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Abstract

Real-time decision making in emerging IoT applications typ-

ically relies on computing quantitative summaries of large

data streams in an efficient and incremental manner. To sim-

plify the task of programming the desired logic, we propose

StreamQRE, which provides natural and high-level constructs

for processing streaming data. Our language has a novel in-

tegration of linguistic constructs from two distinct program-

ming paradigms: streaming extensions of relational query

languages and quantitative extensions of regular expressions.

The former allows the programmer to employ relational con-

structs to partition the input data by keys and to integrate data

streams from different sources, while the latter can be used to

exploit the logical hierarchy in the input stream for modular

specifications.

We first present the core language with a small set of

combinators, formal semantics, and a decidable type system.

We then show how to express a number of common patterns

with illustrative examples. Our compilation algorithm trans-

lates the high-level query into a streaming algorithm with

precise complexity bounds on per-item processing time and

total memory footprint. We also show how to integrate ap-

proximation algorithms into our framework. We report on

an implementation in Java, and evaluate it with respect to

existing high-performance engines for processing streaming

data. Our experimental evaluation shows that (1) StreamQRE

allows more natural and succinct specification of queries

compared to existing frameworks, (2) the throughput of our

implementation is higher than comparable systems (for ex-
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ample, two-to-four times greater than RxJava), and (3) the

approximation algorithms supported by our implementation

can lead to substantial memory savings.

CCS Concepts • Information systems → Stream man-

agement; •Theory of computation → Streaming mod-

els; •Software and its engineering → General program-

ming languages

Keywords data stream processing, Quantitative Regular

Expressions

1. Introduction

The last few years have witnessed an explosion of IoT sys-

tems in applications such as smart buildings, wearable de-

vices, and healthcare [9]. A key component of an effective

IoT system is the ability to make decisions in real-time in

response to data it receives. For instance, a gateway router in

a smart home should detect and respond in a timely manner

to security threats based on monitored network traffic, and a

healthcare system should issue alerts in real-time based on

measurements collected from all the devices for all the mon-

itored patients. While the exact logic for making decisions

in different applications requires domain-specific insights,

it typically relies on computing quantitative summaries of

large data streams in an efficient and incremental manner.

Programming the desired logic as a deployable implementa-

tion is challenging due to the enormous volume of data and

hard constraints on available memory and response time.

The motivation for our work is to assist IoT programmers:

the proposed language StreamQRE (pronounced Stream-

Query) makes the task of specifying the desired decision-

making logic simpler by providing natural and high-level

declarative constructs for processing streaming data, and the

proposed compiler and runtime system facilitates deployment

with guarantees on memory footprint and per-item processing

time. The StreamQRE language extends quantitative regular

expressions—an extension of classical regular expressions

for associating numerical values with strings [11], with con-

structs typical in extensions of relational query languages for

handling streaming data [5, 7, 15, 17, 34, 36, 38, 45]. The
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novel integration of linguistic constructs allows the program-

mer to impart to the input data stream a logical hierarchical

structure (for instance, view patient data as a sequence of

episodes and view network traffic as a sequence of Voice-

over-IP sessions) and also employ relational constructs to

partition the input data by keys (e.g., patient identifiers and

IP addresses).

The basic object in our language is a streaming function,

a partial function from sequences of input data items to an

output value (which can be a relation). We present the syntax

and formal semantics of the StreamQRE language with type-

theoretic foundations. In particular, each streaming function

has an associated rate that captures its domain, that is, as

it reads the input data stream, the prefixes that trigger the

production of the output. In our calculus, the rates are required

to be regular, captured by symbolic regular expressions, and

the theoretical foundations of symbolic automata [47] lead to

decision procedures for constructing well-typed expressions.

Regular rates also generalize the concept of punctuations in

the streaming database literature [36].

The language has a small set of core combinators with for-

mal semantics. The atomic query processes individual items.

The operators split and iter are quantitative analogs of

concatenation and Kleene-iteration, and integrate hierarchi-

cal pattern matching with familiar sequential iteration over

a list of values. The global choice operator allows selec-

tion between two expressions with disjoint rates. The output

composition allows combining output values produced by

multiple expressions with equivalent rates processing input

data stream in parallel. The key-based partitioning operator

map-collect is a generalization of the widely used map-

reduce construct that partitions the input data stream into a

set of substreams, one per key, and returns a relation. Finally,

the streaming composition streams the sequence of outputs

produced by one expression as an input stream to another,

allowing construction of pipelines of operators.

Modular declarative specifications. The core StreamQRE

combinators can be used to define a number of derived pat-

terns, such as tumbling and sliding windows [36], selection,

and filtering, that are useful in practice. We have implemented

the language as a Java library that supports basic and derived

combinators, and a number of built-in quantitative sequen-

tial iterators such as sum, maximum, minimum, average,

linear regression, discounted sum, standard deviation, and

linear interpolation. We show how to program in StreamQRE

using an illustrative example regarding monitoring patient

measurements, the recent Yahoo Streaming Benchmark for

advertisement-related events [22], and the NEXMark bench-

mark for auction bids [43]. These examples illustrate how

hierarchically nested iterators and global case analysis facili-

tate modular stateful sequential programming, and key-based

partitioning and relational operators facilitate traditional re-

lational programming. The two styles offer alternatives for

expressing the same query in some cases, while some queries

are best expressed by intermingling the two views.

Compilation into streaming processor with guaranteed

complexity bounds. The StreamQRE compiler translates a

query to a single-pass streaming algorithm. The regular oper-

ators associate an unambiguous parse tree with every prefix

of the input stream. The typing rules allow the algorithm to

maintain only a constant (in the length of the data stream)

number of potential parse tree alternatives. The hierarchical

sequential iterators can be evaluated naturally and efficiently

using a stack. Since exact computation of operations such

as the median of a sequence of values and computing sum

over sliding windows requires linear space for exact com-

putation [39], we show (with supporting implementation)

how to integrate approximate computation of subexpressions

in the query evaluation. Implementing the synchronization

semantics of multiple threads of computation created during

the evaluation of key-based partitioning also requires care.

For a subclass of StreamQRE expressions, we give a theoreti-

cal guarantee of O(1) memory footprint and O(1) per-item

processing time.

Experimental performance evaluation. We compared our

StreamQRE implementation with three open-source popular

streaming engines RxJava [3], Esper [2], and Flink [1], and

found that the theoretical guarantees of our compiler indeed

translate to better performance in practice: the throughput of

the StreamQRE engine is 2 to 4 times higher than RxJava,

6 to 75 times higher than Esper, and 10 to 140 times higher

than Flink. We also show that the approximation algorithms

supported by our implementation can lead to substantial mem-

ory savings. Finally, StreamQRE supports both sequential

iteration and key-based partitioning as high-level program-

ming constructs leading to alternative expressions of the same

query with substantially different performance, thus opening

new opportunities for query optimization, even beyond those

used in database and stream processing engines.

Organization. The remaining paper is organized as follows.

§2 informally introduces the key StreamQRE constructs

using an illustrative example regarding monitoring patient

measurements. The language definition is presented in §3.

The StreamQRE compiler is described in §4. Experimental

evaluation of the Java implementation of StreamQRE is given

in §5. Section 6 describes related work, and the contributions

and future work are summarized in §7.

2. Overview

As a motivating example, suppose that a patient is being

monitored for episodes of a physiological condition such as

epilepsy [37], and the data stream consists of four types of

events: (1) An event B marking the beginning of an episode,

(2) a time-stamped measurement M(ts, val) by a sensor,

(3) an event E marking the end of an episode, (4) and an

event D marking the end of a day. Given such an input data
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stream, suppose we want to specify a policy f that outputs

every day, the maximum over all episodes during that day, of

the average of all measurements during an episode. A suitable

abstraction is to impart a hierarchical structure to the stream:

episode 

summary 

daily summary 

The data stream is a sequence of days (illustrated as dia-

monds), where each day is a sequence of episodes (illus-

trated as rectangles), and each episode is a sequence of cor-

responding measurements (shown as circles) between a be-

gin B marker (shown as an opening bracket) and an end E

marker (shown as a closing bracket). The regular expression

((B · M∗ · E)∗ · D)∗ over the event types B, M, E and D specifies

naturally the desired hierarchical structure. For simplicity, we

assume that episodes do not span day markers.

The policy f thus describes a hierarchical computation that

follows the structure of this decomposition of the stream: the

summary of each episode (pattern B · M∗ · E) is an aggregation

of the measurements (pattern M) it contains, and similarly

the summary of each day (pattern (B · M∗ · E)∗ · D) is an

aggregation of the summaries of the episodes it contains. In

order for the policy to be fully specified, the hierarchical

decomposition (parse tree) of the stream has to be unique.

