
Rewriting Needs Constraints

and Constraints Need Rewriting

José Meseguer

Department of Computer Science, UIUC

NSF Workshop on Symbolic Computation and Constraints
14 November 2008

José Meseguer (UIUC) Rewriting Needs Constraints and Constraints Need Rewriting
NSF Workshop on Symbolic Computation and Constraints

/ 16

Motivation

Symbolic Computation, Rewriting, and Constraints

Rewriting is a very general mechanism for symbolic computation;
therefore, research on rewriting techniques is an essential part of symbolic
computation research.

Similarly, solving of constraints is a very essential part of symbolic
computation, so that constraint solving is likewise an essential part of
symbolic computation research.

This talk will try to make obvious that rewriting and constraints are
intimately related, need each other, and can help each other in
fundamental ways.

After a quick review of basic concepts for constraints and rewriting, I will
focus on the mutual help and inter-dependence between rewriting and
constraint solving.

José Meseguer (UIUC) Rewriting Needs Constraints and Constraints Need Rewriting
NSF Workshop on Symbolic Computation and Constraints

/ 16

Constraints

Validity, Satisfiability, and Constraints

Let C be a class of first-order formulas, and let T be a first-order theory
such that C ⊆ L(T). We say that ϕ ∈ C is T-valid iff

T ⊢ ϕ

We say that ϕ ∈ C is T-satisfiable iff

T ∪ ϕ 6⊢ ⊥

Obviously, validity is a special case of satisfiability since (for ϕ a
sentence) we have,

T ⊢ ϕ ⇔ T ∪ ¬ϕ ⊢ ⊥

Let M be a model of a theory T. For an appropriate class C of formulas,
called constraints, the constraint M-satisfaction problem is the problem
of whether, given ϕ ∈ C, we have

M |= ϕ

José Meseguer (UIUC) Rewriting Needs Constraints and Constraints Need Rewriting
NSF Workshop on Symbolic Computation and Constraints

/ 16

Constraints

Satisfiability and Constraint Satisfaction Procedures

It is obviously very important to find theories T and classes of formulas C
such that the problem of whether ϕ ∈ C is T-satisfiable is decidable.

Likewise it is very important to find for a model of interest M a class C
of constraints such that the problem of whether M |= ϕ is decidable.

These two problems are different; however, in some cases they may be
equivalent. For example, for T = E a set of Σ-equations, and u = v an
equation, we have equivalences:

∀~x u 6= v E−invalid ⇔ E ⊢ ∃~x u = v ⇔ TΣ/E(X) |= ∃~x u = v

which is the E-unifiability problem.

José Meseguer (UIUC) Rewriting Needs Constraints and Constraints Need Rewriting
NSF Workshop on Symbolic Computation and Constraints

/ 16

Rewriting

Rewriting

Giving a signature Σ of function symbols, a rewite rule is a sequent
l −→ r with l, r Σ-terms, with vars(r) ⊆ vars(l).

A collection R of rewrite rules defines a rewriting relation t −→∗
R t′

between Σ-tems as the reflexive-transitive closure of the relation

t[θ(l)] −→R t[θ(r)]

for some substitution θ and some l −→ r in R.

For example, for R the single rule x + 0 −→ x performs the rewrite
4 + (3 + 0) −→R 4 + 3. with θ = {x 7→ 3}.

More generally, for rules R and equations A, the rewriting modulo A,
t −→∗

R/A t′, is the reflexive-transitive closure of

t[u] −→R/A t[θ(r)]

for some θ and some l −→ r in R such that u =A θl. E.g., for the above
rule we get 4 + (0 + 3) −→R/C 4 + 3 when C = {x + y = y + x}.

