
Logics and Automata for Software

Model-Checking 1

Rajeev ALUR a and Swarat CHAUDHURI a

a University of Pennsylvania

Abstract. While model-checking of pushdown models is by now an estab-

lished technique in software verification, temporal logics and automata
traditionally used in this area are unattractive on two counts. First, log-
ics and automata traditionally used in model-checking cannot express

requirements such as pre/post-conditions that are basic to software anal-
ysis. Second, unlike in the finite-state world, where the µ-calculus has
a symbolic model-checking algorithm and serves as an “assembly lan-
guage” of temporal logics, there is no unified formalism to model-check

linear and branching requirements on pushdown models. In this survey,
we discuss a recently-proposed re-phrasing of the model-checking prob-
lem for pushdown models that addresses these issues. The key idea is
to view a program as a generator of structures known as nested words

and nested trees (respectively in the linear and branching-time cases) as
opposed to words and trees. Automata and temporal logics accepting
languages of these structures are now defined, and linear and branch-

ing time model-checking phrased as language inclusion and member-
ship problems for these languages. We discuss two of these formalisms—
automata on nested words and a fixpoint calculus on nested trees—in
detail. While these formalisms allow a new frontier of program speci-

fications, their model-checking problem has the same worst-case com-
plexity as their traditional analogs, and can be solved symbolically us-
ing a fixpoint computation that generalizes, and includes as a special
case, “summary”-based computations traditionally used in interproce-

dural program analysis.

Keywords. Temporal and fixpoint logics, Automata, Software model-

checking, Verification, Program analysis

1. Introduction

Because of concerted research over the last twenty-five years, model-checking of
reactive systems is now well-understood theoretically as well as applied in practice.
The theories of temporal logics and automata have played a foundational role
in this area. For example, in linear-time model-checking, we are interested in
questions such as: “do all traces of a protocol satisfy a certain safety property?”
This question is phrased language-theoretically as: is the set of all possible system

1This research was partially supported by ARO URI award DAAD19-01-1-0473 and NSF
award CPA 0541149.

traces included in the language of safe behaviors? In the world of finite-state
reactive programs, both these languages are ω-regular [22]. On the other hand,
in branching-time model-checking, the specification defines an ω-regular language
of trees, and the model-checking problem is to determine if the tree unfolding of
the system belongs to this language [17].

Verification of software is a different ball-game. Software written in a modern
programming language has many features such as the stack, the heap, and con-
current execution. Reasoning about these features in any automated manner is
a challenge—finding ways to model-check them is far harder. The approach that
software model-checking takes [10] is that of data abstraction: finitely approxi-
mate the data in the program, but model the semantics of procedure calls and
returns precisely. The chosen abstractions are, thus, pushdown models or finite-
state machines equipped with a pushdown stack (variants such as recursive state
machines [1] and boolean programs [9] have also been considered). Such a ma-
chine is now viewed as a generator of traces or trees modeling program executions
or the program unfolding.

There are, of course, deviations from the classical setting: since pushdown
models have unbounded stacks and therefore infinitely many configurations, an-
swering these queries requires infinite-state model-checking. Many positive results
are known in this area—for instance, model-checking the µ-calculus, often called
the “assembly language for temporal logics,” is decidable on sequential pushdown
models [24,12]. However, many attractive computational properties that hold in
the finite-state world are lost. For instance, consider the reachability property: “a
state satisfying a proposition p is reachable from the current state,” expressible
in the µ-calculus by a formula ϕ = µX.(p ∨ 〈〉X). In finite-state model checking,
ϕ not only states a property, but syntactically encodes a symbolic fixpoint com-
putation: start with the states satisfying p, add states that can reach the previous
states in one step, then two steps, and so on. This is the reason why hardware
model-checkers like SMV translate a specification given in a simpler logic into
the µ-calculus, which is now used as a directive for fixpoint computation. Known
model-checking algorithms for the µ-calculus on pushdown models, however, are
complex and do not follow from the semantics of the formula. In particular, they
cannot capture the natural, “summarization”-based fixpoint computations for in-
terprocedural software analysis that have been known for years [19,21].

Another issue with directly applying classical temporal specifications in this
context is expressiveness. Traditional logics and automata used in model-checking
define regular languages of words and trees, and cannot argue about the balanced-
parenthesis structure of calls and returns. Suppose we are now interested in lo-
cal reachability rather than reachability: “a state satisfying p is reachable in the
same procedural context (i.e., before control returns from the current context,
and not within the scope of new contexts transitively spawned from this context
via calls).” This property cannot be captured by regular languages of words or
trees. Other requirements include Hoare-Floyd-style preconditions and postcon-
ditions [16] (“if p holds at a procedure call, then q holds on return”), interface
contracts used in real-life specification languages such as JML [11] and SAL [14],
stack-sensitive access control requirements arising in software security [23], and
interprocedural dataflow analysis [18].

While checking pushdown requirements on pushdown models is undecidable
in general, individual static analysis techniques are available for all the above
applications. There are practical static checkers for interface specification lan-
guages and stack inspection-type properties, and interprocedural dataflow anal-
ysis [19] can compute dataflow information involving local variables. Their foun-
dations, unfortunately, are not properly understood. What class of languages do
these properties correspond to? Can we offer the programmer flexible, decidable
temporal logics or automata to write these requirements? These are not merely
academic questions. A key practical attraction of model-checking is that a pro-
grammer, once offered a temporal specification language, can tailor a program’s
requirements without getting lost in implementation details. A logic as above
would extend this paradigm to interprocedural reasoning. Adding syntactic sugar
to it, one could obtain domain-specific applications—for example, one can con-
ceive of a language for module contracts or security policies built on top of such
a formalism.

In this paper, we summarize some recent work on software model-checking [4,
6,7,2,3] that offers more insights into these issues by re-phrasing the model-
checking problem for sequential pushdown models. In classical linear-time model-
checking, the problem is to determine whether the set of linear behaviors of a pro-
gram abstraction is included in the set of behaviors satisfying the specification.
In branching-time model-checking, the question is whether the tree unfolding of
the program belongs to the language of trees satisfying the requirement. In other
words, a program model is viewed as a generator of a word or tree structure.
In the new approach, programs are modeled by pushdown models called nested
state machines, whose executions and unfoldings are given by graphs called nested
words and nested trees. More precisely, a nested word is obtained by augmenting
a word with a set of extra edges, known as jump-edges, that connect a position
where a call happens to its matching return. As calls and returns in program exe-
cutions are properly nested, jump-edges never cross. To get a nested tree, we add
a set of jump-edges to a tree. As a call may have a number of matching returns
along the different paths from it, a node may now have multiple outgoing jump-
edges. Temporal logics and finite-state automata accepting languages of nested
words and trees are now defined. The linear-time model-checking question then
becomes: is the set of nested words modeling executions of a program included
in the set of nested words accepted by the specification formula/automaton? For
branching-time model-checking, we ask: does the nested tree generated by a pro-
gram belong to a specified language of nested trees? It turns out that this tweak
makes a major difference computationally as well as in expressiveness.

Let us first see what an automaton on nested words (NWA) [6,7] would look
like. Recall that in a finite automaton, the state of the automaton at a position
depends on the state and the input symbol at the preceding position. In a nested
word, a “return” position has two incoming edges—one from the preceding time
point, and one from the “matching call.” Accordingly, the state of an NWA may
depend on the states of the automaton at both these points. To see how this would
help, consider the local reachability property. Consider an automaton following
a program execution, and suppose it is in a state q that states that a target
state has not yet been seen. Now suppose it encounters a procedure call. A finite

automaton on words would follow the execution into the new procedural context
and eventually “forget” the current state. However, an NWA can retrieve the
state q once the execution returns from this call, and continue to search only
the current context. Properties such as this can also be expressed using temporal
logics on nested words [4,13], though we will not discuss the latter in detail in
this survey.

For branching-time model-checking, we use a fixpoint calculus called NT-µ [2].
The variables of the calculus evaluate not over sets of states, but rather over sets of
substructures that capture summaries of computations in the “current” program
block. The fixpoint operators in the logic then compute fixpoints of summaries.
For a node s of a nested tree representing a call, consider the tree rooted at s such
that the leaves correspond to exits from the current context. In order to be able
to relate paths in this subtree to the trees rooted at the leaves, we allow marking
of the leaves: a 1-ary summary is specified by the root s and a subset U of the
leaves of the subtree rooted at s. Each formula of the logic is evaluated over such
a summary. The central construct of the logic corresponds to concatenation of call
trees: the formula 〈call〉ϕ{ψ} holds at a summary 〈s, U〉 if the node s represents
a “call” to a new context starting with node t, there exists a summary 〈t, V 〉
satisfying ϕ, and for each leaf v that belongs to V , the subtree 〈v, U〉 satisfies ψ.
Intuitively, a formula 〈call〉ϕ{ψ} asserts a constraint ϕ on the new context, and
requires ψ to hold at a designated set of return points of this context. To state
local reachability, we would ask, using the formula ϕ, that control returns to the
current context, and, using ψ, that the local reachability property holds at some
return point. While this requirement seems self-referential, it may be captured
using a fixpoint formula.