Otherwise, the summary would not be uniquely determined

and the policy would be ambiguous. To guarantee uniqueness

of parsing at compile time, each policy f describes a symbolic

unambiguous regular expression, called its rate, which allows

for at most one way of decomposing the input stream. The

qualifier symbolic means that the alphabets (data types) can

be of unbounded size, and that unary predicates are used

to specify classes of letters (data items) [47]. The use of

regular rates implies decidability of unambiguity. Even better,

there are efficiently checkable typing rules that guarantee

unambiguity for all policies [19, 26, 40].

Existing query languages such as CQL [15] and CEDR

[18] indeed use regular expressions, and other complex forms

of pattern matching and sliding windows, to select events.

However, the selected events are collected as a set without

any intrinsic temporal ordering. If the desired summary of

an episode is a set-aggregator (such as the average of all

measurements), then the relational languages suffice. But

suppose the diagnosis depends on the average value of the

piecewise-linear interpolation of the sampled measurements.

Such a computation is easy to specify as a stateful streaming

algorithm that iterates over the sequence of data items, but

cannot be expressed directly in existing relational query

engines (and would instead need to be specified by a user-

defined aggregate function that cannot be optimized by

the compiler). The list-iteration scheme provided by the

combinator fold : B × (B × A → B) × A∗ → B (where

B is the aggregate type, and A is the type of the elements of

the list), which is very common in functional programming

languages, is sufficient for expressing iterative computations.

State can be introduced in relational languages using recur-

sion, but this is neither natural, nor necessary, nor conducive

to efficient compilation to a streaming algorithm. Recent

work on quantitative regular expressions (QRE) [11] shows

how to tightly integrate regular expressions with numerical

computations, and allows a natural expression of sequential

iterators. QREs and other such proposals in runtime moni-

toring and quantitative formal verification, however, do not

provide relational abstractions.

In our example, suppose now the data stream consists

of measurements for multiple patients, hence every episode

marker and measurement has a patient identifier:

B(pId) M(pId , ts, val) E(pId) D

where pId is the unique identifier for a patient. Suppose

we have written a query f processing the data stream for a

single patient that outputs the desired quantitative summary

at the end of each day as discussed earlier. If the daily

summary computed by f exceeds a fixed threshold value,

then we say that the patient has had a critical day. Suppose

we want to output each day the set of patients for whom

the two past consecutive days have been critical. Given f,

we can first construct the query g which partitions the input

stream by patient identifiers, applies f to each sub-stream,

collects the results of the form (pId , daySummary) in a set,

and selects those patients whose daily summary indicates

a critical day. The high-level query then can be specified

by supplying the input stream both to g and a version of

g shifted by a day, and intersect the outputs of the two.

Such computation can be most naturally specified in existing

relational query languages, but not in state-based formalisms.

This key-based partitioning operation is our analog of the

map-reduce operation [27, 28], but it raises semantic and

implementation questions that have to do with the sequential

nature of the data stream: reducing must be sequence-aware,

and we need a mechanism to indicate when to emit the output.

The proposed query language StreamQRE draws upon fea-

tures of relational languages for continuous query processing

and quantitative extensions of regular expressions and related

formalisms. Unlike previous proposals, it allows the arbitrary

mixing of relation-based and sequence-based operations.

3. The StreamQRE Language

In this section we introduce the formal syntax and semantics

of the core StreamQRE language. Figure 1 summarizes the

formalism, which we will use to program several common

stream transformations, such as stream filtering, projection,

and windowing. Several detailed examples that illustrate the

use of StreamQRE can be found in [12].

Basic types & operations. Since our query language com-

bines regular expressions with quantitative operations, we

first choose a typed signature which specifies the basic data
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types and operations for manipulating them. We fix a col-

lection of basic types, and we write A,B, . . . to range over

them. This collection contains the type Bool of boolean val-

ues, and the unit type Ut whose unique inhabitant is denoted

by def. It is also closed under the cartesian product oper-

ation × for forming pairs of values. Typical examples of

basic types are the natural numbers Nat, the integers Int,

and the real numbers R. We also fix a collection of basic op-

erations on the basic types, for example the k-ary operation

op : A1 × · · · ×Ak → B. The identity function on D is writ-

ten as idD : D → D, and the operations π1 : A × B → A
and π2 : A×B → B are the left and right projection respec-

tively. We assume that the collection of operations contains

all identities and projections, and is closed under pairing and

function composition. We write !A : A→ Ut for the unique

function from A to Ut.

Predicates. For every basic type D, we fix a collection of

atomic predicates, so that the satisfiability of their Boolean

combinations is decidable. We write ϕ : D → Bool to

indicate that ϕ is a predicate on D, and we denote by trueD :
D → Bool the always-true predicate. The requirement for

decidability of satisfiability for predicates is necessary for the

query typing rules that we will present later. The satisfiability

checks can be delegated to an SMT solver [26].

Example 1. For the example stream of monitored patients

described in §2, the data type DP is the tagged (disjoint) union:

DP = {D} ∪ {B(p), E(p) | p ∈ PID} ∪

{M(p, t, v) | p ∈ PID, t ∈ T, v ∈ V},

where PID is the set of patient identifiers, T is the set of

timestamps, and V is the set of scalars for the measurements.

Relational types and operations. We consider relation

types of the form Rel(A), where A is a basic type. The

elements of Rel(A) are multisets over A. To express the

well-known operations select, project and join from relational

algebra [6], it suffices to consider the operation of cartesian

product and the higher-order functions map and filter .

prodA,B : Rel(A)× Rel(B) → Rel(A×B)

map(op) : Rel(A) → Rel(B), where op : A→ B

filter(ϕ) : Rel(A) → Rel(A), where ϕ : A→ Bool

We also consider standard set-aggregators of relational query

languages (e.g., sum, count, minimum, maximum, average),

which we model as operations of type Rel(A) → A. We

write Map〈K,V 〉 for the subtype of Rel(K × V ) which

consists of (partial) maps from K to V .

Symbolic Regexes. For a type D, we define the symbolic

regular expressions over D [46], denoted RE〈D〉, as

r ::= ϕ | r ⊔ r | r · r | r∗,

where ϕ ranges over predicates on D. The concatenation

symbol · is sometimes omitted, i.e. we write rs instead of

r · s. The expression r+ (iteration at least once) abbreviates

r·r∗. We interpret an expression r : RE〈D〉 as a set JrK ⊆ D∗

of strings over D. We put JϕK = {d ∈ D | ϕ(d) is true}, and

this extends to all expressions in the usual way.

The notion of unambiguity for regular expressions [19]

is a way of formalizing the requirement of uniqueness of

parsing. The languages L1 and L2 are said to be unambigu-

ously concatenable if for every word w ∈ L1 · L2 there are

unique w1 ∈ L1 and w2 ∈ L2 with w = w1w2. The lan-

guage L is said to be unambiguously iterable if for every

word w ∈ L∗ there is a unique integer n ≥ 0 and unique

wi ∈ L with w = w1 · · ·wn. The definitions of unambiguous

concatenability and unambiguous iterability extend to regular

expressions in the obvious way. Now, a regular expression is

said to be unambiguous if it satisfies the following: (1) r, s
are disjoint for every subexpression r ⊔ s, (2) r, s are unam-

biguously concatenable for every subexpression rs, and (3) r
is unambiguously iterable for every subexpression r∗.

Observation 2. Suppose r and s are unambiguous symbolic

regexes over D. Let Σ be the set of truth assignments for the

base predicates of r and s. Assuming that satisfiability of the

predicates can be decided in unit time, the problems

1. Are r and s disjoint?

2. Are r and s unambiguously concatenable?

3. Is r unambiguously iterable?

4. Is r contained in s?
are decidable in polynomial time in |r|, |s|, |Σ| [19, 26,

40]. In particular, checking whether a regular expression is

unambiguous can be done in polynomial time.

Remark 3 (Witnesses of Ambiguity). Consider the computa-

tion: “summarize a patient episode with at least one high-risk

measurement”. This computation is analogous to the regex-

matching problem: “identify sequences over a and b with at

least one occurrence of b”. The regex (a⊔b)∗b(a⊔b)∗ is very

natural to write, but is ambiguous. The procedure for check-

ing unambiguity (see Observation 2) can flag it as ambiguous,

and it can also give a minimum-length trace witnessing the

ambiguity: the sequence bb can be parsed in two ways, either

as ε · b · b or as b · b · ε. Generally, this procedure can pinpoint

both the ambiguous subexpression and the smallest examples

that prove ambiguity. For the given example, the expression

is equivalent to the unambiguous a∗b(a+ b)∗.

