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Th T i kThe Trick…

The daunting NP completenessThe daunting NP-completeness…

[GJ79]



Th T tThe Treat…
Large and vibrant SAT communityLarge and vibrant SAT community

SAT Portal www.satlive.org
Satlib Research InfrastructureSatlib Research Infrastructure

60K benchmarks
SAT solver competitions
Public domain solvers

Wide practical application of SAT 
M f d M M Mill d th l tMore from de Moura, McMillan and others later…

Emboldened researchers to attack harder 
problemsproblems

QBF and SMT



SAT S l C titiSAT Solver Competition

http://www-sr.informatik.uni-tuebingen.de/sat-race-2008/analysis.html



SAT S l C titiSAT Solver Competition

http://www-sr.informatik.uni-tuebingen.de/sat-race-2008/analysis.html



Thi T lkThis Talk
Successful application of diverse CS techniquesSuccessful application of diverse CS techniques

Logic (Deduction and Solving)
Search
Caching
Randomization
Data structuresData structures
Cache efficient algorithms

Open challenges…
Limited understanding of why the algorithms work
Dynamic application of strategies
QBFQBF
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SAT Solvers: 
A C d d Hi tA Condensed History

Deductive/Formula SolvingDeductive/Formula Solving 
Davis-Putnam 1960 [DP]
Iterative existential quantification by resolution

Backtrack SearchBacktrack Search
Davis, Logemann and Loveland 1962 [DLL]
Search with unit propagation

C fli t D i Cl L i [CDCL]Conflict Driven Clause Learning [CDCL]
GRASP, RelSat: Integrate a constraint learning procedure, 1996

Locality Based Search
Emphasis on exhausting local sub-spaces, e.g. Chaff, Berkmin, miniSAT
and others, 2000 onwards
Added focus on efficient implementation

Boolean Constraint Propagation Decision HeuristicsBoolean Constraint Propagation, Decision Heuristics, …



P bl R t tiProblem Representation

Conjunctive Normal FormConjunctive Normal Form
Representation of choice for modern SAT solvers
Easy conversion of other representations to CNFEasy conversion of other representations to CNF

E.g. Circuit to CNF using the Tseitin Transformation

(a+b+c)(a’+b’+c)(a’+b+c’)(a+b’+c’)

Variables ClausesLiterals



Deduction Workhorse I: 
R l tiResolution

Resolution of a pair of distance-one clausesResolution of a pair of distance one clauses

( + b + ’ + f) ( + h’ + + f)(a + b + c’ + f) (g + h’ + c + f)

a + b + g + h’ + fa + b + g + h’g

Resolvent implied by the original clauses, thus can be p y g ,
added back to the CNF without changing the formula



D i P t Al ithDavis Putnam Algorithm

Iterative existential quantification of variables [DP 60]
Using resolution

(a + b) (a + b’) (a’ + c)(a’ + c’)(a + b + c)(b + c’ + d’)(b’ + e)

(a + c + e)(c’ + e + d) (a’ + c)(a’ + c’)(a)∃b, f

f

∃b, f

f

(a + e + d)

(a   c)(a   c )

(c)(c’)

(a)

∃{b,c}, f

∃b, f

∃{b,a}, f

1 ( )

SAT
UNSAT

Potential memory explosion problem!

∃{b,a,c}, f∃{b,c,a,e,d}, f

Potential memory explosion problem!



SAT Solvers: 
A C d d Hi tA Condensed History

DeductiveDeductive 
Davis-Putnam 1960 [DP]
Iterative existential quantification by resolution

Backtrack SearchBacktrack Search
Davis, Logemann and Loveland 1962 [DLL]
Search with unit propagation 

C fli t D i Cl L i [CDCL]Conflict Driven Clause Learning [CDCL]
GRASP, RelSat: Integrate a constraint learning procedure, 1996

Locality Based Search
Emphasis on exhausting local sub-spaces, e.g. Chaff, Berkmin, miniSAT
and others, 2001 onwards
Added focus on efficient implementation

Boolean Constraint Propagation Decision HeuristicsBoolean Constraint Propagation, Decision Heuristics, …



DLL S hDLL Search
Search the decision tree for a 
satisfying assignment
Unit propagation to prune 

h

a
0 1

search
Deduction Workhorse II: Unit 
literal rule

b b
0

01 1

literal rule
All but one literal in a clause is 
assigned false

(v1=0 + v2=0 + v3=?)