It turns out that NWAs and NT-µ have numerous attractive properties. For
instance, NWAs have similar closure properties such as regular languages, eas-
ily solvable decision problems, Myhill-Nerode-style characterizations, etc. NT-µ
can express all properties expressible in the µ-calculus or using NWAs, and has
a characterization in terms of automata on nested trees [3]. In this survey, we
focus more on the computational aspects as applicable to program verification,
in particular the model-checking problem for NT-µ. The reason is that NT-µ can
capture both linear and branching requirements and, in spite of its expressiveness,
can be model-checked efficiently. In fact, the complexity of its model-checking
problem on pushdown models (EXPTIME-complete) is the same as that of far
weaker logics such as CTL or the alternation-free µ-calculus. Moreover, just as
formulas of the µ-calculus syntactically encode a terminating, symbolic fixpoint
computation on finite-state systems, formulas of NT-µ describe a directly imple-
mentable symbolic model-checking algorithm. In fact, this fixpoint computation
generalizes the kind of summary computation traditionally known in interproce-
dural program analysis, so that, just like the µ-calculus in case of finite-state pro-
grams, NT-µ can arguably be used as an “assembly language” for interprocedural
computations.

The structure of this paper is as follows. In Sec. 2, we define nested words and
trees, and introduce nested state machines as abstractions of structured programs.
In Sec. 3, we define specifications on nested structures, studying NWAs and NT-

µ in some detail. In Sec. 4, we discuss in detail the symbolic model-checking
algorithm for NT-µ.

2. Models

A typical approach to software model-checking usesprocedure foo()

{

L1: write(x);

if(*)

L2: foo();

else

L3: think;

while (*)

L4: read(x);

L5: return;

}

data abstraction, where the data in a structured program is
abstracted using a finite set of boolean variables that stand
for predicates on the data-space [8,15]. The resulting mod-
els have finite-state but stack-based control flow. In this
section, we define nested state machines, one such model.
The behaviors of these machines are modeled by nested
words and trees, the structures on which our specifications
are interpreted.

As a running example, in the rest of this paper, we
use the recursive procedure foo. The procedure may read
or write a global variable x or perform an action think, has

nondeterministic choice, and can call itself recursively. Actions of the program
are marked by labels L1–L5 for easy reference. We will abstract this program and
its behaviors, and subsequently specify it using temporal logics and automata.

2.1. Nested words

Nested words form a class of directed acyclic graphs suitable for abstracting ex-
ecutions of structured programs. In this application, a nested word carries infor-
mation about a sequence of program states as well as the nesting of procedure
calls and returns during the execution. This is done by adding to a word a set
of extra edges, known as jump-edges, connecting positions where calls happen to
their matching returns. Because of the balanced-parentheses semantics of calls
and returns, jump-edges are properly nested.

Formally, let Σ be a finite alphabet. Let a finite word w of length n over Σ
be a map w : {0, 1, . . . , n − 1} → Σ, and an infinite word be a map w : N → Σ.
We sometimes view a word as a graph with positions as nodes, and edges (i, j)
connecting successive positions i, j. A nested word over Σ is a pair W = (w, →֒),
where w is a finite or infinite word over Σ, and →֒ ⊆ N × (N ∪ ∞) is a set of
jump-edges. A position i in a nested word such that i →֒ ∞ or i →֒ j for some
j is called a call position, and a position j such that i →֒ j for some i is called
return position). The remaining positions are said to be local. The idea is that if a
jump-edge (i, j) exists, then position j is the matching return of a call at position
i; a jump-edge (i,∞) implies that there is a call at position i that never returns.
The jump-edge relation must satisfy the following conditions:

1. if i →֒ j, then i < j − 1 (in other words, a jump-edge is a non-trivial
forward jump in the word);

2. for each i, there is at most one x ∈ N ∪ {∞} such that i →֒ x or x →֒ i
(a call either never returns or has a unique matching return, and a return
has a unique matching call);

...

...

...

...

...

call returnlocal

en

en

en

en

ex

ex

exex

rd

rd

rd

rd

rd

wr

wr

wr

wr

wr

wr

tk

tk

tk

tk

∞
∞

end

end

end

end

end

(a) (b)s1
s2

s3

s4

s5

s6

s7

s8

s9

Figure 1. (a) A nested word (b) A nested tree

3. if i →֒ j and i′ →֒ j′ and i < i′, then either j < i′ or j′ < j (jump-edges
are properly nested);

4. if i →֒ ∞, then for all calls i′ < i, either i′ →֒ ∞ or i′ →֒ j for some j < i
(if a call never returns, neither do the calls that are on the stack when it
is invoked).

If i →֒ j, then we call i the jump-predecessor of j and j the jump-successor of i.
Let an edge (i, i + 1) in w be called a call and return edge respectively if i is a
call and (i+ 1) is a return, and let all other edges be called local.

Let us now turn to our running example. We will model an execution by a
nested word over an alphabet Σ. The choice of Σ depends on the desired level of
detail—we pick the symbols wr , rd , en, ex , tk , and end , respectively encoding
write(x), read(x), a procedure call leading to a beginning of a new context, the
return point once a context ends, the statement think, and the statement return.
Now consider the execution where foo calls itself twice recursively, then executes
think, then returns once, then loops infinitely. The word encoding this execution
is w = wr .en.wr .en.wr .tk .rd .ex .(rd)ω. A prefix of the nested word is shown in
Fig. 1-(a). The jump-edges are dashed, and call, return and local positions are
drawn in different styles. Note the jump-edge capturing the call that never returns.

Now we show a way to encode a nested word using a word. Let us fix a set of
tags I = {call , ret , loc}. The tagged word Tag(W) of a nested word W = (w, →֒)
over Σ is obtained by labeling the edges in w with tags indicating their types.
Formally, Tag(W) is a pair (w, η), where η is a map labeling each edge (i, i+ 1)
such that η(i, i + 1) equals call if i is a call, ret if (i + 1) is a return, and loc
otherwise. Note that this word is well-defined because jump-edges represent non-
trivial forward leaps.

While modeling a program execution, a tagged word defines the sequence
of types (call, return or local) of actions in this execution. We note that the
construction of Tag(W) requires us to know the jump-edge relation →֒. More
interestingly, the jump-edges in W are completely captured by the tagged word
(w, η) of W, so that we can reconstruct a nested word from its tagged word. To
see why, call a word β ∈ I∗ balanced if it is of the form β := ββ | call .β.ret | loc,

and define a relation →֒′⊆ N× N as: for all i < j − 1, i →֒′ j iff i is the greatest
integer such that the word η(i, i+ 1).η(i+ 1, i+ 2) . . . η(j − 1, j) is balanced. It is
easily verified that →֒′=→֒.

Let us denote the set of (finite and infinite) nested words over Σ as NW (Σ).
A language of nested words over Σ is a subset of NW (Σ).

2.2. Nested trees

While nested words are suitable for linear-time reasoning, nested trees are neces-
sary to specify branching requirements. Such a structure is obtained by adding
jump-edges to an infinite tree whose paths encode all possible executions of the
program. As for nested words, jump-edges in nested trees do not cross, and calls
and returns are defined respectively as sources and targets of jump-edges. In ad-
dition, since a procedure call may not return along all possible program paths, a
call-node s may have jump-successors along some, but not all, paths from it. If
this is the case, we add a jump-edge from s to a special node ∞.

Formally, let T = (S, r,→) be an unordered infinite tree with node set S, root

r and edge relation → ⊆ S × S. Let
+
−→ denote the transitive (but not reflexive)

closure of the edge relation, and let a (finite or infinite) path in T from node
s1 be a (finite or infinite) sequence π = s1s2 . . . sn . . . over S, where n ≥ 2 and
si → si+1 for all 1 ≤ i.