Streaming functions. The basic semantic object in our

calculus is a partial map f of typeD∗ ⇀ C (we use the arrow

⇀ to indicate partiality), where D is the type of the input

elements and C the type of the outputs. We call these objects

streaming functions. They describe general transformations

of unbounded streams by specifying the output f(w) (if any)

on the stream w seen so far. For example, suppose we want

to describe a filtering transformation on streams of scalars

of type V, where only the nonnegative scalars are retained

and the negative ones are filtered out. The streaming function

f : V∗ ⇀ V that describes this transformation is defined

on the sequences {v1v2 . . . vn | n ≥ 1 and vn ≥ 0} and the

value is the last scalar of the sequence, i.e. the current item.
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satisfiable ϕ : D → Bool op : D → C
(atomic)

h = atom(ϕ, op) : QRE〈D,C〉

R(h) = ϕ

JhKw = op(w), if w ∈ D and ϕ(w) is true

f, g : QRE〈D,C〉 R(f) and R(g) are disjoint
(choice)

h = or(f, g) : QRE〈D,C〉

R(h) = R(f) ⊔ R(g)

JhKw = if (JfKw is defined) then JfKw else JgKw

f : QRE〈D,A〉 g : QRE〈D,B〉 op : A×B → C R(f) and R(g) are unambiguously concatenable
(concatenation)

h = split(f, g, op) : QRE〈D,C〉 R(h) = R(f) · R(g)

JhKw1w2 = op(a, b), where JfKw1 = a and JgKw2 = b

f : QRE〈D,A〉 R(f) is unambiguously iterable

init : B op : B ×A → B
(iteration)

h = iter(f, init , op) : QRE〈D,B〉

R(h) = R(f)∗

JhKw1 . . . wn = fold(init , op, a1 . . . an), where JfKwi = ai

fi : QRE〈D,Ai〉 op : A1 × · · · ×Ak → B

the R(fi)’s are all equivalent
(combination)

h = combine(f1, . . . , fk, op) : QRE〈D,B〉

R(h) = R(f1)

JhKw = op(a1, . . . , ak), where JfiKw = ai

f : QRE〈D,C〉 ϕS : D → Bool κ : D → K

r : RE〈D〉 is well-formed w.r.t. ϕS R(f) ⊆ r \ ϕ∗S (key-based

partitioning)h = map-collect(ϕS , κ, f, r) : QRE〈D, Map〈K,C〉〉

R(h) = r

JhKw = {〈k, JfK(w|k)〉 | k ∈ Keys(w)}, when w ∈ JrK

f : QRE〈D,C〉 g : QRE〈C,E〉 (streaming

composition)h = f ≫ g : QRE〈D,E〉

JhKw = JgK (liftJfKw), if liftJfKw is defined

JhKw = undefined, if liftJfKw is undefined

Figure 1. Streaming Quantitative Regular Expressions (QREs): Syntax and denotational semantics with streaming functions.

Streaming Queries. We now introduce formally the lan-

guage of Streaming Quantitative Regular Expressions (QREs)

for representing stream transformations. For brevity, we also

call these expressions queries. A denotational semantics will

be given in terms of streaming functions. The denotations

satisfy the additional property that their domains are regular

sets over the input data type. The rate of a query f, writ-

ten R(f), is a symbolic regular expression that denotes the

domain of the interpretation of f, that is, the set of stream

prefixes for which f is defined: JR(f)K = dom(JfK). We say

that a sequence w of data items matches the query f if it

belongs to dom(JfK). The definition of the query language

has to be given simultaneously with the definition of rates

(by mutual induction), since the query constructs have typ-

ing restrictions that involve the rates. We annotate a query

f with a type QRE〈D,C〉 to denote that the input stream has

elements of type D and the outputs are of type C. The full

formal definition of the syntax and semantics of streaming

queries is given in Figure 1. The decidability of type checking

is established in Observation 2.

Example 4 (Rate of a Query). In the patient monitoring

example, the statistical summary of a patient’s measurements

should be output at the end of each day, and thus, depends

only on the types of events in a regular manner. The rate in

this case is the regular expression ((B · M∗ · E)∗ · D)∗.

Atomic queries. The basic building blocks of queries are

expressions that describe the processing of a single data item.

Suppose ϕ : D → Bool is a predicate over the data item type

D and op : D → C is an operation from D to the output

type C. Then, the atomic query atom(ϕ, op) : QRE〈D,C〉,
with rate ϕ, is defined on single-item streams that satisfy

the predicate ϕ. The output is the value of op on the input

element. It is common for op to be the identity function, and

ϕ to be the always-true predicate. So, we abbreviate the query

atom(ϕ, idD) by atom(ϕ), and atom(trueD) by atom().

Iteration. Suppose the query f : QRE〈D,A〉 describes a

computation that we want to iterate over consecutive non-

overlapping subsequences of the input stream, in order to

aggregate the produced values (of type A) sequentially using

an aggregator op : B ×A→ B. More specifically, we split

the input stream w into subsequences w = w1 w2 . . . wn,

where each wi matches f. We apply the computation f to

each of the wi, thus producing the output values a1 a2 · · · an
with ai = JfKwi. Finaly, we combine these results using the

list iterator left fold with start value init ∈ B and aggregation

operation op : B × A → B by folding the list of values

a1 a2 · · · an. This can be formalized with the combinator

fold : B × (B ×A→ B)×A∗ → B, which takes an initial

value b ∈ B and a stepping map op : B × A → B, and

iterates through a sequence of values of type A:

fold(b, op, ε) = b

fold(b, op, γa) = op(fold(b, op, γ), a)

for all sequences γ ∈ A∗ and all values a ∈ A. For example,

fold(b, op, a1a2a3) = op(op(op(b, a1), a2), a3).
The query h = iter(f, init , step) : QRE〈D,B〉 describes

the computation of the previous paragraph. In order for h to be

well-defined as a function, every input stream w that matches

h must be uniquely decomposable into w = w1w2 . . . wn

697



with each wi matching f. This requirement can be expressed

equivalently as: the rate R(f) is unambiguously iterable.

These sequential iterators can be nested imparting a hierar-

chical structure to the input data stream facilitating modular

programming. In the single-patient monitoring stream, for

example, we can associate an iterator with the episode nodes

to summarize the sequence of measurements in an episode,

and another iterator with the day nodes to summarize the

sequence of episodes during a day.

Combination and application. Assume the queries f and

g describe stream transformations with outputs of type A and

B respectively that process the same set of input sequences,

and op is an operation of type A × B → C. The query

combine(f, g, op) describes the computation where the input

is processed according to both f and g in parallel and their

results are combined using op. Of course, this computation is

meaningful only when both f and g are defined on the input

sequence. So, we demand w.l.o.g. that the rates of f and g

are equivalent. This binary combination construct generalizes

to an arbitrary number of queries. For example, we write

combine(f, g, h, op) for the ternary variant. In particular, we

write apply(f, op) for the case of one argument.

Quantitative concatenation. Suppose that we want to per-

form two streaming computations in sequence on consecutive

non-overlapping parts of the input stream: first execute the

query f : QRE〈D,A〉, then execute the query g : QRE〈D,B〉,
and finally combine these two intermediate results using the

operation op : A×B → C. More specifically, we split the in-

put stream into two parts w = w1w2, process the first part w1

according to f with output JfKw1, process the second part w2

according to g with output JgKw2, and produce the final result

op(f(w1), g(w2)) by applying op to the intermediate results.

The query split(f, g, op) : QRE〈D,C〉 describes this com-

putation. In order for this construction to be well-defined as a

function, every inputw that matches split(f, g, op) must be

uniquely decomposable into w = w1w2 with w1 matching f

and w2 matching g. In other words, the rates of f and g must

be unambiguously concatenable. The binary split construct

extends naturally to more than two arguments. For example,

the ternary version would be split(f, g, h, op).

Global choice. Given queries f and g of the same type with

disjoint rates r and s, the query or(f, g) applies either f or g

to the input stream depending on which one is defined. The

rate of or(f, g) is the union r ⊔ s. This choice construction

allows a case analysis based on a global regular property of

the input stream. In our patient example, suppose we want

to compute a statistic across days, where the contribution of

each day is computed differently depending on whether or

not a specific physiological event occurs sometime during

the day. Then, we can write a query summarizing the daily

activity with a rate capturing good days (the ones without any

significant event) and a different query with a rate capturing

bad days, and iterate over their disjoint union.

A B B C B B C BA A A A

A A A A A

B B B B B

C C

stream

sub-stream for A

sub-stream for B

sub-stream for C

Figure 2. Partitioning a stream into several parallel sub-

streams according to a key (letter in box).