c c c c
00 001 1 1 1

(v1 0 + v2 0 + v3 ?)
v3 must be 1 for the formula to be 
satisfiable

Unit propagation is the iterativeUnit propagation is the iterative 
application of this rule [DLL62]



SAT Solvers: 
A C d d Hi tA Condensed History
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Iterative existential quantification by resolution
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GRASP, RelSat: Integrate a constraint learning procedure, 1996
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and others, 2001 onwards
Added focus on efficient implementation

Boolean Constraint Propagation Decision HeuristicsBoolean Constraint Propagation, Decision Heuristics, …



C fli t D i L iConflict Driven Learning
x1 + x4 x1 x1=0, x4=1[SS99,BS96]
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9

x3 x3=1, x8=0, x12=1

[SS99,BS96]

x7 + x3 + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

x2 x2=0, x11=1

x7 x7=1, x9= 0, 1x4=1
x9=1

x9=0
x3=1 x7=1

x8=0

x1=0

11 1
x12=1

x2=0

x11=1 Implication graph: 
record history of unit implications



C fli t D i L iConflict Driven Learning
x1 + x4 x1 x1=0, x4=1
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9

x3 x3=1, x8=0, x12=1
x7 + x3 + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

x2 x2=0, x11=1

x7 x7=1, x9=1x4=1
x9=1

x3=1∧x7=1∧x8=0 → conflict

x9=0
x3=1 x7=1

x8=0

x1=0

11 1 x3 1∧x7 1∧x8 0 → conflict
x12=1

x2=0

x11=1



C fli t D i L iConflict Driven Learning
x1 + x4 x1 x1=0, x4=1
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9

x3 x3=1, x8=0, x12=1
x7 + x3 + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

x2 x2=0, x11=1

x7 x7=1, x9=1x4=1
x9=1

x9=0
x3=1 x7=1

x8=0

x1=0

11 1 x3=1∧x7=1∧x8=0 → conflict

Add conflict clause: x3’+x7’+x8
x12=1

x2=0

x11=1 x3 1∧x7 1∧x8 0 → conflict



C fli t D i L i
x1 + x4

Conflict Driven Learning
x1 x1=0, x4=1

x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9

x3 x3=1, x8=0, x12=1
x7 + x3 + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

x2 x2=0, x11=1

x3’+x7’+x8

x7 x7=1, x9=1x4=1
x9=1

x9=0
x3=1 x7=1

x8=0

x1=0

11 1 x3=1∧x7=1∧x8=0 → conflict
x12=1

x2=0

x11=1

Add conflict clause: x3’+x7’+x8

x3 1∧x7 1∧x8 0 → conflict



C fli t D i L i
x1 + x4

Conflict Driven Learning
x1 x1=0, x4=1

x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9

x3 x3=1, x8=0, x12=1
x7  + x3 + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

x2 x2=0, x11=1

x3’+x7’+x8

x7 x7=1, x9=1x4=1
x9=1

x9=0
x3=1 x7=1

x8=0

x1=0

11 1
Backtrack to the decision level of x3=1x12=1

x2=0

x11=1



Wh t’ th bi d l?What’s the big deal?
x1

Conflict clause: x1’+x3+x5’

Significantly prune the search space –

x1

x2

learned clause is useful forever!

Useful in generating future conflict

x3x3

4 4 clauses.

Very effective deduction/caching for 
search space pruning

x4 x4

x5x5x5 x5
search space pruning.



R t tRestarts
Abandon the x

1current search 
tree and 
reconstruct a 
new one

x
2

1 x
2

x
3new one

The clauses 
learned prior to 
the restart are x

x
3

x

x
3 x

1

3

the restart are 
still there after 
the restart and 
can help pruning 
the search space

44

x
5

x
5

x
5

x
5

x
5

the search space
Adds to 
robustness in the 
solversolver
Effective 
randomization Conflict clause: x1’+x3+x5’[BS00,H07]



SAT Solvers: 
A C d d Hi tA Condensed History

DeductiveDeductive 
Davis-Putnam 1960 [DP]
Iterative existential quantification by resolution

Backtracking SearchBacktracking Search
Davis, Logemann and Loveland 1962 [DLL]
Search with unit propagation

C fli t D i Cl L i [CDCL]Conflict Driven Clause Learning [CDCL]
GRASP, RelSat: Integrate a constraint learning procedure, 1996

