
Regular Combinators for String Transformations ∗

Rajeev Alur Adam Freilich Mukund Raghothaman
University of Pennsylvania

Abstract
We focus on (partial) functions that map input strings to a monoid
such as the set of integers with addition and the set of output strings
with concatenation. The notion of regularity for such functions has
been defined using two-way finite-state transducers, (one-way) cost
register automata, and MSO-definable graph transformations. In this
paper, we give an algebraic and machine-independent characteriza-
tion of this class analogous to the definition of regular languages by
regular expressions. When the monoid is commutative, we prove
that every regular function can be constructed from constant func-
tions using the combinators of choice, split sum, and iterated sum,
that are analogs of union, concatenation, and Kleene-*, respectively,
but enforce unique (or unambiguous) parsing. Our main result is for
the general case of non-commutative monoids, which is of partic-
ular interest for capturing regular string-to-string transformations
for document processing. We prove that the following additional
combinators suffice for constructing all regular functions: (1) the
left-additive versions of split sum and iterated sum, which allow
transformations such as string reversal; (2) sum of functions, which
allows transformations such as copying of strings; and (3) function
composition, or alternatively, a new concept of chained sum, which
allows output values from adjacent blocks to mix.

Categories and Subject Descriptors F.1.1 [Computation by Ab-
stract Devices]: Models of Computation—Automata

1. Introduction
To study string transformations, given the success of finite-state
automata and the associated theory of regular languages, a natural
starting point is the model of finite-state transducers. A finite-state
transducer emits output symbols at every step, and given an input
string, the corresponding output string is the concatenation of all
the output symbols emitted by the machine during its execution.
Such transducers have been studied since the 1960s, and it has
been known that the transducers have very different properties
compared to the acceptors: two-way transducers are strictly more
expressive than their one-way counter-parts, and the post-image

∗ This research was partially supported by NSF Expeditions in Computing
grant CCF 1138996. The full version of this paper may be found at
http://arxiv.org/abs/1402.3021.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CSL-LICS 2014, July 14–18, 2014, Vienna, Austria.
Copyright c© 2014 ACM 978-1-4503-2886-9. . . $15.00.
http://dx.doi.org/10.1145/2603088.2603151

of a regular language under a two-way transducer need not be a
regular language [1]. For the class of transformations computed
by two-way transducers, [9] establishes closure under composition,
[16] proves decidability of functional equivalence, and [13] shows
that their expressiveness coincides with MSO-definable string-to-
string transformations of [11]. As a result, [13] justifiably dubbed
this class as regular string transformations. Recently, an alternative
characterization using one-way machines was found for this class:
streaming string transducers [2] (and their more general and abstract
counterpart of cost register automata [5]) process the input string
in a single left-to-right pass, but use multiple write-only registers
to store partially computed output chunks that are updated and
combined to compute the final answer.

There has been a resurgent interest in such transducers in the
formal methods community with applications to learning of string
transformations from examples [15], sanitization of web addresses
[18], and algorithmic verification of list-processing programs [3].
In the context of these applications, we wish to focus on regular
transformations, rather than the subclass of classical one-way trans-
ducers, since the gap includes many natural transformations such
as string reversal and swapping of substrings, and since one-way
transducers are not closed under basic operations such as choice.

For our formal study, we focus on cost functions, that is, (partial)
functions that map strings over a finite alphabet to values from a
monoid (D,⊗, 0). While the set of output strings with concatenation
is a typical example of such a monoid, cost functions can also
associate numerical values (or rewards) with sequences of events,
with possible application to quantitative analysis of systems [8]
(it is worth pointing out that the notion of regular cost functions
proposed by Colcombet is quite distinct from ours [10]). An example
of such a numerical domain is the set of integers with addition. In
the case of a commutative monoid, regular functions have a simpler
structure, and correspond to unambiguous weighted automata (note
that weighted automata are generally defined over a semiring, and
are very extensively studied—see [12] for a survey, but with no
results directly relevant to our purpose).

A classical result in automata theory characterizes regular lan-
guages using regular expressions: regular languages are exactly the
sets that can be inductively generated from base languages (empty
set, empty string, and alphabet symbols) using the operations of
union, concatenation, and Kleene-*. Regular expressions provide
a robust foundation for specifying regular patterns in a declara-
tive manner, and are widely used in practical applications. The
goal of this paper is to identify the appropriate base functions and
combinators over cost functions for an analogous algebraic and
machine-independent characterization of regularity.

We begin our study by defining base functions and combinators
that are the analogs of the classical operations used in regular
expressions. The base function L/d maps strings σ in the base
language L to the constant value d, and is undefined when σ /∈ L.
Given cost functions f and g, the conditional choice combinator
f B g maps an input string σ to f(σ), if this value is defined,

http://arxiv.org/abs/1402.3021


and to g(σ) otherwise; the split sum combinator f •|⊗ g maps
an input string σ to f(σ1) ⊗ g(σ2) if the string σ can be split
uniquely into two parts σ1 and σ2 such that both f(σ1) and g(σ2)
are defined, and is undefined otherwise; and the iterated sum f ∗|⊗

is defined so that if the input string σ can be split uniquely such
that σ = σ1σ2 . . . σk and each f(σi) is defined, then f ∗|⊗ (σ) is
f(σ1) ⊗ f(σ2) ⊗ · · · ⊗ f(σk), and is undefined otherwise. The
combinators conditional choice, split sum, and iterated sum are
the natural analogs of the operations of union, concatenation, and
Kleene-* over languages, respectively. The uniqueness restrictions
ensure that the input string is parsed in an unambiguous manner
while computing its cost, and thus, the result of combining two
(partial) functions remains a (partial) function.

Our first result is that when the operation ⊗ is commutative,
regular functions are exactly the functions that can be inductively
generated from base functions using the combinators of conditional
choice, split sum, and iterated sum. The proof is fairly straightfor-
ward, and builds on the known properties of cost register automata,
their connection to unambiguous weighted automata in the case of
commutative monoids, and the classical translation from automata
to regular expressions.

When the operation ⊗ is not commutative, which is the case
when the output values are strings themselves and ⊗ corresponds to
string concatenation, we need additional combinators to capture
regularity. First, in the non-commutative case, it is natural to
introduce symmetric left-additive versions of split sum and iterated
sum. Given cost functions f and g, the left-split sum f ⊗|• g maps
an input string σ to g(σ2) ⊗ f(σ1) if the string σ can be split
uniquely into two parts σ1 and σ2 such that both f(σ1) and g(σ2)
are defined. The left-iterated sum is defined analogously, and in
particular, the transformation that maps an input string to its reverse
is simply the left-iterated sum of the function that maps each symbol
to itself. It can be shown that regular functions are closed under
these left-additive combinators.

The sum f ⊗ g of two functions f and g maps a string σ to
f(σ) ⊗ g(σ). Though the sum combinator is not necessary for
completeness in the commutative case, it is natural for cost functions.
For example, the string copy function that maps an input string σ
to the output σσ is simply the sum of the identity function over
strings with itself. It is already known that regular functions are
closed under sum [5, 13].

All the combinators described above first split the input string
into disjoint patches, and then map these patches into disjoint
substrings of the output. There are, however, regular functions
where this property does not hold: consider the string transformation
shuffle that maps a string of the form am1bam2b . . . amkb to
am2bm1am3bm2 . . . amkbmk−1 (see figure 2.1a). This function is
definable using cost register automata, but we conjecture that it
cannot be constructed using the combinators discussed so far. We
introduce a new form of iterated sum: given a language L and
a cost function f , if the input string σ can be split uniquely so
that σ = σ1σ2 . . . σk with each σi ∈ L, then the chained sum
(f, L) ∗|⊗ of σ is f(σ1σ2)⊗f(σ2σ3)⊗· · ·⊗f(σk−1σk). In other
words, the input is (uniquely) divided into substrings belonging to
the language L, but instead of summing the values of f on each
of these substrings, we sum the values of f applied to blocks of
adjacent substrings in a chained fashion. The string-transformation
shuffle now is simply chained sum where L equals the regular
language a∗b, and f maps aibajb to ajbi (such a function f can
itself be constructed using iterated sum and left-split sum). It turns
out that this new combinator can also be defined if we allow function
composition: if f is a function that maps strings to strings and g is a
cost function, then the composed function g ◦f maps an input string
σ to g(f(σ)). Such rewriting is a natural operation, and regular
functions are closed under composition [9].