A nested tree is a directed acyclic graph (T, →֒), where →֒ ⊆ T × (T ∪ ∞)
is a set of jump-edges. A node s such that s →֒ t or s →֒ ∞ (similarly t →֒ s)
for some t is a call (return) node; the remaining nodes are said to be local. The
intuition is that if s →֒ t, then a call at s returns at t; if s →֒ ∞, then there exists
a path from s along which the call at s never returns. We note that the sets of
call, return and local nodes are disjoint. The jump-edges must satisfy:

1. if s →֒ t, then s
+
−→ t, and we do not have s → t (in other words, jump-

edges represent non-trivial forward jumps);

2. if s →֒ t and s →֒ t′, then neither t
+
−→ t′ nor t′

+
−→ t (this captures the

intuition that a call-node has at most one matching return along every
path from it);

3. if s →֒ t and s′ →֒ t, then s = s′ (every return node has a unique matching
call);

4. for every call node s, one of the following holds: (a) on every path from s,
there is a node t such that s →֒ t, and (b) s →֒ ∞ (a call either returns
along all paths, or does not);

5. if there is a path π such that for nodes s, t, s′, t′ lying on π we have s
+
−→ s′,

s →֒ t, and s′ →֒ t′, then either t
+
−→ s′ or t′

+
−→ t (jump-edges along a

path do not cross);

6. for every pair of call-nodes s, s′ on a path π such that s
+
−→ s′, if there is

no node t on π such that s′ →֒ t, then a node t′ on π can satisfy s →֒ t′

only if t′
+
−→ s′ (if a call does not return, neither do the calls pending

when it was invoked).

For an alphabet Σ, a Σ-labeled nested tree is a structure T = (T, →֒, λ),
where (T, →֒) is a nested tree with node set S, and λ : S → Σ is a node-labeling
function. All nested trees in this paper are Σ-labeled.

Fig. 1-(b) shows a part of the tree unfolding of our example. Note that some
of the maximal paths are finite—these capture terminating executions of the
program—and some are not. Note in particular how a call may return along some
paths from it, and yet not on some others. A path in the nested tree that takes a
jump-edge whenever possible is interpreted as a local path through a procedure.

If s →֒ t, then s is the jump-predecessor of t and t the jump-successor of s.
Edges from a call node and to a return node are known as call and return edges;
the remaining edges are local. The fact that an edge (s, t) exists and is a call,

return or local edge is denoted by s
call
−→ t, s

ret
−→ t, or s

loc
−→ t. For a nested tree

T = (T, →֒, λ) with edge set E, the tagged tree of T is the node and edge-labeled

tree Tag(T) = (T, λ, η : E → {call , ret , loc}), where η(s, t) = a iff s
a
−→ t.

A few observations: first, the sets of call, return and local edges define a

partition of the set of tree edges. Second, if s
ret
−→ s1 and s

ret
−→ s2 for distinct s1

and s2, then s1 and s2 have the same jump-predecessor. Third, the jump-edges in
a nested tree are completely captured by the edge labeling in the corresponding
structured tree, so that we can reconstruct a nested tree T from Tag(T).

Let NT (Σ) be the set of Σ-labeled nested trees. A language of nested trees is
a subset of NT (Σ).

2.3. Nested state machines

Now we define our program abstractions: nested state machines (NSMs). Like
pushdown system and recursive state machines [1], NSMs are suitable for precisely
modeling changes to the program stack due to procedure calls and returns. The
main difference is that the semantics of an NSM is defined using nested structures
rather than a stack and a configuration graph.

Let AP be a fixed set of atomic propositions, and let us set Σ = 2AP

as an alphabet of observables. A nested state machine (NSM) is a tuple M =
〈V, vin , κ,∆loc ,∆call ,∆ret 〉, where V is a finite set of states, vin ∈ V is the initial
state, the map κ : V → Σ labels each state with what is observable at it, and
∆loc ⊆ V × V , ∆call ⊆ V × V , and ∆ret ⊆ V × V × V are respectively the local,
call, and return transition relations.

A transition is said to be from state v if it is of the form (v, v′) or (v, v′, v′′),

for some v′, v′′ ∈ V . If (v, v′) ∈ ∆loc for some v, v′ ∈ V , then we write v
loc
−→ v′;

if (v, v′) ∈ ∆call , we write v
call
−→ v′; if (v, v′, v′′) ∈ ∆ret , we write (v, v′)

ret
−→ v′′.

Intuitively, while modeling a program by an NSM, a transition (v, v′) in ∆call

models a procedure call that pushes the current state on the stack, and a transition
(v, v′) in ∆loc models a local action (a move that does not modify the stack). In a
return transition (v, v′, v′′), the states v and v′′ are respectively the current and
target states, and v′ is the state from which the last “unmatched” call-move was
made. The intuition is that v′ is on top of the stack right before the return-move,
which pops it off the stack.

Let us now abstract our example program into a nested state machineMfoo .
The abstraction simply captures control flow in the program, and consequently,

has states v1, v2, v3, v4, and v5 corresponding to lines L1, L2, L3, L4, and L5. We
also have a state v′2 to which control returns after the call at L2 is completed.
Now, let us have propositions rd , wr , tk , en, ex , and end that hold respectively
iff the current state represents a read, write, think statement, procedure call,
return point after a call, and return instruction. More precisely, κ(v1) = {wr},
κ(v2) = {en}, κ(v′2) = {ex}, κ(v3) = {tk}, κ(v4) = {rd}, and κ(v5) = {end} (for
easier reading, we will, from now on, abbreviate singletons such as {rd} just as
rd).

The transition relations ofMfoo are given by:

• ∆call = {(v2, v1)}
• ∆loc = {(v1, v2), (v1, v3), (v

′
2, v4), (v

′
2, v5), (v3, v4), (v3, v5), (v4, v4), (v4, v5)},

and
• ∆ret = {(v5, v2, v

′
2)}.

Linear-time semantics The linear-time semantics of a nested state machine
M = 〈V, vin , κ,∆loc ,∆call ,∆ret 〉 is given by a language L(M) of traces; this is
a language of nested words over the alphabet 2AP . First consider the language
LV (M) of nested executions of M, comprising nested words over the alphabet
V of states. A nested word W = (w, →֒) is in LV (M) iff the tagged word (w, η)
of W is such that w(0) = vin , and for all i ≥ 0, (1) if η(i, i + 1) ∈ {call , loc},

then w(i)
η(i,i+1)
−→ w(i + 1); and (2) if η(i, i + 1) = ret , then there is a j such

that j →֒ (i + 1) and we have (w(i), w(j))
ret
−→ w(i + 1). Now, a trace produced

by an execution is the sequence of observables it corresponds to. Accordingly,
the trace language L(M) of M is defined as {(w′, →֒) : for some (w, →֒) ∈
LV (M) and all i ≥ 0, w′(i) = κ(wi)}. For example, the nested word in Fig. 1-(a)
belongs to the trace language ofMfoo .

Branching-time semantics The branching-time semantics of M is defined via a
2AP -labeled tree T (M), known as the unfolding of M. For branching-time se-
mantics to be well-defined, an NSM must satisfy an additional condition: every
transition from a state v is of the same type (call, return, or local). The idea is
to not allow the same node to be a call along one path and, say, a return along
another. Note that this is the case in NSMs whose states model statements in
programs.

Now consider the V -labeled nested tree T V (M) = (T, →֒, λ), known as the
execution tree, that is the unique nested tree satisfying the following conditions:

1. if r is the root of T , then λ(r) = vin ;
2. every node s has precisely one child t for every distinct transition in M

from λ(s);

3. for every pair of nodes s and t, if s
a
−→ t, for a ∈ {call , loc}, in the tagged

tree of this nested tree, then we have λ(s)
a
−→ λ(t) inM;

4. for every s, t, if s
ret
−→ t in the tagged tree, then there is a node t′ such that

t′ →֒ t and (λ(s), λ(t′))
ret
−→ λ(t) in M.

Note that this definition is possible as we assume transitions from the same state
of M to be of the same type. Now we have T (M) = (T, →֒, λ′), where λ′(s) =

κ(λ(s)) for all nodes s. For example, the nested tree in Fig. 1-(b) is the unfolding
of Mfoo .

3. Specifications

In this section, we define automata and a fixpoint logic on nested words and
trees, and explore their applications to program specification. Automata on nested
words are useful for linear-time model-checking, where the question is: “is the
language of nested traces of the abstraction (an NSM) included in the language
of nested words allowed by the specification?” In the branching-time case, model
checking question is: “is the unfolding of the NSM a member of the set of nested
trees allowed by the specification?” Our hypothesis is these altered views of the
model-checking problem are better suited to software verification.

3.1. Automata on nested words

We start with finite automata on nested words [7,6]. A nested Büchi word au-
tomaton (NWA) over an alphabet Σ is a tuple A = 〈Q,Σ, qin , δloc , δcall , δret , G〉,
where Q is a set of states Q, qin is the initial state, and δloc ⊆ Q × Σ × Q,
δcall ⊆ Q × Σ × Q, and δret ⊆ Q × Q × Σ × Q are the local, call and return
transition relations. The Büchi acceptance condition G ⊆ Q is a set of accepting

states. If (q, σ, q′) ∈ δloc for some q, q′ ∈ Q and σ ∈ Σ, then we write q
loc,σ
−→ q′; if

(q, σ, q′) ∈ δcall , we write q
call,σ
−→ q′; if (q, q′, σ, q′′) ∈ δret , we write (q, q′)

ret,σ
−→ q′′.