Locality Based Search
Emphasis on exhausting local sub-spaces, e.g. Chaff, Berkmin, miniSAT
and others, 2001 onwards
Added focus on efficient implementation

Boolean Constraint Propagation Decision HeuristicsBoolean Constraint Propagation, Decision Heuristics, …



S ith Ch ff (2000)Success with Chaff (2000)
First major instance: ToughFirst major instance: Tough
Industrial Processor Verification

Bounded Model Checking, 14 cycle behavior

Statistics
1 million variables
10 million literals initially10 million literals initially

200 million literals including added clauses
30 million literals finally

4 illi l (i iti ll )4 million clauses (initially)
200K clauses added

1.5 million decisions
3 hour run time

[MMZ+01]



Constants Matter
Motivating Metrics: Decisions, Instructions, Cache 
Performance and Run Time

1dlx_c_mc_ex_bp_f
Num Variables 776
Num Clauses 3725
Num Literals 10045

zChaff SATO GRASP
# Decisions 3166 3771 1795

# Instructions 86.6M 630.4M 1415.9M

# L1/L2 24M / 1 7M 188M / 79M 416M / 153M# L1/L2 
accesses 

24M / 1.7M 188M / 79M 416M / 153M

% L1/L2 
i

4.8% / 4.6% 36.8% / 9.7% 32.9% / 50.3%
misses
# Seconds 0.22 4.41 11.78



U it P ti D i tUnit Propagation Dominates
while(1) {

>80% of execution time!
while(1) {

is_conflicting = propagate_unit();

if(!is conflicting) {if(!is_conflicting) {
if (no_free_vars) return SATISFIABLE;
make_decision(); // Decision Heuristic

}}
if(is_conflicting) {          

if (no_unforced_decisions) return UNSAT;
new constraint = analyze conflict(); // Learningnew_constraint = analyze_conflict(); // Learning 
literal = last_assigned(new_constraint);
backtrack_to(asserting_level(new_constraint));
assign(invert(literal)); // Conflict Driven Assertion g ( ( )); //

}
}



Tracking fewer literals per clause?

A clause with 2 non false literals can neitherA clause with 2 non-false literals can neither 
be unit nor conflicting

SATO’s Head/Tail lists are based on this idea [HS96]SATO s Head/Tail lists are based on this idea [HS96]
Chaff’s 2 literal watching develops it further 
[MMZ+01][ 0 ]

Has significant implications on the algorithms
No updates needed on backtracking

Efficient Data Structures/Algorithms matter



Memory Accesses: Different BCP 
Mechanisms
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Level 1 Data Cache Miss Rates: 
Different BCP Methods

Level 1 C ach e Miss R ates
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SAT Solvers: 
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Backtracking SearchBacktracking Search
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Search with unit propagation
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Locality Based Search
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and others, 2001 onwards
Added focus on efficient implementation

Boolean Constraint Propagation Decision HeuristicsBoolean Constraint Propagation, Decision Heuristics, …



D i i H i tiDecision Heuristics
while(1) {while(1) {

is_conflicting = propagate_unit();

if(!is conflicting) {if(!is_conflicting) {
if (no_free_vars) return SATISFIABLE;
make_decision(); // Decision Heuristic

}}
if(is_conflicting) {          

if (no_unforced_decisions) return UNSAT;
new constraint = analyze conflict(); // Learningnew_constraint = analyze_conflict(); // Learning 
decision = last_unforced_decision(new_constraint);
backtrack_to(decision); 
make forced decision(invert(decision));_ _ ( ( ));

}
}



L lit B d S hLocality Based Search

By focusing on a sub-space, the covered spaces tend to 
lcoalesce

More opportunities for resolution since most of the variables are 
common.



Locality Based Search:
D i i H i tiDecision Heuristics

Intuitions:Intuitions:
Take a more local view of the problem
Dynamically identify important constraints and variables
E l l t t fli tExplore space close to recent conflicts

Not very compute-intensive
Use relatively simple data structuresUse relatively simple data structures
Widely Used

VSIDS (Variable State Independent Decaying Sum) in Chaff
MiniSAT [ES03]
Berkmin [GN02]
VMTF in Seige [R04]g [ ]

…



M D d tiMore Deduction
Focused ResolutionFocused Resolution

Significant deduction to simplify the initial CNF instance
Minisat (SatElite) has efficient implementation [EB05]