The main technical result of the paper is that every regular
function can be inductively generated from base functions using the
combinators of conditional choice, sum, split sum, either chained
sum or function composition, and their left additive versions. The
proof in section 5 constructs the desired expressions corresponding
to executions of cost register automata. Such automata have multiple
registers, and at each step the registers are updated using copyless (or
single-use) assignments. Register values can flow into one another
in a complex manner, and the proof relies on understanding the
structure of compositions of shapes that capture these value-flows.
The proof provides insights into the power of the chained sum
operation, and also offers an alternative justification for the copyless
restriction for register updates in the machine-based characterization
of regular functions.

2. Function Combinators
Let Σ be a finite alphabet, and (D,⊗, 0) be a monoid. Two natural
monoids of interest are those of the integers (Z,+, 0) under addition,
and of strings (Γ∗, ·, ε) over some output alphabet Γ under concate-
nation. By convention, we treat ⊥ as the undefined value, and ex-
press partial functions f : A→ B as total functions f : A→ B⊥,
where B⊥ = B ∪ {⊥}. We extend the semantics of the monoid
D to D⊥ by defining d ⊗ ⊥ = ⊥ ⊗ d = ⊥, for all d ∈ D. A cost
function is a function Σ∗ → D⊥.

2.1 Base functions
For each language L ⊆ Σ∗ and d ∈ D, we define the constant
function L/d : Σ∗ → D⊥ as

L/d (σ) =

{
d if σ ∈ L, and
⊥ otherwise.

The everywhere-undefined function ⊥ : Σ∗ → D⊥ is defined as the
constant function ∅/0 , and therefore, ⊥(σ) = ⊥, for all strings σ.

Example 1. Let Σ = {a, b} in the following examples. Then, the
constant function a/a : Σ∗ → Σ∗maps a to itself, and is undefined
on all other strings. We will often be interested in functions of the
form a/a : when the intent is clear, we will use the shorthand a.

By base functions, we refer to the class of functions L/d , where
L is a regular expression.

2.2 Choice operators
Let f, g : Σ∗ → D⊥ be two functions. We then define the
conditional choice f B g as

f B g(σ) =

{
f(σ) if f(σ) 6= ⊥, and
g(σ) otherwise.

The unambiguous choice f ] g is defined as

f ] g(σ) =


f(σ) if f(σ) 6= ⊥ and g(σ) = ⊥,
g(σ) if f(σ) = ⊥ and g(σ) 6= ⊥, and
⊥ otherwise.

Example 2. The indicator function 1L : Σ∗ → Z is defined as
1L(σ) = 1 if σ ∈ L and 1L(σ) = 0 otherwise. This function can be
expressed using the conditional choice operator as L/1 B Σ∗/0 ,
and using the unambiguous choice operator as L/1 ] (Σ∗ \ L)/0 .
Note that the representation using the unambiguous union operator
relies on regular expressions being closed under set difference.



Observe that B and ] are the analogs of union in regular
expressions, with the important difference being that B is non-
commutative, and ] is non-associative1.

2.3 Sum operators
The sum f ⊗ g of two functions f, g : Σ∗ → D⊥ is defined as
f⊗g(σ) = f(σ)⊗g(σ). If there exist unique strings σ1 and σ2 such
that σ = σ1σ2, and f(σ1) and g(σ2) are both defined, then the split
sum f •|⊗ g(σ) = f(σ1) ⊗ g(σ2). Otherwise, f •|⊗ g(σ) = ⊥.
Over non-commutative monoids, this may be different from the
left-split sum f ⊗|• g: if there exist unique strings σ1 and σ2,
such that σ = σ1σ2, and f(σ1) and g(σ2) are both defined, then
f ⊗|• g(σ) = g(σ2)⊗ f(σ1). Otherwise, f ⊗|• g(σ) = ⊥.

The split sum operators •|⊗ and ⊗|• are similar to the con-
catenation operator of traditional regular expressions. The key dif-
ference between the split sum operators and the concatenation op-
erator of traditional regular expressions is the requirement of a
unique split. Observe that if σ could be split in two different ways,
σ = σ1σ2 = σ3σ4, such that all of f(σ1), f(σ3), g(σ2), and
g(σ4) are defined, then it may not necessarily be the case that
f(σ1)⊗g(σ2) = f(σ3)⊗g(σ4), and this would lead to difficulties
in defining f •|⊗ g as a function. The easiest way to avoid this
difficulty is to define f •|⊗ g(σ) only when the split σ = σ1σ2

into inputs for f and g is unique.

2.4 Iteration
The iterated sum f ∗|⊗ of a cost function is defined as follows. If
there exist unique strings σ1, σ2, . . . , σk such that σ = σ1σ2 . . . σk
and f(σi) is defined for each σi, then

f ∗|⊗ (σ) = f(σ1)⊗ f(σ2)⊗ · · · ⊗ f(σk).

Otherwise, f ∗|⊗ (σ) = ⊥. The left-iterated sum f ⊗|∗ is defined
similarly: if there exist unique strings σ1, σ2, . . . , σk such that
σ = σ1σ2 . . . σk and f(σi) is defined for each σi, then

f ⊗|∗ (σ) = f(σk)⊗ f(σk−1)⊗ · · · ⊗ f(σ1).

Otherwise, f ⊗|∗ (σ) = ⊥. The reverse combinator f rev is defined
as f rev (σ) = f(σrev ), where σrev is the string reverse of σ. Observe
that the left-iterated sum and reverse combinators are interesting in
the case of non-commutative monoids, such as string concatenation.

Example 3. The function | · |a : Σ∗ → Z counts the number of a-s
in the input string. This is represented by the function expression
(a/1 B b/0) ∗|⊗ . The identity function id : Σ∗ → Σ∗ is given
by the function expression (a B b) ∗|⊗ . The function copy which
maps an input σ to σσ is then given by the expression id ⊗ id : note
that the image of a regular language of input strings Σ∗ may not be
a regular language. On the other hand, the expression (a B b)⊗|∗

is the function which reverses its input: (a B b)⊗|∗ (σ) = σrev for
all σ. This is also equivalent to the expression id rev .

Example 4. Consider the situation of a customer who frequents a
coffee shop. Every cup of coffee he purchases costs $2, but if he
fills out a survey, then all cups of coffee purchased that month cost
only $1 (including cups already purchased). Here Σ = {C, S,#}
denoting respectively the purchase of a cup of coffee, completion of
the survey, and the passage of a calendar month. Then, the function
expression

m=(C/2 ∗|⊗ ) B

((C/1 ∗|⊗ ) •|⊗ S/0 •|⊗ (C/1 B S/0) ∗|⊗ )

1 Observe that f ] (g ] h)(σ) = f(σ) and (f ] g) ] h(σ) = h(σ) when
all of f(σ), g(σ), and h(σ) are defined.

maps the purchases of a month to the customer’s debt. The
first sub-expression — C/2 ∗|⊗ — computes the amount pro-
vided no survey is filled out and the second sub-expression —
(C/1 ∗|⊗ ) •|⊗ S/0 •|⊗ (C/1 B S/0) ∗|⊗ — is defined pro-
vided at least one survey is filled out, and in that case, charges $1
for each cup. The expression

coffee = (m •|⊗ #/0) ∗|⊗ •|⊗ m

maps the entire purchase history of the customer to the amount he
needs to pay the store.

