
grams equivalent to randomly generated bit-manipulating
programs from input-output examples. The benchmarks are
motivated by problems in program deobfuscation [17]. The
grammar we used for this domain is shown in Figure 4, and
the specification comprises between 10 to 1000 examples.
The Circuit benchmarks comprise 212 problems from

the SyGuS competition. Each problem is, given a circuitC , to
synthesize a constant-time circuit C ′ (i.e. cryptographically
resilient to timing attacks) that is functionally equivalent toC .
The benchmarks are motivated by attacks on cryptographic
modules in embedded systems. The grammar we used for
this domain is shown in Figure 5, and the specification is a
boolean formula expressing the functional equivalence.

Baseline Solvers. We compare Euphony to existing synthe-
sis tools. For all of the three domains, we compare with a
general-purpose tool, EUSolver, which is the winner of the
general track in the 2017 SyGuS competition. It uses search-
based synthesis, namely, the divide-and-conquer enumer-
ation strategy. We also compare Euphony with a domain-
specific synthesis tool FlashFill [12] for the String domain.

5.2 Effectiveness of Euphony

We evaluate Euphony on synthesis problems from all three
domains and compare it with EUSolver. We wish to deter-
mine whether Euphony can learn a statistical model by train-
ing on solutions of easy problems (obtainable by running
existing synthesis tools) and generalize it to solve harder
problems. For each domain, we use all problems that the
baseline tool EUSolver could solve within 10 minutes each
as the training set, and we train the model for that domain
using the solutions found by EUSolver. We use all the re-
maining problems in the domain as testing instances.3 For
each such instance, wemeasure the running time of Euphony
and the size of the synthesized program, using a timeout of
one hour. We also assess the difficulty of each such instance
by measuring the running time of EUSolver on the instance,
using the same timeout limit of one hour.
The results are summarized in Table 3. Euphony is able

to solve 236 out of 405 problems from the three domains
cumulatively, with average and median times of 11m and 2m.
On the other hand, EUSolver is able to solve only 87 of the
problems, with average and median times of 29m and 26m.
We next study the results for each domain in detail.

Result for String. Out of 82 problems, Euphony could
solve 27 problems, with average and median times of 6m

3We used solutions found by an existing solver instead of hand-written
solutions in order to demonstrate a usage scenario in which Euphony could
be readily applicable. However, we can also use hand-written solutions in
settings where such solutions are available.

https://github.com/wslee/euphony
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# Benchmark Problems # Solved Problems Time (Average) Time (Median)
Domain Total Training Testing Euphony EUSolver Euphony EUSolver Euphony EUSolver
String 205 123 82 27 22 5m 42s 30m 4s 3s 26m 58s
Bitvec 750 461 289 191 51 11m 13s 30m 5s 2m 21s 28m 0s
Circuit 212 178 34 18 14 14m 5s 25m 30s 17m 25s 19m 9s
Overall 1,167 762 405 236 87 10m 48s 29m 20s 1m 48s 26m 34s

Table 3. Main result comparing the performance of Euphony and EUSolver. The timeout for both solvers is set to one hour.

Euphony EUSolver
Benchmark |E | |P | Time |P | Time

exceljet1 3 10 < 1s 10 16m 6s
exceljet2 3 15 57m 53s – > 1h
exceljet3 4 15 1m 40s – > 1h
exceljet4 4 14 1m 40s – > 1h
stackoverflow1 3 10 1s 9 14m 7s
stackoverflow2 2 17 22m 8s – > 1h
stackoverflow3 3 15 27s 10 18m 19s
stackoverflow4 3 13 19s – > 1h
stackoverflow5 2 9 1s 9 44m 55s
stackoverflow6 2 20 3m 45s 11 18m 57s
stackoverflow7 2 16 30m 18s 11 36m 46s
stackoverflow8 2 15 18s – > 1h
stackoverflow9 2 15 15s 13 22m 46s
stackoverflow10 16 14 32m 31s – > 1h
stackoverflow11 3 15 3m 52s – > 1h
phone-5 7 11 1s 9 34m 16s
phone-5-long 100 11 < 1s 9 24m 57s
phone-5-long-repeat 400 11 1s 9 24m 1s
phone-5-short 7 11 < 1s 9 58m 13s
phone-6 7 9 1s 9 27m 22s
phone-6-long 100 9 1s 9 27m 52s
phone-6-long-repeat 400 9 1s 9 23m 22s
phone-6-short 7 9 1s 9 26m 14s
phone-7 7 9 1s 9 27m 35s
phone-7-long 100 9 1s 9 27m 22s
phone-7-long-repeat 400 9 1s 9 29m 2s
phone-7-short 7 9 1s 9 27m 5s

Table 4. Euphony results for the String benchmarks, where |E |
shows the number of examples and Time gives synthesis time.
The column labeled |P | shows the size of the synthesized program
(measured by number of AST nodes).

