
Satisfiability Modulo Theories

Successes and Challenges

Clark Barrett

barrett@cs.nyu.edu

New York University

NSF, November 14, 2008 – p. 1/44

Motivation

Automatic analysis of computer hardware and software
requires engines capable of reasoning efficiently about large
and complex systems.

Boolean engines such as Binary Decision Diagrams and SAT
solvers are typical engines of choice for today’s industrial
verification applications.

However, systems are usually designed and modeled at a
higher level than the Boolean level and the translation to
Boolean logic can be expensive.

A primary goal of research in Satisfiability Modulo Theories
(SMT) is to create verification engines that can reason
natively at a higher level of abstraction, while still retaining the
speed and automation of today’s Boolean engines.

NSF, November 14, 2008 – p. 2/44

Example

��

��

��

��

=

+1

+2

1

0

1

0

1

0

test

x

y

z

a

a

a

NSF, November 14, 2008 – p. 3/44

Circuit Example

In this example, the value of test is always supposed to be
true .

NSF, November 14, 2008 – p. 4/44

Circuit Example

In this example, the value of test is always supposed to be
true .

One way to prove this is by induction over the number of clock
cycles the circuit has executed.

The inductive step is to prove that if test is true in the current
state, then test should be true in the next state.

NSF, November 14, 2008 – p. 4/44

Circuit Example

In this example, the value of test is always supposed to be
true .

One way to prove this is by induction over the number of clock
cycles the circuit has executed.

The inductive step is to prove that if test is true in the current
state, then test should be true in the next state.

Let’s compare a proof using SAT to a proof using SMT.

NSF, November 14, 2008 – p. 4/44

Circuit Example

The example can be modeled intuitively as follows:

(y = x + 1 AND z = x + 2 AND
x’ = IF a THEN x ELSE y AND
y’ = IF a THEN y ELSE z AND
z’ = IF a THEN z ELSE y + 2) IMPLIES
y’ = x’ + 1 AND z’ = x’ + 2

We can prove this formula by showing that the negation is
unsatisfiable.

We can write this formula in propositional logic by using one
propositional variable for each bit in the current and next
states.

NSF, November 14, 2008 – p. 5/44

Circuit Example

Assuming a bit-width of 2 for simplicity and skipping the
details, we get the following formula:

(z1 ↔ ¬x1) ∧ (z0 ↔ x0)∧
(y1 ↔ (x1 ⊕ x0)) ∧ (y0 ↔ ¬x0)∧
(a → ((xp1 ↔ x1) ∧ (xp0 ↔ x0)))∧
(¬a → ((xp1 ↔ y1) ∧ (xp0 ↔ y0)))∧
(a → ((yp1 ↔ y1) ∧ (yp0 ↔ y0)))∧
(¬a → ((yp1 ↔ z1) ∧ (yp0 ↔ z0)))∧
(a → ((zp1 ↔ z1) ∧ (zp0 ↔ z0)))∧
(¬a → ((zp1 ↔ ¬y1) ∧ (zp0 ↔ y0)))∧
(¬(zp1 ↔ ¬xp1) ∨ ¬(zp0 ↔ xp0)∨
¬(yp1 ↔ (xp1 ⊕ xp0)) ∧ (yp0 ↔ ¬xp0)

NSF, November 14, 2008 – p. 6/44

Circuit Example

Recall that the invariant of the circuit is captured by the
following formula:

(y = x + 1 AND z = x + 2 AND
x’ = IF a THEN x ELSE y AND
y’ = IF a THEN y ELSE z AND
z’ = IF a THEN z ELSE y + 2) IMPLIES
y’ = x’ + 1 AND z’ = x’ + 2

When using a SAT solver, this formula must be encoded into
propositional logic

Using an SMT solver, the formula can be solved as it is

NSF, November 14, 2008 – p. 7/44

SMT vs First-Order Satisfiability

It is important to make a distinction between SMT and
first-order satisfiability. For example, is the following sentence
satisfiable?

read (write (a, i, v), i) 6= v

NSF, November 14, 2008 – p. 8/44

SMT vs First-Order Satisfiability

It is important to make a distinction between SMT and
first-order satisfiability. For example, is the following sentence
satisfiable?

read (write (a, i, v), i) 6= v

If the set of allowable models is unrestricted, then the answer
is yes.