Example 5. Let Σ = {a, b,#}, and consider the function swap
which maps strings of the form σ#τ where σ, τ ∈ {a, b}∗ to τ#σ.
Such a function could be used to transform names from the first-
name-last-name format to the last-name-first-name format. We can
write

swap=({a, b}∗#/ε •|⊗ (a B b) ∗|⊗ )⊗
(Σ∗/#)⊗ ((a B b) ∗|⊗ •|⊗ #{a, b}∗/ε ).

The first subexpression skips the first part of the string — {a, b}∗#/ε
— and echoes the second part — (a B b) ∗|⊗ . The second subexpres-
sion Σ∗/# inserts the # in the middle. The third subexpression is
similar to the first, echoing the first part of the string and skipping
the rest.

Example 6. With Σ = {a, b,#}, consider the function strip which
map strings of the form σ1#σ2# . . .#σn where σi ∈ {a, b}∗ for
each i to σ1#σ2# . . .#σn−1. This function could be used, for
example, to locate the directory of a file (such as “/home”) given its
full path (such as “/home/file.cpp”). We can write

strip = id •|⊗ #{a, b}∗/ε .

2.5 Chained sum
LetL ⊆ Σ∗ be a language, and f be a cost function over Σ∗. If there
exists a unique decomposition σ = σ1σ2 . . . σk such that k ≥ 2
and for each i, σi ∈ L, then the chained sum

(f, L) ∗|⊗ (σ) = f(σ1σ2)⊗ f(σ2σ3)⊗ · · · ⊗ f(σk−1σk).

Otherwise, (f, L) ∗|⊗ (σ) = ⊥. Similarly, if there exist unique
strings σ1, σ2, . . . , σk such that k ≥ 2 and for all i, σi ∈ L, then
the left-chained sum

(f, L)⊗|∗ (σ) = f(σk−1σk)⊗ f(σk−2σk−1)⊗ · · · ⊗ f(σ1σ2).

Otherwise, (f, L)⊗|∗ (σ) = ⊥.

Example 7. Let Σ = {a, b} and let shuffle : Σ∗ → Σ∗ be the
following function: for σ = am1bam2b . . . amkb, with k ≥ 2,
shuffle(σ) = am2bm1am3bm2 . . . amkbmk−1 , and for all other σ,
shuffle(σ) = ⊥. See figure 2.1a.

We first divide σ into patches Pi, each of the form a∗b. Similarly
the output may also be divided into patches, P ′i . Each input patch
Pi should be scanned twice, first to produce the a-s to produce
P ′i−1, and then again to produce the b-s in P ′i . Let L = a∗b be
the language of these patches. It follows that shuffle = (f, L) ∗|⊗ ,
where

f = (a/b ∗|⊗ •|⊗ b/ε ) ⊗|• (a/a ∗|⊗ •|⊗ b/ε ).

The motivation behind the chained sum is two-fold: first, we
believe that shuffle is inexpressible using the remaining operators,
and second, the operation naturally emerges as an idiom during the
proof of theorem 15.



shuffle(σ): am2 bm1 am3 bm2

σ: am1 b am2 b am3 b . . . amk−1 b amk b

. . .
amk bmk−1

(a) Definition of shuffle(σ).

σ: P1

P1 P1 P2

P2

P2 P3

P3

P3
. . .

. . .

Pk−1

Pk−1

Pk−1 Pk

Pk

Pk

f(P1, P2) f(P2, P3) f(Pk−1, Pk)

(b) Each patch Pi is a string of the form a∗b.

Figure 2.1: Defining and expressing shuffle(σ) using function combinators.

2.6 Function composition
Let f : Σ∗ → Γ∗⊥ and g : Γ∗ → D be two cost functions. The
composition g ◦ f is defined as g ◦ f(σ) = g(f(σ)), if f(σ) and
g(f(σ)) are defined, and g ◦ f(σ) = ⊥ otherwise.

Example 8. Composition is an alternative to chained sum for ex-
pressive completeness — in this example, we use composition
to express shuffle. Let copyL = (a ∗|⊗ •|⊗ b) ⊗ (a ∗|⊗ •|⊗ b)
be the function which accepts strings from L and repeats them
twice. The first step of the transformation is therefore the ex-
pression copy

∗|⊗
L . We then drop the first copy of P1 and the

last copy of Pk — this is achieved by the expression drop =
L/ε •|⊗ id •|⊗ L/ε . The function ensurelen = id ⊗ Σ+

/
ε

echoes its input, but also ensures that the input string contains at
least two patches. The final step is to specify the function f which
examines pairs of adjacent patches, and first echoes the a-s from
the second patch, and then transforms the a-s from the first patch
into b-s. f = (a/b ∗|⊗ •|⊗ b/ε ) ⊗|• (a/a ∗|⊗ •|⊗ b/ε ). Thus,
shuffle = f ∗|⊗ ◦ ensurelen ◦ drop ◦ copy

∗|⊗
L .

3. Regular Functions are Closed under
Combinators

As mentioned in the introduction, there are multiple equivalent
definitions of regular functions. In this paper, we will use the
operational model of copyless cost register automata (CCRA) as the
yardstick for regularity [5]. A CCRA is a finite state machine which
makes a single left-to-right pass over the input string. It maintains
a set of registers which are updated on each transition. Examples
of register updates include v := u⊗ v ⊗ d and v := d⊗ v, where
d ∈ D is a constant. The important restrictions are that transitions
and updates are test-free — we do not permit conditions such as
“q goes to q′ on input a, provided v ≥ 5” — and that the update
expressions satisfy the copyless (or single-use) requirement. CCRAs
are a generalization of streaming string transducers to arbitrary
monoids. The goal of this paper is to show that functions expressible
using the combinators introduced in section 2 are exactly the class
of regular functions. In this section, we formally define CCRAs, and
show that every function expression represents a regular function.

3.1 Cost register automata
Definition 9. Let V be a finite set of registers. We call a function
f : V → (V ∪ D)∗ copyless if the following two conditions hold:

1. For all registers u, v ∈ V , v occurs at most once in f(u), and

2. for all registers u, v, w ∈ V , if u 6= w and v occurs in f(u),
then v does not occur in f(w).

Similarly, a string e ∈ (V ∪D)∗ is copyless if each register v occurs
at most once in e.

Definition 10 (Copyless CRA [5]). A CCRA is a tuple M =
(Q,Σ, V, δ, µ, q1, F, ν), where Q is a finite set of states, Σ is a
finite input alphabet, V is a finite set of registers, δ : Q× Σ→ Q
is the state transition function, µ : Q× Σ× V → (V ∪ D)∗ is the
register update function such that for all q and a, µ(q, a) : V → V ∗

is copyless over V , q1 ∈ Q is the initial state, F ⊆ Q is the set of
final states, and ν : F → (V ∪D)∗ is the output function, such that
for all q, the output expression ν(q) is copyless.

The semantics of a CCRA M is specified using configurations.
A configuration is a tuple γ = (q, val) where q ∈ Q is the
current state and val : V → D is the register valuation. The initial
configuration is γ1 = (q1, val1), where val1(v) = 0, for all v. For
simplicity of notation, we first extend val to V ∪D→ D by defining
val(d) = d, for all d ∈ D, and then further extend it to strings
val : (V ∪ D)∗ → D, by defining val(v1v2 . . . vk) = val(v1) ⊗
val(v2) ⊗ · · · ⊗ val(vk). If the machine is in the configuration
γ = (q, val), then on reading the symbol a, it transitions to the
configuration γ′ = (q′, val ′), and we write γ →a γ′, where
q′ = δ(q, a), and for all v, val ′(v) = val(µ(q, a, v)).

We now define the function JMK : Σ∗ → D⊥ computed by
M . On input σ ∈ Σ∗, say γ1 →σ (qf , valf ). If qf ∈ F , then
JMK (σ) = valf (ν(qf )). Otherwise, JMK (σ) = ⊥.

A cost function is regular if it can be computed by a CCRA. A
streaming string transducer (SST) is a CCRA where the range D is
the set of strings Γ∗ over the output alphabet under concatenation.