Euphony EUSolver
Benchmark |E | |P | Time |P | Time

100_1000 1000 14 6s 1884 40m 39s
108_1000 1000 82 4m 21s – > 1h
111_1000 1000 2130 31m 7s – >1h
146_1000 1000 2510 42m 44s 2141 51m 18s
40_100 100 570 2m 40s – > 1h
icfp_gen_10.3 25 179 1m 13s – > 1h
icfp_gen_15.13 25 66 16m 10s – > 1h
icfp_gen_15.2 59 171 26s – >1h
icfp_gen_2.20 18 158 1m 11s – > 1h
icfp_gen_3.18 120 577 16m 20s – > 1h

Table 5. Euphony results for the Bitvec benchmarks. We use the
same notation in the caption of Table 4.

and 3s. On the other hand, EUSolver could solve 22 prob-
lems, with average and median times of 30m and 27m. Ta-
ble 4 shows the detailed results on the solved problems. Ob-
serve that Euphony i) found 78% of these solutions within

a minute, ii) solved 8 problems on which EUSolver timed
out, and iii) outperformed EUSolver on all the problems.

The solution sizes of Euphony and EUSolver are similar.
The average andmedian sizes of solutions found by Euphony
are 12 and 10, and those of EUSolver are 11 and 9.

Result for Bitvec. Out of 289 problems, Euphony could
solve 191 problems, with average and median times of 12m
and 3m. On the other hand, EUSolver could solve only 51 of
those 191 problems, with average and median times of 30m
and 28m. Table 5 shows the detailed results on randomly cho-
sen 10 problems solved by Euphony, uniformly distributed
over solution sizes. Both solvers use the divide-and-conquer
strategy (described in Section 3.4) for this domain. The so-
lution size is not necessarily proportional to the difficulty.
For instance, for a specification comprising n input-output
examples, an unconvincing solution is a map from input ex-
amples to output examples using n conditionals. Therefore,
smaller solutions are better in that they are not results of
overfitting to the given input-output examples.
Interestingly, Euphony generally finds smaller solutions

than EUSolver. The average and median sizes of solutions
found by Euphony are 253 and 86, while those of EUSolver
are 1097 and 208. This size difference shows that our ap-
proach helps avoid overfitting in PBE settings by virtue of
guiding synthesis toward more likely programs.

Result for Circuit. Out of 34 problems, Euphony could
solve 18 problems, with average and median times of 14m
and 17m. On the other hand, EUSolver could solve 14 prob-
lems, with average and median times of 26m and 19m. Ta-
ble 6 shows the detailed results on the solved problems. Ob-
serve that Euphony i) solved 7 problems onwhich EUSolver
timed out, was outperformed by EUSolver on only 3 prob-
lems, and iii) solved 8 problemswithin 3mwhereasEUSolver
could not solve any in under 10m.

The solution sizes of Euphony and EUSolver are similar.
The average and median sizes of both solvers are 16 and 15.

Summary of results. Euphony is able to solve harder syn-
thesis problems compared to a state-of-the-art baseline tool
in diverse domains. Moreover, it suffices to train Euphony on
easily obtainable solutions for this purpose. The three evalu-
ated domains not only exercise different SMT theories but
also different kinds of specifications (PBE vs. logical) of the
desired programs. Finally, Euphony helps avoid overfitting
in the case of PBE specifications.
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Euphony EUSolver
Benchmark #Iter |P | Time |P | Time

