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Abstract—Courcelle (1992) proposed the idea of using logic, in
particular Monadic second-order logic (MSO), to define graph
to graph transformations. Transducers, on the other hand,
are executable machine models to define transformations, and
are typically studied in the context of string-to-string trans-
formations. Engelfriet and Hoogeboom (2001) studied two-way
finite state string-to-string transducers and showed that their
expressiveness matches MSO-definable transformations (MSOT).
Alur and Černý (2011) presented streaming transducers—one-
way transducers equipped with multiple registers that can store
output strings, as an equi-expressive model. Natural general-
izations of streaming transducers to string-to-tree (Alur and
D’Antoni, 2012) and infinite-string-to-string (Alur, Filiot, and
Trivedi, 2012) cases preserve MSO-expressiveness. While earlier
reductions from MSOT to streaming transducers used two-way
transducers as the intermediate model, we revisit the earlier
reductions in a more general, and previously unexplored, setting
of infinite-string-to-tree transformations, and provide a direct
reduction. Proof techniques used for this new reduction exploit
the conceptual tools (composition theorem and finite additive
coloring theorem) presented by Shelah (1975) in his alternative
proof of Büchi’s theorem. Using such streaming string-to-tree
transducers we show the decidability of functional equivalence
for MSO-definable infinite-string-to-tree transducers.

Index Terms—Streaming string transducers, monadic second-
order logic, ω-regular transformations, tree transducers.

I. INTRODUCTION

The class of regular languages of finite strings is a well-
established concept [1] in formal language theory. A number
of widely different and equi-expressive formalisms—based
on, for instance, logic (monadic second-order logic, MSO),
executable machine models (deterministic finite state au-
tomata [2], [3], [4]), concise expressions (regular expressions),
and algebra (finite semigroups [5])—to recognize languages
solidify the status of this class as “regular”. Büchi [6] and
McNaughton [7] generalized the notion of regularity to lan-
guages of infinite strings by showing equi-expressiveness of
MSO and deterministic Muller automata, while Wilke [8]
established the connection with ω-semigroups. Apart from
showing robustness of its class of languages, regularity (in
particular, the logic and automata connection) has been quite
influential as specification-formalisms in varied contexts like
text-editors, programming languages, and verification, since it
provides computational algorithms for an expressive logic.

A natural extension to the theory of regular languages
is to consider transformations of strings, i.e. functions from
strings to strings, which has applications in image processing,
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Fig. 1. An infinite string-to-tree transformation T#. Here the w’s are finite
#-free strings, while z is a #-free ω-string. The string w̃ denotes the reverse
of string w as a left-branch tree-string.

machine translation, natural language processing, and program
verification. A robust class of transformations can be defined
using Courcelle’s monadic second-order logic definable graph
transformations [9] where MSO formulas are used to interpret
the output graphs in a finite number of copies of the input
graph. These transformations enjoy certain nice properties
including closure under function composition and ease of
defining restricted transformations such as (finite and infinite)
string-to-string, string-to-tree, or tree-to-tree transformations.

Engelfriet and Hoogeboom [10] showed the regularity of
MSO-definable finite string-to-string transformations by prov-
ing that the two-way extension of generalized sequential ma-
chines (2GSM) express the same class of transformations. Alur
and Černý [11] re-emphasized the regularity of this class by
defining a one-way model, called streaming string transducers,
capturing the same class of transformations. Streaming string
transducers (SSTs) read their input in one left-to-right pass
and construct the output by manipulating multiple write-only
registers using copyless updates. Streaming string transducers
is a promising computational model to capture MSO-definable
transformations as its natural extensions to infinite-string-to-
string [12] and finite tree-to-tree [13] transformations precisely
capture corresponding MSO-definable classes.

Recently, finite string-to-tree transformations were used to
define more general ways of associating costs with strings [14].
If we want to associate costs with infinite executions with
similar generality, we first need to develop the theory of
infinite-string-to-tree transformations, and the resulting notion
of regular cost functions can be useful for quantitative analysis.
In this paper we study a previously unexplored extension
of SSTs to infinite string-to-tree transformations, and show
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Fig. 2. Streaming string-to-term transducer implementing T# from Fig. 1. Here α stands for any letter except #.

its equi-expressiveness to MSO-definable transformations. We
call this model streaming string-to-tree transducers (SSTTs).

A streaming string-to-tree transducer reads its input tape
in one left-to-right pass. Hence, it stores output trees corre-
sponding to various eventualities in its registers, and the exact
output tree is given as the limit of a register determined by a
Muller acceptance condition on its transitions. Registers of
SSTTs store trees with a special symbol ? (called a hole)
appearing in the leaves where further trees or register values
can be substituted. Registers are updated with transition using
the following set of expressions:

e ::= ε | ? | x | a(e1, e2) | x[e1, . . . , en] (1)

where x stands for a register, while a stands for an output
letter. The expression ε stands for an empty tree, ? stands for
an empty tree with a hole, a(e1, e2) stands for an a-labeled
tree whose left and right successors are trees corresponding
to expressions e1 and e2, while the expression x[e1, . . . , en]
specifies the tree stored in register x whose holes are sub-
stituted by trees corresponding to expressions e1, . . . , en in a
left-to-right traversal of the tree.

Example 1. The infinite string-to-tree transformation shown in
Figure 1 can be implemented with an SSTT (see, Fig. 2) with
two states q0 and q1 and three registers x, y and z such that
the limit of the register y is the output if # appears infinitely
often, and the register z is the output, otherwise. Right side
of Fig. 2 shows a computation on string ab#aω and one can
easily verify that the limit of the register z is the correct output.

We say that a register update is copyless if each register
appears at most once in the right-hand-side. For instance, in
Fig. 2 the register update in the transition (q1,#) is not copy-
less since the value of register y is copied in both register y and
register z, while all other updates are copyless. Unrestricted
copy in register updates, e.g. x := α(x, x), may lead to non-
linear size increase in the output, and such transformations
are not expressible using MSO transducers. To disallow such
behavior, traditionally streaming string transducers allowed
only copyless register updates. In this paper we permit a more
general update rule called restricted copy. Under restricted
copy updates a register is allowed to be copied in multiple
registers, however these registers cannot later be combined

together. For instance, registers y and z are never combined
in Figure 2.

We extend the theory of regular transformations to infinite
string-to-tree transformations by showing the following result.

Theorem 1. An infinite string-to-tree transformation is MSO-
definable if and only if it is SSTT-definable, and the reduction
from SSTT to MSO-transducers and vice-versa is effective.

The reduction from an SSTT to an MSO transducer is
a straightforward extension of similar proofs for previous
SST models [11], [12], [13]. However, it is not possible to
extend previous proofs in the other direction, since all previous
reductions exploited the existence of an already known MSO-
equivalent transducer model (e.g., 2GSM for string-to-string
and macro-tree transducers for tree-to-tree transformations)
and used automata-theoretic results to make a connection
between such computational model and streaming string trans-
ducers. However, we do not know of any computational model
that captures MSO-definable infinite string-to-tree transduc-
ers. This required us to explore further properties of MSO-
definable transducers to yield a direct reduction to streaming
string transducers which is also relevant for previous models.
Our proof has its roots in the conceptual tools (composition
theorem and finite additive coloring theorem) presented by
Shelah [15] in his celebrated alternative proof of Büchi’s
theorem. We observed that the output infinite trees of MSO-
transducers belong to an interesting class of infinite trees that
seems to have not been studied earlier:

Theorem 2. For every infinite string-to-tree MSO transducer
there is a finite bound (related to the quantifier depth of the
MSO formulas) on the number of infinite branches in the
output trees.

We also study the equivalence problem for MSO-definable
infinite string-to-tree transducers that asks whether two MSO-
transducers implement the same function. Figure 3 shows a
difficulty in proving equivalence of string-to-tree transducers:
although both transducers T¬1 and T� implement equivalent
transformations, they differ in their logical characterization.
Transducer T¬1 does not modify the labels of the nodes
but excludes the first one from the output, while T� shifts
all the labels to the left. The SSTT for T� will output at
each step one string which will always “lag” one symbol
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Fig. 3. Transducers T¬1 and T� implementing the same transformation.

from the image up to the current position. This lag is not
necessarily bounded, and it is challenging to ensure that,
despite such delay, the successive outputs converge towards
the image by the transducer. In Section VI we show that
the equivalence problem for SSTTs can be decided using
appropriate generalization of the corresponding procedure for
SSTs on infinite strings [12]. This result when combined with
Theorem 1 yields the following result.