Key-based partitioning. The input data stream for our run-

ning example contains measurements from different patients,

and suppose we have written a query f that computes a sum-

mary of data items corresponding to a single patient. Then, to

compute an aggregate across patients, the most natural way

is to partition the input stream by a key, the patient identifier

in this case, supply the corresponding projected sub-streams

to copies of f, one per key, and collect the set of resulting

values. In order to synchronize the per-key computations, we

specify a predicate ϕS : D → Bool which defines the syn-

chronization elements. The rest of the elements, which satisfy

the negation ¬ϕS , are the keyed elements. We typically write

K for the set of keys, and κ : D → K for the function that

projects the key from an item (the value of κ on synchroniza-

tion items is irrelevant). For the patient input data type of

Example 1 we choose: ϕS = D (i.e., ϕS(x) is true when x is

a day marker) andK = PID. The partitioning ensures that the

synchronization elements are preserved so that the outputs of

different copies of f are synchronized correctly (for example,

if each f outputs a patient summary at the end of the day, then

each sub-stream needs to contain all the end-of-day markers).

Note that the output of such a composite streaming function

is a mapping T : Map〈K,C〉 from keys to values, where C is

the output type of f and T (k) is the output of the computation

of f for key k. This key-based partitioning operation is our

analog of the map-reduce operation [27, 28].

The details of this construction are subtle, and we have to

introduce more notation to present the semantics precisely.

We describe the partitioning of the input stream using ter-

minology from concurrent programming. For every key k,

imagine that there is a thread that receives and processes the

sub-stream with the data items that concern k. This includes

all synchronization items, and those keyed data items x for

which κ(x) = k. So, an item satisfying ¬ϕS is sent to only

one thread (as prescribed by the key), but an item satisfying

ϕS is sent to all threads. See Figure 2 for an illustration of the

partitioning into sub-streams. For a sequence w of data items,

we write Keys(w) to denote the set of keys that appear in w,

and w|k for the subsequence of w that corresponds to the key

k. Each thread computes independently, and the synchroniza-

tion elements are used for collecting the results of the threads.

We specify a symbolic regular expression r : RE〈D〉, which

enforces a rate of output for the overall computation. For ex-

ample, if r = (((¬D)∗ · D)2)∗ then we intend to have output

every other day. The rate should only specify sequences that

end in a synchronization item.
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Suppose f : QRE〈D,C〉 is a query that describes the per-

key (i.e., per-thread) computation, and r is the overall output

rate that we want to enforce. Then, the query

map-collect(ϕS , κ, f, r) : QRE〈D, Map〈K,C〉〉

describes the simultaneous computation for all keys, where

the overall output is given whenever the stream matches r.
The overall output is the map obtained by collecting the

outputs of all threads that match. W.l.o.g. we assume that the

rate of f is contained in r, and that it only contains streams

with at least one occurrence of a keyed data item. This can

be expressed as the regex inclusion R(f) ⊆ r \ ϕ∗S , which

is equivalent to ϕ∗S · (¬ϕS) · true
∗
D ⊆ R(f) ⊆ r. The rate

r should only depend on the occurrence of synchronization

elements, a requirement that can be expressed syntactically:

r = s[(¬ϕS)
∗ϕS/ϕS ]

for some expression s : RE〈D〉, where the only predicate

that s is allowed to contain is ϕS . We write s[ψ/ϕ] to denote

the result of replacing every occurrence of ϕ in s with ψ.

When r satisfies this condition we say that it is well-formed

w.r.t. ϕS . For example, if s = D∗ (indicating output at every

day marker) and ϕS = D, then r = s[(¬ϕS)
∗ϕS/ϕS ] =

((¬D)∗D)∗ is well-formed w.r.t. ϕS . All these restrictions that

we have imposed on the rates do not affect expressiveness,

but are useful for efficient evaluation and type-checking.

Remark 5. The operation of key-based partitioning raises

significant challenges for the efficiency of type-checking. In

the context of pure regex matching, one could consider either

an existential or a universal notion of key-based partitioning:

κ : D → K r : RE〈D〉

partition
∃
(κ, r), partition

∀
(κ, r) : RE〈D〉

.

The expression partition
∃
(κ, r) accepts nonempty words

w with w|k ∈ JrK, where k is the key of the last element

of w. Similarly, the expression partition
∀
(κ, r) accepts

nonempty words w with w|k ∈ JrK for every key k that

appears in w. Notice that partition
∃
(κ, r) is the standard

construct of disjoint partitioning used in streaming systems

(see, for example, the “partition-by” clause in the languages

of [49] and [33]). Unfortunately, these natural notions of

partitioning and matching give rise to decision problems

(such as nonemptiness and unambiguity) that are not easy

to compute. The introduction of synchronization elements

for the map-collect construct of StreamQRE is meant to

solve this problem by enforcing a rate of output that depends

only on the occurrence of synchronization elements in a

regular way. This simplifies the description of the domain of

a map-collect query, and the typing checks become easy.

Streaming composition. A natural operation for query lan-

guages over streaming data is streaming composition: given

two streaming queries f and g, f ≫ g represents the com-

putation in which the stream of outputs produced by f is

supplied as the input stream to g. Such a composition is use-

ful in setting up the query as a pipeline of several stages. We

allow the operation ≫ to appear only at the top-level of a

query. So, a general query is a pipeline of ≫-free queries. At

the top level, no type checking needs to be done for the rates,

so we do not define the function R for queries f ≫ g. With

streaming composition we can express non-regular patterns,

such as a sequence of increasing numbers.

The semantics of streaming composition involves a lifting

operator on streaming functions. For a function f : D∗ ⇀ C
we define the partial lifting lift(f) : D∗ ⇀ C∗, which

generates sequences of output values. The domain of lift(f)
is equal to the domain of f , but lift(f) returns the sequence

of all outputs that have been emitted so far.

3.1 Derived Stream Transformations

The core language of Figure 1 is expressive enough to

describe many common stream transformations. We present

below several derived patterns, including filtering, mapping,

and aggregation over windows.

Iteration (at least once). Let f : QRE〈D,A〉 be a query

with output type A, init : B be the initialization value, and

op : B × A → B be the aggregation function. The query

iter1(f, init , op), with output type B, splits the input

streamw unambiguously into consecutive partsw1 w2 . . . wn

each of which matches f, applies f to each wi producing a

sequence of output values a1 a2 . . . an, i.e. ai = f(wi), and

combines the results a1 a2 . . . an using the list iterator left

fold with start value init and accumulation operation op. The

construct iter1 can be encoded using iter as follows:

iter1(f, init , op) , split(iter(f, init , op), f, op).

The type of the query is QRE〈D,B〉 and its rate is R(f)+.

Iteration exactly n times. Let n ≥ 0 and f : QRE〈D,A〉 be

a query to iterate exactly n times. The aggregation is specified

by the initialization value init : B and the aggregation

function op : B × A → B. The construct itern describes

iteration (and aggregation) exactly n times, and can be

encoded as follows: iter0(f, init , op) = init and

itern+1(f, init , op) , split(itern(f, init , op), f, op).

The type of itern(f, init , op) is QRE〈D,B〉 and its rate it

R(f)n (n-fold concatenation).

Matching without output. Suppose r is an unambiguous

symbolic regex over the data item type D. We want to write

a query whose rate is equal to r, but which does not produce

any output. This is essentially the same as returning def. So,

we define the regex to query translation function match:

match(ϕ) , atom(ϕ, !D)

match(r1 ⊔ r2) , or(match(r1), match(r2))

match(r1 · r2) , split(match(r1), match(r2), !Ut×Ut)

match(r∗) , iter(match(r), def, !Ut×Ut)

An easy induction establishes that R(match(r)) = r.

Stream filtering. Let ϕ be a predicate over the type of

input data items D. We want to describe the streaming

699



transformation that filters out all items that do not satisfy ϕ.

We implement this with the query filter(ϕ), which matches

all stream prefixes that end with an item satisfying ϕ.

filter(ϕ) , split(match(true∗D), atom(ϕ), π2)

The type of filter(ϕ) is QRE〈D,D〉 and its rate is true∗D ·ϕ.

Stream mapping. The mapping of an input stream of type

D to an output stream of type C according to the operation

op : D → C is given by the following query:

map(op) , split(match(true∗D), atom(trueD, op), π2).

The type of the query is QRE〈D,C〉 and its rate is true+D.

Pattern-based tumbling windows. The term tumbling win-

dows is used to describe the splitting of the stream into con-

tiguous non-overlapping regions [36]. Suppose we want to

describe the streaming function that iterates f : QRE〈D,C〉
at least once and reports the result given by f at every match.

The following query expresses this behavior:

iter-last(f) , split(match(R(f)∗), f, π2).