CrCy_10-sbox2-D5-sIn104 15 17 37m 55s 15 29m 46s
CrCy_10-sbox2-D5-sIn14 9 15 1m 33s 14 20m 56s
CrCy_10-sbox2-D5-sIn15 9 15 1m 35s 14 21m 46s
CrCy_10-sbox2-D5-sIn80 13 16 26m 29s 14 11m 15s
CrCy_10-sbox2-D5-sIn92 13 16 31m 38s 14 14m 18s
CrCy_6-P10-D5-sIn 9 13 2m 46s 13 41m 23s
CrCy_6-P10-D5-sIn3 9 15 1m 3s – >1h
CrCy_6-P10-D7-sIn 13 15 21m 4s 15 57m 32s
CrCy_6-P10-D7-sIn3 9 15 1m 13s 15 10m 4s
CrCy_6-P10-D7-sIn5 11 17 25m 1s – >1h
CrCy_6-P10-D9-sIn 11 17 16m 26s – >1h
CrCy_6-P10-D9-sIn3 6 17 17s 17 11m 14s
CrCy_6-P10-D9-sIn5 11 19 21m 20s – >1h
CrCy_8-P12-D5-sIn1 9 13 2m 46s 13 36m 45s
CrCy_8-P12-D5-sIn3 9 15 1m 5s – >1h
CrCy_8-P12-D7-sIn1 13 15 18m 24s 15 56m 27s
CrCy_8-P12-D7-sIn5 11 17 29m 29s – >1h
CrCy_8-P12-D9-sIn1 11 17 19m 25s – >1h
Table 6. Euphony results for theCircuit benchmarks. #Iter is the
number of CEGIS iterations needed until Euphony finds a solution.
For the other columns, we use the same notation as in Table 4.

5.3 Comparison to FlashFill

We compare Euphonywith FlashFill [12], a state-of-the-art
synthesizer specialized for string manipulation tasks. Since
the FlashFill DSL is not general enough, we consider only
113 of the 205 String benchmarks. As before, we train a
model from solutions found by FlashFill within 30s, and
apply it to the remaining instances. This testing set comprises
22 instances and we use a timeout of 10m per instance.

The result is summarized in Table 7. In terms of the num-
ber of solved problems, FlashFill is better than Euphony
(Euphony timed out on 2 problemswhereas FlashFill solved
all). However, Euphony significantly outperforms FlashFill
in terms of synthesis time. Except for one problem, Euphony
is able to find solutions within 1 minute, with average and
median times of 13s and 3s. On the other hand, FlashFill
solves only 4 problems within one minute, with average and
median times of 140s and 78s.
The reason for the two unsolved problems is mainly due

to the lack of training data. Because of the limited expres-
siveness power of the FlashFill DSL, we are restricted to
a smaller number of training instances. Overall, our results
show that our approach provides significant performance
gains that are complementary to those achieved by FlashFill,
and it is promising to incorporate our approach into such
domain-specific synthesizers.

5.4 Efficacy of PHOG and A*

We now evaluate the effectiveness of design choices made
in Euphony, namely PHOG and A* search. For this purpose,
we compare the performance of four variants of Euphony,
each using a different combination of probabilistic model
(PHOG or PCFG) and search algorithm (A* or uniform). We

Benchmark Euphony FlashFill
stackoverflow12 1s 50s
exceljet5 3s 47s
dr-name-long 2s 1m 11s
firstname-long 1s 1m 4s
lastname-long 1s 58s
name-combine-2-long 34s 1m 19s
name-combine-3-long 2s 1m 19s
name-combine-4-long 1m 24s 1m 27s
name-combine-long 1s 1m 53s
phone-1-long 37s 1m 28s
phone-2-long 13s 1m 5s
phone-3-long > 10m 9m 26s

phone-4-long 1s 5m 8s
phone-5-long 3s 36s
phone-6-long 35s 1m 17s
phone-7-long 35s 1m 10s
phone-8-long 3s 1m 9s
phone-9-long > 10m 3m 53s

phone-long 2s 1m 1s
reverse-name-long 1s 1m 49s
univ_1 3s 6m 60s
univ_1_short 3s 5m 27s
Average 13s 2m 20s
Median 3s 1m 18s

Table 7. Comparison between Euphony and FlashFill. The
timeout for both solvers is set to 10 minutes.

denote these asA∗+PHOG , Uniform+PHOG ,A∗+PCFG , and
Uniform+PCFG.

Figure 8 is a cactus plot that summarizes the results for all
four variants using all the benchmark problems in our testing
set across the three domains. A∗+PHOG, Uniform+PHOG,
A∗+PCFG, and Uniform+PCFG are able to solve 236, 209,
133, 22 instances, respectively. We conclude that overall,
PHOG significantly outperforms PCFG, and A* outperforms
uniform search.

6 Related Work

We discuss related work on program synthesis techniques,
including probabilistic models, search optimizations, domain
specializations, and refutation-based techniques.

ProbabilisticModels. Recent works have demonstrated sig-
nificant performance gains in synthesizing programs in cer-
tain domains by exploiting probabilistic models [5, 21]. Deep-
Coder [5] guides the search for straight-line programs that
manipulate numbers and lists using a recurrent neural net-
work. Menon et al. [21] use probabilistic context-free gram-
mars to synthesize string-manipulating programs from ex-
amples. By targeting the SyGuS formulation, our approach
extends these performance benefits of probabilistic models
to a variety of domains, as our evaluation demonstrates.