Theorem 3. Equivalence problem for MSOT is decidable.

II. PRELIMINARIES

Let N be the set of natural numbers and Nk be the set
{i ∈ N : i ≤ k}. An alphabet Σ is a finite set of letters.

A. Graphs, Strings, and Trees

A labeled graph G is a tuple (V, (Eb)b∈Γ, (La)a∈Σ) where
V is the set of vertices, (La)a∈Σ are disjoint subsets of V
whose union is V , and (Eb)b∈Γ are disjoint binary relations
over V . We write E = ∪b∈ΓEb. We say that a vertex v ∈ V is
labeled with letter a ∈ Σ if v ∈ La, and an edge (v, v′) ∈ E
is labeled with letter b ∈ Γ if (v, v′) ∈ Eb. Let GR(Σ,Γ) be
the set of graphs with node labels in Σ and edge labels in Γ.
We define strings and trees as special cases of labeled graphs.

– (Strings). A string s of length n ≥ 0 over an alphabet
Σ is a labeled graph s = ({1, 2, . . . , n} , S, (La)a∈Σ)
where 1, 2, . . . , n are letter positions in the string, S is
the successor relation on {1, 2, . . . , n}, and La is the set
of positions of s that carry the letter a. We denote by ε
the empty string i.e. the set of vertices is the empty set.
We call a string ω-string if its set of vertices is the set
of natural numbers.
For a string s we write |s| for its length; note that for
an ω-string s we have that |s| = ∞. For a string s and
for positions i in s we write s[i] for the letter at the i-th
position of the string s. For any j, i < j ≤ |s|, we write
s[i:j], s(i:j), s[i:j), and s(i:j], to denote substrings of
s respectively starting at i and ending at j, starting just
after i, ending just before j, and so on. For instance,
s[1:x) denotes the prefix ending just before x (it is ε if
x = 1), while s(x:|w|] denotes the suffix starting just
after x.

– (Trees). For convenience, we only consider binary
trees where each vertex has at most two succes-
sors. This allows us to represent nodes of a tree t
as strings over {1, 2}. A tree t is a labeled graph
(Pos(t), (Si)i∈{1,2}, (La)a∈Σ) such that Pos(t) is a
prefix-closed subset of {1, 2}∗ and where S1 and S2 are

1-successor and 2-successor relations naturally defined on
Pos(t). We say that the tree is infinite if |Pos(t)| = ∞.
The root of the tree is the node ε ∈ Pos(t), while
a leaf of a tree t is defined as a node whose both
successors are absent in Pos(t), i.e. p ∈ Pos(t) is a leaf
if S1(p), S2(p) 6∈ Pos(t).

We write Σ∗ and Σω for the set of finite and ω-strings over Σ;
and T ∗Σ and T ωΣ for the set of finite and infinite trees over Σ.
We write Σ∞ and T ∞Σ for Σ∗∪Σω and T ∗Σ ∪T ωΣ , respectively.

B. Monadic Second-Order Logic over Labeled Graphs

Regular properties of labeled graphs [16] can be for-
malized by monadic second order logic (MSO) denoted by
MSO(Σ,Γ). The formulas for MSO(Σ,Γ) have first-order
variables x, y, . . . ranging over nodes, and second-order vari-
ables X,Y, Z, . . . ranging over sets of nodes of labeled graphs.
A formula is built up from atomic formulas of the form

x = y, x ∈ X,La(x), and Eb(x, y)

where the node-label formula La(x) states that the node x has
the label a ∈ Σ, while the edge-relation Eb(x, y) states that
there is an edge between the node x and the node y labeled
with b ∈ Γ. Atomic formulas are combined with propositional
connectives ¬, ∧, ∨, →, and quantifiers ∀ and ∃ that range
over both node variables and node-set variables. We say that
a variable is free in a formula if it does not occur in the
scope of some quantifier. A sentence is a formula without
any free variable. We write φ(X1, . . . , Xk, x1, . . . , xk′) to
denote that at most the second-order variables X1, . . . , Xk

and the first-order variables x1, . . . , xk′ occur free in φ.
For a graph G (with set of vertices V ) and for valua-
tions N1, . . . , Nk ∈ 2V and n1, . . . , nk′ ∈ V we say that
the graph G with valuation ν = (N1, . . . , Nk, n1, . . . , nk′)
satisfies the formula φ(X1, . . . , Xk, x1, . . . , xk′) and we
write (G, ν) |= φ(X1, . . . , Xk, x1, . . . , xk′) or G |=
φ(X1/N1, . . . , Xk/Nk, x1/n1, . . . , xk′/nk′) if φ with Ni
(resp., ni) as interpretations of Xi (resp., xi) is satisfied in
the graph G.

MSO can be restricted appropriately to express regular
properties of strings and trees. Next, we present some well-
known results on MSO over strings that are used in this paper.

C. k-type: Elementary Equivalence of MSO over Strings

Quantifier depth of an MSO formula is defined as the max-
imal number of nested quantifiers appearing in the formula.
For a string s ∈ Σ∞ and k ∈ N we define its k-type as the
set of MSO sentences with quantifier depth at most k which
hold for this string. For a given k ∈ N we write Θk for the
set of k-types. We write s ∼=k s

′ when two strings s, s′ have
the same k-type, or [s]∼=k

= τ when s has k-type τ ∈ Θk.

Proposition 4 ([17]). For each k the set Θk of k-types is
finite. Moreover, every k-type τ ∈ Θk can be represented by
an MSO sentence with quantifier depth k.

Proof: (Sketch). The finiteness of Θk can be shown with
the following remark: there are finitely many non-equivalent
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MSO formulas with r free variables and quantifier depth at
most k. By induction over k: there are only finitely many non-
equivalent quantifier free formulas with r free variables, as it is
a boolean algebra generated by a finite basis (the set of atomic
formulas); to show the finiteness of formulas with quantifier
depth at most k+1, we rely on the finiteness of formulas with
quantifier depth at most k and r+1 free variables: abstracting
any one of these r+1 variables on all those formulas gives us
a (finite) boolean basis to generate any formula of quantifier
depth at most k + 1. Now, notice that each k-type can be
represented by an MSO sentence with quantifier depth k, for
instance by corresponding Hintikka formulas [18].

The next fundamental result is due to Shelah’s exten-
sion [15] of Feferman-Vaught composition theorem [19] to the
context of monadic second-order logic. It follows from the fact
that k-types of any two strings uniquely determine the k-type
of their concatenation and there is an effective procedure to
compute the resulting k-type.

Proposition 5 (Composition Theorem [15]). Let ∼=k be the
k-type equivalence relation for MSO formulas over strings.

1) ∼=k is a monoid congruence, i.e. for strings u, u′ ∈ Σ∗

s.t. u ∼=k u
′ and strings v, v′ ∈ Σ∞ s.t. v ∼=k v

′, we
have that uv ∼=k u

′v′.
2) For strings u, u′ ∈ Σ+ s.t. u ∼=k u

′, we have uω ∼=k u
′ω .

III. REGULAR STRING-TO-TREE TRANSFORMATIONS

In this section we formally present MSO-definable string-
to-tree transformations and give the definition of our streaming
string-to-tree transducer model with matching expressiveness.