Example 11. We present an example of an SST in figure 3.1. The
machine Mshuffle computes the function shuffle from example 7. It
maintains 3 registers x, y and z, all initially holding the value ε. The
register x holds the current output. On viewing each a in the input
string, the machine commits to appending the symbol to its output.
Depending on the suffix, this a may also be used to eventually
produce a b in the output. This provisional value is stored in the
register z. The register y holds the b-s produced by the previous run
of a-s while the machine is reading the next patch of a-s.

3.2 Additive cost register automata
We recall that when D is a commutative monoid, CCRAs are
equivalent in expressiveness to the simpler model of additive cost
register automata (ACRA). In theorem 14, where we show that



q1start q2
q3
x

a
/
z := zb

b

/
x := xy
y := z
z := ε

a

/
x := xa
z := zb

b

/
x := xy
y := z
z := ε

a

/
x := xa
z := zb

b

/
x := xy
y := z
z := ε

Figure 3.1: Streaming string transducer Mshuffle computing shuffle . q3 is the only accepting state. The annotation “x” in state q3 specifies the
output function. On each transition, registers whose updates are not specified are left unchanged.

q¬S
x

start
qS
x

C

/
x := x+ 2
y := y + 1

S/x := y

#/y := x

C/x := x+ 1

S
#/y := x

Figure 3.2: ACRA Mcoffee computing coffee .

regular functions over commutative monoids can be expressed using
the base functions over regular languages combined using the choice,
split sum and function iteration operators, we assume that the regular
function is specified as an ACRA. These machines drop the copyless
restriction on register updates, but require that all updates be of the
form “u := v ⊗ d”, for some registers u and v and some constant d.
The reader is referred to the full version of this paper for an explicit
definition of ACRAs.

Example 12. In figure 3.2, we present an ACRA Mcoffee which
computes the function coffee described in example 4. In the state
q¬S , the value in register x tracks how much the customer owes
the establishment if he does not fill out a survey before the end of
the month, and the value in register y is the amount he should pay
otherwise.

3.3 From function expressions to cost register automata
Theorem 13. Every cost function expressible using the base func-
tions combined using the B,⊗, •|⊗ , ⊗|• , iterated and left-iterated
sum, input reverse, composition, chained sum, and left-chained sum
combinators is regular.

This can be proved by structural induction on the structure of
the function expression. To construct CCRAs for the base functions
L/d , we start with the DFA A accepting L, and convert it into a
CCRA M where the accepting states output the constant value d.
For f B g and f ⊗ g, we simultaneously evaluate the machines
Mf and Mg for f and g using the product construction. To convert
function expressions involving the split or iterated sum operators, we
use regular look-ahead [3]. For example, while evaluating f •|⊗ g,
whenever Mf reaches an accepting state, we use regular look-ahead
to check whether Mg accepts the suffix, and if so, start executing
Mg . Closure under function composition of SSTs is known in the
literature [9]. The proof of theorem 13 can be found in the full
version of this paper.

4. Completeness of Combinators for
Commutative Monoids

In this section, we show that if D is a commutative monoid, then the
base functions combined using the choice, split sum and iteration
operators are expressively equivalent to the class of regular functions.
First, we review the classical algorithm to convert DFAs into
unambiguous regular expressions.

4.1 From DFAs to regular expressions: A review
In this subsection, we describe the classical algorithm [17] that trans-
forms a DFA A = (Q,Σ, δ, q1, F ) into an equivalent unambiguous
regular expression; we first use this algorithm in the translation from
ACRAs to function expressions, and later in the completeness proof
for general non-commutative monoids. Hence this review.

We will be interested in unambiguous regular expressions: each
symbol a ∈ Σ is associated with an unambiguous r.e. Ra, whose
language L(Ra) = {a}; if R1 and R2 are unambiguous regular
expressions, then R1 ·R2 is an unambiguous r.e. whose language
L(R1 ·R2) is the set of strings σ ∈ Σ∗ which can be uniquely
written σ = σ1σ2 such that σ1 ∈ L(R1) and σ2 ∈ L(R2); similarly
whenever R is an unambiguous r.e., then R∗ is an unambiguous
r.e., and L(R∗) is the set of all strings σ ∈ Σ∗ such that there exist
unique strings σ1, σ2, . . . , σk ∈ L(R), and σ = σ1σ2 . . . σk; and
if R1 and R2 are unambiguous regular expressions, then R1 ]R2

is an unambiguous r.e. such that L(R1 ] R2) = {σ ∈ Σ∗ |
σ ∈ L(R1), or σ ∈ L(R2), but not both}. For example, aab ∈
L(Σ∗), but aab /∈ L(Σ∗ · b ] Σ∗ · a · b). Unambiguous regular
expressions are similar to unambiguous context-free grammars, and
are important here because we are interested in functions (as opposed
to relations) from strings to a monoid.

Let Q = {q1, q2, . . . , qn}. For each pair of states q, q′ ∈ Q,
and for i ∈ N, 0 ≤ i ≤ n, r(i)(q, q′) is the set of non-empty
strings σ such that δ(q, σ) = q′, and which only pass through
the intermediate states {q1, q2, . . . , qi}. This can be inductively
constructed as follows:

1. r(0)(q, q′) = {a ∈ Σ | q →a q′}.
2. r(i+1)(q, q′) = r(i)(q, qi+1) · r(i)(qi+1, qi+1)∗ · r(i)(qi+1, q

′)]
r(i)(q, q′).

The language L accepted by A is then given by the regular expres-
sion RA =

⊎
qf∈F

r(n)(q1, qf ) if q1 /∈ F , and otherwise by the
regular expression {ε} ]RA.

4.2 Converting function expressions to ACRAs
We sketch the proof using the ACRA Mcoffee from figure 3.2. The
idea is to view Mcoffee as a non-deterministic automaton Acoffee

(figure 4.1) over the set of vertices Q × V : the state (q, v) of the



(q¬S , x)start

(q¬S , y)start

(qS , x)

(qS , y)

C/2 , #/0

C/1

S/
0

S/0

#/0

C/1

C/0

S/0

S/0

#/0

#
/0

Figure 4.1: Translating an ACRA to a function expression. Acoffee

is the NFA that results from the construction of theorem 14.

Acoffee indicates the current state q of Mcoffee , and (informally)
a guess v of the register whose current value influences the final
output. For every path q1 →σ1 q2 →σ2 · · · →σn qn+1 through
Mcoffee , there is a corresponding path throughAcoffee , (q1, v2)→σ1

(q2, v2) →σ2 · · · →σn (qn+1, vn+1), where vn+1 is the register
which is output in the final state qn+1, and during each transition
(qi, vi) →σi (qi+1, vi+1), the value of the register vi flows into
vi+1. The final value of register vn+1 is simply the sum of the
increments accumulated along each transition of this accepting path.
Also observe that this NFA A is unambiguous — for every string σ
that is accepted by A, there is a unique accepting path. Therefore,
if the label (q, v)→a/d (q′, v′) along each edge is also annotated
with the increment value d, where that the update expression reads
µ(q, a, v′) = v ⊗ d, then any unambiguous regular expression for
the language accepted by Acoffee can be alternatively viewed as a
function expression for JMcoffeeK. This argument can be generalized
to obtain:

Theorem 14. If (D,⊗, 0) is a commutative monoid, then every
regular function f : Σ∗ → D can be expressed using the base
functions combined with the unambiguous choice (]), split sum
(•|⊗ ) and iterated sum (· ∗|⊗ ) operators.

Note that the unambiguous choice operator in theorem 14 can be
alternatively replaced by the conditional choice operator.

5. Completeness of Combinators for General
Monoids

In this section, we show that all regular functions f : Σ∗ → D can
be written as function expressions:

Theorem 15. For an arbitrary finite alphabet Σ and monoid
(D,⊗, 0), every regular function f : Σ∗ → D can be expressed
using the base functions combined with unambiguous choice (]),
sum (⊗), split sum (•|⊗ ), chained sum ((·, ·) ∗|⊗ ), and their left-
additive versions (⊗|• , (·, ·)⊗|∗ ).