The automaton A starts in the initial state, and reads a nested word from left
to right. At a call or local position, the current state is determined by the state
and the input symbol (in case of traces of NSMs, the observable) at the previous
position, while at a return position, the current state can additionally depend on
the state of the run just before processing the symbol at the jump-predecessor.
Formally, a run ρ of the automaton A over a nested word W = (σ1σ2 . . . , →֒) is
an infinite sequence q0, q1, q2, . . . over Q such that q0 = qin , and:

• for all i ≥ 0, if i is a call position of W, then (qi, σi, qi+1) ∈ δcall ;
• for all i ≥ 0, if i is a local position, then (qi, σi, qi+1) ∈ δloc ;
• for i ≥ 2, if i is a return position with jump-predecessor j, then

(qi−1, qj−1, σi, qi) ∈ δret .

The automatonA accepts a finite nested wordW if it has a run q0, q1, q2, . . . qn
over W such that qn ∈ G. An infinite nested word is accepted if there is a run
q0, q1, q2, . . . where a state q ∈ G is visited infinitely often. The language L(A) of
a nested-word automaton A is the set of nested words it accepts.

A language L of nested words over Σ is regular if there exists a nested-
word automaton A over Σ such that L = L(A). Observe that if L is a regular
language of words over Σ, then {(w, →֒) | w ∈ L} is a regular language of nested
words. Conversely, if L is a regular language of nested words, then {w | (w, →֒) ∈
L for some →֒} is a context-free language of words, but need not be regular.

Let us now see an example of how NWAs may be used for specification. Con-
sider the following property to be tested on our running example: “in every execu-

tion of the program, every occurrence of write(x) is followed (not necessarily imme-
diately) by an occurrence of read(x).” This property can be expressed by a finite-
state, Büchi word automaton. As before, we have Σ = {wr , rd , en, ex , tk , end}.
The automaton S has states q1 and q2; the initial state is q1. The automaton has

transitions q1
wr
−→ q2, q2

wr
−→ q2, q2

rd
−→ q1, and q1

rd
−→ q1 (on all input symbols

other that wr and rd , S stays at the state from which the transition fires). The
idea is that at the state q2, S expects to see a read some time in the future.
Now, we have a single Büchi accepting state q1, which means the automaton can-
not get stuck in state q2, thus accepting precisely the set of traces satisfying our
requirement.

However, consider the property: “in every execution of the program, every
occurrence of write(x) is followed (not necessarily immediately) by an occurrence
of read(x) in the same procedural context (i.e., before control returns from the
current context, and not within the scope of new contexts transitively spawned
from this context via calls).” A finite-state word automaton cannot state this
requirement, not being able to reason about the balanced-parentheses structure
of calls and returns. On the other hand, this property can be expressed simply
by a NWA A with states q1, q2 and qe—here, q2 is the state where A expects to
see a read action in the same context at some point in the future, qe is an error
state, and q1 is the state where there is no requirement for the current context.
The initial state is q1. As for transitions:

• we have q1
loc,wr
−→ q2, q1

loc,rd
−→ q1, q2

loc,rd
−→ q1, and q2

loc,wr
−→ q2 (these transi-

tions are for the same reason as in S);

• we have q1
call,en
−→ q1 and q2

call,en
−→ q1 (as the requirement only relates reads

and writes in the same context, we need to “reset” the state when a new
context starts due to a call);

• for q′ ∈ {q1, q2}, we have (q1, q
′)

ret,end
−→ q′ (suppose we have reached the

end of a context. So long as there is no requirement pending within this
context, we must, on return, restore the state to where it was before the
call. Of course, this transition is only fired in contexts that are not at the

top-level.) We also have, for q′ ∈ {q1, q2}, (q2, q
′)

ret,end
−→ qe (in other words,

it is an error to end a context before fulfilling a pending requirement).

• Also, for q′ ∈ {q1, q2}, we have q′
loc,tk
−→ q′ and q′

loc,ex
−→ q′.

The single Büchi accepting state, as before, is q1.
More “realistic” requirements that may be stated using automata on nested

words include:

• Pre/post-conditions: Consider partial and total correctness requirements
based on pre/post-conditions, which show up in Hoare-Floyd-style pro-
gram verification as well as in modern interface specification languages such
JML [11] and SAL [14]. Partial correctness for a procedure A asserts that
if precondition Pre is satisfied when A is called, then if A terminates, post-
condition Post holds upon return. Total correctness, additionally, requires
A to terminate. If program executions are modeled using nested words,
these properties are just assertions involving the current state and jump-
successors, and can be easily stated using automata on nested words.

• Access control: Specifications such as “in all executions of a proggram, a
procedure A can access a database only if all the frames on the stack have
high privilege” are useful in software security and are partially enforced at
runtime in programming languages such as Java. Such “stack inspection”
properties cannot be stated using traditional temporal logics and automata
on words. It can be shown, however, that they are easily stated using nested
word languages.

• Boundedness: Using nested word languages, we can state requirements such
as “the height of the stack is bounded by k along all executions,” useful to
ensure that there is no stack overflow. Another requirement of this type:
“every call in every program execution eventually returns.”

We will now list a few properties of regular languages of nested words. The
details may be found in the original papers [7,6,5].

• The class of regular languages of nested words is (effectively) closed under
union, intersection, complementation, and projection.

• Language membership, inclusion, and emptiness are decidable.
• Automata on finite nested words can be determinized.
• Automata on finite nested words can be characterized using Myhill-Nerode-

style congruences, and a subclass of these may be reduced to a unique
minimum form.

• Automata on finite or infinite nested words are expressively equivalent to
monadic second order logic (MSO) augmented with a binary “jump” pred-
icate capturing the jump-edge relation in nested words. This generalizes
the equivalence of regular word languages and the logic S1S.

An alternative way to specify linear-time behaviors of nested executions
of programs is to use temporal logics on nested words. First consider the logic
Caret [4], which may be viewed as an extension of LTL on nested words. Like
LTL, this logic has formulas such as ©ϕ (the property ϕ holds at the next time
point), �ϕ (ϕ holds at every point in the present and future), and ♦ϕ (ϕ holds
eventually). The formulas are evaluated as LTL formulas on the word w in a
nested word W = (w, →֒). In addition, Caret defines the notion of an “abstract
successor” in a nested word—the abstract successor of a call position is its jump-
successor, and that of a return or local position is its successor—and has formulas
such as©aϕ (the property ϕ holds at the abstract successor) and ♦aϕ (ϕ holds at
some future point in the current context). The full syntax and semantics may be
found in the original reference. For a concrete example, consider the property we
specified earlier using nested word automata. In Caret, this specification is given
by a formula ϕ = �(wr ⇒ ♦ard), which is interpreted as “every write is followed
(not necessarily immediately) by a read in the same context,” and asserted at the
initial program state. So far as model-checking goes, every Caret specification
may be compiled into an equivalent (and, at worst, exponentially larger) Büchi
NWA, so that the model-checking problem for Caret reduces to that for NWAs.

More recently, the linear-time µ-calculus has been extended to nested word
models [13]. This logic has modalities © and ©a, which assert requirements
respectively at the successor and abstract successor of a position, and, in addition,
has set-valued variables x and fixpoint formulas such as µX.ϕ(X). We will not

go into the details in this paper, but recall that a property “a position satisfying
rd is reached eventually” can be stated in the linear-time µ-calculus as ϕ =
µX.(rd ∨ ©X) (the notation is standard and hence not defined in detail). A
property “rd is reached eventually in the current context” is expressed in the
linear-time µ-calculus on nested words by the formula ϕ = µX.(rd ∨ ©aX). It
turns out that this logic has a number of attractive properties—for example, it is
expressively equivalent to MSO-logic interpreted on nested words, and collapses
to its alternation-free fragment on finite nested words. Like Caret, formulas in
this logic can also be compiled into equivalent NWAs.

3.2. A fixpoint calculus on nested trees

Now we introduce a fixpoint calculus, known as NT-µ, for nested trees [2]. This
logic may be viewed as an analog of the modal µ-calculus for nested trees. Recall
that a µ-calculus formula is interpreted at a state s of a program, or, equivalently,
on the full subtree rooted at a node corresponding to s in the program’s tree
unfolding. NT-µ is interpreted on substructures of nested trees wholly contained
within “procedural” contexts; such a structure models the branching behavior
of a program from a state s to each exit point of its context. Also, to demand
different temporal requirements at different exits, we introduce a coloring of these
exits—intuitively, an exit gets color i if it is to satisfy the i-th requirement.