A. MSO-Definable String-to-Tree Transformations

Courcelle [9] proposed a way to use MSO to define a graph
transformation R ⊆ GR(Σ,Σ′) × GR(Γ,Γ′). The main idea
is to define a transformation (G,G′) ∈ R by defining the
graph G′ using a finite set of copies of the graph G. The
existence of nodes, edges, and node-labels in G′ is then given
as MSO(Σ,Σ′) formulas. Formally, an MSO graph transducer
is a tuple T=(Σ,Γ, φdom, C, φnodes, φedges) where:

– Σ and Γ are finite sets of input and output alphabets;
– φdom is a closed MSO(Σ,Σ′) formula characterizing the

domain of the transformation;
– C= {1, 2, . . . , n} is a finite set of copies of the nodes of

the input graph;
– φnodes=

{
φcγ(x) : c ∈ C and γ ∈ Γ

}
is a finite set of

MSO(Σ,Σ′) formulas with a free node variable x;
– φedges=

{
φc,dγ′ (x, y) : c, d∈C and γ′∈Γ′

}
is a finite set

of MSO(Σ,Σ′) formulas with two free node variables.
The graph transformation JT K characterized by T is defined
as follows. A graph G=(V, (Eb)b∈Σ′ , (La)a∈Σ) ∈ GR(Σ,Σ′)
is in the domain of JT K if G |= φdom and the output is the
graph G′=(V ′, (E′b)b∈Γ′ , (L

′
a)a∈Γ) ∈ GR(Γ,Γ′) such that

– V ′ is the set of nodes vc such that v ∈ V , c ∈ C and
there is a unique a ∈ Γ such that G |= φca(v); notice
that we follow the convention that a node vc is absent if
G |= ¬φc(v) where φc(v)

def
= ∨a∈Γφ

c
a(v);

– (E′b)b∈Γ′ is the set of b-labeled edges such that for v, u ∈
V and c, d ∈ C we have that (vc, ud) ∈ E′b if G |=
φc,db (v, u);

– (L′a)a∈Γ is the set of a-labeled nodes such that vc ∈ L′a
if G |= φca(v).

Note that as the output is unique, MSO graph transducers
implement functions. It is well-known [9] fact that such MSO
graph transducers are closed under function composition.

An MSO string-to-tree transducer is an MSO graph trans-
ducer such that its domain is restricted to strings, while the
output is restricted to trees. Such restriction can be imposed by
composing two graph transducers where the first one defines
the required transformation, while the second one verifies
whether the output is a tree. We write MSOT for the set of
string-to-tree transformations expressible by MSO transducers.

w : a b b b # b a # aω

c1 : a b b b # b a #

c2 : a b b b b a aω

Fig. 4. The result of MSO transformation T# on the string abbb#ba#aω .

Example 2. Let us consider the following MSO formulas with
their intuitive meaning: reach#(x) (holds if from x one can
reach a node labeled #), first(x) (holds if x is the first position
of the string) and path(x, y) (holds if there is a path from x
to y). Transformation T# from Figure 1 is implemented (see
Fig.4) by MSOT T=(Σ,Γ, φdom, C, φnodes, φedges) where:

– Σ=Γ= {a, b,#}, C = {1, 2}, and
– φdom = true,
– φ1

γ(x) = Lγ(x) ∧ (L#(x) ∨ reach#(x))
– φ2

γ(x) = Lγ(x) ∧ (¬L#(x))

– φ1,1
1 (x, y)=φ1(x)∧φ1(y)∧reach#(x)∧¬L#(y)∧E(y, x)

– φ1,1
2 (x, y)=∀z((path(x, z) ∧ path(z, y)) → ¬L#(z)) ∧
L#(x) ∧ L#(y) ∧ path#(x, y)

– Other formulas φ1,2
1 , φ1,1

2 , φ2,1
1 , φ2,1

2 , φ2,2
1 and φ2,2

2 can
also be expressed in MSO according to Figure 4.

B. Streaming String-to-Tree Transducers

Streaming string-to-tree transducers are finite state machines
that read the input string once in a left-to-right pass and ma-
nipulate a finite set of registers containing trees with marked
positions (called holes) where new trees can be substituted.
The set of infinitely fired transitions determines the output
register that defines the output as the limit of the successive
values of this register.

Before we formally introduce streaming string-to-tree trans-
ducer we discuss the set of allowable register updates. Let X
be a finite set of registers and Γ be an alphabet. Let T ∞Γ∪{?}
be the set of trees over Γ with a special symbol ? /∈ Γ (called
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the hole) that appears only at leaf positions. Streaming string-
to-tree transducers use registers to store and manipulate trees
with holes using the following register expressions:

e ::= ε | ? | x | a(e1, e2) | x[e1, . . . , en]

where x ∈ X and a ∈ Γ. We write E(Γ, X) for the set of
register expressions over the alphabet Γ and register set X .
A register update s of the set of registers X is defined as a
mapping s ∈ [X → E(Γ, X)].

Given a register valuation ν : X → TΓ∪{?} we say that the
update s is compatible with ν if and only if, each x ∈ X
appearing in an image of s we have that if ν(x) has n holes
(?-labeled nodes) then x can only appear in the form x or
x[e1, . . . , en] in the images of s. If s is compatible with ν,
we define the new valuation post update as x 7→ Js(x)Kν .
This evaluation J.Kν is a standard conversion from terms to
trees with the following difference: x is evaluated as the tree
ν(x) (which must be defined because of compatibility), and
x[e1, . . . , en] is evaluated as the tree ν(x) in which each of the
n ?-labeled leaves (in order of occurrence in the left-to-right
traversal of the tree ν(x)) has been replaced (in that order) by
Je1Kν , . . . , JenKν .

As we have seen in the previous subsection, MSO trans-
ducers implement transformations with linear size increase
(proportional to the size of copy set). We need to add further
restriction on the register updates for SSTTs so that they
do not allow more general transformations. We say that a
register expression u ∈ E(Σ, X) is copyless (or linear) if
each x ∈ X occurs at most once in u. Similarly, we call
an update of registers s copyless if each expression in the
image is copyless and each x ∈ X appears in at most one
image. Traditionally streaming string transducers are required
to have copyless register updates since it implies linear updates
of contents of registers. However, we can achieve this purpose
with a more general update rule called restricted copy. Under
restricted copy update rule a register is allowed to be copied
in multiple registers, however these registers can not later
be combined together. Restricted copy rule is imposed by
defining a symmetric and reflexive (but not transitive) conflict
relation [13] over the set of registers. The content of one
register can be duplicated in two conflicting registers, but any
two conflicting registers can not be combined together, neither
directly, nor indirectly by ensuring that two non-conflicting
registers do not receive values from conflicting registers.

Now we are in a position to define our transducer model.

Definition 1 (SSTT). A streaming string-to-tree transducer T
is a tuple (Σ,Γ, Q, q0, δ,X, κ, ρ, F ) where

– Σ and Γ are finite input and output alphabets,
– Q is a finite set of states whose initial state is q0,
– δ : Q× Σ→ Q is a transition function,
– X is a finite set of registers,
– κ is the conflict relation over X ,
– ρ : Q× Σ×X → E(Γ, X) is the restricted-copy (w.r.t.
κ) registers update function,

– F : 2Q×Σ −⇀ X is the Muller (over transitions) output
(partial) function for infinite input such that for all S such
that F (S) is defined we have that the update of register
F (S) by transitions in S are of the form F (S)[e1, . . . , en]
where e1, . . . , en ∈ E(Γ, X).

We now detail the semantics of this model: the unique run
%(T,w) of SSTT T over the infinite string w is the sequence
(qi, νi)i≤|w| where qi ∈ Q, and νi is a valuation of the set of
registers X , such that qi+1 = δ(qi, w[i]), and νi+1 is defined
as x 7→ Jρ(qi, w[i], x)Kνi (initially ν0 is assumed to be the
empty valuation, that maps each register to ε). Let ∆ be the
set of infinitely often fired transitions (that is a set of tuples
of Q× Σ) in the run %(T,w). The output of T for the string
w is defined as the limit of the sequence of values appearing
in the register F (∆) if it converges towards a tree of T ∞Γ .
The syntactic restriction on the update of the output register
enforces that if the Muller set is defined then the output always
converges towards a tree.

The central result (Theorem 1) of this paper is that SSTTs
capture precisely the same class of transformations as MSOTs.
The proof of this fact follows form the following two lemmas.

Lemma 6 (SSTT ⊆ MSOT). Every SSTT-definable transfor-
mation is MSOT-definable.

Lemma 7 (MSOT ⊆ SST). Every MSOT-definable transfor-
mation is SSTT-definable.

Lemma 6 follows from a straightforward extension of the
reduction [12] from SST to MSO transducers. The proof of
Lemma 7 is covered in the following two sections. In the next
section we first introduce an intermediate model, SSTT with
regular lookaround, and show a reduction from MSOT to this
model. In Section V we complete the proof of Theorem 1 by
showing that SSTTs are closed under regular lookaround.

IV. MSOT AND SSTT WITH REGULAR LOOK-AROUND

We consider an extension of SSTT where the transducer
can make transitions based on regular properties of the string
read so far (look-behind) as well as ω-regular properties of the
remaining ω-string (look-ahead). We call this extension SSTT
with look-around. Notice that due to the aforementioned look-
around capabilities such a transducer can be state-free since the
state information can be encoded in the look-around queries.
Formally, we define SSTT with look-around as the following.