Search Optimizations. Our approach is complementary to
existing search optimization techniques in program synthe-
sis. We already showed how our approach maintains the
optimizations in the existing enumerative search strategies
(Section 3.4). In addition, it could be combined with the idea
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of leveraging type checking for synthesis [11, 22, 26], by us-
ing our method to guide the search within the search space
pruned using type information.

Domain Specializations. Recent proposals for speeding up
synthesis exploit domain knowledge in various forms, includ-
ing abstract semantics [33], domain-specific languages [5,
8, 25], templates [16] and features of input-output exam-
ples [21].While probabilisticmodels can themselves be viewed
as a kind of domain specialization, our feature maps allow
such models to generalize well across synthesis problems
in a domain when their solutions have different probability
distributions.

Refutation Techniques. CVC4 [29] is a refutation-based
tool that also targets the SyGuS formulation. In contrast to
search-based techniques, refutation-based techniques use
an SMT solver to extracts solutions from unsatisfiability
proofs of the negated form of synthesis constraints. A tech-
nique called counterexample-guided quantifier instantiation
(CEGQI) makes finding such proofs feasible in practice. We
compared Euphony to CVC4 on all the benchmark problems
in our evaluation. Euphony solved 26x more instances and
was 4x faster than CVC4.

7 Conclusion

We presented a general approach to accelerate search-based
program synthesis by leveraging a probabilistic program
model to guide the search towards likely programs. Our

approach comprises a weighted search algorithm that is ap-
plicable to a wide range of probabilistic models. We also
proposed a method based on transfer learning that allows
a state-of-the-art probabilistic model, PHOG, to avoid over-
fitting. We demonstrated the effectiveness of the approach
on a large number of synthesis problems from a variety of
application domains. The experimental results show that our
approach outperforms existing general-purpose and domain-
specific synthesis tools.
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A Appendix

A.1 Learning PHOGs

We begin with some preliminary concepts borrowed from
[18], which will be used to describe the semantics of the
domain-specific language we use for learning. And then, we
will present the details of two steps of the learning.

A.1.1 Preliminaries

Notations. LetN∗ be a sequence of natural numbers and the
concatenation operation denoted by ·. For u,v ∈ N∗, u ⪯ v
iff there is a l ∈ N∗ such that v = u · l and u < v iff u ⪯ v ,
and u , v . Also, the i-th symbol for i ≥ 1 at u is denoted as
ui and the length of u is denoted by |u |.

Tree. For a given context-free grammar G = ⟨N , Σ,R, S⟩, t
is a tree over V = N ∪ Σ iff it is a function from Dt into V
where the Dt is a finite subset of N∗ such that i) if v ∈ Dt
and u < v , then u ∈ Dt ; ii) if u · j ∈ Dt and j ∈ N, then
∀1 ≤ i ≤ j − 1. u · i ∈ Dt . We call elements in Dt addresses of
t . If (u,α) ∈ t then we say that α is the label of the node at
the address u in t , which will be denoted as t(u) = α . A node
v in t is called a terminal node iff ∀u ∈ Dt . v ⪯̸ u. A node
v ∈ t is a non-terminal node iff v is not a terminal node. A
node whose address is ϵ is called the root node.
Let τV be the set of all trees over V = N ∪ Σ such that if

t ∈ τV and u ∈ Dt is a nonterminal node then t(u) ∈ N . That
is, nonterminal nodes must be labeled with a nonterminal
symbol. Terminal nodes may be labeled with a terminal or a
nonterminal symbol.

https://exceljet.net
https://stackoverflow.com
http://sygus.seas.upenn.edu/SyGuS-COMP2017.html
http://sygus.seas.upenn.edu/SyGuS-COMP2017.html
http://arxiv.org/abs/1710.07740
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JϵK (t, u, κ) = κ

JUp · cK (t, u, κ) =
{

JcK (t, u, κ) (u = ϵ )
JcK (t, u1 · · ·u |u |−1, κ) (o .w )

JDownFirst · cK (t, u, κ) =
{

JcK (t, u, κ) (�v ∈ Dt . u < v)
JcK (t, u · 1, κ) (o .w )

JDownLast · cK (t, u, κ) =


JcK (t, u, κ) (�v ∈ Dt . u < v)
JcK (t, u · i, κ) (o .w )

where u · i ∈ Dt , u · (i + 1) < Dt

JLeft · cK (t, u, κ) =


JcK (t, u, κ) (u |u | = 1)
JcK (t, u′, κ) (o .w )

where u′ = u1 · · ·u |u |−1 · (u |u | − 1)

