
On the Complexity of Shortest Path Problems
on Discounted Cost Graphs ?

Rajeev Alur, Sampath Kannan, Kevin Tian, and Yifei Yuan

University of Pennsylvania, Philadelphia, PA, US

Abstract. Discounted Cost Register Automata (DCRA) associate costs
with strings in a regular manner using the operation of discounted sum.
The min-cost optimization problem for DCRAs corresponds to comput-
ing shortest paths in graphs with more general forms of discounting than
the well-studied notion of future discounting. We present solutions to two
classes of such shortest path problems: in presence of both past and fu-
ture discounting, we show the decision problem is NP-complete, but has
a polynomial-time approximation scheme; in presence of two future dis-
counting criteria that are composed in a prioritized manner, we show
that the problem is solvable in Nexptime.

1 Introduction

The classical shortest path problem is to determine the minimum-cost path from
a given source to a given target vertex in a finite directed graph whose edges
are labeled with costs from a numerical domain, where the cost of a path is the
sum of the costs of the edges it contains. In a generalized version of the shortest-
path problem, each edge is labeled with a cost as well as a discount factor: at
every step, the cost of each subsequent edge is scaled by the current discount
factor (that is, the cost of a path consisting of the edges e1e2 · · · en is given
by the expression

∑
i(ci

∏
j<i dj), where ci and di denote respectively the cost

and discount of the edge ei) [8]. This form of future discounting is used in the
study of Markov decision processes and more recently, in quantitative analysis of
systems [6, 3]. The problem of computing the shortest path in presence of such
future discounting can be solved in polynomial-time [9, 8].

While the existing work on generalized shortest paths considers only future
discounting, there are some natural variations for associating costs with paths in
presence of discounting. For example, we can define past discounting , where the
cost of each preceding edge is scaled by the current discount factor (that is, the
cost of a path is

∑
i(ci

∏
j>i dj)), and global discounting , where each cost is scaled

by the discount factors of all the edges appearing in the path (that is, the cost of
a path is

∑
i(ci

∏
j dj)). The goal of this paper is to initiate a systematic study

of shortest path problems for such models with different notions of discounting.

? This research was partially supported by NSF awards CCF 1137084, CCF 1138996,
and CCF 0915777.

2 Rajeev Alur, Sampath Kannan, Kevin Tian, and Yifei Yuan

Our framework for defining a general class of discounted shortest-path prob-
lems is based upon the recently proposed notion of regular functions that map
strings over an input alphabet Σ to a numerical domain with a specified set
of operations [2]. For our purpose, the numerical domain D consists of pairs
(c, d), where c ranges over incremental costs and d ranges over discount fac-
tors, (0, 1) is the identity, and the binary discounted sum operation is defined
as (c1, d1) ⊗ (c2, d2) = (c1 + d1 ∗ c2, d1 ∗ d2). A regular function is computed
by a discounted cost register automaton (DCRA), a deterministic machine that
maps strings over an input alphabet to cost values using a finite-state control
and a finite set of registers containing values in D. At each step, the machine
reads an input symbol, updates its control state, and updates its registers us-
ing expressions involving the discounted sum operation (such as x := (c, d)⊗ x;
x := x⊗(c, d); x := x⊗y; y := (0, 1), where x and y are registers). After process-
ing the input, the machine outputs the cost stored in one of the registers. The
appeal for the class of functions computed by DCRAs is based on its connection
to the well understood theory of regular string-to-string transformations with
multiple equivalent characterizations and closure properties [5, 4, 1]. For exam-
ple, if a function f is computable, then so is fR defined by fR(w) = f(wR),
where wR is the reverse of the string w; and if we were to allow a DCRA to
make speculative decisions based on a regular property of the suffix of the input,
instead of just the current input symbol, then such regular-look-ahead does not
add to expressiveness. Different versions of discounted shortest-path problems
turn out to be special cases of the min-cost problem for DCRAs, namely, given
a function defined by a DCRA, find a string with minimal cost.