Definition 2 (SSTTrla). A streaming string-to-tree transducer
with look-around is a tuple (Σ,Γ, X,Λb,Λa, ρ, F ) where

– Σ, Γ, and X are similar to Definition 1,
– Λb and Λa are finite sets of (pairwise disjoint) regular and
ω-regular languages over Σ called regular look-behind
and look-ahead, respectively.

– ρ : Λb × Σ × Λa × X → E(Γ, X) is the (look-around
based) copyless register-update function.

– F : Λb × Σ× Λa → X is the output function.

The semantics of SSTTrla is defined as follows. A run
over a string w is a finite or infinite sequence of partial
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valuation of registers X , (ν(i))1≤i≤|w| that is compatible with
the update function, that is for any i ≤ |w|, we have λib ∈ Λb,
λia ∈ Λa, such that w[1:i) ∈ λib, w(i:|w|] ∈ λia and the
update of registers x 7→ ρ(λia, w[i], λib, x) is compatible with
the valuation νi−1 (when i = 1, we consider ν0 to be the
empty valuation), and νi(x) = Jρ(λib, w[i], λia, x)Kνi−1

when
it is defined. The output of the string w is then defined as the
limit of the sequence νi(F (λia, w[i], λib)) if it exists.

In the remainder of the section we prove the following
Theorem:

Theorem 8 (MSOT ⊆ SSTTrla). Every MSOT-definable trans-
formation is SSTTrla-definable.

A. Bounded-Crossing Property of MSOT

To show the reduction from MSOT to SSTTrla we first es-
tablish the so-called bounded-crossing property of MSOT that
allows us to capture this class by a computational model that
manipulates only a bounded number of registers. Informally,
this property states that at any position in the input the number
of crossings, i.e. the number of edges from one side of the
position to the other side of the position, is bounded by a
number that depends only on the number of copies and the
quantifier depth of the formulas used in MSOT.

Given a (possibly infinite) string w, a position x of w
and MSOT T = (Σ,Γ, φdom, C, φnodes, φedges), a crossing at
position x is a pair (x1, c1), (x2, c2) ∈ N|s| × C such that
x1 < x < x2, and there is an edge in JT K(s) between the
nodes xc11 and xc22 .

Theorem 9 (Bounded-Crossing Property). For every MSO-
definable (infinite) string-to-tree (or string-to-string) trans-
ducer T , the number of crossings at any position is bounded
by 2|C||Σ||Θk|2, where k is the maximal quantifier depth of
MSO formulas appearing in T and C is the copy set of T .

The proof of this theorem relies on the following lemma:

Lemma 10. Given two strings w,w′ each of those with two
marked positions (namely (x1, x2), (x′1, x

′
2), which are not

necessarily distinct and need not appear in that order in w,
w′), they satisfy the same MSO formulas with 2 free first-order
variables and quantifier depth at most k if and only if:

– w[x1] = w′[x′1], w[x2] = w′[x′2]
– w[1:x1) ∼=k w

′[1:x′1), w[1:x2) ∼=k w
′[1:x′2)

– w(x1:|w|] ∼=k w
′(x′1:|w|], w(x2:|w|] ∼=k w

′(x′2:|w|]
– x1 = x2 and x′1 = x′2,

or x1 < x2, and x′1 < x′2 and w(x1:x2) ∼=k w
′(x′1:x′2),

or x1 > x2, and x′1 > x′2 and w(x2:x1) ∼=k w
′(x′2:x′1).

Proof of Theorem 9: Given a transducer T and a string
w, let us first consider the case (see Fig. 5) of an edge from a
position y < x and a copy c to a position y′ > x and a copy d.
For a given copy c, k-type of the string w[1, y) (substring u in
Fig 5), letter w[y], and k-type of the string w(y, x) (substring
v is Fig. 5), we show that only one such edge may exist.

For the sake of contradiction assume that there exist two
distinct such edges, and denote them by ((ya, c), (y

′
a, ca)) and

1 yb ya x y′a y′b
w : α α • • • · · ·

c1 ◦ · · · ◦ · · · ◦ · · · ◦ · · · ◦ · · · ◦ · · ·
c2 ◦ · · · ◦ · · · ◦ · · · ◦ · · · ◦ · · · ◦ · · ·
...

...
◦

◦
...

c ◦ · · · ◦ · · · ◦ · · · ◦ · · · ◦ · · · ◦ · · ·

· · ·· · ·
· · ·

1

1

u v

u′ v′
w w′in

pu
t

ou
tp

ut

Fig. 5. If w[ya] = w[ya], u ∼=k u′, v ∼=k v′, and ya and yb are left-hand
of two crossing edges, then if y′a is a right-hand of the first crossing-edge,
there is also an edge from yb to y′a: the output is not a tree.

((yb, c), (y
′
b, cb)). We first show that this assumption implies

that ((ya, y
′
a), w) is indistinguishable from ((yb, y

′
a), w) by

MSO formulas with 2 free first-order variables and quantifier
depth k (that, we show in the next paragraph, yields a contra-
diction). Let us apply lemma 10, see Fig 5, to this case: notice
that ya < y′a and yb < y′a; by assumption w[1:ya) ∼=k w[1:yb).
Now indistinguishability can be shown by exploiting monoid
congruence of k-types: w(ya:x) ∼=k w(yb:x) so w(ya:y′a) =
w(ya:x) · w[x] · w(x:y′a) ∼=k w(yb:x) · w[x] · w(x:y′a) =
w(yb, y

′
a), thus all the hypotheses of lemma 10 are satisfied

hence the indistinguishability.
We have an edge from yca to y′caa , so (w, (ya, y

′
a)) � ϕc,cai

(for some i ∈ {1, 2}), and since it was shown indistinguish-
able, we also have (w, (yb, y

′
a)) � ϕc,cai , this means that there

are two disjoint nodes in the output mapping to the same node
(with an edge with the same label), which is not possible as the
output is by definition a tree (or a string). This contradiction
ensures the uniqueness of crossing edges at some position once
we fixed the copy of the originating node, the k-type of the
prefix from its position, the label of the position in the input
string w and the k-type of the string between that position
and the position at which the crossing occurs. Since there are
|C||Σ||Θk|2 such choices for this case, and an equal number of
choice for the other symmetric case when y > x and y′ < x,
the theorem follows.

Corollary 1. The image of an infinite string by a string-to-
tree MSO transducer with quantifier depth at most k, and |C|
copies, has at most |C||Σ||Θk|2 infinite branches.

B. MSOT ⊆ SSTTrla

In this section we exploit Theorem 9 to build an equivalent
SSTTrla from an MSOT. Given an MSOT T , an input string
w (for which T (w) is defined), and a position x in w, we
define T (w)↓<x as a subgraph of T (w), whose set of nodes
is the set of all nodes yc (corresponding to position y and copy
c ∈ C) of T (w), such that y < x. We define T (w)↓?<x from
T (w)↓<x as follows: for each node in T (w)↓<x, if that node
had a 1-successor (resp. 2-successor) in T (w) (namely yc), but
no such successor in T (w)↓<x, (which means y ≥ x) then we
add to this node a 1-successor (resp. 2 successor) that is a
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?-labeled node. We say that this ?-labeled node corresponds
to yc. Intuitively, while processing a string at position x the
SSTT needs to store each T (w)↓?<x tree in a register. To access
these trees and their holes so as to perform necessary updates,
we need a way to refer to them in a unique way. The following
lemma gives us exactly that.

Lemma 11. Let T be an MSO transducer with quantifier depth
at most k, w be an input string in the domain of T , and x be
a position in w. The following observations hold.

– For τ1, τ2 ∈ Θk, a ∈ Σ, c ∈ C, there exists at most one
tree in T (w)↓?<x that is rooted on a node yc, y < x, and
w[y] = a, [w[1:y)]∼=k

= τ1, [w(y:x)]∼=k
= τ2.

– For τ1, τ2 ∈ Θk, a ∈ Σ, c ∈ C, there exists at most
one ?-labeled node in T (w)↓?<x that corresponds to a
node yc, such that y>x, and w[y]=a, [w(x:y)]∼=k

=τ1,
[w(y:|w|]]∼=k

=τ2.
– For a copy c ∈ C there exists at most one ?-labeled node

in T (w)↓?<x that corresponds to a node xc.
The trees T (w)↓?<x and their holes can thus be characterized
uniquely by an element of Θk × Σ×Θk × C.