NSF, November 14, 2008 – p. 8/44

SMT vs First-Order Satisfiability

It is important to make a distinction between SMT and
first-order satisfiability. For example, is the following sentence
satisfiable?

read (write (a, i, v), i) 6= v

If the set of allowable models is unrestricted, then the answer
is yes.

However, if we only consider models that obey the axioms for
read and write then the answer is no.

NSF, November 14, 2008 – p. 8/44

Satisfiability Modulo Theories

For a theory T , the T -satisfiability problem consists of
deciding whether there exists a model A and variable
assignment α such that (A, α) |= T ∪ ϕ for an given formula ϕ.

Another way to think of this is as a restriction on the models
we are willing to consider when trying to satisfy ϕ.

Some recent work in SMT considers a theory to be a
collection of models rather than a set of sentences.

NSF, November 14, 2008 – p. 9/44

Theories

In principle, SMT can be applied to any theory T .

In practice, SMT solvers support a small but growing set of
theories.

Common Theories for SMT:
• Empty theory (equality with uninterpreted functions)
• Real and/or integer arithmetic
• Arrays
• Inductive (Recursive) Data Types
• Records and Tuples
• Bit-vectors
• Pointers and reachability

NSF, November 14, 2008 – p. 10/44

Language

Given a theory, there is also a question of whether we are
checking satisfiability of the full first-order language or some
subset of it.

A typical restriction is that the formula be quantifier-free.

For arithmetic, other common restrictions include:
• Formulas with only linear atoms
• Formulas with only difference logic atoms (i.e. x − y ⊲⊳ c,

where x and y are variables, c is a constant, and
⊲⊳ ∈ {<,≤, >,≥, =})

NSF, November 14, 2008 – p. 11/44

Example: Theory TA of Arrays

Let ΣA be the signature (read , write).

Let ΛA be the following axioms:

∀ a ∀ i ∀ v (read (write (a, i, v), i) = v)
∀ a ∀ i ∀ j ∀ v (i 6= j → read (write (a, i, v), j) = read (a, j))
∀ a ∀ b ((∀ i (read (a, i) = read (b, i))) → a = b)

Then TA = the set of all consequences of ΛA.

The satisfiability problem for TA is undecidable, but the
quantifier-free satisfiability problem for TA is decidable (the
problem is NP-complete).

NSF, November 14, 2008 – p. 12/44

Combining Theories

We are usually interested in a combination of theories. The
standard technique for this is the Nelson-Oppen method.

Suppose that T1, . . . , Tn are stably-infinite theories with
disjoint signatures Σ1, . . . , Σn and Sat i decides Ti-satisfiability
of Σi(C) literals.

We wish to determine the satisfiability of a ground conjunction
Γ of Σ(C)-literals.

1. Purify Γ to obtain an equisatisfiable set
∧

ϕi, where each
ϕi is i-pure.

2. Let S be the set of shared variables (i.e. appearing in
more than one ϕi).

3. For each arrangement ∆ of S,
Check Sat i(ϕi ∧ ∆) for each i.

NSF, November 14, 2008 – p. 13/44

Combining SAT and SMT

Theory solvers check the satisfiability of conjunctions of
literals.

What about more general Boolean combinations of literals?

What is needed is a combination of SAT reasoning and theory
reasoning.

The so-called eager approach to SMT tries to find ways of
encoding everything into SAT. There are a variety of
techniques, and for some theories, this works quite well.

Here, I will focus on the lazy combination of SAT and theory
reasoning. The lazy approach is the basis for most modern
SMT solvers.

NSF, November 14, 2008 – p. 14/44

Abstract DPLL

We start with an abstract description of DPLL, the algorithm
used by most SAT solvers.

NSF, November 14, 2008 – p. 15/44

Abstract DPLL

We start with an abstract description of DPLL, the algorithm
used by most SAT solvers.

• Abstract DPLL uses states and transitions to model the
progress of the algorithm.

NSF, November 14, 2008 – p. 15/44

Abstract DPLL

We start with an abstract description of DPLL, the algorithm
used by most SAT solvers.

• Abstract DPLL uses states and transitions to model the
progress of the algorithm.

• Most states are of the form M || F , where
◦ M is a sequence of annotated literals denoting a

partial truth assignment, and
◦ F is the CNF formula being checked, represented as a

set of clauses.