Formally, let a node t of T be called a matching exit of a node s if there is an

s′ such that s′
+
−→ s and s′ →֒ t, and there are no s′′, t′′ such that s′

+
−→ s′′

+
−→

s
+
−→ t′′, and s′′ →֒ t′′. Intuitively, a matching exit of s is the first “unmatched”

return along some path from s—for instance, in Fig. 1-(a), the node s8 is the
single matching exit of the nodes s5, s6, and s7. Let the set of matching exits of s
be denoted by ME (s). For a non-negative integer k, a summary s in T is a tuple
〈s, U1, U2, . . . , Uk〉, where s is a node, k ≥ 0, and U1, U2, . . . , Uk ⊆ ME (s) (such
a summary is said to be rooted at s). The set of summaries in a nested tree T is
denoted by SummT . Note that such colored summaries are defined for all s, not
just “entry” nodes of procedures.

In addition to being interpreted over summaries, the logic NT-µ, can distin-
guish between call, return and local edges in a nested tree via modalities such as
〈call〉, 〈ret〉, and 〈loc〉. Also, an NT-µ formula can enforce different “return con-
ditions” at differently colored returns by passing subformulas as “parameters” to
call modalities. Let AP be a finite set of atomic propositions, Var be a finite set
of variables, and R1, R2, . . . be a countable, ordered set of markers. For p ∈ AP ,
X ∈ Var , and m ≥ 0, formulas ϕ of NT-µ are defined by:

ϕ,ψi := p | ¬p | X | 〈ret〉(Ri) | [ret](Ri) | ϕ ∨ ϕ | ϕ ∧ ϕ | µX.ϕ | νX.ϕ |
〈call〉(ϕ){ψ1, ψ2, ..., ψm} | [call](ϕ){ψ1, ψ2, ..., ψm} | 〈loc〉 ϕ | [loc] ϕ.

Intuitively, the markers Ri in a formula are bound by 〈call〉 and [call]
modalities, and variables X are bound by fixpoint quantifiers µX and νX. The
set of free variables is defined in the usual way. Also, we require our call -
formulas to bind all the markers in their scope—for example, formulas such as
ϕ = 〈call〉(p ∧ 〈ret〉R1){q} ∧ 〈ret〉R1 are not permitted. A formula that satis-
fies this criterion is called closed if it has no free variables. The arity of a for-

(c)(b)(a)

s1

s2

color 1 color 1

color 2

color 2

s

s
′

r1 r2r2

s
′

s

foo

P1

P2

P ′
1

P ′
2

Figure 2. (a) Local modalities (b) Call modalities (c) Matching contexts.

mula ϕ is the maximum m such that ϕ has a subformula 〈call〉ϕ′{ψ1, . . . , ψm} or
[call]ϕ′{ψ1, . . . , ψm}. Also, we define the constants tt and ff in the standard way.

Like in the µ-calculus, formulas in NT-µ encode sets, in this case sets of
summaries. Also like in the µ-calculus, modalities and boolean and fixed-point
operators allow us to encode computations on these sets.

To understand the semantics of local (e.g. 〈loc〉) modalities in NT-µ, consider
a node s in a nested tree with a local edge to a node s′. Note that ME (s′) ⊆
ME (s), and consider two summaries s and s

′ rooted respectively at s and s′.
Now look at Fig. 2-a. Note that the substructure Ts′ captured by the summary s

′

“hangs”’ from the substructure for s by a local edge; additionally, (1) every leaf
of Ts′ is a leaf of Ts, and (2) such a leaf gets the same color in s and s

′. A formula
〈loc〉ϕ asserted at s requires some s

′ as above to satisfy ϕ.
Succession along call edges is more complex, because along such an edge, a

new context gets defined. Suppose we have s
call
−→ s′, and let there be no other

edges from s. Consider the summary s = 〈s, {s1}, {s2, s3}〉, and suppose we want
to assert a 2-parameter call formula 〈call〉ϕ′{p1, p2} at s. This requires us to
consider a 2-colored summary of the context starting at s′, where matching returns
of s′ satisfying p1 and p2 are respectively marked by colors 1 and 2. Our formula
requires that s

′ satisfies ϕ′. In general, we could have formulas of the form ϕ =
〈call〉ϕ′{ψ1, ψ2, . . . , ψk}, where ψi are arbitrary NT-µ formulas. We find that the
above requires a split of the nested tree Ts for summary s in the way shown in
Fig. 2-b. The root of this tree must have a call -edge to the root of the tree for s

′,
which must satisfy ϕ. At each leaf of Ts′ colored i, we must be able to concatenate
a summary tree Ts′′ satisfying ψi such that (1) every leaf in Ts′′ is a leaf of Ts,
and (2) each such leaf gets the same set of colors in Ts and Ts′′ .

The return modalities are used to assert that we return at a point colored
i. As the binding of these colors to requirements gets fixed at a context calling
the current context, the ret-modalities let us relate a path in the latter with the
continuation of a path in the former. For instance, in Fig. 2-c, where the rectangle
abstracts the part of a program unfolding within the body of a procedure foo,
the marking of return points s1 and s2 by colors 1 and 2 is visible inside foo as
well as at the call site of foo. This lets us match paths P1 and P2 inside foo

respectively with paths P ′
1 and P ′

2 in the calling procedure. This lets NT-µ capture
the pushdown structure of branching-time runs of a procedural program.

Let us now describe the semantics of NT-µ formally. An NT-µ formula ϕ
is interpreted in an environment that interprets variables in Free(ϕ) as sets of
summaries in a nested tree T . Formally, an environment is a map E : Free(ϕ)→

2SummT

. Let us write [[ϕ]]TE to denote the set of summaries in T satisfying ϕ
in environment E (usually T will be understood from the context, and we will
simply write [[ϕ]]E). For a summary s = 〈s, U1, U2, . . . , Uk〉, where s ∈ S and
Ui ⊆ME(s) for all i, s satisfies ϕ, i.e., s ∈ [[ϕ]]E , iff one of the following holds:

• ϕ = p ∈ AP and p ∈ λ(s)
• ϕ = ¬p for some p ∈ AP , and p /∈ λ(s)
• ϕ = X, and s ∈ E(X)
• ϕ = ϕ1 ∨ ϕ2 such that s ∈ [[ϕ1]]E or s ∈ [[ϕ2]]E
• ϕ = ϕ1 ∧ ϕ2 such that s ∈ [[ϕ1]]E and s ∈ [[ϕ2]]E

• ϕ = 〈call〉ϕ′{ψ1, ψ2, ..., ψm}, and there is a t ∈ S such that (1) s
call
−→ t,

and (2) the summary t = 〈t, V1, V2, . . . , Vm〉, where for all 1 ≤ i ≤ m,
Vi = ME (t) ∩ {s′ : 〈s′, U1 ∩ME (s′), . . . , Uk ∩ME (s′)〉 ∈ [[ψi]]E}, is such
that t ∈ [[ϕ′]]E

• ϕ = [call] ϕ′{ψ1, ψ2, ..., ψm}, and for all t ∈ S such that s
call
−→ t, the

summary t = 〈t, V1, V2, . . . , Vm〉, where for all 1 ≤ i ≤ m, Vi = ME (t)∩{s′ :
〈s′, U1 ∩ME (s′), . . . , Uk ∩ME (s′)〉 ∈ [[ψi]]E}, is such that t ∈ [[ϕ′]]E

• ϕ = 〈loc〉 ϕ′, and there is a t ∈ S such that s
loc
−→ t and the summary

t = 〈t, V1, V2, . . . , Vk〉, where Vi = ME (t) ∩ Ui, is such that t ∈ [[ϕ′]]E

• ϕ = [loc] ϕ′, and for all t ∈ S such that s
loc
−→ t, the summary t =

〈t, V1, V2, . . . , Vk〉, where Vi = ME (t) ∩ Ui, is such that t ∈ [[ϕ′]]E

• ϕ = 〈ret〉 Ri, and there is a t ∈ S such that s
ret
−→ t and t ∈ Ui

• ϕ = [ret] Ri, and for all t ∈ S such that s
ret
−→ t, we have t ∈ Ui

• ϕ = µX.ϕ′, and s ∈ S for all S ⊆ SummT satisfying [[ϕ′]]E[X:=S] ⊆ S

• ϕ = νX.ϕ′, and there is some S ⊆ SummT such that (1) S ⊆ [[ϕ′]]E[X:=S]

and (2) s ∈ S.

Here E [X := S] is the environment E ′ such that (1) E ′(X) = S, and (2) E ′(Y) =
E(Y) for all variables Y 6= X. We say a node s satisfies a formula ϕ if the 0-
colored summary 〈s〉 satisfies ϕ. A nested tree T rooted at s0 is said satisfy ϕ if
s0 satisfies ϕ (we denote this by T |= ϕ). The language of ϕ, denoted by L(ϕ), is
the set of nested trees satisfying ϕ.