José Meseguer (UIUC) Rewriting Needs Constraints and Constraints Need Rewriting
NSF Workshop on Symbolic Computation and Constraints

/ 16

Rewriting

Two Semantics for Rewriting

Given a rewrite theory R = (Σ, A, R) two different semantics are possible
for R:

1 An equational semantics, in which we read l −→ r as an oriented
equation. For example, x + 0 −→ x is read as the oriented form of
x + 0 = x. If the rules R are confluent, terminating, and coherent
modulo A, this semantics gives a decision procedure for the
R ∪ A-word problem, provided A-matching is decidable.

2 A rewriting logic semantics, in which we read l −→ r as a transition
rule in a concurrent system or, alternatively, as an inference rule in a
logic. For example:

credit(A, M) , [A : Accnt | bal : N] −→ [A : Accnt | balN + M]

A , (A ⇒ B) −→ B

where in both cases the operation , is associative and
commutative.

José Meseguer (UIUC) Rewriting Needs Constraints and Constraints Need Rewriting
NSF Workshop on Symbolic Computation and Constraints

/ 16

Rewriting

Rewriting Strategies

Under an equational semantics with confluent and terminating rules all
rewriting sequences end in a unique canonical form. Therefore, rewriting
strategies are not essential and only affect performance.

However, under a rewriting logic semantics, the rules need not be
confluent or terminating, and strategies become very important. We may
assume that rules are labeled, e.g., a : l −→ r, and can define a strategy
as a regular-like expression on labels such as, for example,

(a! . b) + (c+. a)!

where a! applies rule a “to the bitter end,” and the other regular
expression notations have the obvious meaning.

We can then define a rewriting algorithm as a pair (R, strat), with R a
rewrite theory, and strat a strategy for R. For example, R can be an
inference system and strat a strategy for it. This has the advantage of
allowing us to reason about the correctness of R quite independently of
the strategy strat.

José Meseguer (UIUC) Rewriting Needs Constraints and Constraints Need Rewriting
NSF Workshop on Symbolic Computation and Constraints

/ 16

Rewriting Needs Constraints

Rewriting Needs Constraints

Let R = (Σ, A, R) be a rewrite theory. I will give three instances in which
constraint solving is essential for rewriting: (1) the rewriting relation, (2)
the narrowing relation, and (3) inductive reasoning in initial algebras.

Consider the rewriting modulo A relation

t[u] −→R/A t[θ(r)]

with a rule l −→ r in R. For this relation to be decidable, we need to
decide whether there is a substitution θ with u =A θl.

This is just the A-matching problem, which is the special case of the
A-unification problem consisting of the solving of the constraint

∃~x l =A u

where ~x = vars(l) and we assume that u has no variables (ground term).
For example, Maude supports rewriting modulo A by efficient
A-matching algorithms for A any combination of associativity and/or
commutativity and/or identity axioms.

José Meseguer (UIUC) Rewriting Needs Constraints and Constraints Need Rewriting
NSF Workshop on Symbolic Computation and Constraints

/ 16

Rewriting Needs Constraints

Narrowing
We can think of narrowing as doubly symbolic rewriting. Given
R = (Σ, A, R) we define the narrowing modulo A relation t ∗

R/A t′ as
the reflexive-transitive closure of the relation

t[u]p R/A t[θ(r)]p

where p is a nonvariable position in t, and there is a rule l −→ r in R and
a substitution θ which is a unifier of u and l modulo A, i.e., θ(u) =A θl.
For example, 4 + (y + 3) R/C 4 + 3 with x + 0 −→ x in R,
θ = {x 7→ 3, y 7→ 0}, modulo C = {x + y = y + x}.

Obviously, to perform narrowing modulo A we need to solve A-unification
constraints of the form ∃~x u =A l.

Narrowing is a crucial mechanisms in many ways, including: (1)
functional-logic programming languages; (2) Knuth-Bendix completion
(KB) of a rewrite theory R with equational semantics; (3)
R ∪ A-unification; and (4) symbolic reachability analysis with transition
semantics. For example, the Maude-NPA tool performs complete
symbolic reachability analysis of cryptographic protocols modulo
algebraic properties of the cryptographic functions by narrowing.