NSF, November 14, 2008 – p. 15/44

Abstract DPLL

We start with an abstract description of DPLL, the algorithm
used by most SAT solvers.

• Abstract DPLL uses states and transitions to model the
progress of the algorithm.

• Most states are of the form M || F , where
◦ M is a sequence of annotated literals denoting a

partial truth assignment, and
◦ F is the CNF formula being checked, represented as a

set of clauses.
• The initial state is ∅ || F , where F is to be checked for

satisfiability.

NSF, November 14, 2008 – p. 15/44

Abstract DPLL

We start with an abstract description of DPLL, the algorithm
used by most SAT solvers.

• Abstract DPLL uses states and transitions to model the
progress of the algorithm.

• Most states are of the form M || F , where
◦ M is a sequence of annotated literals denoting a

partial truth assignment, and
◦ F is the CNF formula being checked, represented as a

set of clauses.
• The initial state is ∅ || F , where F is to be checked for

satisfiability.
• Transitions between states are defined by a set of

conditional transition rules.

NSF, November 14, 2008 – p. 15/44

Abstract DPLL

The final state is either:
• a special fail state: fail , if F is unsatisfiable, or
• M || G, where G is a CNF formula equisatisfiable with the

original formula F , and M satisfies G

We write M |= C to mean that for every truth assignment v,
v(M) = true implies v(C) = true .

NSF, November 14, 2008 – p. 16/44

Abstract DPLL Rules

UnitProp :

M || F, C ∨ l =⇒ M l || F, C ∨ l if

8

<

:

M |= ¬C

l is undefined in M

PureLiteral :

M || F =⇒ M l || F if

8

>

>

<

>

>

:

l occurs in some clause of F

−l occurs in no clause of F

l is undefined in M

Decide :

M || F =⇒ M ld || F if

8

<

:

l or ¬l occurs in a clause of F

l is undefined in M

Fail :

M || F, C =⇒ fail if

8

<

:

M |= ¬C

M contains no decision literals

NSF, November 14, 2008 – p. 17/44

Abstract DPLL Rules

Backjump :

M ld N || F, C =⇒ M l′ || F, C if

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

M ld N |= ¬C, and there is

some clause C′ ∨ l′ such that:

F, C |= C′ ∨ l′ and M |= ¬C′,

l′ is undefined in M , and

l′ or ¬l′ occurs in F or in M ld N

Learn :

M || F =⇒ M || F, C if

8

<

:

all atoms of C occur in F

F |= C

Forget :

M || F, C =⇒ M || F if

n

F |= C

Restart :

M || F =⇒ ∅ || F

NSF, November 14, 2008 – p. 18/44

Example

∅ || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (PureLiteral)

4 1d 2 3 ||

NSF, November 14, 2008 – p. 19/44

Example

∅ || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (PureLiteral)

4 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4

4 1d 2 3 ||

NSF, November 14, 2008 – p. 20/44

Example

∅ || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (PureLiteral)

4 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Decide)

4 1d || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4

4 1d 2 3 ||

NSF, November 14, 2008 – p. 21/44

Example

∅ || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (PureLiteral)

4 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Decide)

4 1d || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)

4 1d 2 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4

4 1d 2 3 ||

NSF, November 14, 2008 – p. 22/44

Example

∅ || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (PureLiteral)

4 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Decide)

4 1d || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)

4 1d 2 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)

4 1d 2 3 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4

NSF, November 14, 2008 – p. 23/44

Example

∅ || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (PureLiteral)

4 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Decide)

4 1d || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)

4 1d 2 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)

4 1d 2 3 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Backtrack)

4 1 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4

NSF, November 14, 2008 – p. 24/44

Example

∅ || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (PureLiteral)

4 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Decide)

4 1d || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)

4 1d 2 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)

4 1d 2 3 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Backtrack)

4 1 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)

4 1 2 3 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4

NSF, November 14, 2008 – p. 25/44

Example

∅ || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (PureLiteral)

4 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Decide)

4 1d || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)

4 1d 2 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)

4 1d 2 3 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Backtrack)

4 1 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)

4 1 2 3 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Fail)

fail

NSF, November 14, 2008 – p. 26/44

Example

∅ || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (PureLiteral)

4 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Decide)

4 1d || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)

4 1d 2 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)

4 1d 2 3 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Backtrack)

4 1 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)

4 1 2 3 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Fail)

fail

Result: Unsatisfiable

NSF, November 14, 2008 – p. 26/44

Abstract DPLL Modulo Theories

The Abstract DPLL Modulo Theories framework extends the
Abstract DPLL framework, providing an abstract and formal
setting for reasoning about the combination of SAT and
theory reasoning.