Variable elimination by resolutionVariable elimination by resolution
Krom subsumption checks
Backward subsumption checks
Efficient hash based subsumption algorithmsp g

Hyper-resolution [B02]
Interestingly, these techniques can also be used during the 
solving process itselfg p

VER – used in Resolve-Expand QBF solver
Krom Subsumption – conflict clause minimization in Minisat



Proof Certification and Unsat
CCores

An UNSAT instance reduces to an emptyAn UNSAT instance reduces to an empty 
clause at the end of the deduction/search 
processprocess
Can log the resolution trace and 
independently validate this proof ofindependently validate this proof of 
unsatisfiability
Additional value in diagnosing the cause ofAdditional value in diagnosing the cause of 
unsatisfiability

Unsat Core [ZM03]Unsat Core [ZM03]



The Core as a Checker By-
P d tProduct

Empty 
ClClause

Core Clauses

Original Clauses

Learned Clauses

Unsat Core may be a small fraction of the original clauses
Multiple applications



M lti th d d SATMulti-threaded SAT

Increasingly relevant with multi coreIncreasingly relevant with multi-core 
processing
B i idBasic idea:

Divide search space among threads
Sh l d l th dShare learned clauses across threads

Chip-multiprocessors make this real
i iSAT i XT [LSB07] SAT [HJS08]pminiSAT, miraXT [LSB07], manySAT [HJS08]

Learned clauses retain relevance across threads
S l bilit ?Scalability?



M lti th d d SATMulti-threaded SAT

http://www-sr.informatik.uni-tuebingen.de/sat-race-2008/analysis.html



Q tifi d B l F lQuantified Boolean Formulas
Quantification 

Level 1

Quantified Boolean Formula
F: Q X ······ Q X ϕ

Level 1

Quantification 
Level n

F: Q1X1 ······ QnXn ϕ
where Qi (i=1,···, n) is either ∃ or ∀, ϕ is a propositional formula
Example: 

∀u∃e(u+e’)(u’+e)
∃e4e5∀u1u2u3∃e1e2e3 f(e1,e2,e3,e4,e5,u1,u2,u3)

QBF Problem:
Is F satisfiable? 
P-Space Complete, theoretically harder than NP-Complete 
problems such as SAT [GJ79]problems such as SAT [GJ79]



QBF S lQBF Solvers

Like SATLike SAT
Search and Deduce

N t lik SATNot like SAT
Problem representation
S hSearch
Deduce



Th QBF S h TThe QBF Search Tree
∃e e ∀u u u ∃e e e f(e e e e e u u u )∃e4e5∀u1u2u3∃e1e2e3 f(e1,e2,e3,e4,e5,u1,u2,u3)
Need multiple satisfying assignments
N d t t k fli ti ll ti f i bNeed to track conflicting as well as satisfying sub-
spaces

e4, e5

u1 u2 u3u1, u2, u3

e1, e2, e3

1 1 11111 1



S h B d QBF Al ithSearch Based QBF Algorithms

Work by gradually assigning variablesWork by gradually assigning variables
A partial assignment  ⇒

[KGS98]



S h B d QBF Al ithSearch Based QBF Algorithms

Work by gradually assigning variablesWork by gradually assigning variables
A partial assignment  ⇒

U d i dUndetermined
Continue search



S h B d QBF Al ithSearch Based QBF Algorithms

Work by gradually assigning variablesWork by gradually assigning variables
A partial assignment  ⇒

U d i dUndetermined
Conflict

BacktrackBacktrack
Record the reason



S h B d QBF Al ithSearch Based QBF Algorithms

Work by gradually assigning variablesWork by gradually assigning variables
A partial assignment  ⇒

U d i dUndetermined
Conflict
S ti fi dSatisfied

Backtrack
Determine the covered satisfying space



Impact on Problem 
R t tiRepresentation
Let ϕ = C1 C2 C = S1 + S2 + + SLet ϕ = C1 C2…Cm =  S1 + S2 +…+ Sn

Then:
(C C C S S S )ϕ = (C1 C2…Cm + S1 + S2 +…+ Sn )

Combined Conjunctive Disjunctive Normal Form (CCDNF)

= C1 C2…Cm (S1 + S2 +…+ Sn) 

= (C1 C2 C + ΣAnySubset{ S1 S2 S }) (C1 C2…Cm + ΣAnySubset{ S1, S2,…,Sn})
Augmented CNF (ACNF)