We will next define registers, look-around, updates and the
output function of the resulting SSTTrla.

a) Registers: The set of registers will be Θk×Σ×Θk×C.
During the processing of a string w, (for which T (w) is
defined), the register will satisfy the following invariant:
Invariant 1. While processing position x the register
(τ1, a, τ2, c) contains the tree in T (w)↓?<x (if it exists, oth-
erwise the register is empty) that is rooted at some node yc

such that w[y] = a, [w[1:y)]∼=k
= τ1, [w(y:x)]∼=k

= τ2.
b) Regular look-around: The set of regular look-ahead

and look-behind will be K-types where K = k + |C| + 4
(more accurately the set, for all K-type, of the language of
strings that has this K-type). So given a letter a ∈ Σ and two
K-types λb (regular look-behind) and λa (regular look-ahead),
we need to describe the update of registers corresponding to
(λb, a, λa).

c) Update of registers: Given a string w for which T (w)
is defined, and a position x in that string, such that w[x] = a,
[w[1:x)]∼=K

λb and [w(x:|w|]]∼=K
= λa, provided the registers

satisfy Invariant 1, we will now describe how to compute
T (w)↓?<x+1 using these registers, and store such trees in the
appropriate registers such that the invariant remains preserved.

Lemma 12. There exists MSO formulas with one free-variable
of quantifier depth at most K that, given a string w and a
position x, characterize that while processing position x

– whether a register is non-empty,
– the holes (characterized according to lemma 11) of the

tree stored in the register, and
– the order these holes appear in an in-order traversal of

the content of that register.

The regular look-around determines the validity of these
K-depth formulas and thus describes the content of registers
according to lemma 12. It is now straightforward to build

T (w)↓?<x+1 and to store these trees in the register while still
ensuring the invariant on the content of registers. Observe that
T (w)↓<x is a subgraph of T (w)↓<x+1, where T (w)↓<x+1

has as additional nodes the xc that are in T (w) (which are
determined, together with their label, by a quantifier depth
k+1 formula, hence by (λb, a, λa)). The trees in T (w)↓?<x+1

are obtained by adding a Γ-labeled node for each of those xc,
and combining those nodes with the trees in T (w)↓?<x.

We describe the outgoing edges for these xc nodes. The
look-around determines which of those nodes have a successor
occurring before, at x or after x. For those who have a
successor after x, we will give a fresh ?-labeled node as
corresponding successor, for those who have as successor a xc,
we will connect it to xc accordingly, and for those who have
successor before x, we will give as corresponding successor
the tree of T (w)↓?<x whose root is that successor. A k + 1
depth formula determines that register (as the characterization
of the root is the name of the register).

Now for the incoming edges, notice that once again the
regular look-around determines where the ancestor occurs
w.r.t. x. The case where the predecessor occurs after x leads to
no incoming transition (hence we have a tree rooted at some
xc), the case where the predecessor is some xc

′
has been taken

care of already, and for the case where the predecessor occurs
before x, we insert this tree rooted at xc instead of the ?-
labeled node corresponding to xc.

Finally we now detail how to store those trees appropriately
in the registers. For those trees which are rooted at some xc,
we put them in the corresponding register (τb, w[x], [ε]∼=k

, c)
(where τb is the uniquely determined k-type of λb). A tree
which was in register (τ1, a

′, τ2, c) whose root (namely yc) was
not connected to its parent, is relocated in register (τ1, a

′, τ2 ·
[w[x]]∼=k

, c). Notice that τ2 · [w[x]]∼=k
indeed corresponds to

the k-type of w(y:x] = w(y:x+1). This update of registers we
described here can be encoded as a substitution as described
in the previous section, and this substitution is copyless.

d) The output function: At each step during the process-
ing, the regular look-around tells us whether the root of the
image is in the prefix of the position we are processing (this
property being expressible as a quantifier depth k + 1 MSO
formula). If it is, we just output the corresponding register.
Thus at each step we output the tree of T (w)↓?<x that contains
the root of T (w), this sequence of trees necessarily converges
towards the image T (w).

The construction is now complete.

V. CLOSURE UNDER REGULAR LOOK-AROUND

In this section we show that SSTT are closed under regular
look-around by showing the following theorem. The other
direction is trivial.

Theorem 13 (SSTTrla ⊆ SSTT). Every SSTTrla-definable
transformations is SSTT-definable.

We sketch the proof of this theorem in two parts over the
next two subsections. In the first subsection we show how
to remove the regular look-ahead from the update function
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at the cost of introducing states and relaxing copylessness
to restricted copy. Note that this step is enough for SSTTs
on finite strings. For infinite strings we need to also remove
the regular look-ahead in the output function. In the second
subsection we show how to shift from output guarded by
regular look-ahead to output determined by the set of infinitely
occurring transitions.

A. Removing Look-around from Register Updates

Regular look-behind can be easily removed by introducing
states in the SSTTrla. In the state-free SSTTrla the set of regular
look-behind was the set of K-types. Notice that the set of K-
types covers the set of finite strings and is a finite monoid.
This allows to build a finite state-transition structure, each
state of which corresponds to a K-type and can be reached
from the initial state by strings with the same K-type. In any
such finite state-transition structure, the current state stores all
the necessary information about the regular look-behind.

We now show how to remove regular look-ahead from the
registers updates. We synchronize registers with all possible
regular look-aheads: the set of registers is the Cartesian
product of registers in the one state automaton with the set
of K-types of ω-strings.

Given a configuration (q, ν) of a run over a string w, the reg-
ister (r, λ) (r denoting some register in the one-state automa-
ton, λ some K-type) is meant to contain what r would contain
should the regular look-ahead be λ. When processing some
letter a (in some state q), it is updated similarly as r would
(with regular look-behind corresponding to q and regular look-
ahead λ) from the registers with the second component being
a·λ. Formalizing this syntactic trick, if the update function in
the one-state transducer with regular look-around is ρ, and we
define ρ′ as: ρ′(q, a, (r, λ)) = ρ(λb, a, λ, r)[ri/(ri, a·λ)] (we
substitute each register ri by (ri, a·λ)) where λb denotes the
K-type of strings reaching state q.

Removing look-ahead in this fashion introduces copies in
the register updates, as a K-type can be obtained by prepend-
ing the same letter to more than one K-type. However such
register update follows restricted copy rule as any two registers
with different K-type component conflict: given a K-type,
registers with this K-type will be updated in a copyless manner
with the values of registers all with the same K-type.

B. Removing Look-around from Output function

In this section we sketch how to shift from look-ahead based
output to an output based on Muller condition. Removing look-
ahead based output in case of finite string setting—where the
regular look-ahead are K-types of finite strings—is trivial. In
this case while processing the last letter of the input string, we
precisely know that the regular look-ahead is the K-type of
the empty string, and hence we can (for each state, that is each
possible regular look-behind) output the corresponding register
(r, [ε]∼=K

). In the case of infinite strings, we do not have such
a privileged position where we know the regular look-ahead,
furthermore we need to output an infinite sequence of trees
converging toward the image. So we need to correctly guess

infinitely often the regular look-ahead, that needs to be correct
eventually always, so that we output a sequence of trees that
converges towards the image.

The rest of this section is dedicated to show that, relying
on the concept of merging relation [15], by introducing more
states and registers, we can guess the regular look-ahead from
the set of infinitely occurring transitions.

Definition 3 (Merging Relation). Let w∈Σ∞ and K∈N, we
say that two positions x and y merge at some position z
(written x∼wKy(z), we thereafter omit K and w) if w(x:z] ∼=K

w(y:z]. We write x ∼ y if x and y merge at some position.

Proposition 14. Let ∼ be the merging relation.
– (∼ (z))z∈w and ∼ are equivalence relations of index

bounded by the number of K-types (of finite strings).
– If w is an ω-string and x ∼ y then w(x:∞] ∼=K w(y:∞].

Given an infinite string, there is an equivalence class that
has infinitely many representatives, and at all these positions
the (K-type of the) regular look-ahead is the same. We need
to determine those positions so that we can output the value
of the register associated to this regular look-ahead K-type.