Assume we have a theory T with signature Σ and a solver
Sat T that can check T -satisfiability of conjunctions of
Σ-literals.

Suppose we want to check the satisfiability of an arbitray
(quantifier-free) Σ-formula φ.

We start by converting φ to CNF.

We can then use the Abstract DPLL rules, allowing any
first-order literal where before we had propositional literals.

NSF, November 14, 2008 – p. 27/44

Abstract DPLL Modulo Theories

The Abstract DPLL Modulo Theories framework extends the
Abstract DPLL framework, providing an abstract and formal
setting for reasoning about the combination of SAT and
theory reasoning.

Assume we have a theory T with signature Σ and a solver
Sat T that can check T -satisfiability of conjunctions of
Σ-literals.

Suppose we want to check the satisfiability of an arbitray
(quantifier-free) Σ-formula φ.

We start by converting φ to CNF.

What other changes do we need to make to Abstract DPLL so
it will work for SMT?

NSF, November 14, 2008 – p. 27/44

Abstract DPLL Modulo Theories

The first change is to the definition of a final state. A final
state is now:

• the special fail state: fail , or
• M || F , where M |= F , and Sat T (M) reports satisfiable.

NSF, November 14, 2008 – p. 28/44

Abstract DPLL Modulo Theories

The first change is to the definition of a final state. A final
state is now:

• the special fail state: fail , or
• M || F , where M |= F , and Sat T (M) reports satisfiable.

What happens if we reach a state in which: M || F , M |= F ,
and Sat T (M) reports unsatisfiable? (call this a pseudo-final
state)

NSF, November 14, 2008 – p. 28/44

Abstract DPLL Modulo Theories

The first change is to the definition of a final state. A final
state is now:

• the special fail state: fail , or
• M || F , where M |= F , and Sat T (M) reports satisfiable.

What happens if we reach a state in which: M || F , M |= F ,
and Sat T (M) reports unsatisfiable? (call this a pseudo-final
state)

We need to backtrack. The SAT solver will take care of this
automatically if we can add a clause C such that M |= ¬C.

NSF, November 14, 2008 – p. 28/44

Abstract DPLL Modulo Theories

The first change is to the definition of a final state. A final
state is now:

• the special fail state: fail , or
• M || F , where M |= F , and Sat T (M) reports satisfiable.

What happens if we reach a state in which: M || F , M |= F ,
and Sat T (M) reports unsatisfiable? (call this a pseudo-final
state)

We need to backtrack. The SAT solver will take care of this
automatically if we can add a clause C such that M |= ¬C.

What clause should we add?

NSF, November 14, 2008 – p. 28/44

Abstract DPLL Modulo Theories

The first change is to the definition of a final state. A final
state is now:

• the special fail state: fail , or
• M || F , where M |= F , and Sat T (M) reports satisfiable.

What happens if we reach a state in which: M || F , M |= F ,
and Sat T (M) reports unsatisfiable? (call this a pseudo-final
state)

We need to backtrack. The SAT solver will take care of this
automatically if we can add a clause C such that M |= ¬C.

What clause should we add? How about ¬M?

NSF, November 14, 2008 – p. 28/44

Abstract DPLL Modulo Theories

The justification for adding ¬M is that T |= ¬M .

We can generalize this to any clause C such that T |= C. The
following modified Learn rule allows this (we also modify the
Forget rule in an analagous way):

Theory Learn :

M || F =⇒ M || F, C if

8

<

:

all atoms of C occur in F

F |=T C

Theory Forget :

M || F, C =⇒ M || F if

n

F |=T C

NSF, November 14, 2008 – p. 29/44

Abstract DPLL Modulo Theories

The resulting set of rules is almost enough to correctly
implement an SMT solver. We need one more change.

NSF, November 14, 2008 – p. 30/44

Abstract DPLL Modulo Theories

The resulting set of rules is almost enough to correctly
implement an SMT solver. We need one more change.

A somewhat surprising observation is that the pure literal rule
has to be abandoned. Why?