The type of the query is QRE〈D,C〉 and its rate is R(f)+.

Sliding windows (slide by pattern). To express a policy

such as “output the statistical summary of events in the

past ten hours every five minutes” existing relational query

languages provide an explicit sliding window primitive [36].

We can support this primitive, which can be compiled into

the base language by massaging the input data stream with

the introduction of suitable tags (marking five-minute time

intervals in this example). The insertion of the tags then

allows to express both the window and the sliding using

very general regular patterns. Let n ≥ 1 be the size of the

window, and f : QRE〈D,A〉 be the query that processes a

unit pattern. The aggregation over the window is specified

by the value init : B for initialization and the aggregation

function op : B × A → B. We give a query that computes

the aggregation over the last n units of the stream (or over all

units if the stream has less than n units):

g = or(iter1(f, init , op), . . . , itern−1(f, init , op))

h = split(match(R(f)∗), itern(f, init , op), π2)

and wnd(f, n, init , op) = or(g, h) with rate R(f)+.

Event counting in sliding windows. Consider the sliding

window computation that counts the number of occurrences

of an event. For a query f : QRE〈D,C〉, a window size n, and

a predicate ϕ : C → Bool that indicates the occurrence of

the event, we define:

wnd-count(f, n, ϕ) , wnd(f, n, 0, op), where

op(x, c) , if ϕ(c) then x+ 1 else x.

The type of the query is QRE〈D,N〉 and its rate is R(f)+.

Remark 6 (Sliding Windows). We defined earlier an encod-

ing of sliding windows using the derived construct itern,

which correponds to iterated concatenation n times. This en-

coding causes an exponential blowup in the size of the query,

and is therefore an inefficient way to implement sliding win-

dows. The purpose of describing this encoding, however, is

to illustrate the expressiveness of regular parsing, namely that

sliding windows are a special case of regular decomposition

and therefore fit naturally in the StreamQRE framework.

Our implementation, which is benchmarked in Section 5,

provides a specialized treatment of sliding windows without

using the expensive encoding with itern. In particular, we

allow plugging in arbitrary code for handling the insertion of

new elements in the window and the eviction of expiring

elements. So, all algorithmic techniques proposed in the

literature for sliding-window aggregation [16, 41, 42] can

be seamlessly integrated in StreamQRE. The main point here

is that efficient sliding-window aggregation algorithms can be

nested arbitrarily with the regular constructs of StreamQRE

without incurring any additional computational overhead.

4. Compilation Algorithm

In this section we will describe the compilation of a query

f : QRE〈D,C〉 into a streaming algorithm that computes the

intended function. Before presenting the compilation proce-

dure, we should describe more precisely the streaming model

of computation. The input stream is a potentially unbounded

sequence of elements, and a streaming algorithm computes

by consuming the elements of the stream in order, as they

become available. The input stream is read incrementally in

one pass, which means that past input elements cannot be

accessed again. A streaming algorithm A consists of: (1) a

possibly infinite state space S, which is the set of all possible

internal configurations of the algorithm (i.e., its memory),

(2) an initial state init ∈ S, and (3) a transition function

next : S × D → S × C, which consumes the next input

element, mutates the current state, and produces an output.

We say that the streaming algorithm A implements the

query f : QRE〈D,C〉 if for every input w ∈ D∗: the output

of A after consuming w is equal to JfKw (when defined),

and equal to nil when JfKw is undefined. The space and time

requirements of a streaming algorithm are typically given as

functions of the size n of the stream consumed so far, and

possibly also in terms of other significant parameters of the

input (e.g., range of numerical values).

The goal of the compilation procedure is to generate an

algorithm that uses a small amount of space and processes

fast each newly arriving element. Ideally, both the space and

time requirements are independent of the length of the data

stream. Conceptually, the computation of JfKw, where f

is a query and w is an input stream, amounts to evaluating

an expression tree that is of size linear in the length of w.

This expression tree mirrors the parse tree that corresponds

to the the rate of f, so one crucial challenge is the online

computation of the split points in the stream to match the

pattern. Suppose we process the query split(f, g, op) on

w1w2w3w4, where the prefixesw1 andw1w2 match f and the

subsequencesw2w3 andw3w4 match g. After having seen the
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prefix w1w2, we need to maintain the parallel computation of

two expression trees, since f has matched twice. The insight

is that the number of these parallel computations is bounded

and depends only on the size of the query (see also [10] and

[11]). The computation of JfKw involves, however, more

than just parsing: to compute efficiently the intermediate

expression trees, they must have a compact representation.

Indeed, the intermediate results can be represented by stacks

of values, whose size is bounded by the size of the query.

This is a crucial part of establishing the efficiency of the

proposed evaluation algorithm.

Generalized evaluation problem. We proceed now with

some technical details of our approach. In order to define the

compilation procedure by recursion on the structure of the

query f : QRE〈D,C〉, we have to generalize the problem. Let

Stack be the type of finite stacks that can contain any value

of any basic type, and [] be the empty stack. We assume that

Stack is equipped with the following standard operations:

pushA : Stack×A→ Stack pop : Stack → Stack

and the operation getTopA : Stack → A∪{nil}, which maps

a stack to the value on the top of it (or nil if the stack is empty).

Instead of just input streams d1d2d3 . . . of data items, we con-

sider streams that also contain non-consecutive occurrences

of stacks. For example, s1 d1 d2 d3 s2 d4 d5 s3 d6 d7 d8 . . . is

such a stream. Informally, we think that every stack item

marks the beginning of a thread of execution that processes

all the data items that follow. Our example stream involves

s1 d1 d2 d3 d4 d5 d6 d7 d8

s2 d4 d5 d6 d7 d8

s3 d6 d7 d8

the parallel threads shown on the

right. We want an algorithm that

simulates the parallel computation

of f on the threads. The output on

a thread sw must be defined when JfKw is defined, and it

has to be equal to the stack s.push(JfKw). In order for the

overall output to be well-defined, we require that at most

one active thread gives output. We say that a sequence w ∈
(D∪Stack)∗ is well-formed for f if for every prefix ofw there

is at most one thread for which JfK is defined. So, we describe

for every query f an algorithm that solves this generalized

problem on well-formed inputs from (D ∪ Stack)∗.

There are four components to specify: the state space

Statef, the initial state initf, the function startf that con-

sumes stack items, and the function nextf that consumes data

items (elements ofD). Figures 3 and 4 show this construction

(by recursion on f) for the base queries and the constructs

iteration, concatenation, and map-collect. We write Af to

denote the streaming generalized evaluation algorithm for f.

The other constructs are easier to handle, and hence omitted.

Split. To see why this generalization of the problem is nec-

essary, let us consider the evaluation of h = split(f, g, op)
on a single thread [] d1 d2 d3 d4 d5 d6 d7 d8. The algorithm

Ah, described in Figure 3, forwards every data item to both

Af and Ag. Suppose that there are two prefixes of the input

that match f: d1 d2 d3 and d1 d2 d3 d4 d5, for which Af re-

atomic query h = atom(ϕ, op)

state space Stateh = {L(in) | in is a stack}

Stateh inith : L(nil)

Stack starth(Stateh q, Stack s) : // sanity check: q.in = nil

q.in := s; return nil

Stack nexth(Stateh q, D d) :

Stack out := nil

if (q.in 6= nil) and ϕ(d) then out := q.in.push(op(d))

q.in := nil; return out

quantitative iteration query h = iter(f, b0, σ)

state space Stateh = {I(child) | child ∈ Statef}

Stateh inith : I(initf)

Stack starth(Stateh q, Stack s) :

Stack o := startf(q.child , s.push(b0)) // o = nil

return s.push(b0)

Stack nexth(Stateh q, D d) :

Stack s := nextf(q.child , d) // child transition

Stack o := nil

if (s 6= nil) then // the child gave output

A a := s.getTop(); s := s.pop()

B b := s.getTop(); s := s.pop()

o := s.push(σ(b, a)) // output value σ(b, a)

Stack s1 := startf(q, o) // restart the child

// unambiguity sanity check: s1 = nil

return o

quantitative concatention query h = split(f, g, op)

Stateh = {S(left , right) | left ∈ Statef, right ∈ Stateg}

Stateh inith : S(initf, initg)

Stack starth(Stateh q, Stack s) :

Stack s1 := startf(q.left , s)

if (s1 6= nil) then // the left child gave output

Stack s2 := startg(q.right , s1)

if (s2 6= nil) then // the right child gave output

B b := s2.getTop()

A a := s2.pop().getTop()

return s.push(op(a, b))

return nil

Stack nexth(Stateh q, D d) :

Stack s1 := nextf(q.left , d) // send d to left child

Stack s2 := nextg(q.right , d) // send d to right child

Stack s3 := nil

if (s1 6= nil) then s3 := startg(q.right , s1)