While formulas such as ¬ϕ (negation of ϕ) are not directly given by the
syntax of NT-µ, we can show that closed formulas of NT-µ are closed under
negation. Also, note that the semantics of closed NT-µ formulas is independent
of the environment. Also, the semantics of such a formula ϕ does not depend on
current color assignments; in other words, a summary s = 〈s, U1, . . . , Uk〉 satisfies
a closed formula iff 〈s〉 satisfies ϕ. Consequently, when ϕ is closed, we can infer that
“node s satisfies ϕ” from “summary s satisfies ϕ.” Finally, every NT-µ formula

ϕ(X) with a free variable X can be viewed as a map ϕ(X) : 2SummT

→ 2SummT

defined as follows: for all environments E and all summary sets S ⊆ SummT ,
ϕ(X)(S) = [[ϕ(X)]]E[X:=S]. It is not hard to verify that this map is monotonic,
and that therefore, by the Tarski-Knaster theorem, its least and greatest fixed
points exist. The formulas µX.ϕ(X) and νX.ϕ(X) respectively evaluate to these

two sets. This means the set of summaries satisfying µX.ϕ(X), for instance, lies
in the sequence of summary sets ∅, ϕ(∅), ϕ(ϕ(∅)),

Just as the µ-calculus can encode linear-time logics such as LTL as well
as branching-time logics such as CTL, NT-µ can capture linear and branching
properties on nested trees. Let us now specify our example program using a couple
of requirements. Consider the simple property Reach asserted at the initial state
of the program: “the instruction read(x) is reachable from the current node.” Let
us continue to use the atomic propositions rd , wr , etc. that we have been using
through the paper. This property may be stated in the µ-calculus as ϕReach =
(µX.rd ∨ 〈〉X) (the notation is standard—for instance, 〈〉ϕ holds at a node iff
ϕ holds at a node reached by some edge). However, let us try to define it using
NT-µ.

First consider a nontrivial witness π for Reach that starts with an edge s
call
−→

s′. There are two possibilities: (1) a node satisfying rd is reached in the new
context or a context called transitively from it, and (2) a matching return s′′ of
s′ is reached, and at s′′, Reach is once again satisfied.

To deal with case (2), we mark a matching return that leads to rd by color
1. Let X store the set of summaries of form 〈s′′〉, where s′′ satisfies Reach. Then
we want the summary 〈s,ME (s)〉 to satisfy 〈call〉ϕ′{X}, where ϕ′ states that s′

can reach one of its matching returns of color 1. In case (1), there is no return
requirement (we do not need the original call to return), and we simply assert
〈call〉X{}.

Before we get to ϕ′, note that the formula 〈loc〉X captures the case when π
starts with a local transition. Combining the two cases, the formula we want is
ϕReach = µX.(rd ∨ 〈loc〉X ∨ 〈call〉X{} ∨ 〈call〉ϕ′{X}).

Now observe that ϕ′ also expresses reachability, except (1) its target needs
to satisfy 〈ret〉R1, and (2) this target needs to lie in the same procedural context
as s′. It is easy to verify that: ϕ′ = µY.(〈ret〉R1 ∨ 〈loc〉Y ∨ 〈call〉Y {Y }).

Let us now suppose we are interested in local reachability: “a node satisfying
rd is reached in the current context.” This property cannot be expressed by
finite-state automata on words or trees, and hence cannot be captured by the
µ-calculus. However, we note that the property ϕ′ is very similar in spirit to this
property. While we cannot merely substitute rd for 〈ret〉R1 in ϕ′ to express local
reachability of rd , a formula for this property is easily obtained by restricting the
formula for reachability: ϕLocalReach = µX.(rd ∨ 〈loc〉X ∨ 〈call〉ϕ′{X}).

Note that the highlight of this approach to specification is the way we split a
program unfolding along procedure boundaries, specify these “pieces” modularly,
and plug the summary specifications so obtained into their call sites. This “in-
terprocedural” reasoning distinguishes it from logics such as the µ-calculus that
would reason only about global runs of the program.

Also, there is a significant difference in the way fixpoints are computed in NT-
µ and the µ-calculus. Consider the fixpoint computation for the µ-calculus formula
µX.(rd ∨ 〈〉X) that expresses reachability of a node satisfying rd . The semantics
of this formula is given by a set SX of nodes which is computed iteratively. At
the end of the i-th step, SX comprises nodes that have a path with at most
(i−1) transitions to a node satisfying rd . Contrast this with the evaluation of the
outer fixpoint in the NT-µ formula ϕReach . Assume that ϕ′ (intuitively, the set

of “jumps” from calls to returns”) has already been evaluated, and consider the
set SX of summaries for ϕReach . At the end of the i-th phase, this set contains all
s = 〈s〉 such that s has a path consisting of (i−1) call and loc-transitions to a node
satisfying rd . However, because of the subformula 〈call〉ϕ′{X}, it also includes all
s where s reaches rd via a path of at most (i − 1) local and “jump” transitions.
Note how return edges are considered only as part of summaries plugged into the
computation.

More details about specification using NT-µ may be found in the original
reference [2]. Here we list some other requirements expressible in NT-µ:

• Any closed µ-calculus formula, as well as any property expressible in Caret

or automata on nested words, may be expressed in NT-µ. Consequently,
NT-µ can express pre/post-conditions on procedures, access control re-
quirements involving the stack, and requirements on the height of the stack,
as well as traditional linear and branching-time requirements.

• Interprocedural dataflow requirements: It is well-known that many classic
dataflow analysis problems, such as determining whether an expression is
very busy, can be reduced to the problem of finding the set of program
points where a certain µ-calculus property holds [20]. However, the µ-
calculus is unable to state that an expression is very busy at a program
point if it has local as well as global variables and we are interested in in-
terprocedural paths—the reason is that dataflow involving global variables
follows a program execution through procedure calls, while dataflow for
local variables “jumps” across procedure calls, and the µ-calculus cannot
track them both at the same time. On the other hand, the ability of NT-µ
to assert requirements along jump-edges as well as tree edges lets it express
such requirements.

We end this discussion by listing some known mathematical properties of
NT-µ.

• Generalizing the notion of bisimulation on trees, we may define bisimulation
relations on nested trees [2]. Then two nested trees satisfy the same set of
closed NT-µ formulas iff they are bisimilar.

• The satisfiability problem for NT-µ is undecidable [2].
• Just as the modal µ-calculus is expressively equivalent to alternating parity

tree automata, NT-µ has an automata-theoretic characterization. General-
izing automata on nested words, we can define automata on nested trees;
generalizing further, we can define alternating parity automata on nested
trees. It turns out that every closed formula of NT-µ has a polynomial
translation to such an automaton accepting the same set of nested trees,
and vice versa [3].

4. Model-checking

In this section, we show how to model-check specifications on nested structures
generated by NSMs. Our chosen specification language in this section is the logic
NT-µ—the reason is that it can express linear as well as branching-time temporal

specifications, and lends itself to iterative, symbolic model-checking. Appealingly,
this algorithm follows directly from the operational semantics of the logic and
has the same complexity (EXPTIME) as the best algorithms for model-checking
CTL or the alternation-free µ-calculus over similar abstractions.

For a specification given by a (closed) NT-µ formula ϕ and an NSM M ab-
stracting a program, the model-checking problem is to determine if T (M) sat-
isfies ϕ. It is also useful to define the model-checking problem for NWAs: here,
a problem instance comprises an NSM M abstracting a program, and an NWA
A¬ accepting the nested words that model program executions that are not ac-
ceptable. The model-checking problem in this case is whether any of the possible
program traces are “bad”, i.e., if L(M)∩L(A¬) is non-empty. Of course, instead
of phrasing the problem this way, we could have also let the instance consist of
an NSM and a specification automaton A′, in which case we would have to check
if L(M) ∩ L(A′) is non-empty. However, complementation of A′, while possible,
is costly, and this approach would not be practical.

Now, intersection of the languages of two NWAs is done by a product con-
struction [6]. The model-checking problem thus boils down to checking the empti-
ness of a Büchi NWA A. Let us now view A as an NSM where a state is marked by
a proposition g iff it is a Büchi accepting state. An NWA on infinite nested words
is then non-empty iff there are infinitely many occurrences of g along some path
in the unfolding of A, a requirement can be expressed as a fixpoint formula in the
µ-calculus, and hence NT-µ. To determine that an NWA on finite nested words is
non-empty, we merely need to ensure that a node satisfying g is reachable in this
unfolding—an NT-µ formula for this property is as in the example in Sec. 3.2.

We will now show how to do NT-µ model-checking for an NSMM with vertex
set V and an NT-µ formula ϕ. Consider a node s in the nested tree T V (M). The
set ME (s), as well as the return-formulas that hold at a summary s rooted at
s, depend on states at call nodes on the path from the root to s. However, we
observe that the history of call-nodes up to s is relevant to a formula only because
they may be consulted by return-nodes in the future, and no formula interpreted
at s can probe “beyond” the nodes in ME (s). Thus, so far as satisfaction of a
formula goes, we are only interested in the last “pending” call-node; in fact, the
state of the automaton at this node is all that we need to record about the past.