NSF, November 14, 2008 – p. 30/44

Abstract DPLL Modulo Theories

The resulting set of rules is almost enough to correctly
implement an SMT solver. We need one more change.

A somewhat surprising observation is that the pure literal rule
has to be abandoned. Why?

Propositional literals are independent of each other, but first
order literals may not be.

NSF, November 14, 2008 – p. 30/44

Abstract DPLL Modulo Theories

The resulting set of rules is almost enough to correctly
implement an SMT solver. We need one more change.

A somewhat surprising observation is that the pure literal rule
has to be abandoned. Why?

Propositional literals are independent of each other, but first
order literals may not be.

The remaining rules form a sound and complete procedure
for SMT.

NSF, November 14, 2008 – p. 30/44

From SAT to SMT

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3

NSF, November 14, 2008 – p. 31/44

From SAT to SMT

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 ∨ 3

NSF, November 14, 2008 – p. 31/44

From SAT to SMT

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

|| 1, 2 ∨ 3, 4 ∨ 3

NSF, November 14, 2008 – p. 31/44

From SAT to SMT

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

|| 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

4
d

|| 1, 2 ∨ 3, 4 ∨ 3

NSF, November 14, 2008 – p. 31/44

From SAT to SMT

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

|| 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

4
d

|| 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Theory Learn)

1 2
d

4
d

|| 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4

NSF, November 14, 2008 – p. 31/44

From SAT to SMT

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

|| 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

4
d

|| 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Theory Learn)

1 2
d

4
d

|| 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4 =⇒ (Backjump)

1 2
d

4 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4

NSF, November 14, 2008 – p. 31/44

From SAT to SMT

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

|| 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

4
d

|| 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Theory Learn)

1 2
d

4
d

|| 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4 =⇒ (Backjump)

1 2
d

4 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4 =⇒ (UnitProp)

1 2
d

4 3 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4

NSF, November 14, 2008 – p. 31/44

From SAT to SMT

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

|| 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

4
d

|| 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Theory Learn)

1 2
d

4
d

|| 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4 =⇒ (Backjump)

1 2
d

4 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4 =⇒ (UnitProp)

1 2
d

4 3 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4 =⇒ (Theory Learn)

1 2
d

4 3 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4, 1 ∨ 2 ∨ 4 ∨ 3

NSF, November 14, 2008 – p. 31/44

From SAT to SMT

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

|| 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

4
d

|| 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Theory Learn)

1 2
d

4
d

|| 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4 =⇒ (Backjump)

1 2
d

4 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4 =⇒ (UnitProp)

1 2
d

4 3 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4 =⇒ (Theory Learn)

1 2
d

4 3 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4, 1 ∨ 2 ∨ 4 ∨ 3 =⇒ (Backjump)

1 2 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4, 1 ∨ 2 ∨ 4 ∨ 3

NSF, November 14, 2008 – p. 31/44

From SAT to SMT

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

|| 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

4
d

|| 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Theory Learn)

1 2
d

4
d

|| 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4 =⇒ (Backjump)

1 2
d

4 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4 =⇒ (UnitProp)

1 2
d

4 3 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4 =⇒ (Theory Learn)

1 2
d

4 3 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4, 1 ∨ 2 ∨ 4 ∨ 3 =⇒ (Backjump)

1 2 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4, 1 ∨ 2 ∨ 4 ∨ 3 =⇒ (UnitProp)

1 2 3 4 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4, 1 ∨ 2 ∨ 4 ∨ 3

NSF, November 14, 2008 – p. 31/44

From SAT to SMT

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

|| 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

4
d

|| 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Theory Learn)

1 2
d

4
d

|| 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4 =⇒ (Backjump)

1 2
d

4 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4 =⇒ (UnitProp)

1 2
d

4 3 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4 =⇒ (Theory Learn)

1 2
d

4 3 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4, 1 ∨ 2 ∨ 4 ∨ 3 =⇒ (Backjump)

1 2 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4, 1 ∨ 2 ∨ 4 ∨ 3 =⇒ (UnitProp)

1 2 3 4 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4, 1 ∨ 2 ∨ 4 ∨ 3 =⇒ (Theory Learn)

1 2 3 4 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4, 1 ∨ 2 ∨ 4 ∨ 3, 1 ∨ 2 ∨ 3 ∨ 4

NSF, November 14, 2008 – p. 31/44

From SAT to SMT

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

|| 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

4
d

|| 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Theory Learn)