JRight · cK (t, u, κ) =


JcK (t, u, κ) (u′ < Dt )

JcK (t, u′, κ) (o .w )

where u′ = u1 · · ·u |u |−1 · (u |u | + 1)

JPrevDFS · cK (t, u, κ) =


JcK (t, u, κ) (u = ν (t )1)
JcK (t, ν (t )i−1, κ) (o .w )

where u = ν (t )i
JWrite · cK (t, u, κ) = JcK (t, u, κ · t (u))

Figure 9. Semantics of TCond .
Lastly, we will denote a depth-first left-to-right traversal

order of t as ν (t).

Subtree. Let t ∈ τV and u ∈ Dt . Then, t/u is called the
subtree at u, which is defined as follows: t/u def

= {(v,α) | (u ·

v,α) ∈ t ,v ∈ N∗}.

Yield. The yield Y is a function from τV into V ∗ defined as
follows.
Y (t ) = t (ϵ ) (Dt = {ϵ })
Y (t ) = Y (t/1)Y (t/2) · · ·Y (t/j) (1, 2, · · · , j ∈ Dt ∧ j + 1 < Dt )

Y (t) is the string of the labels of the terminal nodes of t .
Using the function Y , let us assume we have a function

γ : V ∗ → τV that takes a sentential form and returns a
tree that yield the sentential form assuming the grammar is
unambiguous. For a sentential form s ∈ (N ∪ γ )∗, γ (s) = t
such that Y (t) = s .

A.1.2 Learning Steps

Recall that a PHOG is a tuple ⟨Ĝ,q⟩ and Ĝ is a HOG is a tuple
⟨N , Σ, S,C, R̂,p⟩. The function p : (N ∪ Σ)∗ → C extracts a
context from a given sentential form. The extracted context is
used to condition the production rules. The function q : R̂ →

R+ scores production rules. We first synthesize p written in
a domain-specific language (DSL) and obtain q. We define
the conditioning set C ⊆ (N ∪ Σ)∗ to be a set of sequences
of terminal/nonterminal symbols.

We learn a PHOG by doing the following steps.

Step 1: Synthesis of a DSL Program Conditioning the

Production. We use training data that consists of training
programs and their derivations. Let G = ⟨N , Σ, S,R⟩ be a
context free grammar and D = ⟨S,Q⟩ be training data
which is a pair of a set S ⊆ Σ∗ of programs and a set Q of
tree completion queries. A tree completion query is a triple
⟨t ,u, r ⟩ ∈ τV ×N∗ ×R where t is a parse tree, u is the address
of the leftmost nonterminal, and r is a production rule that

TCond → ϵ | Write TCond | MoveOp TCond

MoveOp → Up | Left | Right | DownFirst | DownLast | PrevDFS

Figure 10. Definition of TCond .

applied to the leftmost nonterminal. Using D, we synthesize
a program pbest written in a domain-specific language called
TCond described in Fig. 10. The semantics of a TCond func-
tion is of type τV ×N∗ → C . For a given tree and an address
of the leftmost nonterminal, a TCond function returns the
context that will condition the production. With pbest and a
given sentential form β , p(β) is defined as follows:

p(β) = Jpbest K (γ (β),u)

whereu is the address of the leftmost nonterminal in γ (β). In
Section A.1.3, we will describe the domain-specific language
and how to synthesize pbest .

Step 2: Derive a HOG. Once pbest is synthesized, we can
derive aHOG Ĝ which is ⟨N , Σ, S, R̂,C,p⟩where R̂ = {A[γ ] →
β | A → β ∈ R,γ ∈ C}.

Step 3: Learn a PHOG. Using the set Q of tree comple-
tion queries, we next apply pbest to every production in the
training data, obtaining a new multiset:

H (Q,pbest ) = {(c, r ) | c = Jpbest K (t ,u, ϵ), ⟨t ,u, r ⟩ ∈ Q}

The derived data set consists of a number of pairs where
each pair {(c, r )} indicates that the rule r is triggered by the
context c ∈ C . Based on this set, we can obtain the function
q using maximum likelihood estimation (MLE) training. For
each rule A → β ∈ R and all possible context γ ∈ C , we
define q(A[γ ] → β) as follows:

q(A[γ ] → β) =
|{(c, r ) ∈ H (Q,pbest ) | c = γ , r = A → β}|

|{(c, r ) ∈ H (Q,pbest ) | c = γ }|
.

Finally, Ĝq = ⟨Ĝ,q⟩ is the resulting PHOG.