Let us now try to formalize this intuition. First we define the unmatched call-
ancestor Anc(s) of a node s in a nested tree T . Consider the tagged tree of T , and
recall the definition of a balanced word over tags (given in Sec. 2.1). If t = Anc(s),

then we require that t
call
−→ t′ for some node t′ such that in the tagged tree of T ,

there is a path from t′ to s the edge labels along which concatenate to form a
balanced word. Note that every node in a nested tree has at most one unmatched
call-ancestor. If a node s does not have such an ancestor, we set Anc(s) =⊥.

Now consider two k-colored summaries s = 〈s, U1, U2, . . . , Uk〉 and s
′ =

〈s′, U ′
1, U

′
2, . . . , U

′
k〉 in the unfolding T V (M) = (T, →֒, λ) of the NSM M, and let

Anc(s) = t and Anc(s′) = t′, where t, t′ can be nodes or the symbol ⊥ (note that
if we have Anc(s) =⊥, then ME (s) = ∅, so that Ui = ∅ for all i).

Now we say s and s
′ are NSM-equivalent (written as s ≡ s

′) if:

• λ(s) = λ(s′);
• either t = t′ =⊥, or λ(t) = λ(t′);

• for each 1 ≤ i ≤ k, there is a bijection Ωi : Ui → U ′
i such that for all u ∈ Ui,

we have λ(u) = λ(Ωi(u)).

It is easily seen that the relation ≡ is an equivalence. We can also prove that
any two NSM-equivalent summaries s and s

′ satisfy the same set of closed NT-µ
formulas.

Now note that the number of equivalence classes that ≡ induces on the set
of summaries is bounded! Each such equivalence class may be represented by a
tuple 〈v, v′, V1, . . . , Vk〉, where v ∈ V , v′ ∈ V ∪ {⊥}, and Vi ⊆ V for all i—for the
class of the summary s above, for instance, we have λ(s) = v and λ(Ui) = Vi; we
also have λ(t) = v′ in case t 6=⊥, and v′ =⊥ otherwise. Let us call such a tuple a
bounded summary. The idea behind the model-checking algorithm of NT-µ is that
for any formula ϕ, we can maintain, symbolically, the set of bounded summaries
that satisfy it. Once this set is computed, we can compute the set of bounded
summaries for formulas defined inductively in terms of ϕ. This computation fol-
lows directly from the semantics of the formula; for instance, the set for the for-
mula 〈loc〉ϕ contains all bounded summaries 〈v, v′, V1, . . . , Vk〉 such that for some

v′′ ∈ V , we have v
loc
−→ v′′, and, letting V ′′

i comprise the elements of Vi that are
reachable from v′′, 〈v′′, v′, V ′′

1 , . . . , V
′′
k 〉 satisfies ϕ.

Let us now define bounded summaries formally. Consider any state u in an
NSM M with state set V . A state u′ is said to be the unmatched call-ancestor
state of state u if there is a node s labeled u in T V (M) such that u′ is the label of
the unmatched call-ancestor of s (we have a predicate AncV (u′, u) that holds iff
this is true). Note that a state may have multiple unmatched call-ancestor states.
If there is a node s labeled u in T V (M) such that Anc(s) =⊥, we set AncV (⊥, u).

A state v is a matching exit state for a pair (u, u′), where AncV (u′, u), if there
are nodes s, s′, t in T V (M) such that t ∈ ME (s), s′ is the unmatched call-ancestor
of s, and labels of s, s′, and t are u, u′, and v respectively (a pair (u,⊥) has no
matching exit state).

The modeling intuition is that from a program state modeled by NSM state
u and a stack with a single frame modeled by the state u′, control may reach a u′′

in the same context, and then return at the state v via a transition (u′′, u′)
ret
−→ v.

Using well-known techniques for pushdown models [1], we can compute, given a
state u, the set of u′ such that AncV (u′, u), and for every member u′ of the latter,
the set MES (u, u′) of matching exit states for (u, u′), in time polynomial in the
size of M.

Now, let n be the arity of the formula ϕ in whose model-checking problem we
are interested. A bounded summary is a tuple 〈u, u′, V1, . . . , Vk〉, where 0 ≤ k ≤ n,
AncV (u′, u) and for all i, we have Vi ⊆ MES (u, u′). The set of all bounded
summaries in M is denoted by BS .

Let ESL : Free(ϕ) → 2BS be an environment mapping free variables in ϕ to
sets of bounded summaries, and let E∅ denote the empty environment. We define
a map Eval(ϕ, ESL) assigning a set of bounded summaries to a NT-µ formula ϕ:

• If ϕ = p, for p ∈ AP , then Eval(ϕ, ESL) consists of all bounded summaries
〈u, u′, V1, . . . , Vk〉 such that p ∈ κ(u) and k ≤ n.

• If ϕ = ¬p, for p ∈ AP , then Eval(ϕ, ESL) consists of all bounded summaries
〈u, u′, V1, V2, . . . , Vk〉 such that p /∈ κ(u) and k ≤ n.

• If ϕ = X, for X ∈ Var , then Eval(ϕ, ESL) = ESL(X).
• If ϕ = ϕ1 ∨ ϕ2 then Eval(ϕ, ESL) = Eval(ϕ1, ESL) ∪ Eval(ϕ2, ESL).
• If ϕ = ϕ1 ∧ ϕ2 then Eval(ϕ, ESL) = Eval(ϕ1, ESL) ∩ Eval(ϕ2, ESL).
• If ϕ = 〈call〉 ϕ′{ψ1, ..., ψm}, then Eval(ϕ, ESL) consists of all bounded

summaries 〈u, u′, V1, . . . , Vk〉 such that for some transition u
call
−→ u′′ of

M, we have a bounded summary 〈u′′, u′′, V ′
1 , V

′
2 , ..., V

′
m〉 ∈ Eval(ϕ′, ESL),

and for all v ∈ V ′
i , where i = 1, . . . ,m, we have 〈v, u′, V ′′

1 , . . . , V
′′
k 〉 ∈

Eval(ψi, ESL), where V ′′
j = Vj ∩MES (v, u′) for all j ≤ k.

• If ϕ = [call] ϕ′{ψ1, ..., ψm}, then Eval(ϕ, ESL) consists of all bounded sum-
maries 〈u, u′, V1, . . . , Vk〉 such that for all u′′ such that there is a transition

u
call
−→ u′′ in M, we have a bounded summary 〈u′′, u′′, V ′

1 , V
′
2 , ..., V

′
m〉 ∈

Eval(ϕ′, ESL), and for all v ∈ V ′
i , where i = 1, . . . ,m, we have

〈v, u′, V ′′
1 , . . . , V

′′
k 〉 ∈ Eval(ψi, ESL), where V ′′

j = Vj ∩ MES (v, u′) for all
j ≤ k.

• If ϕ = 〈loc〉 ϕ′, then Eval(ϕ, ESL) consists of all bounded summaries

〈u, u′, V1 . . . , Vk〉 such that for some v such that there is a transition u
loc
−→ v,

we have 〈v, u′, V1 ∩MES (v, u′), . . . , Vk ∩MES (v, u′)〉 ∈ Eval(ϕ′, ESL).
• If ϕ = 〈loc〉 ϕ′, then Eval(ϕ, ESL) consists of all bounded summaries

〈u, u′, V1 . . . , Vk〉 such that for some v such that there is a transition u
loc
−→ v,

we have 〈v, u′, V1 ∩MES (v, u′), . . . , Vk ∩MES (v, u′)〉 ∈ Eval(ϕ′, ESL).
• If ϕ = 〈ret〉 Ri, then Eval(ϕ, ESL) consists of all bounded summaries
〈u, u′, V1, . . . , Vk〉 such that (1) Vi = {u′′}, (2) M has a transition

(u, u′)
ret
−→ u′′, and (3) for all j 6= i, Vj = ∅.

• If ϕ = 〈ret〉 Ri, then Eval(ϕ, ESL) consists of all bounded summaries

〈u, u′, V1, . . . , Vk〉 such that for all transitions of the form (u, u′)
ret
−→ u′′,

we have (1) Vi = {u′′}, and (2) for all j 6= i, Vj = ∅.
• If ϕ = µX.ϕ′, then Eval(ϕ, ESL) = FixPoint (X,ϕ′, ESL[X := ∅]).
• If ϕ = νX.ϕ′, then Eval(ϕ, ESL) = FixPoint (X,ϕ′, ESL [X := BS]).