The unambiguous choice operator can be equivalently replaced
with the conditional choice operator B, and the theorem continues
to hold. To simplify the presentation, we prove theorem 15 only
for the case of string transductions, i.e. where D = Γ∗, for some

finite output alphabet Γ. Note that this is sufficient to establish the
theorem in its full generality: let ΓD ⊆ D be the (necessarily finite)
set of all constants appearing in the textual description of M . M
can be alternatively viewed as an SST mapping input strings in Σ∗

to output strings in Γ∗D. The restricted version of theorem 15 can
then be used to convert this SST to function expression form, which
when interpreted over the original domain D represents JMK.

5.1 Proof outline
The SST-to-function expression translation algorithm proceeds in
lockstep with the DFA-to-regular expression translator from section
4.1. The idea is to compute, in step i, for each pair of states q and
q′, a collection of function expressions which together summarize
all strings σ ∈ r(i)(q, q′).

In the CCRA Mshuffle from figure 3.1, consider the string aab
processed from the state q1. After processing aab, Mshuffle is left
in q2. The final values of the registers x, y, and z, in terms of
their initial values, are xaay, zb, and ε respectively. Thus, the
string aab processed from q1 may be summarized by the pair
(q2 = δ(q, aab), {x 7→ xaay, y 7→ zb, z 7→ ε}), indicating the
state of the machine after processing the string, and the final values
of the registers. Similarly, the summaries for the strings baab and
baabb processed from the initial state q1 are (q2, {x 7→ xyaaz, y 7→
bb, z 7→ ε}) and (q2, {x 7→ xyaazbb, y 7→ ε, z 7→ ε}) respectively.

Let us concentrate on the patterns in which register values
are updated during computation. For the strings aab, baab, and
baabb, these are, respectively, {x 7→ γ1xγ2yγ3, y 7→ γ4zγ5, z 7→
γ6}, {x 7→ γ1xγ2yγ3zγ4, y 7→ γ5, z 7→ γ6}, and {x 7→
γ1xγ2yγ3zγ4, y 7→ γ5, z 7→ γ6}, for some input-dependent string
constants γ1, . . . , γ6 ∈ Γ∗. We call these patterns the “shapes” of
the input strings. Note that baab and baabb have identical shapes.

First, we observe that the set of all strings σ ∈ r(i)(q, q′) with
a given shape S is a regular language. Next, for each shape S,
we compute an “expression vector” R

(i)
S (q, q′): for each patch j

appearing in the register update expression, there is a corresponding
function expression R

(i)
S,j(q, q

′) : Σ∗ → Γ∗ such that for all input
strings σ ∈ r(i)(q, q′) with shape S, γj = R

(i)
S,j(q, q

′)(σ). Finally,
for each accepting state qf ∈ F , using the summary R

(n)
S (q0, qf ),

we compute the output of the CCRA on strings σ that reach the state
qf with shape S. Together with our earlier observation that the set
of such strings is regular, we can construct a function expression f
which is equivalent to the given CCRA.

We formally define shapes and expression vectors in subsection
5.2, and informally describe some basic operations over them in
subsection 5.3. We omit the explicit construction of R

(0)
S (q, q′)

in the short version of this paper. Subsections 5.4–5.7 describe
the inductive construction of R(i+1)

S (q, q′). Note that the chained
sum is crucial to this construction, and will appear while finally
constructing R

(i+1)
S (q, q′), in subsection 5.7.

5.2 A theory of shapes
Definition 16 (Shape of a path). A shape S : V → V ∗ is a copyless
function over a finite set of registers V . Let σ = q1 →σ1 q2 →σ2→
· · · →σn qn+1 be a path through a CCRA M . The shape of the
path σ is the function Sσ : V → V ∗ such that for all registers
v ∈ V , Sσ(v) is the string projection onto V of the register update
expression µ(q1, σ, v): Sσ(v) = πV (µ(q1, σ, v)).

We refer to a string constant in the update expression as a patch
in the corresponding shape. Because there are only a finite number
of copyless functions V → V ∗ over a finite set V , the space of
shapes is finite.

Example 17. It is helpful to visualize shapes as bipartite graphs,
such as in figure 5.1. The numbers on labelled edges to a register



v indicate the order of the registers in S(v). Since the shape of
a path indicates the pattern in which register values flow during
computation, an edge u→ v can be informally read as “The value
of u flows into v”. Because of the copyless restriction, every node
on the left is connected to at most one node on the right.

When two paths are concatenated, their shapes are combined.
We define the concatenation S1 · S2 of two shapes S1 and S2 as
follows. For some register v ∈ V , let S2(v) = v1v2 . . . vk. Then
S1 · S2(v) = s1s2 . . . sk, where si = S1(vi). Informally, the
concatenation of shapes corresponds to the composition of their
bipartite graph visualizations. By definition, therefore,

Proposition 18. Let σ1 and σ2 be two paths through a CCRA M
such that the final state of σ1 is the same as the initial state of σ2.
Then, for all registers v, Sσ1σ2(v) = Sσ1 · Sσ2(v).

It follows from the previous proposition that

Proposition 19. Let q, q′ ∈ Q be two states in a CCRA M , and S
be a shape. The set of all strings from q to q′ in M with shape S is
regular.

Formally, an expression vector A for a shape S is a collection of
function expressions, such that for each register v, and for each
patch k in S(v), there is a corresponding function expression
Av,k : Σ∗ → Γ∗. An expression vector A summarizes a set of
paths L with shape S, if for each path π ∈ L with initial state q,
and input string σ, and for each register v, in the update expression
µ(q, σ, v), the constant value γv,k ∈ Γ∗ at position k is given by
Av,k(σ).

Example 20. Consider the loop a∗ at the state q2 of Mshuffle .
Consider the concrete string ak. The effect of this string is to update
x := xak, y := y, and z := zbk. The shape of this set of paths
is the identity function S(v) = v, for all v. Define the expression
vector A as follows: Ax,1 = Ay,1 = Ay,2 = Az,1 = a∗/ε ,
Ax,2 = (a/a ) ∗|⊗ , and Az,2 = (a/b ) ∗|⊗ . Then A summarizes
the set of paths a∗ at the state q1.

We now restate the desired invariant (informally described in
the proof outline in subsection 5.1): in step i, for each pair of states
q and q′, and for each shape S, the expression vector R(i)

S (q, q′)

summarizes all paths σ ∈ r(i)(q, q′) with shape S.

5.3 Operations on expression vectors
In this subsection, we create a library of basic operations on
expression vectors.

5.3.1 Restricting function domains
Given an expression vector A for a shape S, the domain of the
expression vector, written as Dom(A), is defined as the language⋂
v,k Dom(Av,k), where Dom(Av,k) is the domain of the compo-

nent function expressions. Given a cost function f : Σ∗ → Γ∗

and a language L ⊆ Σ∗, we first define the restriction of f to L as
f∩L = f⊗L/ε . This is equivalent to saying that f∩L(σ) = f(σ),
if σ ∈ L, and f∩L(σ) = ⊥, otherwise. We extend this to restrict ex-
pression vectors A to languages L, A ∩L, by defining (A ∩ L)v,k
as Av,k ∩ L.

5.3.2 Choice
Let A and B be expression vectors, both for some shape S. Let
A′ = A ∩ Dom(A) and B′ = B ∩ Dom(B). Then, we define
the conditional choice A B B as the expression vector for the
shape S such that for each register v and patch k, (A B B)v,k =

A′v,k B B′v,k, and the unambiguous choice A]B as the expression
vector for the shape S such that for each v and k, (A ]B)v,k =
A′v,k ]B′v,k.

Claim 21. If L and L′ are disjoint sets of paths with the same shape
S, such that A summarizes paths in L and B summarizes paths in
L′, then both expression vectors A B B and A ] B summarize
paths in L ∪ L′.