1 2
d

4
d

|| 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4 =⇒ (Backjump)

1 2
d

4 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4 =⇒ (UnitProp)

1 2
d

4 3 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4 =⇒ (Theory Learn)

1 2
d

4 3 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4, 1 ∨ 2 ∨ 4 ∨ 3 =⇒ (Backjump)

1 2 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4, 1 ∨ 2 ∨ 4 ∨ 3 =⇒ (UnitProp)

1 2 3 4 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4, 1 ∨ 2 ∨ 4 ∨ 3 =⇒ (Theory Learn)

1 2 3 4 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4, 1 ∨ 2 ∨ 4 ∨ 3, 1 ∨ 2 ∨ 3 ∨ 4 =⇒ (Fail)

fail

NSF, November 14, 2008 – p. 31/44

Improving Abstract DPLL Modulo Theories

We will mention three ways to improve the algorithm.

• Minimizing learned clauses
• Eager conflict detection
• Theory propagation

NSF, November 14, 2008 – p. 32/44

Minimizing Learned Clauses

The main difficulty with the approach as it stands is that
learned clauses can be highly redundant.

Suppose that F contains n + 2 propositional variables.

When a pseudo-final state is reached, M will determine a
value for all n + 2 variables.

But what if only 2 of these assignments are already
T -unsatisfiable?

If we always learn ¬M in a pseudo-final state, in the worst
case, 2n clauses will be need to be learned when a single
clause containing the two offending literals would have
sufficed.

NSF, November 14, 2008 – p. 33/44

Minimizing Learned Clauses

To avoid this kind of redundancy, we can be smarter about
the clauses that are learned with Theory Learn.

In particular, when Sat T (M) is called, we should make an
effort to find the smallest possible subset of M which is
inconsistent.

We can then learn a clause derived from only these literals.

NSF, November 14, 2008 – p. 34/44

From SAT to SMT — Minimized Clauses

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3

NSF, November 14, 2008 – p. 35/44

From SAT to SMT — Minimized Clauses

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 ∨ 3

NSF, November 14, 2008 – p. 35/44

From SAT to SMT — Minimized Clauses

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

|| 1, 2 ∨ 3, 4 ∨ 3

NSF, November 14, 2008 – p. 35/44

From SAT to SMT — Minimized Clauses

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

|| 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

4
d

|| 1, 2 ∨ 3, 4 ∨ 3

NSF, November 14, 2008 – p. 35/44

From SAT to SMT — Minimized Clauses

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

|| 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

4
d

|| 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Theory Learn)

1 2
d

4
d

|| 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2

NSF, November 14, 2008 – p. 35/44

From SAT to SMT — Minimized Clauses

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

|| 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

4
d

|| 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Theory Learn)

1 2
d

4
d

|| 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 =⇒ (Backjump)

1 2 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2

NSF, November 14, 2008 – p. 35/44

From SAT to SMT — Minimized Clauses

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

|| 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

4
d

|| 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Theory Learn)

1 2
d

4
d

|| 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 =⇒ (Backjump)

1 2 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 =⇒ (UnitProp)

1 2 3 4 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2

NSF, November 14, 2008 – p. 35/44

From SAT to SMT — Minimized Clauses

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

|| 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

4
d

|| 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Theory Learn)

1 2
d

4
d

|| 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 =⇒ (Backjump)

1 2 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 =⇒ (UnitProp)

1 2 3 4 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 =⇒ (Theory Learn)

1 2 3 4 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2, 1 ∨ 3 ∨ 4

NSF, November 14, 2008 – p. 35/44

From SAT to SMT — Minimized Clauses

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

|| 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

4
d

|| 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Theory Learn)

1 2
d

4
d

|| 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 =⇒ (Backjump)

1 2 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 =⇒ (UnitProp)

1 2 3 4 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 =⇒ (Theory Learn)

1 2 3 4 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2, 1 ∨ 3 ∨ 4 =⇒ (Fail)

fail

NSF, November 14, 2008 – p. 35/44

Eager Conflict Detection

Currently, we have indicated that we will check M for
T -satisfiability only when a pseudo-final state is reached.

In contrast, a more eager policy would be to check M for
T -satisfiability every time M changes.

Experimental results show that this approach is significantly
better most of the time.