José Meseguer (UIUC) Rewriting Needs Constraints and Constraints Need Rewriting
NSF Workshop on Symbolic Computation and Constraints

/ 16

Rewriting Needs Constraints

Inductive Reasoning in Initial Models

Very often we need to reason not just in a theory T, but in the standard
model of such a theory. Inductive reasoning is precisely sound reasoning
in such a model. For example, if T is an equational theory or a Horn
theory, T has an initial model called, respectively, the initial algebra, or
the Herbrand model of T. A rewrite theory R has also an initial model.

Many theorem proving systems (e.g., PVS) use a variety of constraint
solvers and satisfiability decision procedures for reasoning that is often
inductive. For example, decision procedures for data structures are
precisely procedures to reason about equalities and inequalities between
constructor terms in an initial model. Similarly for linear arithmetic.

The Maude formal environment performs inductive reasoning using:

• order-sorted unification modulo commutativity and
associativity-commutativity;

• tree automata modulo any combination of associativity and/or
commutativity and/or identity axioms;

• sat solvers, linear arithmetic, and uninterpreted function symbols;
• an LTL model checker for finite-state rewrite theories.

José Meseguer (UIUC) Rewriting Needs Constraints and Constraints Need Rewriting
NSF Workshop on Symbolic Computation and Constraints

/ 16

Constraints Need Rewriting

Constraints Need Rewriting

Constraint solving and satisfiability procedures need rewriting techniques
in several ways:

• To reason about their correctness and about alternative algorithms.

• To cover more applications by integrating theory-specific algorithms
with theory-generic ones.

• To easily develop prototypes and even efficient implementations.

Traditional descriptions of constraint solving and decision procedures,
have tended to be implementation-oriented. Although obviously hepful to
develop efficient implementations, such descriptions are unnecessarily
complex and low-level, posing serious challenges to both correctness and
understandability.

For example, it has taken about 20 years to fully understand Shostak’s
algorithm and its correctness issues. The point is that it is hard from the
jungle of pointers of an implementation-oriented description to
disentangle the essentail correctness aspects form the optimizations.

José Meseguer (UIUC) Rewriting Needs Constraints and Constraints Need Rewriting
NSF Workshop on Symbolic Computation and Constraints

/ 16

Constraints Need Rewriting

Rewriting Logic Specification of Decision Procedures

Since the seminal Martelli&Montanari paper on unification it has been
more and more clearly understood that the essential aspects of a
constraint solver or decision procedure should be captured declaratively
by means of an inference system, whereas the control and optimization
aspects can be then specified as strategies to apply the inference rules.

This is exactly what rewriting logic provides as a logical framework in
which an inference system is specified as a rewrite theory R, and various
alternative implementations of the inference system are captured by
alternative strategies, giving rise to algorithms:

(R, strat1), (R, strat2), . . . (R, stratn)

Reasoning about the correctness of the inference system can be isolated
to the declarative level of the rewrite rules in R, whereas efficiency,
complexity, and implementation issues are dealt with at the level of the
strategies strat1, strat2, . . . , stratn.

This can often be done without disregarding implementation and
complexity issues.

José Meseguer (UIUC) Rewriting Needs Constraints and Constraints Need Rewriting
NSF Workshop on Symbolic Computation and Constraints

/ 16

Constraints Need Rewriting

Rewriting Logic Specification of Decision Procedures (II)

This approach has been followed for example to specify and reason about:

• Unification algorithms modulo different theories A (Jouannaud and
Kirchner).

• Abstract congruence closure, specified as a KB-like inference system,
so that: (i) the various Shostak, Downey-Sethi-Tarjan, and
Nelson-Oppen algorithms appear precisely as alternative strategies;
and (ii) congruence closure is generalized modulo AC and ACU
(Bachmair-Tiwari-Vigneron, building upon Kapur).

• Groebner basis computation, understood and generalized as a
KB-like completion method, modulo the theory of rings (Kapur,
Tiwari).