The notation
⊎
{f1, f2, . . . , fk} stands for f1 ] f2 ] · · · ] fk.

As the base case,
⊎
{} = ⊥. We ensure that when this notation is

used, the functions have mutually disjoint domains, so that the order
or parenthesization of the subexpressions is immaterial.

5.3.3 Shifting expressions
Given a cost function f and a language L, the left-shifted function
f � L is the function which reads an input string σ = σ1σ2

such that σ1 ∈ Dom(f) and σ2 ∈ L, and applies f to the
prefix σ1 and ignores the suffix σ2, provided the split is unique,
i.e. f � L = f •|⊗ L/ε . Similarly, the right-shifted function
f � L = L/ε •|⊗ f . The shift operators can also be extended
to expression vectors: A � L is defined as (A� L)v,k =
Av,k ∩ Dom(A) � L, and A � L is defined as (A� L)v,k =
Av,k ∩ Dom(A)� L.

5.3.4 Concatenation
Pick three states q, q′, and q′′ in the given CCRA, and let L be a set
of paths from q to q′ with shape S, and L′ be a set of paths from
q′ to q′′ with shape S′. Then paths σ ∈ L ·L′ from q to q′′ have
shape S · S′. Let the expression vectors A and B summarize all
paths in L and L′ respectively, and consider a string σ = σ1σ2 with
σ1 ∈ L and σ2 ∈ L′. The expression vector A describes the register
values of the machine after processing σ1, in terms of their original
values before the computation was started, and B describes the
register values of the machine after processing σ2, in terms of their
values after processing σ1. These expression vectors can therefore
be combined into an expression vector A ·B, which describes the
register values after processing σ1σ2, in terms of their values before
computation started. The idea is to use the shift operator to apply the
desired component expressions of A and B to the relevant parts of
the input string σ, and combine the outputs using the sum operator.
The explicit construction will be found in the full version of this
paper.

5.4 A total order over the registers
During the iteration step of the construction, we have to pro-
vide function expressions for R

(i+1)
S (q, q′) in terms of the can-

didate function expressions at step i. To satisfy the translation
invariant, we have to summarize all paths in r(i+1)(q, q′) =
r(i)(q, qi+1) · r(i)(qi+1, qi+1)∗ · r(i)(qi+1, q

′)] r(i)(q, q′). There-
fore, the central problem is to construct, for each shape S, an
expression vector BS which summarizes paths in loop(i) with
shape S. In this subsection and the next, we impose certain sim-
plifying assumptions on the shapes under consideration. We will
explicitly summarize loops in subsections 5.6 and 5.7.

Register values may flow in complicated ways: consider for
example the shape in figure 5.1d. The construction of R(i+1)

S (q, q′)
is greatly simplified if we assume that the shapes under consideration
are idempotent under concatenation.

Definition 22. Let V be a finite set of registers, and � be a total
order over V . We call a shape S over V normalized with respect to
� if

1. for all u, v ∈ V , if v occurs in S(u), then u � v,
2. for all u, v ∈ V , if v occurs in S(u), then u itself occurs in
S(u), and

3. for all v ∈ V , there exists u ∈ V such that v occurs in S(u).

A CCRA M is normalized if the shape of each of its update
expressions is normalized with respect to �.



x

y

z

x

y

z

(a) q1 →a q1,
S⊥.

x

y

z

x

y

z

1

2

(b) q2 →b q3.

x

y

z

x

y

z

1

2

3

(c) q2 →b

q3 →b q3, S>.

x

y

z

x

y

z

1

2

(d) Shape of the
update x := yz,
y := x, z := ε.

x

y

z

x

y

z

1

2

(e) Shape S1 of
the update x := x,
y := yz, z := ε.

x

y

z

x

y

z

1

2

(f) Shape S2 of
the update x :=
xz, y := y, z :=
ε.

Figure 5.1: Visualizing shapes as bipartite graphs. Figures 5.1a–5.1c describe the shapes of some paths in Mshuffle from figure 3.1.

For example, the shapes in figures 5.1a, 5.1c, 5.1e, and 5.1f
are normalized, while 5.1b and 5.1d are not. Informally, the first
condition requires that all registers in the CCRA flow “upward”, the
second ensures that shapes are idempotent, and the third ensures
that no register value is ever lost during computation. Observe that
if the individual transitions in a path are normalized, then the whole
path is itself normalized. It can be shown that:

Proposition 23. For every CCRA M , there is an equivalent nor-
malized CCRA M ′.

The states of M ′ are pairs (q, f), where q is the corresponding
state in M , and the “register renaming” function f : V → V ′

associates each register of M with a (state-specific) register of M ′.
V ′ = {x0, x1, x2, . . . , x|V |} has one more register than V — this
additional register x0 is a sink register to satisfy rule 3 of definition
22. The idea is to carefully construct the transition function δ′, so
that the register values flow only upwards during each transition,
and satisfy all the conditions of definition 22.

We will now assume that all CCRAs and shapes under consider-
ation are normalized, and we elide this assumption in all definitions
and theorems.

5.5 A partial order over shapes
We now make the observation that some shapes cannot be used in
the construction of other shapes. Consider the shapes S1 and S>
from figure 5.1. Let σ be a path through the CCRA with shape S1.
Then, no sub-path of σ can have shape S>, because if such a sub-
path were to exist, then the value in register y would be promoted to
x, and the registers x and y could then never be separated. We now
create a partial-order v, and an equivalence relation ∼ over the set
S of upward flowing shapes which together capture this notion of
“can appear as a subpath”.

Definition 24. If S is a shape over the set of registers V , then the
support of S, supp(S) = {v ∈ V | v occurs in S(v)}. If S1 and
S2 are two shapes, then S1 @ S2 iff supp(S1) ⊃ supp(S2). We
call two shapes S1 and S2 support-equal, written as S1 ∼ S2, if
supp(S1) = supp(S2).

For example, the shape S⊥ from figure 5.1 is the bottom element
of v, and S⊥ @ S>. S1 ∼ S2, and both shapes are strictly
sandwiched between S⊥ and S>. Note that for the strict ordering
S1 @ S2, we enforce the strict subset relation between supp(S1)
and supp(S2). The following two claims, 25 and 26, formalize the
intuition that v and ∼ describe the possible shapes of subpaths.
Claim 25. Let σ be a path through the CCRA M with shape S, and
σ′ be a subpath of σ with shape S′. If S′ 6@ S, then S′ ∼ S.
Claim 26. Let σ be a path through the CCRA M with shape S, and
let σ′ be the shortest prefix with shape S′ such that S′ 6@ S. Then
S′ = S.

5.6 Decomposing loops
Recall that our main remaining problem, starting from subsec-
tion 5.4, has been to construct R(i+1)

S (q, q′), which summarizes
strings in r(i+1)(q, q′) with shape S. In subsection 5.3, we defined
the choice operator over expression vectors: thus, if CS summa-
rizes strings in r(i)(q, qi+1) · r(i)(qi+1, qi+1)∗ · r(i)(qi+1, q

′) with
shape S, then we can define R(i+1)

S (q, q′) = CS ]R(i)
S (q, q′). Fur-

thermore, we also defined the concatenation operator over expres-
sion vectors: if for each intermediate shape S2, if BS2 summarizes
strings in r(i)(qi+1, qi+1)∗ with shape S2, then we can construct
the desired

CS =
⊎
{R(i)

S1
(q, qi+1) ·BS2 ·R

(i)
S3

(qi+1, q
′) | S1 · S2 · S3 = S}.

Our goal is therefore to construct BS , for each S. In subsection 5.4,
we restricted the space of shapes under consideration, so that shapes
are idempotent under concatenation, and in subsection 5.5, we de-
fined a partial order v over shapes, and a notion of support-equality
∼, which together constrain the shapes of subpaths of a given path
σ. In this subsection and the next, we construct BS assuming that
BS′ for all shapes S′ @ S is known. Furthermore, since each string
r(i)(qi+1, qi+1) is non-empty, ε /∈ r(i)(qi+1, qi+1)+. We therefore
separately handle the case of ε ∈ r(i)(qi+1, qi+1)∗, and in the rest
of this section, we construct an expression vector B+

S which sum-
marizes strings (all of which are non-empty) in r(i)(qi+1, qi+1)+

with shape S.
Consider any path σ ∈ r(i)(qi+1, qi+1)+ with shape S.