To solve the min-cost problem for DCRAs with one register, we focus on the
shortest-path problem in a graph with past-and-future discounting : the cost of a
path e1e2 · · · en is given by

∑
i(ci

∏
j<i fj

∏
j>i pj), where ci, fi, and pi denote,

respectively, the cost, future discount, and past discount, of the edge ei. This
generalizes problems such as future discounting, past discounting, and global
discounting. We show that the decision version of the problem is NP-complete:
while the strongly-connected-components in the input graph can be analyzed
efficiently, the problem is NP-hard even for acyclic graphs. Then, we develop a
polynomial-time approximation scheme to solve the problem.

Our next set of results focus on the min-cost problem for DCRAs with two
registers. We first consider the prioritized shortest-path problem: each edge is la-
beled two cost-discount pairs (c, d) and (c′, d′), and the cost of a path e1e2 · · · en
corresponds to evaluating the expression (c1, d1)⊗ (c2, d2) · · · (cn, dn)⊗ (c′1, d

′
1)⊗

(c′2, d
′
2) · · · (c′n, d′n). Thus, this corresponds to having two future-discounting func-

tions, where the cost of a path is obtained by taking the discounted sum of a
high-priority future-discounted cost with a low-priority future-discounted cost.
While in the classical future discounting problems, for a given cycle, either it is
beneficial to skip the cycle entirely, or it is beneficial to repeat it indefinitely,
with prioritized discounting, the optimal number of times a cycle should be re-
peated depends on the cost/discount of the context. While the structure of an
optimal path can be complex, we can establish an upper bound on the length

On the Complexity of Shortest Path Problems on Discounted Cost Graphs 3

of such a path, leading to decidability. We show that the decision version of the
prioritized shortest-path problem is solvable in Nexptime. A prioritized short-
est path problem corresponds to a DCRA with two registers x and y, where the
registers are composed only at the end. If we allow repeated composition using
the update {x := x ⊗ y; y := (0, 1)} on any edge, we are still able to establish
decidability. Decidability of the min-cost problem for the general class of DCRAs
remains an open problem.

2 Discounted Cost Register Automata

We use D to denote the domain consisting of pairs (c, d), where c is a cost and d is
a discount factor. The typical choice for D is D = Q≥0×Q≥0, where Q≥0 denotes
the set of nonnegative rational numbers. We define the discounted sum operator
⊗ for elements in D as follows. For any two elements (c1, d1), (c2, d2) from D,
(c1, d1) ⊗ (c2, d2) = (c1 + d1 ∗ c2, d1 ∗ d2). It is easy to check that (D,⊗) forms
a semigroup with the identity (0, 1). For an element e = (c, d) ∈ D, we denote
the first component of e by e.cost and the second component by e.discount, i.e.
e.cost = c and e.discount = d.

A discounted cost register automaton (DCRA) is a deterministic machine
that maps strings over an input alphabet to costs using a finite-state control and
a finite number of registers that hold values in D. At every step, the machine
reads an input symbol, updates its control state, and updates its registers using
a parallel assignment. The right-hand-side in each assignment is an expression
built from registers and constants in D using the discounted sum operation. The
assignment is required to be copyless: no register appears more than once in the
right-hand-sides of these assignments. The copyless restriction is common in the
theory of transducers, and ensures that the output grows linearly in the size of the
input. The output function associates with each accepting state an expression
over the registers, evaluating which gives the resulting cost. The syntax and
semantics of DCRAs is formalized in the following definitions.

A discounted cost register automaton (DCRA)M is a tuple (Σ,Q, q0,
F,X, δ, ρ, µ), Σ is a finite input alphabet, Q is a finite set of states, q0 ∈ Q is
the initial state, F ⊆ Q is a set of accepting states, X is a finite set of registers,
δ : Q×Σ → Q is the state transition function, ρ : Q×Σ×X → (X ∪D)∗ is the
register-update function with the copyless restriction: for each state q ∈ Q, each
register x ∈ X, and every symbol a ∈ Σ, x appears at most once in the multiset
of strings {ρ(q, a, y)|y ∈ X}, µ : F → (X ∪ D)∗ is the output function with the
copyless restriction: for each state q ∈ F , each variable x ∈ X, x appears at
most once in µ(q).