// unambiguity sanity check: s2 = nil or s3 = nil

Stack s := if (s2 6= nil) then s2 else s3

if (s 6= nil) then // the right child gave output

B b := s.getTop(); s := s.pop()

A a := s.getTop(); s := s.pop()

return s.push(op(a, b))

return nil

Figure 3. Compilation for atomic queries, quantitative itera-

tion, and quantitative concatenation.

ports outputs a1 and a2 respectively. Recall that all queries

are unambiguous, therefore it is not possible for both suffixes

d4 d5 d6 d7 d8 and d6 d7 d8 to match g. We use the stacks of

values as a mechanism to propagate the intermediate results

of the computations. For our particular example stream, the

evaluator Ah ensures that the sequence of items fed to Ag

is d1 d2 d3 [a1] d4 d5 [a2] d6 d7 d8. This means that Ag has to
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key-based partitioning h = map-collect(ϕ, κ, f, r)

Stateh = {M(th, rate) | th : Map〈K,Statef〉, rate ∈ Stater}

Stateh inith : M(λk ∈ K.initf, initr)

Stack starth(Stateh q, Stack s) :

Stack out := startr(q.rate, s) // start the rate

Map〈K,C〉 res := [] // initialize with empty map

foreach (k ∈ K) do // process each thread

Stack o := startf(q.th[k], [])

if (o 6= nil) then

res := res.add(k, o.getTop())

return (if (out 6= nil) then out .push(res) else nil)

Stack nexth(Stateh q, D d) :

if (ϕ(d) is true) then // d is a synchronization item

Stack out := nextr(q.rate, d) // send item to rate

Map〈K,C〉 res := [] // initialize with empty map

foreach (k ∈ K) do // process each thread

Stack o := nextf(q.th[k], d)

if (o 6= nil) then

res := res.add(k, o.getTop())

return (if (out 6= nil) then out .push(res) else nil)

// d is a keyed item with key k = κ(d): process k-th thread

nextf(q.th[κ(d)], d); return nil

Figure 4. Compilation for key-based partitioning queries.

simulate the concurrent evaluation of multiple suffixes of the

data stream. After reading the stream, suppose Ag accepts the

suffix d6 d7 d8 and reports the value b2 = JgK d6d7d8. The

output of Ag is then [b2, a2], that is, the result of pushing the

value b2 on the stack [a2] that started the accepting thread.

Finally, Ah uses the output stack [b2, a2] to compute the an-

swer op(a2, b2). This stack-based mechanism of propagating

values is crucial for matching the outputs of f and g and

computing the final value.

Atomic. It is instructive to see how the query atom(ϕ, op)
is implemented in order to satisfy the contract of the general-

ized evaluation problem. The crucial observation is that there

should only be output on consecutive occurrences of the form

s d, where s is a stack and d is an item that satisfies the predi-

cate ϕ. To achieve this, we have to record the stack s given

with a start(s) invocation, and with the following next(d)
invocation we return the stack s.push(op(d)) as output. As

seen in Figure 3, the state space of the algorithm consists

of elements L(in), where in is the stack that initiated the

current thread of execution. The initial state is L(nil), since

in the beginning there is no active thread. The function start

sets the stack for the active thread, and returns nil because the

empty sequence ε does not match the query atom(ϕ, op). The

transition function next checks if there is an active thread and

if the current item d satisfies the formula ϕ. If so, it returns

the active stack after pushing the result on it.

Iteration. Consider now the generalized evaluation algo-

rithm for iter(f, b0, σ), shown in Figure 3. The state space

consists of elements I(child), where child is a state of Af.

The initial state is I(initf), where initf is the initial state

of Af. The idea of the algorithm is to use the stack to store

the intermediate results of the aggregation. When starth is

invoked with the stack s, we propagate the start call to the

algorithm for f with the stack s.push(b0), since the initial

value b0 is the first intermediate result. Now, the transition

on a data item d involves first sending the item to Af. The

interesting case is when Af gives output. The stack s that it

returns contains the value a given by f as well as the previous

intermediate result b that we pushed on the stack. From these

we can compute the next intermediate result σ(b, a), which

we place again on the stack in order to restart Af.

Map-Collect. Suppose that the predicate ϕ : D → Bool

specifies the synchronization elements, K is a finite set

of keys, κ : D → K extracts a key from an element, f

describes the per-key processing, and r : RE〈D〉 is the rate

of output that we want to enforce. In Figure 3 we describe

the compilation of h = map-collect(ϕ, κ, f, r). Each state

of Ah is a pair: the first component is a key-indexed map

of states of Af, and the second component is a state of Ar.

The implementation of the function next is noteworthy. If the

data item is a synchronization element, then it is propagated

to all key-threads. If the data item specifies a key, then it is

propagated only to the key-thread that it is meant for. The

rate determines when to collect the outputs of the key-threads.

When the rate accepts, then we collect in a relation the

outputs of all key-threads that have available output. A crucial

optimization that we have implemented is the collapsing of

key-threads that have only seen synchronization elements so

far, hence these threads have identical state.

Theorem 7. Let f be a query which involves only finite sets

of keys for the occurrences of map-collect in it. Then, the

streaming algorithm Af that implements f (as described in

Figure 3) satisfies the following:

1. Assume that the values of the basic types appearing in f

require unit space to be stored. Then, Af requires space

that depends only on the size of f, independent of the

length of the stream.

2. Suppose additionally that the basic operations that appear

in f require unit time to be performed. Then, the process-

ing time per element for Af depends only on the size of

f, and is independent of the length of the stream.

Remark 8 (Map-Collect). When the map-collect construct

is used at the top level of a query, it is easy to implement

key-based partitioning so that the space requirements are

|K| · (space needed for f), where K is the set of keys appear-

ing in the stream. The situation is much more complicated

when map-collect is nested beneath several regular operators,

because then the evaluation algorithm has to explore the pos-

sibility of matching it against several (possibly overlapping)

subsequences of the stream. Putting a constant bound (on the

length of the input stream) on the several concurrent possibil-

ities of matching a nested map-collect hinges on the carefully

chosen typing restrictions of Figure 1.
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The assumptions of Theorem 7 for the basic types and

operations are satisfied by standard constant-size data types:

unsigned and signed integers, booleans, characters, floating-

point numbers. For such types Theorem 7 guarantees the

compilation of a query into an efficient streaming algorithm.

However, if the types appearing in the query involve un-

bounded data structures (such as sets, maps, multisets, and so

on), then the total space and time-per-element accounting has

to account for the storage and manipulation of these complex

data structures. The literature on database systems addresses

the problem of efficient processing with relational data struc-

tures (e.g., for selecting, filtering, joining, etc.), and this issue

is orthogonal to our investigations. Theorem 7 assures us

that even when computing with relational data structures, the

parsing of the stream and the combination of the intermediate

results incur very little additional computational overhead.

4.1 Approximation

Theorem 7 states space and time guarantees for our evaluation

algorithm that are applicable only when the basic data values

have a constant-size encoding, and the basic operations can

be computed in constant time. One very important statistic

that does not fit these assumptions is median, the computation

of which requires recording multisets of values (hence, linear

space is required). We will see that using approximation

we can overcome this barrier. It is known that an exact

computation of the median of a stream of n positive integers

requires Ω(n) space [31]. So, any small space computation

of median must allow some error. We get around this barrier

by using the idea of a geometric discretization of the range

of possible values, and rounding down each element in the

stream to its nearest discrete value.

At a high level, the idea is to use a data structure of approx-

imate histograms, which maintain counts for the discretized

values. This idea applies to all real numbers (negative, zero,

and positive), but for the sake of simplicity we assume that

the range is (0,+∞). We first choose an approximation

constant ε ∈ (0, 1). For x ≥ 1, define its ε-approximation as

apx(x) = (1+ ε)i, where i = ⌊log1+ε x⌋. For x ∈ (0, 1) we

put apx(x) = (1 + ε)−i−1, where i = ⌊log1+ε(1/x)⌋. For

all x ∈ (0,∞), the inequality apx(x) ≤ x ≤ apx(x)(1 + ε)
holds. The implies, for example, that if ε = 0.01 then the

approximation error is at most 1% of the actual value.

Our streaming algorithm for computing median queries

maintains a summary H, which is an integer-indexed array

of counts (for discretized values). For an integer i, the entry

H[i] is the count of values in the interval [(1+ε)i, (1+ε)i+1)
that we have seen so far. From this summary, any rank query

can be answered approximately with relative error ε. Suppose

that U is the largest value and L is the smallest (positive)

value appearing in the stream. For asymptotic analysis, we

assume w.l.o.g. that U ≫ 1 and L ≪ 1. Then, the array H
requires log1+ε U + log1+ε L

−1 ≤ ε−1 · log2(U/L) entries.