A.1.3 TCond Language

The function p is represented as a sequence of a simple vari-
ant of the domain-specific language called TCond [6]. The
definition of the variant of TCond is given in Fig. 10. The
semantics of the language is defined in Fig. 9.
TCond consists of two kinds of instructions MoveOp and

WriteOp. Move instructions are for moving the current po-
sition in the tree to the parent node (Up), left sibling (Left),
right sibling (Right), first and last child (DownFirst and
DownLast), and the previous node in depth-first left-to-right
traversal order (PrevDFS). The write instruction Write ap-
pend a symbol at the currently visited node into the context
accumulated so far. TCond functions operate on a state of
type τV ×N∗ ×C meaning triples of a tree, a current address
of the production, and a context accumulated so far, and
finally returns a resulting context in C .
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Example A.1. The function we used in Fig. 2(c) is repre-
sented as Left · Write · Up · Write that collects symbols at
the left sibling and parent. Let t be the parse tree in Fig. 2
(c). The followings are evaluation steps of the TCond func-
tion to get context ; JLeft · Write · Up · WriteK (t , [3], ϵ) =
JWrite · Up · WriteK (t , [2], ϵ) = JUp · WriteK (t , [2], [“-”]) =
JWriteK (t , [], [“-”]) = JϵK (t , [], [“-” · Rep]) = [“-” · Rep].

A.1.4 Learning pbest

Given D = ⟨S,Q⟩, to obtain the best PHOG grammar, we
learn the respective TCond function by solving the following
optimization problem:

pbest = arg min
p′∈TCond

cost(D,p ′).

The cost function cost is defined as follows:

cost(D,p ′) = −
1
|S|

∑
s ∈S

log2 Pr (Ĝq , s) + Ω(p ′).

where Ĝq is the PHOG obtained by following the steps 2 and
3 described in Section A.1.2 with p ′.
We use the average log probability of the training pro-

grams because we want to learn a PHOG that makes the
probabilities of potential solutions as large as possible, so
that they can be quickly found by our search algorithms.
Ω(p) is a regularization term that penalizes too complex
TCond programs in order to avoid overfitting to the data.
We instantiate Ω(p) to be the number of TCond instructions.

Genetic Programming Search. To find pbest , we adopt a
genetic-programming like procedure as in [6]. We initially
randomly generate L TCond programs. At each iteration
of the genetic algorithm, we apply either one of the follow-
ing mutations: (i) randomly replacing one instruction with
another random instruction, (ii) removing a randomly cho-
sen instruction, and (iii) inserting a random instruction at
a random location. Also, after each iteration, we randomly
removes from the set some of the programs that score worse
than another candidate program to keep the list of candidate
programs L small. After a fixed number of iterations, we
output the best scoring program from the list.

Smoothing. To handle a common issue in learning prob-
abilistic language models called data sparseness, we use a
smoothing method called Stupid backoff [7], which is cost-
effective in practice.

A.2 Proofs of Theorems

Theorem 3.3. ∀n ∈ (N ∪ Σ)∗. д(n) ≤ д∗(n)
(Stated in Section 3.3.)

Proof. Note that д∗(n) = min
s ∈Σ∗,n

r
⇝s

∑
r ∈rw(n

r
⇝ s). We

prove the theorem by induction on the number of non-
terminal symbols in n.

Basis (|{ni ∈ N }| = 0): Trivially true as д(n) = 0 ≤ д∗(n) =
0.
Induction step: We have the following induction hypothe-
sis: for some k ∈ N, |{ni ∈ N }| = k =⇒ д(n) ≤ д∗(n).
Suppose n = γ0A0γ1A1 · · ·γkAkγk+1 where γi ∈ Σ∗ and

Ai ∈ N . Then, д(n) = −
∑k

i=0 log2 h(Ai ).
Let n′ be a sentential form derived from n by expandingA0

to a sentenceγ ′
0 ∈ Σ∗. In otherwords,n′ = γ0γ ′

0γ1A1 · · ·γkAkγk+1.
Then, д(n′) = −

∑k
i=1 log2 h(Ai ).

By the induction hypothesis, д(n′) ≤ д∗(n′). Note that

д(n) = д(n′) − log2 h(A0) and д∗(n) = д∗(n′) +w(n
A0→γ ′

0
→ n′).

Our goal is to show − log2 h(A0) ≤ w(n
A0→γ ′

0
→ n′). By the

definition of h in Section 3.3.3, h(A0) ≥ max
c ∈C

(
q(A0 → γ ′0 | c)

)
.