• Combinations of Decision Procedures, understood as an inference
system so that the different combination procedures such as
Shostak, Nelson-Oppen, and Shankar-Ruess appear as alternative
strategies (Conchon&Krstić, building upon Tinelli&Harandi).

• Abstract DPLL and DPLL(T), specified both as rewrite theories, so
that different sat-solving and SMT-solving algorithms are then
understood as alternative strategies (Nieuwenhuis-Oliveras-Tinelli).

José Meseguer (UIUC) Rewriting Needs Constraints and Constraints Need Rewriting
NSF Workshop on Symbolic Computation and Constraints

/ 16

Constraints Need Rewriting

Combining Theory-Specific and Theory-Generic Procedures

The advantage of theory-specific procedures is their decidability, but
often they deal only with a fragment of the entire problem. It is therefore
very useful to combine them with theory-generic procedures to cover a
much broader range of applications. Narrowing modulo A provides good
examples of this method:

1 In the equational interpretation of R = (Σ, A, E), if A has a
unification algoritm, and E is confluent, terminating, and coherent
modulo A, then narrowing provides a complete A ∪ E-unification
algorithm, which is finitary under some assumptions
(Escobar-Meseguer-Sasse in the modulo A case, building upon
Comon-Delaune, Jouannaud-Kirchner-Kirchner, and Hullot).

2 In the transition interpretation of R = (Σ, B, R), under appropriate
assumptions narrowing provides a complete procedure to answer
symbolic reachability questions of the form:

∃~x t −→∗
R/B t′

(Thati&Meseguer, exploited by Escobar-Meadows-Meseguer in the
Maude-NPA).

José Meseguer (UIUC) Rewriting Needs Constraints and Constraints Need Rewriting
NSF Workshop on Symbolic Computation and Constraints

/ 16

Constraints Need Rewriting

Declarative Does not Mean Inefficient

Giving declarative specifications of decision procedures for constraint
solving and formula satisfiability is not only an easy way to prototype
such procedures. In many cases, a good rewriting specification running
on a high-performance rewrite engine can compete with or even
outperform well-engineered implementations.

For example, a 30-line semantic definition in rewriting logic of Milner’s
unification-based type checking algorithm by Roşu and his students at
UIUC outperforms the SML compiler when executed in Maude:

- Average Stress test
Speed n = 10 n = 11 n = 12 n = 13 n = 14

OCaml 0.6s 0.6s 2.1s 7.9s 30.6s 120.5s
Haskell 1.2s 0.5s 0.9s 1.5s 2.5s 5.8s
SML 4.0s 5.1s 14.6s 110.2s 721.9s -
W in Maude 1.1s 2.6s 7.8s 26.9s 103.1s 373.2s
W+ in Maude 2.0s 2.6s 7.7s 26.1s 96.4s 360.4s

W in PLT/Redex1 134.8s >1h - - - -
W in OCaml 49.8s 105.9s 9m14 >1h - -

Speed of various implementations
José Meseguer (UIUC) Rewriting Needs Constraints and Constraints Need Rewriting

NSF Workshop on Symbolic Computation and Constraints
/ 16

Conclusions

Conclusions

Both constraint satisfaction and rewriting are essential for symbolic
computation.

Furthermore, as I have barely hinted at but will be further developed in
other workshop talks, the range of applications supported by constraint
satisfaction and by rewriting techniques is immense: they greatly broaden
the applicability of symbolic computation methods.

I hope I have given ample evidence for the conclusion that may talk title
suggests:

Rewriting Needs Constraints and Constraints Need Rewriting.

José Meseguer (UIUC) Rewriting Needs Constraints and Constraints Need Rewriting
NSF Workshop on Symbolic Computation and Constraints

/ 16

	Motivation
	Constraints
	Rewriting
	Rewriting Needs Constraints
	Constraints Need Rewriting
	Conclusions