We write Mε(V) for the type of ε-approximate histograms

over scalars V, and ∅ε for the empty histogram. We support

the operations insε :Mε(V)×V →Mε(V) for value insertion

and mdnε : Mε(V) → V for obtaining the approximate

median. Choosing between exact or approximate computation

amounts to simply using the appropriate data structure. The

approximation guarantees are given concisely as follows:

Theorem 9. For every nonempty sequence w of scalars, we

have that Jfε-apxKw ≤ JfexactKw ≤ (1+ε) ·Jfε-apxKw, where

fexact = apply(iter(atom(), ∅, ins),mdn)

fε-apx = apply(iter(atom(), ∅ε, insε),mdnε)

Assuming that constant space is enough for storing the size

of the stream, the space used by the evaluation algorithm for

fε-apx is linear in ε−1 and in log(U/L), where U (L) is the

largest (smallest) absolute value appearing in the stream.

When the computation of medians is mixed with other

numerical operations, providing a global approximation guar-

antee is more subtle. If we restrict attention to non-negative

numbers and the numerical operations +,min,max, avg
and mdnε, then the guarantees of Theorem 9 can be lifted

to all queries involving these operations. However, adding

an ε-approximately computed positive number and an ε-
approximately computed negative number can result in un-

bounded relative error for the result.

Another useful computation that benefits tremendously

from approximation is sliding-window event counting (de-

scribed in §3.1). To count the number of events exactly, it

can be shown that space linear in the size of the window is

necessary. The work of [25] shows that a (1+ε)-approximate

estimate can be obtained using space that is linear in ε−1 and

logarithmic in the size of the window. We have incorporated

the approach of [25] in our implementation.

5. Experiments

We have implemented StreamQRE as a Java library in order

to facilitate the easy integration with user-defined types

and operations. Our implementation covers all the core

combinators of Figure 1, and provides optimizations for the

derived operations (stream filtering, mapping, windowing,

event counting, etc.). We have already discussed in Remark 6

that our implementation of sliding windows does not use the

expensive encoding of §3.1, but instead allows the use of

efficient algorithms for the manipulation of the window. The

data structure of approximate histograms and the algorithm

for approximate event counting, as described in §4.1, are also

supported.

The goals of our experimental evaluation are the follow-

ing: (1) examine if the language constructs of StreamQRE are

sufficiently expressive and flexible to describe useful stream

transformations on realistic workloads, (2) check whether

our compilation procedure produces efficient code that can

achieve high performance, and (3) evaluate whether approxi-
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S-QRE QRE [11] RxJava Esper Flink

1. host language integration yes N/A yes no yes

2. streaming composition yes yes yes yes yes

3. stream filtering yes - yes yes yes

4. stream mapping yes - yes yes yes

5. sequential aggregation yes yes yes yes yes

6. key-based partitioning yes no yes yes yes

7. tumbling windows yes - yes yes yes

8. sliding windows yes - yes yes yes

9. pattern-based windows yes - no no no

10. regular parsing yes yes no no no

11. approximate aggregation yes no no no no

12. incremental windows yes no no yes no

Figure 5. Some of the features and stream transformations

supported by StreamQRE, RxJava, Esper and Flink.

mation can provide substantial space benefits for some realis-

tic but expensive computations.

We have chosen the widely used Yahoo and NEXMark

benchmarks [22, 43], which describe realistic workloads and

suggest complex and useful queries. We evaluate StreamQRE

by comparing it against three other streaming engines: RxJava

[3], Esper [2] and Flink [1]. We have picked these popular

engines because they offer rich sets of high-level stream ma-

nipulation operations, and they all have actively maintained

open-source implementations in Java that can be deployed on

a single machine (in fact, on a single JVM).

Figure 5 lists some useful stream transformations and the

engines that directly support them. For the QREs of [11], no

implementation was given. The streaming operations marked

with - in Figure 5 can be encoded using the core regular

constructs, but an efficient engine would require additional

optimizations, especially for the expensive windowing opera-

tions. The operations (2)–(6) from Figure 5 are used in every

query of both benchmarks, while a few of the queries require

time-based tumbling/sliding windows. As we will discuss

later, the regular constructs of StreamQRE prove especially

useful for some of the queries of NEXMark. Finally, we use

the features (11) and (12) of StreamQRE to program two

queries inspired from the patient monitoring example of §2.

Yahoo Benchmark. The Yahoo Benchmark [22] specifies

a stream of advertisement-related events for an analytics

pipeline. It specifies a set of campaigns and a set of advertise-

ments, where each ad belongs to exactly one campaign. The

static map from ads to campaigns is computed ahead-of-time

and stored in memory. Each element of the data stream is of

the form (userId, pageId, adId, eventType, eventTime),
indicating the interaction of a user with an advertisement,

where eventType is one of {view, click, purchase}. The

component eventTime is the timestamp of the event.

Query Y1. The basic benchmark query (described in

[22]) computes, at the end of each second, a map from

each campaign to the number of views associated with that

campaign within the last second. For each event tuple, this

involves a lookup to determine the campaign associated with

the advertisement viewed. The reference implementation

published with the Yahoo benchmark involves a multi-stage

pipeline: (a) stage 1: filter view events, (b) stage 2: project the

ad id from each view tuple, (c) stage 3: lookup the campaign

id of each ad, (d) stage 4: compute for every one-second

window the number of events (views) associated with each

campaign. The query involes key-based partitioning on only

one property, namely the derived campaign id of the event.

Query Y2. We extend the Yahoo benchmark with a more

complex query. An important part of organizing a marketing

campaign is quantifying how successful ads are. We define

success as the number of users who purchase the product

after viewing an ad for it. Our query outputs, at the end of

every second, a map from campaigns to the most successful

ad of the campaign so far, together with its success score.

NEXMark benchmark. The Niagara Extension to XMark

benchmark (NEXMark) [43] concerns the monitoring of an

on-line auction system such as eBay. Four kinds of events

are recorded in the event stream: (a) Person events, which

describe the registering of a new person to the auction system,

(b) Item events, which mark the start of an auction for a

specified item, (c) Close events, which mark the end of an

auction for a specified item, and (d) Bid events, which record

the bids made for items that are being auctioned.

Person(personId, name, ts) Close(itemId, ts)

Item(itemId, sellerId, initPrice, ts, dur, category)

Bid(itemId, bidderId, bidIncrement, ts)

Every event contains the field ts, which is the timestamp of

when the event occurred. Every new auction event (of type

Item) specifies an initial price initPrice for the item, the

duration dur of the auction, and the category to which the

item belongs. Every bid event contains the bid increment,

that is, the increment by which the previous bid is raised. So,

to find the current bid for an item we need to add the initial

price of the item together with all the bid increments for the

item so far. We have chosen five queries, which are minor

variants of some of the queries of the NEXMark benchmark:

(N1) Output at every auction start or close the number of

currently open auctions. (N2) Output at every auction close

the average closing price of items sold so far. (N3) Output

at every auction close the average closing price of items per

category. (N4) Output every 10 minutes the highest bid within

the last 10 minutes. (N5) Output every 10 minutes the item

with the most bids in the last 24 hours.

Queries N2 and N3 involve identifying for every item a

pattern-based window that spans all events relating to the

auction for that item. These windows are naturally specified

by the regular pattern Item · Bid∗ · Close. The constructs

of StreamQRE are very well suited for this purpose, whereas

the encoding of these queries in RxJava, Esper and Flink is

arguably awkward and error-prone.

Results. Figure 6 summarizes the throughput results for the

queries of the Yahoo and NEXMark benchmark. Every exper-
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slowdown w.r.t. Q

R E F

Y1 2.3 6.2 18

Y2 3.6 6.7 9.8

N1 4.3 76 141

N2 2.1 22 42

N3 2.1 21 42

N4 2.0 27 35

N5 2.6 18 33

Figure 6. Yahoo and NEXMark benchmarks: results for the queries Y1, Y2, and N1–N5 (from left to right). Every bar chart

shows the throughput (in millions of events per second) for StreamQRE (Q), RxJava (R), Esper (E) and Flink (F).

iment was repeated 100 times and we report the arithmetic

mean, together with an error bar that indicates the standard

deviation of the samples. All experiments were run on a

typical contemporary laptop, with an Intel Core i7-4710HQ

CPU running at 2.5 GHz and with 12 GB of RAM (Windows

8.1 with Oracle JDK 1.8.0 111-b14). Both StreamQRE and

RxJava, which are relatively lightweight libraries, achieve

significantly higher throughputs for these sequential work-

loads than Esper and Flink. Moreover, StreamQRE is two

to four times faster than RxJava for all queries. Both the

Yahoo and NEXMark benchmarks specify random stream

generators that create timestamped events. In order to get

meaningful throughput measurements, we have modified the

stream generators so that the event generation is not throt-

tled. This means that event time, i.e. the time dimension of

the timestamps, is not the same as real time. The queries

describe the computations in event time, so we can “replay”

the execution at higher actual speeds.