1) Tracking these merging equivalence classes: We will de-
fine a (Σ-labeled) transition system which tracks the following
properties: the number of equivalence classes of merging at
current position, and for each of those equivalence classes, the
K-type of the string between the first occurring representative
of any two of those equivalence classes. We can store this
information in a triangular matrix with values in the set of
K-types (of finite strings), of size bounded by the number of
K-types (of finite strings). We choose thereafter to formally
represent this “triangular matrix” by a square matrix with |ΘK |
rows and columns, and with values in the set of (finite-string)
K-types with an additional dummy symbol, say ⊥.

Given an infinite string w, a position x, let n denote the
number of equivalence classes of ∼ (x), let i < j ≤ n,
let pi denote the first occurrence in w of the i-th appearing
equivalence class of ∼ (x), and pj the first occurrence of the
j-th appearing equivalence class. The element at position (i, j)
in this matrix, is the K-type of w(pi:pj ]. The rest of the matrix
is filled with ⊥. This construction is shown in Figure 6.

We now detail how to update this matrix (namely M ) by
processing the next position, i.e. x+1. It is done in two steps:
first we “add” a new column, then we shrink the matrix as
some equivalence classes can merge at this new position.

We first put values in the n+ 1-th column: M(i, n+ 1) =
M(i, n)·w[x + 1], for any i < n; and M(n, n + 1) = [ε]∼=K

.
For the latter case, we rely on the fact that as K > 1, ε is
a K-type on its own, hence position x is alone in its ∼ (x)
equivalence class, so it is the last occurring ∼ (x) equivalence
class, and x+ 1 is obviously related to x by ε. For the other
cases, we just built [w(pi:x+ 1]]∼=K

from [w(pi:x]]∼=K
.

We then “shrink” our matrix, the idea is as follows: if two
distinct ∼ (x) equivalence classes (i-th and i′-th) merged into
a single ∼ (x + 1) equivalence class, we want to remove
the track of the newest (i.e. the i′-th if i′ > i), we do so by
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τw(p1:p2] τw(p1:p3] τw(p1:p4] τw(p1:p5] τw(p1:p6] ⊥ ⊥
⊥ τw(p2:p3] τw(p2:p4] τw(p2:p5] τw(p2:p6] ⊥ ⊥
⊥ ⊥ τw(p3:p4] τw(p3:p5] τw(p3:p6] ⊥ ⊥
⊥ ⊥ ⊥ τw(p4:p5] τw(p4:p6] ⊥ ⊥
⊥ ⊥ ⊥ ⊥ τw(p5:p6] ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

τw(p1:p2] τw(p1:p3] τw(p1:p4] τw(p1:p5] τw(p1:p6] τw(p1:p6]·a ⊥
⊥ τw(p2:p3] τw(p2:p4] τw(p2:p5] τw(p2:p6] τw(p2:p6]·a ⊥
⊥ ⊥ τw(p3:p4] τw(p3:p5] τw(p3:p6] τw(p3:p6]·a ⊥
⊥ ⊥ ⊥ τw(p4:p5] τw(p4:p6] τw(p4:p6]·a ⊥
⊥ ⊥ ⊥ ⊥ τw(p5:p6] τw(p5:p6]·a ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ε ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

τw(p1:p2] τw(p1:p3] τw(p1:p4] τw(p1:p5] τw(p1:p6] τw(p1:p6]·a ⊥
⊥ τw(p2:p3] τw(p2:p4] τw(p2:p5] τw(p2:p6] τw(p2:p6]·a ⊥
⊥ ⊥ τw(p3:p4] τw(p3:p5] τw(p3:p6] τw(p3:p6]·a ⊥
⊥ ⊥ ⊥ τw(p4:p5] τw(p4:p6] τw(p4:p6]·a ⊥
⊥ ⊥ ⊥ ⊥ τw(p5:p6] τw(p5:p6]·a ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ε ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

τw(p1:p2] τw(p1:p3] τw(p1:p6] τw(p1:p6]·a ⊥ ⊥ ⊥
⊥ τw(p2:p3] τw(p2:p6] τw(p2:p6]·a ⊥ ⊥ ⊥
⊥ ⊥ τw(p5:p6] τw(p5:p6]·a ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ε ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Fig. 6. Update of the matrix, from left-to-right top-to-bottom manner: (1) before processing position x; τw[pi:pj) denotes the K-type of w[pi:pj) (2) adding
an extra column (w[x] = a) , (3) as [w(p2:p6] · a]∼=K = [w(p4:p6] · a]∼=K and [w(p1:p6] · a]∼=K = [w(p3:p6] · a]∼=K , we cross out the third and fourth
rows and columns, (4) after processing position x.

“crossing out” in the matrix the i′-th row and column; formally
the entry (x, y) is now entry (x′, y′) with x′ = x (resp. y′ = y)
if x < i′ (resp y < i′), x′ = x+ 1 (resp. y′ = y+ 1) if x ≥ i′
(resp. y ≥ i′). By definition two ∼ (x) equivalence classes
(i and i′) have merge into one ∼ (x + 1) equivalence class
if and only if M(i, n + 1) = M(i′, n + 1). We argue that,
thanks to additivity of K-types, all the information held by
the matrix is contained by the M(i, i + 1), for i < |ΘK |, as
M(i, j) = M(i, i + 1) + . . . + M(j − 1, j). The following
lemma states that look-ahead guessed using transitions in our
matrix state-transition system are correct.

Lemma 15. The set of infinitely fired transitions when running
an infinite string in this transition system gives us the number
of ∼-equivalence classes in this string. Furthermore, for each
∼-equivalence class, it gives us the K-type of the look-ahead
at positions in this equivalence class.

From the set of infinitely occurring transitions, we therefore
deduce the K-type of the regular look-ahead from the equiva-
lence classes, but we only know the equivalence class once it
has merged, so we will need to somehow delay the output
of our transducer: at each step we “pre-output” some tree
according to a guess of the regular look-ahead, and effectively
output it when the corresponding position has merged with the
equivalence class. We achieve that by delaying output.

2) Delaying output: We present the details of outputting for
a given set S of infinitely occurring transitions. This introduces
finitely many new registers, among which a distinguished
output register for this set S. The other cases of infinitely
occurring transitions can be handled simultaneously. As S is
a set of infinitely occurring transitions, it forms a strongly
connected component, so it contains a merging transition and
therefore there is an integer m such that m is the lowest index

of column that get erased by merging. Let us denote t ∈ S
such a transition that merges column m into some column
m′ < m), this gives us the K-type (namely eω) of the regular
look-ahead from any position in the m′ ∼-equivalence class.

We introduce a set of (|ΘK |−m) registers
(rS,m, . . . , rS,|ΘK |) that will track output candidates,
and the output register rS for the set S. When processing
position x in a string w, that fired a transition t′ ∈ S, denote
n the number of columns of the state just after t′. This
transition will have the following behavior on the rS,i:

– In rS,n we put the tree that should be output just after
processing x, would the regular look-ahead be eω: we
introduce a new output candidate, and we will show that
for this candidate, we will be able to say whether the
guess for the regular look-ahead was correct or not.

– In rS,i for m ≤ i < n we put the older content of rS,j
where j corresponds to the index of the column that was
mapped to the i-th by the transition (or the greatest index
of the column that was merged if some columns were
merged into the i-th).

Hence each register rS,i (for any i smaller than the number
of columns in current state) contains the tree that would be
output by the one state automaton if the regular look-ahead
was eω at position y where y is the last position in the i-th
∼ (x)-equivalence class.

We finally detail how we can distinguish among our guesses
which ones were correct, and should therefore be placed in
the output register rS = F (S). We obtain this information
when processing transition t, we know that the content of rS,m
contains the value of the tree output by the one state automaton
(would the regular look-ahead be eω) at the last position in
the m-th ∼ (x− 1) equivalence class. As the m-th ∼ (x− 1)
equivalence class has merged into the m′ ∼ (x)-equivalence

9



class with this transition t, if the m′-th equivalence class of
merging up to current position equivalence class is already the
m′-th ∼-equivalence class (which happens eventually) then the
guess was correct, though delayed.