It requires that Sat T be online: able quickly to determine the
consistency of incrementally more literals or to backtrack to a
previous state.

It also requires that the SAT solver be instrumented to call
Sat T every time a variable is assigned a value.

NSF, November 14, 2008 – p. 36/44

From SAT to SMT — Eager Conflict Detection

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3

NSF, November 14, 2008 – p. 37/44

From SAT to SMT — Eager Conflict Detection

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 ∨ 3

NSF, November 14, 2008 – p. 37/44

From SAT to SMT — Eager Conflict Detection

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

|| 1, 2 ∨ 3, 4 ∨ 3

NSF, November 14, 2008 – p. 37/44

From SAT to SMT — Eager Conflict Detection

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

|| 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Theory Learn)

1 2
d

|| 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2

NSF, November 14, 2008 – p. 37/44

From SAT to SMT — Eager Conflict Detection

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

|| 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Theory Learn)

1 2
d

|| 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 =⇒ (Backjump)

1 2 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2

NSF, November 14, 2008 – p. 37/44

From SAT to SMT — Eager Conflict Detection

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

|| 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Theory Learn)

1 2
d

|| 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 =⇒ (Backjump)

1 2 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 =⇒ (UnitProp)

1 2 3 4 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2

NSF, November 14, 2008 – p. 37/44

From SAT to SMT — Eager Conflict Detection

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

|| 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Theory Learn)

1 2
d

|| 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 =⇒ (Backjump)

1 2 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 =⇒ (UnitProp)

1 2 3 4 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 =⇒ (Theory Learn)

1 2 3 4 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2, 1 ∨ 3 ∨ 4

NSF, November 14, 2008 – p. 37/44

From SAT to SMT — Eager Conflict Detection

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

|| 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Theory Learn)

1 2
d

|| 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 =⇒ (Backjump)

1 2 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 =⇒ (UnitProp)

1 2 3 4 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 =⇒ (Theory Learn)

1 2 3 4 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2, 1 ∨ 3 ∨ 4 =⇒ (Fail)

fail

NSF, November 14, 2008 – p. 37/44

Theory Propagation

A final improvement is to add the following rule:
Theory Propagate :

M || F =⇒ M l || F if

8

>

>

<

>

>

:

M |=T l

l or ¬l occurs in F

l is undefined in M

This rule allows a theory solver to inform the SAT solver if it
happens to know that an unassigned literal is entailed by M .

Experimental results show that this can also be very helpful in
practice.

NSF, November 14, 2008 – p. 38/44

From SAT to SMT — Theory Propagation

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3

NSF, November 14, 2008 – p. 39/44

From SAT to SMT — Theory Propagation

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 ∨ 3

NSF, November 14, 2008 – p. 39/44

From SAT to SMT — Theory Propagation

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Theory Propagate)

1 2 || 1, 2 ∨ 3, 4 ∨ 3

NSF, November 14, 2008 – p. 39/44

From SAT to SMT — Theory Propagation

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Theory Propagate)

1 2 || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 2 3 || 1, 2 ∨ 3, 4 ∨ 3

NSF, November 14, 2008 – p. 39/44

From SAT to SMT — Theory Propagation

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Theory Propagate)

1 2 || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 2 3 || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Theory Propagate)

1 2 3 4 || 1, 2 ∨ 3, 4 ∨ 3

NSF, November 14, 2008 – p. 39/44

From SAT to SMT — Theory Propagation

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Theory Propagate)

1 2 || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 2 3 || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Theory Propagate)

1 2 3 4 || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Fail)

fail

NSF, November 14, 2008 – p. 39/44

Extensions

We briefly mention two extensions.

The first is to allow the theory solver to use the SAT solver for
internal case splitting.

We do this by allowing the learning rule to introduce new
variables and terms

Extended T-Learn :

M || F =⇒ M || F, C if

8

<

:

each atom of C occurs in F or in L(M)

F |=T ∃∗(C)

NSF, November 14, 2008 – p. 40/44

Quantifiers

The Abstract DPLL Modulo Theories framework can also be
extended to include rules for quantifier instantiation.

• We extend the notion of literal to that of an abstract literal
which may include quantified formulas in place of atomic
formulas.

• Add two additional rules:

Inst_∃ :

M || F =⇒ M || F, (¬∃x. P ∨ P [x/sk]) if

8

<

:

∃x P is an abstract literal in M

sk is a fresh constant.