Here FixPoint (X,ϕ, ESL) is a fixpoint computation function that uses the for-
mula ϕ as a monotone map between subsets of BS , and iterates over variable X.
This computation is as in Algorithm 1:

Algorithm 1 Calculate FixPoint (X,ϕ, ESL)

X ′ ← Eval(ϕ, ESL)
if X ′ = ESL(X) then

return X ′

else

return FixPoint (X,ϕ′, ESL[X := X ′])
end if

Now we can easily show that for an NSM M with initial state vin and a closed
NT-µ formula ϕ, T (M) satisfies ϕ if and only if 〈vin〉 ∈ Eval(ϕ, E∅), and that
Eval(ϕ, E∅) is inductively computable. To understand this more concretely, let us
see how this model-checking algorithm runs on our running example. Consider
the NSM abstraction Mfoo in Sec. 2.3, and suppose we want to check if a write

action is locally reachable from the initial state. The NT-µ property specifying
this requirement is ϕ = µX.(wr∨〈loc〉X∨〈call〉ϕ′{X}), where ϕ′ = µY.(〈ret〉R1∨
〈loc〉Y ∨ 〈call〉Y {Y }).

We show how to compute the set of bounded summaries satisfying ϕ′—
the computation for ϕ is very similar. After the first iteration of the fixpoint
computation that builds this set, we obtain the set S1 = {{〈v5, v2, {v

′
2}〉}

(the set of summaries satisfying 〈ret〉R1). After the second step, we obtain
S2 = S1 ∪ {〈v

′
2, v2, {v

′
2}〉, 〈v3, v2, {v

′
2}〉, 〈v4, v2, {v

′
2}〉}, and the next set computed

is S3 = S2 ∪ {〈v1, v2, {v
′
2}〉}. Note that in these two steps, we only use local

edges in the NSM. Now, however, we have found a bounded summary starting
at the “entry state” of the procedure foo, which may be plugged into the recur-
sive call to foo. More precisely, we have (v2, v1) ∈ ∆call , 〈v1, v2, {v

′
2}〉 ∈ S3, and

〈v′2, v2, {v
′
2}〉 ∈ S3, so that we may now construct S4 = S3 ∪ 〈v2, v2, {v

′
2}〉. This

ends the fixpoint computation, so that S4 is the set of summaries satisfying ϕ′.
Let us now analyze the complexity of this algorithm. Let NV be the number

of states in M, and let n be the arity of the formula in question. Then the
total number of bounded summaries in M that we need to consider is bounded
by N = N2

V 2NV n. Let us now assume that union or intersection of two sets of
summaries, as well as membership queries on such sets, take linear time. It is easy
to see that the time needed to evaluate a non-fixpoint formula ϕ of arity n ≤ |ϕ|
is bounded by O(N2|ϕ|Nv) (the most expensive modality is 〈call〉ϕ′{ψ1, . . . , ψn},
where we have to match an “inner” summary satisfying ϕ′ as well as n “outer”
summaries satisfying the ψi-s). For a fixpoint formula ϕ with one fixpoint variable,
we may need N such evaluations, so that the total time required to evaluate
Eval(ϕ, E∅) is O(N3|ϕ|NV). For a formula ϕ of alternation depth d, this evaluation
takes time O(N3dNd

V |ϕ|), i.e., exponential in the sizes ofM as well as ϕ.
It is known that model-checking alternating reachability specifications on a

pushdown model is EXPTIME-hard [24]. It is not hard to generate a NT-µ
formula ϕ from a µ-calculus formula f expressing such a property such that (1)
the size of ϕ is linear in the size of f , and (2)M satisfies ϕ if and only ifM satisfies
f . It follows that model-checking a closed NT-µ formula ϕ on an NSM M is
EXPTIME-hard. Combining, we conclude that model-checking a NT-µ formula
ϕ on an NSMM is EXPTIME-complete. Better bounds may be obtained if the
formula has a certain restricted form. For instance, it can be shown that for linear
time (Büchi or reachability) requirements, model-checking takes time polynomial
in the number of states of M. The reason is that in this case, it suffices to only
consider bounded summaries of the form 〈v, v′, {v′′}〉, which are polynomial in
number. The fixpoint computation stays the same.

Note that our decision procedure is very different from known methods for
branching-time model-checking of pushdown models [24,12]. The latter are not
really implementable; our algorithm, being symbolic in nature, seems to be a step
in the direction of practicality. An open question here is how to represent sets
of bounded summaries symbolically. Also, note that our algorithm directly im-
plements the operational semantics of NT-µ formulas over bounded summaries.
In this regard NT-µ resembles the modal µ-calculus, whose formulas encode fix-
point computations over sets; to model-check µ-calculus formulas, we merely need

to perform these computations. Unsurprisingly, our procedure is very similar to

classical symbolic model-checking for the µ-calculus.

References

[1] R. Alur, M. Benedikt, K. Etessami, P. Godefroid, T. Reps, and M. Yannakakis. Analysis
of recursive state machines. ACM Transactions on Programming Languages and Systems,
27(4):786–818, 2005.

[2] R. Alur, S. Chaudhuri, and P. Madhusudan. A fixpoint calculus for local and global
program flows. In Proceedings of the 33rd Annual ACM Symposium on Principles of

Programming Languages, 2006.
[3] R. Alur, S. Chaudhuri, and P. Madhusudan. Languages of nested trees. In Computer-Aided

Verification, CAV’06, 2006.
[4] R. Alur, K. Etessami, and P. Madhusudan. A temporal logic of nested calls and returns. In

TACAS’04: Tenth International Conference on Tools and Algorithms for the Construction

and Analysis of Software, LNCS 2988, pages 467–481. Springer, 2004.
[5] R. Alur, V. Kumar, P. Madhusudan, and M. Viswanathan. Congruences for visibly push-

down languages. In Automata, Languages and Programming: Proceedings of the 32nd

ICALP, LNCS 3580, pages 1102–1114. Springer, 2005.

[6] R. Alur and P. Madhusudan. Visibly pushdown languages. In Proceedings of the 36th

ACM Symposium on Theory of Computing, pages 202–211, 2004.
[7] R. Alur and P. Madhusudan. Adding nesting structure to words. In Developments in

Language Theory, 2006.

[8] T. Ball, R. Majumdar, T.D. Millstein, and S.K. Rajamani. Automatic predicate abstrac-
tion of C programs. In SIGPLAN Conference on Programming Language Design and

Implementation, pages 203–213, 2001.

[9] T. Ball and S. Rajamani. Bebop: A symbolic model checker for boolean programs. In SPIN

2000 Workshop on Model Checking of Software, LNCS 1885, pages 113–130. Springer,
2000.

[10] T. Ball and S. Rajamani. The SLAM toolkit. In Computer Aided Verification, 13th

International Conference, 2001.
[11] L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G.T. Leavens, R. Leino, and E. Poll. An

overview of JML tools and applications. In Proceedings of the 8th International Workshop

on Formal Methods for Industrial Critical Systems, pages 75–89, 2003.
[12] O. Burkart and B. Steffen. Model checking the full modal mu-calculus for infinite sequential

processes. Theoretical Computer Science, 221:251–270, 1999.
[13] H. Comon, M. Dauchet, R. Gilleron, D. Lugiez, S. Tison, and M. Tom-

masi. Tree automata techniques and applications. Draft, Available at
http://www.grappa.univ-lille3.fr/tata/, 2002.

[14] B. Hackett, M. Das, D. Wang, and Z. Yang. Modular checking for buffer overflows in the
large. In ICSE, pages 232–241, 2006.

[15] T.A. Henzinger, R. Jhala, R. Majumdar, G.C. Necula, G. Sutre, and W. Weimer.
Temporal-safety proofs for systems code. In CAV 02: Proc. of 14th Conf. on Computer

Aided Verification, LNCS 2404, pages 526–538. Springer, 2002.

[16] C.A.R. Hoare. An axiomatic basis for computer programming. Communications of the

ACM, 12(10):576–580, 1969.
[17] O. Kupferman, M.Y. Vardi, and P. Wolper. An automata-theoretic approach to branching-

time model checking. Journal of the ACM, 47(2):312–360, 2000.

[18] T. Reps. Program analysis via graph reachability. Information and Software Technology,
40(11-12):701–726, 1998.

[19] T. Reps, S. Horwitz, and S. Sagiv. Precise interprocedural dataflow analysis via graph

reachability. In Proceedings of the ACM Symposium on Principles of Programming Lan-

guages, pages 49–61, 1995.

[20] D.A. Schmidt. Data flow analysis is model checking of abstract interpretations. In Pro-

ceedings of the 25th Annual ACM Symposium on Principles of Programming Languages,
pages 68–78, 1998.

[21] M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis, chapter 7,
pages 189–234. Prentice-Hall, Englewood Cliffs, NJ, 1981.

[22] M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program ver-
ification. In Proceedings of the First IEEE Symposium on Logic in Computer Science,

pages 332–344, 1986.
[23] D. S. Wallach and E. W. Felten. Understanding Java stack inspection. In IEEE Symp.

on Security and Privacy, pages 52–63, 1998.
[24] I. Walukiewicz. Pushdown processes: Games and model-checking. Information and Com-

putation, 164(2):234–263, 2001.