VI. EQUIVALENCE PROBLEM

Two non equivalent logical definitions can define the same
function (see Figure 3), but the computational model of SSTTs
allows to check for functional equivalence. That is given two
SSTTs M1 and M2, one can decide whether for every word
w M1(w) = M2(w). The case of finite input leads to a
finite output, and it has been shown that for these finite cases
this function equivalence problem can be solved in NEXP-
TIME [13], essentially by guessing non deterministically the
index (in the in-order traversal) where two output trees differ.
This problem is reduced to checking in a non-deterministic
two-counter system (where counters can only be incremented)
the existence of a reachable configuration where the two
counters hold the same value.

As in the infinite case, the output trees can have infinite
branches the positions in the trees can not be indexed as easily
as their index of occurrence in the in-order traversal. We will
rely on the fact that the number of infinite paths is bounded
(Theorem 2) to characterize a conflicting position. We will
non-deterministically guess not only a conflicting position in
the two outputs but also the places where to chop the infinite
branches so that we can characterize this conflicting position
in the in-order traversal of those two identically trimmed trees.

Definition 4. Given a tree t, and an integer p, such that p ≤
|dom(t)|, let us denote #p(t) the p-th occurring node in t in
its preorder traversal, we denote σχp(t) the subtree of t such
that exactly every successor of #p(t) has been removed.

We denote σχp1,...,pk(t) for σχpk(σχpk−1
(. . . σχp1(t))).

Lemma 16. Given two trees t1 and t2, with at most k infinite
paths, t1 6= t2 if and only if there exists p1, . . . , pk, pc ∈ N
such that t′1 = σχp1,...,pk(t1) and t′2 = σχp1,...,pk(t2)
differ at position pc, that is either their shape differs around
pc, #pc(t′1).a ∈ dom(t′1) and #pc(t′2).a /∈ dom(t′2) (for
some a ∈ {1, 2}) or vice-versa, or the label of #pc differ
t′1(#pc(t′1)) 6= t′2(#pc(t′2)).

Exploiting Lemma 16, the proof [13] of functional equiva-
lence problem for finite string-to-tree case yield the proof for
the following result.

Theorem 17. Given two SSTTs M1 and M2, the problem of
checking whether JM1K 6= JM2K is decidable.

VII. CONCLUSION

In this paper we detailed a direct reduction from MSO
transducers to streaming string transducers relying on the
logical concept of k-types. We also initiated the study of MSO-
definable transformations from infinite strings to trees, and
presented a transducer model with matching expressiveness.
Using this model we established that the equivalence problem
is decidable for MSO-definable string-to-tree transformations.

A key feature of our reduction is that it only exploits
logical properties of MSO, such as the finiteness of k-types
and the composition theorem, to yield a computational model.
Thanks to this feature, it is immediate that this proof can
be adapted with some efforts to establish a computational
model (an appropriate star-free restriction of SSTTs) for first-
order definable transformations. More ambitiously perhaps,
our reduction can provide a framework for showing reduc-
tions from more expressive logic based transducers (symbolic
transducers) to corresponding computational models, given
an analog for the finiteness of k-types and the composition
theorem. This reduction also paves the way for extending
the theory of regular cost functions [14] to associate costs
to infinite strings.
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APPENDIX

A. Proofs from Section IV

Proof of Theorem 10: The “if” part is a direct conse-
quence of the composition theorem, the hypotheses imply that
the two strings are built as a sum of some (finite) string of
some k-type, then a letter (which can be seen as some rather
trivial structure), then another (finite) string of some k-type,
another letter, and a string of some k-type. We can also use
an Ehrenfeucht-Frass k-round game to show this result, the
strategy of duplicator is built by composing the strategies in
each of the substrings (for which he has a winning strategy
for they have the same k-type).

The “only if” part is achieved by giving an explicit formula
to distinguish the two strings if they are decomposed differ-
ently: the order of appearance of positions can be expressed
by a quantifier free formula: they are necessarily the same;
formulas holding for the substrings (and hence the k-types of
the substrings) can be expressed by restricting quantifications
in the formulas, which does not involve more quantifications,
hence the k-types of the substrings are deduced from the
formulas (with quantifier-depth k, and exactly 2 free first-order
variable) validated by (w, (x1, x2)), (w′, (x′1, x

′
2)).

Proof of Lemma 11: This lemma is shown similarly as
Theorem 9, assume there are to trees in T (w)↓?<x rooted at two
positions yc and y′c such that w[y] = w[y′], w[1:y) ∼=k w[1:y′)
and w(y:x) ∼=k w(y′:x). One of these two trees has a root that
has an ancestor in T (w), say a 1-ancestor (namely zc

′
). Then

as (w, (y, z)) and (w, (y′, z)) are indistinguishable, according
to Theorem 10, we deduce that zc

′
is also a 1-ancestor which

contradicts the fact that T (w) is a tree.
Similarly, if two ?-labeled nodes correspond to the same

quadruple (τ1, a, τ2, c), then by undistinguishability, the node
in T (w) corresponding to one ?-labeled node should also
correspond in T (w) to the other ?-labeled node which once
again contradicts the fact that T (w) is a tree.

The case where two ?-labeled nodes correspond to the same
xc is also forbidden by the tree structure of T (w).

Any ?-labeled in T (w)↓?<x is thus uniquely characterized
by an element of Θk × Σ × Θk × C ∪ C, as by definition
of holes, it corresponds to a node occurring in T (w) but not
in T (w)↓x which means to a node yc for some c and some
y ≥ x.

Proof of Lemma 12: By definition, a register (τ1, a, τ2, c)
contains a value if there exists in T (w)↓?<x a tree rooted at
some node yc, such that y < x, and either yc is the root of
T (w) or the ancestor of y occurs at or after x. The challenge
is to show that we can characterize such a y by a formula of
depth bounded by K. The main difficulty is to characterize
a y that satisfies the specifications that [w[1:y)]∼=k

= τ1 and
[w(y:x)]∼=k

= τ2. We rely on the fact that a k-type can be
determined by a Hintikka formula which has quantifier-depth
k, and if we restrict the quantifications in this formula (that
is ∀p, φ is translated in ∀p, p < y → φ) we can ensure the
k-types of subwords of w. Thus the existence of such a y can

be written:

∃y, y < x ∧H <y
τ1 ∧ Pa(y) ∧H >y,<x

τ2

Notice this formula has quantifier-depth k + 1 ≤ K. We
further need to impose that such a y has an image in the
copy c, and has no ancestor in T (w)↓<x, which leads to
formula E(τ1,a,τ2,c) in Figure 7, which holds at position x
iff register (τ1, a, τ2, c) holds a value just before processing
position x. Hence the regular look around determines uniquely
which registers contain a value.

We now address the case to determine which holes a
register contains. Say we want to determine whether register
(τ1, a, τ2, c) contains the hole corresponding to (τ ′1, a

′, τ ′2, c
′),

for that we existentially quantify a path (which is a com-
mon thing to do in MSO) that we check is in the reg-
ister (τ1, a, τ2, c) (that is, in a tree of T (w)↓<x, whose
root satisfies the specification imposed by the name of the
register), and check that a node satisfying the specification
(τ ′1, a

′, τ ′2, c
′), hence appearing after x, is a direct successor in

T (w) of a node in the path. This is checked by the formula
H(τ ′1,a

′,τ ′2,c
′) in (τ1,a,τ2,c) in Figure 7. Determining whether the

hole corresponding to xc
′

is in the register (τ1, a, τ2, c), is
performed similarly by Hc′ in (τ1,a,τ2,c).

Finally, to determine the relative order of appearance of
those holes in the content of some register, one can notice
that it just suffices to determine the relative order of ap-
pearance of these nodes in T (w), which is rather straight-
forward to implement with an MSO formula, see for instance
G(τ1,a,τ2,c) then (τ ′1,a

′,τ ′2,c
′) and G(τ1,a,τ2,c) then c′ is Figure 7.

Notice that all these formulas have quantifier depth at most
K = k + |C| + 4, hence the regular look-around indeed
determines the properties stated in lemma 12, which concludes
this proof.

B. Proofs from Section V

Proof of Proposition 14: The reflexivity of these relations
is clear by definition, the transitivity can be shown relying on
the K-types being a monoid congruence: if x ∼ y(z), then
x ∼ y(z′) for any position z′ after z.

From this remark, we can easily deduce the bound on the
index for finite strings: two positions merge iff they merge
at the last position of the string, each equivalence class is
characterized by a unique K-type corresponding to the K-
type of suffixes from those positions.