From claims 25 and 26, we can unambiguously decompose
σ = σ1σ2 . . . σkσf , where

1. for each j, 1 ≤ j ≤ k, σj ∈ r(i)(qi+1, qi+1)+ is a self-loop at
qi+1, with shape Sj such that Sj ∼ S,

2. for each j, 1 ≤ j ≤ k, and for each proper prefix (possibly
empty) σpre ∈ r(i)(qi+1, qi+1)∗ of σj , Spre @ S, and

3. σf ∈ r(i)(qi+1, qi+1)∗ (possibly empty), and its shape Sf
satisfies Sf @ S.

We call the split σ = σ1σ2 . . . σkσf the S-decomposition of σ. See
figure 5.2.

We conclude this subsection by constructing expression vec-
tors ASj , which summarize these minimal subpaths σj . First note
that σj ∈ Lfirst(Sj), where for each shape S′ ∼ S, Lfirst(Sj) is
the set of all paths σ ∈ r(i)(qi+1, qi+1)+ with shape Sj such that
no proper prefix σpre of σ has shape Spre ∼ S. Next, unambigu-
ously decompose σ = σpreσlast , with σpre ∈ r(i)(qi+1, qi+1)∗,
σlast ∈ r(i)(qi+1, qi+1): therefore σlast is the last iteration of
the loop in r(i)(qi+1, qi+1) and Spre @ S. By the first induc-
tion hypothesis, σsuff is summarized by the expression vector



qi+1 qi+1 qi+1 qi+1 qi+1 qi+1 qi+1 qi+1
S1 = S

σ1

S2 ∼ S
σ2

· · · Sj ∼ S
σj

· · · Sk ∼ S
σk

Sf @ S

σf

qi+1 qi+1 qi+1
Spre @ S

σpre ∈ r(i)(qi+1, qi+1)∗

Ssuff

σsuff ∈ r(i)(qi+1, qi+1)

Figure 5.2: Decomposing paths in r(i)(qi+1, qi+1)+ with shape S. For each j, 1 ≤ j ≤ k, each proper prefix σpre of σj has shape Spre @ S,
or equivalently σj ∈ Lfirst(Sj). σj can be unambiguously written as σpreσsuff , with σsuff ∈ r(i)(qi+1, qi+1).

qi+1 qi+1 qi+1

u u u

v v v

w w

Sj ∼ S
σj

Sj+1 ∼ S
σj+1

Figure 5.3: Every non-support register u /∈ supp(S) is reset while
processing σj , for 1 ≤ j ≤ k. Therefore its value is determined
entirely by σj . For any path in r(i)(qi+1, qi+1)+, inward flows into
register v have to be from non-support registers w, and therefore the
value appended to v while processing σj+1 is determined by σj .

R
(i)
Ssuff

(qi+1, qi+1), and by the second induction hypothesis, BSpre

is known. Define AS′ =
⊎
{BSpre · R

(i)
Ssuff

(qi+1, qi+1) | Spre ·
Ssuff = S′ and Spre @ S} ]R

(i)

S′ (qi+1, qi+1). By construction:
Claim 27. For all shapes S′ ∼ S, the expression vector AS′

summarizes all paths in Lfirst(S
′).

5.7 Constructing BS

Starting from the previous subsection, our main goal has been
to construct the expression vector BS , which summarizes paths
σ ∈ r(i)(qi+1, qi+1)∗ with shape S. From subsection 5.5, we
know the possible shapes of subpaths of σ, and we therefore
assumed an additional induction hypothesis that BS′ is known
for all shapes S′ @ S. We also resolved to handle the case of
ε ∈ r(i)(qi+1, qi+1)∗ separately, so that we are interested in con-
structing B+

S , which summarizes paths σ ∈ r(i)(qi+1, qi+1)+. In
the previous subsection, we constructed expression vectors AS

for “minimal paths” σ ∈ r(i)(qi+1, qi+1)+: consider an arbi-
trary path σ ∈ r(i)(qi+1, qi+1)+, and its S-decomposition σ =
σ1σ2 . . . σkσf , where each σj ∈ r(i)(qi+1, qi+1)+, for each j,
1 ≤ j ≤ k, σj ∈ Lfirst(Sj), and Sf @ S. Then claim 27 estab-
lishes that ASj summarizes each σj . In this section, we complete
the construction of the expression vector B+

S , and hence also the
construction of BS , and consequently the proof of theorem 15. Note
that the chained sum is critical to the construction in this subsec-
tion, because (informally) the values being appended to a register
while processing σj may be computed while processing σj−1. We
distinguish three cases to construct B+

S,v,k.

5.7.1 S(v) = ε

Informally, this is the case when v is reset in S, and therefore reset
during each minimal subpath σj (but not necessarily during σf ).
Therefore, the final value of the register v is entirely determined by
the substring σkσf . Register u in figure 5.3 is a visualization of this

situation. Let F =
⊎
{AS1 ·BS2 | S1 ·S2 = S, S1 ∼ S and S2 @

S}, and define B+
S,v,1 = r(i)(qi+1, qi+1)∗

/
ε •|⊗ Fv,1.

5.7.2 S(v) 6= ε, and 1 < k < |S(v)|+ 1

This corresponds to the case when k is an patch in S(v). Consider
the two update expressions {x := xaby, y := b}, and {x :=
axbyc, y := b} with the same shape S. These can be concatenated
into the single update expression {x := axabybbc, y := b}. Note
the internal patch γx,2 = ab, and observe that its value has been
fixed by the first update, because once the registers x and y have
been combined in S, any changes to the register value can only
be at the beginning or at the end of the string. It follows that the
value of the kth patch in the update expression for v is determined
entirely by σ1 which has shape S1 = S by claim 26. Define
B+
S,v,k = AS,v,k •|⊗ r(i)(qi+1, qi+1)∗

/
ε .

5.7.3 S(v) 6= ε, and k = 1, or k = |S(v)|+ 1

This is the case when k is either the first or the last patch. First, we
know that v ∈ supp(S). Also, any registers which flow into v while
processing σ have to be non-support registers. See figure 5.3. Thus,
the value being appended to v while processing σj is determined
entirely by σj and σj−1. We will define B+

S,v,k for k = |S(v)|+ 1.
The case for k = 1 is symmetric.

Consider the S-decomposition of the input σ = σ1σ2 . . . σkσf ,
and let γv,k be the last patch in the update expression for v. While
processing each substring σ1, σ2, . . . , σk, σf , the CCRA appends
some value to the end of γv,k. Note that the value appended by σ1 is
determined entirely by σ1, the value appended by σf is determined
by σkσf , and the value appended while processing σj , 1 < j ≤ k
is determined by σj−1σj .

1. While processing σ1, some symbols are appended to the kth po-
sition in S(v). Define fpre = AS,v,k •|⊗ r(i)(qi+1, qi+1)∗

/
ε ,

so that fpre(σ) is the value appended at the end of γv,k by σ1.

2. For some register u 6= v, let u occur in S(v), so that the
value in u computed during σk flows into v while processing
σf . For each pair of shapes Sk and Sf such that Sk ∼ S,
and Sf @ S, consider A′Sk

= ASk � Dom(Sf ), and
B′Sf

= BSf � Dom(ASk ). Consider the update expres-
sion B′Sf ,v

: say this is v := σvτ , where σ and τ are strings
over expressions and registers. For each register u in τ , sub-
stitute the value A′Sk,u,1

— since u was reset while pro-
cessing Sk, this expression gives the contents of the regis-
ter u — and interpret string concatenation in τ as the func-
tion combinator sum. Label this result as fpost,Sk,Sf . Define

fpost = (r(i)(qi+1, qi+1)∗
/
ε ) •|⊗

⊎
{fpost,Sk,Sf | Sk ∼

S and Sf @ S}, and observe that fpost(σ) is the value ap-
pended to the end of γv,k by σf .