A configuration of a DCRA M = (Σ,Q, q0, F,X, δ, ρ, µ) is a pair (q, s), where
q ∈ Q is a state and s : X → D is a valuation function that maps each register to
an element in D. The valuation function s naturally extends to a mapping from
(X∪D)∗ to D by evaluating the discounted sum. The run of M on an input string
w = a1 . . . an ∈ Σ∗ is a sequence of configurations (q0, s0) . . . (qn, sn), where q0 is
the initial state, s0 is the initial valuation that maps each register to the identity

4 Rajeev Alur, Sampath Kannan, Kevin Tian, and Yifei Yuan

(0, 1), and qi+1 = δ(qi, ai+1), and for each x ∈ X, si+1(x) = si(ρ(qi, ai+1, x)),
for 0 ≤ i < n. The DCRA M defines a (partial) function JMK from Σ∗ to Q≥0:
if qn ∈ F then JMK(w) = sn(µ(qn)).cost, and JMK(w) is undefined otherwise.

It is worth noting that a DCRA is basically the same as a streaming string
transducer (SST) that maps strings over input alphabet to strings over out-
put alphabet [1]: a DCRA interprets string concatenation as discounted sum
and hence its output symbols and register values are elements of D rather than
strings over the output alphabet as is the case for SSTs. SSTs have the same
expressiveness as MSO-definable string-to-string transformations, two-way de-
terministic sequential transducers, and Macro string transducers [5, 4, 1]. This
class of regular string-to-string transformations has appealing closure properties
such as closure under reversal and closure under regular look-ahead, and these
carry over to DCRA-definable functions. In other words, DCRAs capture a ro-
bust class of functions for associating costs with strings by composing elements
in D using the discounted sum operation in a regular manner.

The following decision problems are natural for DCRAs:

1. Given a DCRA M , and a string w over the input alphabet Σ, the evaluation
problem is to compute the value of JMK(w).

2. Given two DCRAs M1 and M2 over the same input alphabet Σ, the equiv-
alence checking problem is to decide whether JM1K(w) = JM2K(w) for every
string w over Σ.

3. Given a DCRA M over input alphabet Σ, the min-cost problem is to decide
the value of inf{JMK(w)|w ∈ Σ∗}.

It is easy to see that the evaluation problem for DCRAs is solvable in time linear
in the size of input string. The equivalence checking problem for DCRAs can be
solved in time polynomial in the number of states and exponential in the number
of registers using the techniques discussed in [2]. In this paper we focus on the
complexity of the min-cost problem for DCRAs with at most 2 registers.

3 Past-and-Future Discounting

First observe that to solve the min-cost problem for a DCRA, we can ignore
the input symbols, and focus on computing shortest paths in the directed graph
corresponding to the state-transition structure of a DCRA. We first look at
discounted shortest-path problems corresponding to DCRAs with one register.

3.1 Generalized Shortest Path Problem

Given a DCRA M with one register x, where each update is of the form x := x⊗
(c, d), the min-cost problem for M coincides with a problem called the generalized
shortest-path problem, or shortest-paths in presence of only future-discounting,
defined below.

Given a labeled directed graph G = (V,E, L), where L : E → D is the
labeling function, and two vertices s, t ∈ V , the generalized shortest path

On the Complexity of Shortest Path Problems on Discounted Cost Graphs 5

problem is to find the s-t path p that minimizes the cost L(p).cost, where the
labeling function is extended to paths using the discounted sum operator, that
is, for a path p = e1 . . . ek, L(p) = L(e1)⊗ L(e2) · · ·L(ek).

We denote C(p) = L(p).cost and D(p) = L(p) .discount. Polynomial-time
algorithms for this optimization problem are given in [9].

Theorem 1. Given a labeled directed graph G = (V,E, L), the generalized short-
est path problem can be solved in O(mn2 log n), where n = |V | and m = |E|.
Here, we are more interested in the structure of the optimal path. A lasso is a
path p consisting of a simple path p0 followed by a simple cycle l such that l is the
only cycle in p. Given a lasso p = p0l such that D(l) < 1, we define the limiting
cost of p to be the limit of the costs of paths in the sequence (p0l, p0ll, . . .), which

equals C(p0) +D(p0) C(l)
1−D(l) . It turns out that the optimal path must be either a

simple path from s to t, or a lasso. In other words, if it is beneficial to include a
cycle to reduce the cost, then it is beneficial to repeat the cycle arbitrarily many
times. This property holds even when the graph has finite number of vertices,
but infinitely many edges.