For an infinite string, we show that for any finite set
of positions, the number of merging equivalence classes is
bounded by the number of K-types: take a prefix containing
all these positions, merging in that prefix refines (implies)
merging in the infinite string, which gives us the bound for
any finite set of positions, hence the number of merging
equivalence classes in the infinite string is bounded by the
number of K-types.

Proof of Lemma 15: There is a transition that merges
in this set of infinitely often firing transitions, indeed, each
transition that does not merge increases by one the number of
tracked representative of equivalence classes; as the number of
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E(τ1,a,τ2,c)(x) = ∃y, y < x ∧H <y
τ1 ∧ Pa(y) ∧H >y,<x

τ2 ∧
(∨

γ∈Γ ϕ
c
γ(y)

)
∧ ∀z < x,

∧
d∈C ¬

(
ϕd,c1 (z, y) ∨ ϕd,c(z, y)

)

ContainedIn(τ1,a,τ2,c)((Xd)d∈C , x) =
∧

d∈C,d6=c

(
∀y ∈ Xd, y < x ∧

∨
d′∈C

∃z ∈ Xd′ , ϕ
d′,d
1 (z, y) ∨ ϕd

′,d
2 (z, y)

)

∧ ∀y ∈ Xc, y < x ∧

(
(H <y

τ1 ∧ Pa(y) ∧H >y,<x
τ2 ) ∨

∨
d∈C

∃z ∈ Xd, ϕ
d,c
1 (z, y) ∨ ϕd,c2 (z, y)

)

Hc′ in (τ1,a,τ2,c)(x) = (∃Xd)d∈C ContainedIn(τ1,a,τ2,c)((Xd)d∈C), x) ∧
∨
d∈C

∃y ∈ Xd, ϕ
d,c′

1 (y, x) ∨ ϕd,c
′

2 (y, x)

H(τ ′1,a
′,τ ′2,c

′) in (τ1,a,τ2,c)(x) = (∃Xd)d∈C ContainedIn(τ1,a,τ2,c)((Xd)d∈C), x)

∧ ∃z, z > x ∧H >x,<z
τ ′1

∧ Pa′(z) ∧H >z
τ ′2
∧
∨
d∈C

∃y ∈ Xd, ϕ
d,c′

1 (y, z) ∨ ϕd,c
′

2 (y, z)

Subtreei,cs,ce(xs, xe) = ϕcs,cei (xs, xe) ∨ (∃Xd)d∈C

(∨
d∈C

∃y ∈ Xd, ϕ
d,ce
1 (y, xe) ∨ ϕd,ce2 (y, xe)

)

∧
∧
d∈C

∀y ∈ Xd,

(
ϕcs,di (xs, y) ∨

∨
d′∈C

∃z ∈ Xd′ , ϕ
d′,d
1 (z, y) ∨ ϕd

′,d
2 (z, y)

)

G(τ1,a,τ2,c) then (τ ′1,a
′,τ ′2,c

′)(x) =
∨
d∈C

∃p,
(
∃y > x, (H >x,<y

τ1 ∧ Pa(y) ∧H >y
τ2 ) ∧ Subtree1,d,c(p, y)

)
∧
(
∃y > x, (H <x,>y

τ ′1
∧ Pa′(y) ∧H >y

τ ′2
) ∧ Subtree2,d,c′(p, y)

)
G(τ1,a,τ2,c) then c′(x) =

∨
d∈C

∃p,
(
∃y > x, (H >x,<y

τ1 ∧ Pa(y) ∧H >y
τ2 ) ∧ Subtree1,d,c(p, y)

)
∧ Subtree2,d,c′(p, x)

Fig. 7. MSO queries to determine how to update the registers. H <x
τ denotes the Hintikka formula for τ with restricted quantification.

tracked equivalence classes is bounded, this can not happen.
Let us denote m the smallest index of a column that is
discarded in this set of transitions: m − 1 is the number of
equivalence classes.

Assume there are m ∼-equivalence classes in the infinite
string. Let us call em the first position of the last appearing
∼-equivalence class (the m-th). There is some position (called
t) where any two ∼-equivalent position before position em
have merged. Hence at position t, the first m column in
the matrix correspond to the first element of each of the m
∼-equivalence classes (which are seen as ∼ (t)-equivalence
classes). After this threshold no two of the m first column can
merge. If the m-th column is crossed out (that is merged into
another i-th column, i < m) infinitely often such a threshold
does not exist which means that there are not as many as
m ∼-equivalence classes. If the m-th column is not crossed
out infinitely often (that is no infinitely occurring transition
crosses out this column) this means that there are at least m
∼-equivalence classes.

Not only does the set of infinitely occurring transitions give
us the number of ∼-equivalence classes, but it also gives us

the K-type of the regular look-ahead from each position in
any equivalence class.

Take one infinitely occurring merging transition which has
a minimal index of crossed out column (among the set of
infinitely occurring transitions). Say it merges column m into
column m′ < m, then we know that the K-type of the regular
look-ahead from any position in the m′-th equivalence class
is (M(m,m′))ω .

Let us define inductively a factorization of the suffix from
em′ : let x0 = em′ the first element in the m′-th appearing
∼-equivalence class. Let us denote tn the position where xn
has merged in the m′-th column (that is em′ ∼ xn(tn)). xn+1

is the first position that appears after tn and which will merge
through the m-th column in the m′-th, it is guaranteed to
exist as there are these two columns are merged infinitely
often. The matrix told us that [w[em′ :xn+1]]∼=K

= M(m′,m),
as xn+1 appeared after em′ and xn had merged, we deduce
[w(xn:xn+1]]∼=K

= M(m′,m). The infinite sequence of (xn)
gives us a factorization of w(em′ :∞], which proves its K-type
to be M(m′,m)ω .

We can similarly deduce that for any m′′ < m, (em′′ de-
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noting the first position in the m′′-th occurring ∼-equivalence
class) [w(em′′ :∞]]∼=K

M(m′′,m′)(M(m′,m))ω .

C. Proofs from Section VI

Proof of Theorem 17: Two SSTTs are not equivalent if
either for some input has an image through only one of the two
SSTTs or there exists an input w such that M1(w) 6= M2(w).
We find if it exists such a counterexample thanks to lemma 16.

We sketch a reduction of this problem very similarly as
in [13], except that we also guess the positions p1, . . . , pk
where to trim the tree. Therefore we can reduce this equiv-
alence problem to checking in a nondeterministic 2(k + 1)-
counters (c1, . . . , ck, cc, c′1, . . . , c

′
k, c
′
c) system the reachability

of a configuration in which each pair (ci, c′i) of counters has
the same value.

If the two transducers are inequivalent, the counters (ci, c′i)
will eventually contain the integers pi that are exhibited by a
counterexample.

The set of states will be a product of the set of states of the
two SSTTs and also track the number of holes in each register
and what is the relative position of the content of each register
w.r.t. to these positions p1, . . . , pk, pc. There are many possible
cases some of them are depicted in Figure 8, for starters the
content of the register might not appear in the output, or its
root can be a successor of a position pi, or a position pi can
be on the path to a hole (as p3 in Figure 8), or “between”
two holes (as p2), or be the successor of some hole (as p4),
or appear “before” (as p1, not “above”) or “after” (as p5, pc)
the content of the register.

We non-deterministically make all possible choices, when a
term of the form a(e1, e2) (this a can correspond to a position
pi or not, notice that in the case of position pc one must also
ensure the divergence at this position in the two output trees,
for example it was a a(e1, e2) in M1 and b(e1, e2) in M2) each
corresponding positions in the two trees need not to appear on
the same transition. Then we check that the combinations of
registers is sound (a register appearing above some position
can not be inserted in a hole of a register appearing below that
position; a register whose content does not appear in the image
can not be inserted into a register whose content is). Also for
each term of the form a(e1, e2) in the update we also need to
increment the value of the corresponding counters (e.g. none
if it appears below a pi or all those corresponding to positions
appearing below of after it).

If one can reach a configuration in which one output register
for each SSTT, is such that each hole is below a position
(meaning counter won’t get incremented anymore) , and the
values of each counter pairwise agrees with those in the others,
then one has found an input word on which the two SSTTs
produce different output. This is guaranteed to exist if the two
SSTTs produce a different output on a same word.

? ? ? ?

p2 p3

p1
p5

pc

p4

Fig. 8. Tracking the positions of pi w.r.t. registers.
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