3. Finally, consider the value appended while processing σj , for
j > 1. This is similar to the case for σf : the value appended to
γv,k by σj is determined by σj−1σj . For each pair of states
Sj−1 ∼ S and Sj ∼ S, consider A′Sj−1

= ASj−1 �
Dom(ASj ), and A′Sj

= ASj � Dom(ASj−1). Consider the
update expression A′Sj ,v,k

. Let this be v := σvτ , where σ and
τ are strings over expressions and registers. For each register
u in τ , substitute the value A′Sj−1,u,1

— since u was reset
while processing Sj−1, this expression gives the contents of
the register u — and interpret string concatenation in τ as the
function combinator sum. Label this result as fSj−1,Sj . Define
f = (

⊎
{fSj−1,Sj | Sj−1 ∼ S and Sj ∼ S}, Lf ) ∗|⊗ .

Finally, define B+
S,v,k = (fpre ⊗ fpost) ] (fpre ⊗ f ⊗ fpost). The

following observation completes the proof of theorem 15.
Claim 28. B+

S summarizes all strings σ ∈ r(i)(qi+1, qi+1)+ with
shape S.

5.8 Recap of theorem 15
In this section, we established that the combinators of section 2
are sufficient to express all regular functions, over all monoids.
The principal difficulty is that, in the case of SSTs, a single input
symbol may influence non-contiguous substrings in the output in
complicated ways, such as in the function shuffle from figure
2.1a. The solution was to use the new operation of chained sum
so that symbols of the input could be repeatedly scanned to produce
different parts of the output.

The translation from SSTs to function expressions involved an
outer induction where, in step i, we summarized all strings from
the state q to the state q′ while only passing through intermediate
states qj , where j ≤ i. We first associated paths within the SST
with their shapes, indicating the pattern of data flows. We then
investigated the possible shapes of subpaths of a given path, and
proved that the notions of shape ordering @, and support equality
∼ together capture this notion2. This allowed us to set up a nested
inductive construction, where we summarized strings with the shape
S, assuming the summaries for strings with the shape S′, for S′ @ S
were known. The copylessness of SSTs was essential in this step
because the space of shapes is then finite.

6. Conclusion
In this paper, we have characterized the class of regular functions
that map strings to values from a monoid using a set of function
combinators. We hope that these results provide additional evidence
of robust and foundational nature of this class. The identification of
the combinator of chained sum, and its role in the proof of expressive
completeness of the combinators, should be of particular technical
interest. There are many avenues for future research. First, the
question whether all the combinators we have used are necessary for
capturing all regular functions remains open (we conjecture that the
set of combinators is indeed minimal). Second, it is an open problem
to develop the notion of a congruence and a Myhill-Nerode-style
characterization for regular functions (see [7] for an attempt where
authors give such a characterization, but succeed only after retaining
the “origin” information that associates each output symbol with
a specific input position). Third, it would be worthwhile to find
analogous algebraic characterizations of regularity when the domain
is, instead of finite strings, infinite strings [6] or trees [4, 14] and/or

2 In an early attempt to prove this theorem, we tried to formalize the relation
Rsp(S1, S2): “S1 can appear as the shape of a subpath σsub of a longer
path σ with shape S2”. This approach failed because the relation Rsp is not
even a partial order. In particular, S1 · S2 = S1, and S2 · S1 = S2, for the
shapes S1 and S2 of figure 5.1.

when the range is a semiring [5, 12]. Finally, on the practical side,
we plan to develop a declarative language for document processing
based on the regular combinators identified in this paper.

References
[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. A general theory of

translation. Mathematical Systems Theory, 3(3):193–221, 1969.

[2] R. Alur and P. Černý. Expressiveness of streaming string transducers.
In IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science, LIPIcs 8, pages 1–12, 2010.

[3] R. Alur and P. Černý. Streaming transducers for algorithmic verification
of single-pass list-processing programs. In Proceedings of 38th ACM
Symposium on Principles of Programming Languages, pages 599–610,
2011.

[4] R. Alur and L. D’Antoni. Streaming tree transducers. In Automata, Lan-
guages, and Programming — 39th International Colloquium, ICALP
Part II, pages 42–53. 2012.

[5] R. Alur, L. D’Antoni, J. V. Deshmukh, M. Raghothaman, and Y. Yuan.
Regular functions and cost register automata. In 28th Annual
ACM/IEEE Symposium on Logic in Computer Science, pages 13–22,
2013.

[6] R. Alur, E. Filiot, and A. Trivedi. Regular transformations of infinite
strings. In 27th Annual ACM/IEEE Symposium on Logic in Computer
Science, pages 65–74, 2012.

[7] M. Bojanczyk. Transducers with origin information. In Automata, Lan-
guages, and Programming — 41st International Colloquium, ICALP
Part II, 2014. Forthcoming.

[8] K. Chatterjee, L. Doyen, and T. A. Henzinger. Quantitative languages.
ACM Trans. Comput. Log., 11(4), 2010.

[9] M. Chytil and V. Jákl. Serial composition of 2-way finite-state
transducers and simple programs on strings. In Automata, Languages
and Programming — 4th International Colloquium, LNCS 52, pages
135–147. 1977.

[10] T. Colcombet. The theory of stabilisation monoids and regular cost
functions. In Automata, Languages, and Programming — 36th Interna-
tional Colloquium, ICALP Part II, pages 139–150. 2009.

[11] B. Courcelle. Monadic second-order graph transductions. In 17th
Colloquium on Trees in Algebra and Programming, LNCS 581, pages
124–144. 1992.

[12] M. Droste, W. Kuich, and H. Vogler. Handbook of Weighted Automata.
Springer, 2009.

[13] J. Engelfriet and H. J Hoogeboom. MSO definable string transductions
and two-way finite-state transducers. ACM Transactions on Computa-
tional Logic, 2(2):216–254, 2001.

[14] J. Engelfriet and S. Maneth. Macro tree transducers, attribute grammars,
and MSO definable tree translations. Information and Computation,
154:34–91, 1999.

[15] S. Gulwani. Automating string processing in spreadsheets using input-
output examples. In Proceedings of 38th ACM Symposium on Principles
of Programming Languages, pages 317–330, 2011.

[16] E. M. Gurari. The equivalence problem for deterministic two-way
sequential transducers is decidable. In 21st Annual Symposium on
Foundations of Computer Science, pages 83–85, 1980.

[17] Michael Sipser. Introduction to the Theory of Computation. Cengage
Learning, 3rd edition, 2012.

[18] M. Veanes, P. Hooimeijer, B. Livshits, D. Molnar, and N. Bjørner.
Symbolic finite state transducers: Algorithms and applications. In
Proceedings of 39th ACM Symposium on Principles of Programming
Languages, pages 137–150, 2012.


	Introduction 
	Function Combinators 
	Base functions 
	Choice operators 
	Sum operators 
	Iteration 
	Chained sum 
	Function composition 

	Regular Functions are Closed under Combinators 
	Cost register automata 
	Additive cost register automata 
	From function expressions to cost register automata 

	Completeness of Combinators for Commutative Monoids 
	From DFAs to regular expressions: A review 
	Converting function expressions to ACRAs 

	Completeness of Combinators for General Monoids 
	Proof outline 
	A theory of shapes 
	Operations on expression vectors 
	Restricting function domains 
	Choice 
	Shifting expressions 
	Concatenation 

	A total order over the registers 
	A partial order over shapes 
	Decomposing loops 
	Constructing BS 
	S(v)= 
	S(v)=, and 1<k<|S(v)|+1 
	S(v)=, and k=1, or k=|S(v)|+1 

	Recap of theorem 15 

	Conclusion 