Therefore, − log2 h(A0) ≤ − log2 max
c∈C

(
q(A0 → γ ′

0 | c)
)
≤ w (n

A0→γ ′
0

→

n′). In conclusion, д(n) ≤ д∗(n).
■

Theorem 3.7. ∀pts. ni ≈pts nj =⇒ ni ∼pts nj
(Stated in Section 3.3.)

Proof. Straightforward from Lemma A.4 and Lemma A.6. ■

Setting. Before we go into the details of the proof, we intro-
duce our setting. We assume reduction semantics [34] (also
known as contextual semantics) of a given program P is de-
fined as follow.

JPK (x) = P ′ if and only if P[v/x] −→∗ P ′

where v is the parameter variable and the binary relation
−→⊆ P×P denotes an atomic reduction step. In other words,
for each program, we assume its semantics to be unique and
deterministic. Throughout this section, we assume all the
programs and sentential forms derived from the start symbol
S contain at most a single parameter variablev , as mentioned
in the definition of SyGuS in Section 3. Also, < denotes the
subsequence relation and a program P is called reducible iff
∃P ′ ∈ P. P −→ P ′ (denoted P reducible).

Definition A.2. A rewriting function T rewrites a given
sentential form by replacing all reducible programs in the
sentential form with their evaluation results, and is induc-
tively defined as follows:

T (n) =

{
T (n[P/JPK]) (∃P ∈ P. P < n, P reducible)
n (o.w).

Lemma A.3. ∀α , β ,γ ∈ (N ∪ Σ)∗. T (αβγ ) = T (αT (β)γ ).

Proof. Case 1 (�P ∈ P. P < β, P reducible):T (β) = β . There-
fore, it is trivial.

Case 2 (∃P ∈ P. P < β , P reducible): By the definition of
T , T (αβγ ) = T (αβγ [P ′/JP ′K]) where P ′ < αβγ , P ′ reducible.
P can be P ′ since P < β < αβγ and P reducible. Therefore,
T (αβγ ) = T (αβγ [P/JPK]), which is equivalent to T (αT (β)γ ).

■
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Lemma A.4. ni ≈pts nj =⇒ ∀v ∈ pts. T (ni [v/x]) =
T (nj [v/x]).

Proof. We prove the theorem by induction on the number
of reducible programs P in the sentential forms n′i (denoted
p(n′i )). Let ni [v/x] = n

′
i and nj [v/x] = n

′
j .

Basis (p(n′i ) = 0): By the definition of ≈pts, n′i = n
′
j . Because

∀v . T (n′i ) = n′i ,T (n′j ) = n′j , ∀v ∈ pts. T (n′i ) = T (n
′
j ).

Inductive case (p(n′i ) = k+1): We have the following induc-
tion hypothesis: for all sentential form ni such that p(ni ) = k ,
ni ≈pts nj =⇒ ∀v ∈ pts. T (ni [v/x]) = T (nj [v/x]). By the
definition of ≈pts, there exist reducible programs Pi < n′i
and Pj < n′j such that ∀v ∈ pts. JPiK (v) = JPjK (v) and
n′i [Pi/ϵ] ≈pts n

′
j [Pj/ϵ]. By the induction hypothesis and∀v ∈

pts. JPiK (v) = JPjK (v)), ∀v ∈ pts. T (n′i [Pi/JPiK (v)]) =
T (n′j [P J /JPjK (v)]). By the definition of T , ∀v ∈ pts. T (n′i ) =

T (n′j ). ■

Lemma A.5. ni
r
⇝ n′i ,T (ni )

r
⇝ n′′i =⇒ T (n′i ) = T (n

′′
i )

Proof. By induction on |r|.
Basis (|r| = 0): ni = n′i and T (ni ) = n′′i . T (n

′
i ) = T (ni )

and T (n′′i ) = T (T (n′′i )). T (T (n
′′
i )) = T (n′′i ) by Lemma A.3.

Therefore, T (n′i ) = T (n
′′
i ).

Inductive case: let r = {r } ∪ r′ where |r′ | = k for some
k ∈ N and r = A → β .