(ΠA S b t{ C C C })(S S S )= (ΠAnySubset{ C1,C2,…,Cm})(S1+ S2 +…+ Sn)
Augmented DNF



Impact on Problem 
R t tiRepresentation

The disjunctive component can captureThe disjunctive component can capture 
satisfied parts of the solution subspace 
(ACNF) [ZM02](ACNF) [ZM02]

Recorded as cubes during the solution process
f = (a’+b’+c’)(a’+b+c)(a+b’+c)(a+b+c’) + a’b’c’+ ab’cf  (a +b +c )(a +b+c)(a+b +c)(a+b+c ) + a b c + ab c

Satisfaction cube
analogous to conflict clause

The solver terminates when an empty clause 
(UNSAT) or a tautology cube (SAT) is obtained.

analogous to conflict clause



Impact on Problem 
R t tiRepresentation

Can avoid searching irrelevant parts of theCan avoid searching irrelevant parts of the 
space (CCDNF) [Z06]

1 c=1a=1
b

When a=1, values in this circuit are irrelevant
CNF would continue to search for consistent assignments



Impact on Problem 
R t tiRepresentation

QBF from Games [SAG+06]QBF from Games [SAG+06]
Alternating universal and existential quantification
Formula structureFormula structure

TrU → (I and TrE and GE)
TrU : Transition rules for U varsTrU : Transition rules for U vars
I: Initial Axioms
GE: Goal axioms for E

Dual DNF CNF representation
DNF for TrU, CNF for the Rest



Solving by Quantifier 
Eli i tiElimination

Resolution based solvers [BKF95]:Resolution based solvers [BKF95]:
Eliminate quantifiers from inside out

Existential: Resolution with CNF
CUniversal: Trivial with CNF

Resolve and Expand [B05a]
Include non-internal universal quantifier elimination using q g
expansion (duplication)

Symbolic skolemization to eliminate existential 
quantifiersquantifiers

Skizzo [B05b]

Very sensitive to order of operations
Greater success compared to search based solvers



QBF C titi SQBF Competition: Success
Largest Solved Instances, QBF Eval 2008

Instance  Class  Solver (time)  totalVars  existsVars  forallVars  totalClauses  totalLits  existsAltern  forallAltern

c1_BMC_ quantor3.0(2
p2_k1024  Fixed  4.72)  1110430 1110420 4 2812460 6641870 2 1

c1_BMC_
p1_k1024  Fixed 

quantor3.0(4
7.51)  1110430 1110420 4 2812460 6641870 2 1

vonNeum
ann‐
ripple‐
carry‐12‐c Fixed

quantor3.0(1.
8) 567460 567148 312 832132 1 2 1carry 12 c  Fixed  8)  567460 567148 312 832132 1 2 1

c1_BMC_
p2_k512  Fixed 

quantor3.0(1
2.96)  566106 566102 4 1451240 3596820 2 1

c1_BMC_
p1_k512  Fixed 

quantor3.0(2
4.54)  566106 566102 4 1451240 3596820 2 1



QBF C titi Ch llQBF Competition: Challenges
Smallest Unsolved Instances, QBF Eval 2008

Instance  Class  totalVars existsVars  forallVars  totalClauses  totalLits  existsAltern  forallAltern

test4_quant_squari
ng2  Fixed  326 302 24 868 2208 2 1

test4_quant2  Fixed  326 302 24 868 2208 2 1

test3_quant4  Fixed  344 324 20 923 2419 2 1

test4_quant4  Fixed  446 422 24 1204 3120 2 1

C499.blif_0.10_0.20
_0_1_out_exact  Fixed  838 826 12 2393 5702 2 1



Thi T lkThis Talk
Successful application of diverse CS techniquesSuccessful application of diverse CS techniques

Logic (Deduction and Solving)
Search
Caching
Randomization
Data structuresData structures
Cache efficient algorithms

Open challenges…
Limited understanding of why the algorithms work
Dynamic application of strategies
QBFQBF



SSummary
SAT: Significant shift from theoretical interest to practicalSAT: Significant shift from theoretical interest to practical 
impact.
Quantum leaps between generations of SAT solvers
Presence of drivers results in maximum progress.

Electronic design automation – primary driver and main beneficiary
Software verification- the next frontier?Software verification- the next frontier?

Opens attack on even harder problems
SMT, Max-SAT, QBF…
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