Inst_∀ :

M || F =⇒ M || F, (¬∀x. P ∨ P [x/t]) if

8

<

:

∀x P is an abstract literal in M

t is a ground term.

NSF, November 14, 2008 – p. 41/44

Quantifiers

The simple technique of quantifier instantiation is remarkably
effective on verification benchmarks.

The main difficulty is coming up with the right terms to
instantiate.

Matching techniques pioneered by Simplify have recently
been adopted and improved by several modern SMT solvers.

NSF, November 14, 2008 – p. 42/44

SMT Solvers: State of the Art

Building on fast SAT technology, SMT solvers have been
improving dramatically.

The winners of this year’s SMT competition are orders of
magnitude faster than those of just a couple of years ago.

Current leading solvers include:
• Barcelogic (U Barcelona, Spain)
• CVC3 (NYU, U Iowa)
• MathSAT (U Trento, Italy)
• Yices (SRI)
• Z3 (Microsoft)

SMT solvers are becoming the engine of choice for an
ever-increasing set of verification applications.

NSF, November 14, 2008 – p. 43/44

Some Challenges

• More mature tools
• Better integration of SAT in SMT
• More complete techniques for quantifiers
• Parallel SMT
• Improving the SMT-LIB standard
• Producing and Checking Proofs
• Non-linear arithmetic

NSF, November 14, 2008 – p. 44/44

	Motivation
	Example
	Circuit Example
	Circuit Example
	Circuit Example

	Circuit Example
	Circuit Example
	Circuit Example
	SMT vs First-Order Satisfiability
	SMT vs First-Order Satisfiability
	SMT vs First-Order Satisfiability

	Satisfiability Modulo Theories
	Theories
	Language
	Example: Theory mth {T_mathcal {A}} of Arrays
	Combining Theories
	Combining SAT and SMT
	Abstract DPLL
	Abstract DPLL
	Abstract DPLL
	Abstract DPLL
	Abstract DPLL

	Abstract DPLL
	Abstract DPLL Rules
	Abstract DPLL Rules
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example

	Abstract DPLL Modulo Theories
	Abstract DPLL Modulo Theories

	Abstract DPLL Modulo Theories
	Abstract DPLL Modulo Theories
	Abstract DPLL Modulo Theories
	Abstract DPLL Modulo Theories
	Abstract DPLL Modulo Theories

	Abstract DPLL Modulo Theories
	Abstract DPLL Modulo Theories
	Abstract DPLL Modulo Theories
	Abstract DPLL Modulo Theories
	Abstract DPLL Modulo Theories

	From SAT to SMT
	From SAT to SMT
	From SAT to SMT
	From SAT to SMT
	From SAT to SMT
	From SAT to SMT
	From SAT to SMT
	From SAT to SMT
	From SAT to SMT
	From SAT to SMT
	From SAT to SMT
	From SAT to SMT

	Improving Abstract DPLL Modulo Theories
	Minimizing Learned Clauses
	Minimizing Learned Clauses
	From SAT to SMT --- Minimized Clauses
	From SAT to SMT --- Minimized Clauses
	From SAT to SMT --- Minimized Clauses
	From SAT to SMT --- Minimized Clauses
	From SAT to SMT --- Minimized Clauses
	From SAT to SMT --- Minimized Clauses
	From SAT to SMT --- Minimized Clauses
	From SAT to SMT --- Minimized Clauses
	From SAT to SMT --- Minimized Clauses

	Eager Conflict Detection
	From SAT to SMT --- Eager Conflict Detection
	From SAT to SMT --- Eager Conflict Detection
	From SAT to SMT --- Eager Conflict Detection
	From SAT to SMT --- Eager Conflict Detection
	From SAT to SMT --- Eager Conflict Detection
	From SAT to SMT --- Eager Conflict Detection
	From SAT to SMT --- Eager Conflict Detection
	From SAT to SMT --- Eager Conflict Detection

	Theory Propagation
	From SAT to SMT --- Theory Propagation
	From SAT to SMT --- Theory Propagation
	From SAT to SMT --- Theory Propagation
	From SAT to SMT --- Theory Propagation
	From SAT to SMT --- Theory Propagation
	From SAT to SMT --- Theory Propagation

	Extensions
	Quantifiers
	Quantifiers
	SMT Solvers: State of the Art
	Some Challenges