Let n′i , n
′′
i ,

tn′i and
tn′′i be sentential forms satisfying the

following properties:

ni
r
→ n′i

r′
⇝ n′i T (n′i )

r′
⇝ tn′i

T (ni )
r
→ n′′i

r′
⇝ n′′i T (n′′i )

r′
⇝ tn′′i

Let ni = sAu where s ∈ Σ∗,A ∈ N ,u ∈ (N ∪ Σ)∗. Then, n′i =
sβu and T (ni ) = T (s) A T (u). Also, n′′i = T (s) β T (u) and
T (n′i ) = T (sβu). Since T (n′′i ) = T (T (s) β T (u)), by Lemma
A.3, T (n′i ) = T (n′′i ). By the induction hypothesis T (n′i ) =
T (tn′i ) andT (n

′′
i ) = T (

tn′′i ). BecauseT (n
′
i ) = T (n

′′
i ),T (

tn′i ) =

T (tn′′i ). Therefore, T (n
′
i ) = T (n

′′
i ). ■

Lemma A.6. ∀v ∈ pts. T (ni [v/x]) = T (nj [v/x]) =⇒

ni ∼pts nj .

Proof. Let Pi , Pj ∈ P are programs such that ni
r
⇝ Pi ∧nj

r
⇝

Pj . Then

∀v ∈ pts. ni [v/x]
r
⇝ Pi [v/x] ∧ nj [v/x]

r
⇝ Pj [v/x].

Let P ′
i , P

′
j are programs such that ∀v ∈ pts. T (ni [v/x])

r
⇝

P ′
i and T (nj [v/x])

r
⇝ P ′

j . Because ∀v ∈ pts. T (ni [v/x]) =

T (nj [v/x]), P ′
i = P ′

j . By Lemma A.5, T (Pi [v/x]) = T (P ′
i ) and

T (Pj [v/x]) = T (P
′
j ). Since P

′
i = P ′

j , T (Pi [v/x]) = T (Pj [v/x]).
Therefore, ∀v ∈ pts. JPiK (v) = JPjK (v). ■

Lemma A.7. In Algo. 2, no path can be added into the queue
twice.

Proof. The graph G(Gq) is a tree due to the unambiguity of
the grammar as stated in Section 3. Every node in a tree can
be visited only once during A* search. ■

Lemma A.8. Suppose G(Gq) is finite in Algo. 2. If a node
n ∈ N is reachable from S , then n′ such that n ≈pts n′ is
placed into the queue after a finite number of iterations.

Proof. First we show that n is placed into the queue after a
finite number of iterations ignoring lines 10–14 by contradic-
tion. Let n be a node reachable from S but never placed into
the queue. Since n is reachable from S and the grammar is
unambiguous, there exists a unique path S ⇝ n. Letn′ be the
first node in the path that is never added into the queue. Then
there exists a path S ⇝ n′′ such that n′′ → n′ and S ⇝ n′′

has been added into the queue. The path S ⇝ n′′ must have
been popped from the queue since there are finitely many
paths and no path can be added into the queue twice by
Lemma A.7. Since it is popped from the queue, S ⇝ n′ must
be placed in the queue by line 8. Now we consider the lines
10–14. Suppose n is not removed from the queue in the lines.
Then, the lemma trivially holds since n ≈pts n. Suppose n
is removed frmo the queue in the lines. Then, there exists
n′ such that n ≈pts n′. For a similar reason, n′ must have
been placed into the queue after a finite number of iterations.
Therefore, the lemma holds. ■

Theorem 3.8. For a given synthesis problem, assuming P is fi-
nite, weighted_searche generates a sequence of candidate
programs satisfying the prioritization, partial correctness,
and partial completeness properties.
(Stated in Section 3.3.)

Proof. (1) Prioritization: Without lines 10–14 in Algo. 2, the
prioritization property holds because of Theorem 3.3. The
optimization part from line 10 to line 14 does not affect
the distance values in the priority queue but only removes
some elements in the queue. Therefore, it does not harm the
prioritization property.

(2) Correctness: trivially true by line 4 in Algo. 2.
(3) Completeness: Let P ∈ P a solution. Since P is finite,

GĜq
is also finite. By the definition of the graph GĜq

, every
sentential form that can be derived from S is reachable from
S . Therefore, P is reachable from S . By Lemma A.8, after a
finite number of iterations, P ′ ∈ P such that P ≈pts P

′ will
be placed into the queue. By Theorem 3.7, P ∼pts P ′ and
Algo. 2 returns P ′ at line 5. If ∀x . Φ(x , JP ′K (x)), the solution
is found. Otherwise, a counter-example cex will be added
into pts (line 8 in Algo. 1), and Algo 2 runs again. Notice
that P ′ cannot be generated by Algo. 2 again, since it will
never be consistent with cex . In this manner, at least one
program is excluded from the search space P, which is finite.
Therefore, after finitely many steps, Algo. 2 eventually finds
P ′′ ∈ P such that P ∼pts P

′′ and ∀x . Φ(x , JP ′′K (x)). ■
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