Approximation. To measure the benefit of approximation

we have implemented a random stream generator for the

patient monitoring example of §2, and have written the

following two queries in StreamQRE: (P6) Report at the

end of every day, the median over all previous days of the

count of measurements per day. (P7) Report at every new

event arrival, the number of atypical measurements, i.e. those

that exceed a threshold T , that have occurred over the last W
events, where we vary the size W of the sliding window.

We report the results in Table 1: the throughput is in mil-

lion events per second, and the space usage is in 1000 bytes.

We have computed queries P6 and P7 using both an exact

and approximate evaluation algorithm. We set the approxima-

tion constant at ǫ = 0.01, which means that the approximate

results have relative error at most 1%. For query P7 we

vary the window size from 104 to 107 elements. Memory

usage was measured by serializing the evaluator state using

Java’s default serializer. Note that for both queries P6 and

P7, the approximate evaluator consumes significantly less

memory than the exact query evaluation algorithm. For query

P7, the approximate evaluator is generally slower than the

exact evaluator, because the processing of each element re-

quires the updating of a small but complicated data structure

[25]. However, for a massive sliding window of 107 elements

the exact query becomes noticeably slower, because memory

Table 1. Performance for queries with approximation.
Throughput Space (1000 bytes)

Exact Approx Exact Approx Error

P6 8.208 8.643 1,458 25.3 0.14%

P7 (w = 104) 6.747 3.221 151 9.9 0.09%

P7 (w = 105) 5.100 2.067 1,501 14.9 0.52%

P7 (w = 106) 4.030 1.863 15,001 19.4 0.19%

P7 (w = 2 · 106) 3.411 1.857 30,001 20.9 0.24%

P7 (w = 4 · 106) 2.050 1.871 60,001 22.3 0.30%

P7 (w = 6 · 106) 1.434 1.876 90,001 23.2 0.34%

P7 (w = 8 · 106) 1.028 1.864 120,001 23.7 0.03%

P7 (w = 107) 0.826 1.841 150,001 24.3 0.36%

starts becoming scarce. For query P6, the approximate evalu-

ator is slightly faster than the exact evaluator, in spite of the

overhead of performing floating-point arithmetic to maintain

approximate histograms. For both P6 and P7, the actual error

in output is less than the stated threshold limit of 1%. In sum-

mary, if small errors are permissible in the computation, then

approximate QRE evaluation has the potential to significantly

reduce memory usage by an exponential.

Why regular parsing? We have already mentioned that

regular patterns facilitate the implementation of N2 and N3.

The ability to extract pattern-based windows of interest from

a stream and compute incrementally with their elements

distinguishes StreamQRE from other engines. For example,

for the patient stream of §2, we can easily extract episodes

with at least one extreme measurement and return the average

of the measurements after the last occurrence of an extreme

one. Programming such realistic queries in RxJava, Esper or

Flink would be extremely cumbersome.

6. Related Work

Streaming databases. There is a large body of work on

streaming database languages and systems such as Aurora [5],

Borealis [4], STREAM [14], and StreamInsight [7, 18]. The

query language supported by these systems (for example,

CQL [15]) is typically a version of SQL with additional con-

structs for sliding windows over data streams. This allows

for rich relational queries, including set-aggregations (e.g.

sum, maximum, minimum, average, count) and joins over

multiple data streams. Such SQL-based languages are, how-

ever, severely limited in their ability to express properties and

computations that rely on the sequence of the events such as:
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sequence-based pattern-matching, and numerical computa-

tion based on list-iteration when the order of the data items

is significant (e.g., average of piecewise-linear interpolation).

In contrast, our query language allows the combination of re-

lational with sequence-based operations, which poses unique

technical challenges that are not addressed in the aforemen-

tioned works. Of particular relevance are engines such as

IBM’s Stream Processing Language (SPL) [34, 45], Reac-

tiveX [3], Esper [2] and Flink [1], which support user-defined

types and operations, and allow for both relational and state-

ful sequential computation. However, none of these engines

provides support for decomposing the stream in a regular

fashion and performing incremental computations that reflect

the structure of the parse tree, a useful and challenging feature

(especially when combined with key-based partitioning) that

is central in our work. Another aspect not addressed in any of

the aforementioned systems is approximate query evaluation

with strong guarantees, for example approximate medians and

approximate event-counting over sliding windows. Our use

of synchronization elements bears resemblance to the punc-

tuations of [36, 44], which are used to trigger the closing of

windows. The setting here is much more general since we

allow arbitrary regular patterns of synchronization elements.

Complex Event Processing (CEP). The literature on CEP

[20, 21, 23, 32, 33, 48, 49] is concerned with the recognition

of complex patterns over streaming data. The patterns are

typically given as queries that resemble regular expressions

or as automata-based models. In some of these proposals a

pattern can depend on the evolution of values: for example,

a pattern where the price of a stock is constantly increasing.

While CEP languages offer powerful event-selection capabil-

ities, they cannot express the hierarchical computations that

StreamQRE specifies.

String transformations. The language of StreamQRE is

closely related to automata- and transducer-based formalisms

for the manipulation of strings. There have been several

recent works on the subject [10, 13, 24, 29, 35]. The current

work draws especially from [11], where the language of

Quantitative Regular Expressions (QREs) is proposed. It

is a language based on regular expressions, intended for

describing simple numerical calculations over streaming

data. There are several crucial differences between [11]

and the current work. The most important one is that we

consider here relational structures and operations, including

an explicit construct map-collect for building relations by

partitioning the stream on keys and collecting the outputs

of the sub-streams. The map-collect combinator presents

significant new challenges, both for defining its semantics

and for efficient type-checking and evaluation (Remarks 5

and 8). The lack of such a construct from the QREs of [11]

implies that the benchmark queries of §5 are inexpressible.

Another important technical difference between the present

work and [11] is that our iteration scheme is based on list-

iteration (the fold combinator), as opposed to a complicated

parameter-passing scheme involving variables and algebraic

terms. This makes the language much simpler and easier

to use. Moreover, it enables efficient evaluation using small

stacks of values, as opposed to the arithmetic terms of [11],

which require some kind of compression that is dependent on

the nature of the primitive operations. Using approximation,

we also handle here the challenging median operation, as well

as sliding-window event counting [25].

Streaming algorithms. Our work addresses issues of

streaming computation that are complementary to the al-

gorithmic questions that are tackled by the work on data

stream algorithms. The seminal paper of Alon, Matias and

Szegedy [8] on the streaming computation of frequency mo-

ments gave enormous momentum to the area and spawned

a lot of subsequent research. See [39] for a broad exposi-

tion of the area. Of particular relevance is the work on the

approximate computation of quantile queries (see [30] for

a survey). The goal is to return an element of rank r, and

the ε-approximation relaxation is that the algorithm is al-

lowed to return an element of rank r̂ satisfying the guarantee:

r − εn ≤ r̂ ≤ r + εn, where n is the length of the stream.

For our application, even if we had an element of rank r − 1
or r + 1 (exactly adjacent to r), its value could be arbitrarily

far from the exact value. This means that the above approx-

imation notion is not appropriate for our work. Instead, we

want an ε-approximate answer that is guaranteed to be close

in value to the exact answer. Much of the work within the

streaming algorithms literature has focused on approximating

specific functions in small space, whereas we investigate here

is a wide class of queries with hierarchical nesting of several

numerical operations, and we provide a general framework

for dealing with such queries.

7. Conclusion

We have introduced the StreamQRE language, a high-level

formalism for processing streaming data. Our query language

integrates two paradigms for programming with streams:

streaming relational languages with windowing constructs,

and state-machine-based models for pattern-matching and

performing sequence-aware computations. We have presented

a small but powerful core language, which has a formal de-

notational semantics and a decidable type system. The ex-

pressiveness of the language has been illustrated by encoding

common patterns and programming significant examples. A

compilation procedure has been described that translates a

query into a streaming algorithm with precise space and time

usage guarantees. We have also shown how to incorporate

efficient approximation algorithms in our framework, e.g. for

computing the median of a collection of numbers and for

counting the number of events occurring over large windows

of time. A Java implementation of StreamQRE has been

provided, and it has been evaluated using two benchmarks:

Yahoo [22] and NEXMark [43].
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