Lemma 1. Let G = (V,E) be a graph, with V finite but E possibly infinite. For
any vertices s, t ∈ V , and any labeling function L : E → D there is an optimal
path which is either a simple path from s to t, or a lasso from s.

Proof. Suppose the optimum p is not a simple path from s to t, then p has the
structure p0lp1, where l is the first cycle in p. If C(l) + D(l)C(p1) < C(p1),
we have that the limiting cost of the lasso p0l is no more than C(p0l

np1) for
any natural number n. If C(l) + D(l)C(p1) ≥ C(p1), we have that C(p0p1) ≤
C(p0lp1). In either case, we can see by induction that the solution is a simple
path or a lasso. ut

3.2 Shortest Path in Past and Future Discounted Graphs

The generalized shortest path problem can be seen as a future discount problem
– the discount at an edge applies to the costs of all future edges. Reversing the
direction on the edges, we see that it is equivalent to a past discount problem,
where the discount at an edge applies to all past edges. We consider the following
variant: each edge e is now given a cost c(e), a past discount p(e) to be applied
to all preceding edges, and a future discount f(e) to be applied to all succeeding
edges. In this problem, we assume that discounts are in the range [0, 1]. The

cost of a path p = e1 . . . ek is C(p) =
∑k
i=1 c(ei)

∏
j<i f(ej)

∏
j>i p(ej). Given a

directed graph G = (V,E), vertices s, t ∈ V , and cost function c : E → Q≥0 and
discount functions p, f : E → [0, 1], the past and future discount problem
seeks to find an s-t path p minimizing C(p).

This variant corresponds to the DCRA with one register, where each update is
of the form x := (0, p′)⊗x⊗(c′, f ′). Note that on each edge, c(e) = c′p′, p(e) = p′

and f(e) = f ′p′.
First, we present a sequence of assumptions about the graph structure such

that if each assumption does not hold, the optimal cost is easy to compute.

6 Rajeev Alur, Sampath Kannan, Kevin Tian, and Yifei Yuan

Lemma 2. We may assume that any strongly connected component in G satis-
fies at least one of the following: all of the past discounts are equal to 1, or all
of the future discounts are equal to 1.

Proof. Suppose not. Then let S be a strongly connected component, and e1 an
edge with past discount < 1 and e2 an edge with future discount < 1. Since this
is a strongly connected component, there is a cycle containing e1 and e2. Thus,
a path from s to S, arbitrarily many iterations of a fixed cycle containing e1 and
e2, and a path to t has cost arbitrarily close to 0. ut

Lemma 3. We may assume that every non-trivial strongly connected component
in G has an edge with a past discount < 1 or an edge with a future discount < 1.

Proof. Suppose not. Then we can construct a graph G′ on which this is true.
Consider a strongly connected component S in G in which each edge has both
discounts equal to 1. Then any optimal path p reaching S at u and leaving S at
v uses a shortest path (in the classical discount-less sense) from u to v. Thus,
we may replace S as follows: for a vertex v ∈ S, we replace it with vertices
v− and v+. For an edge (u, v) with u /∈ S, replace the endpoint v with v−.
Similarly, for (v, u) with u /∈ S, replace v with v+. Now, for all pairs of vertices
u, v ∈ S, add an edge (u−, v+) with cost equal to the cost of the (classical)
shortest path from u to v in S and both discounts 1. It is clear that replacing
all non-trivial strongly connected components in this way yields a graph G′

with each component containing at least a discount, and that a solution in G′

determines a solution G and vice versa. ut

Lemma 4. We may assume there is a topological ordering of the strongly con-
nected components of G such that all strongly connected components with a past
discount less than 1 occur before components with a future discount less than 1.

Proof. Suppose not. Then we have a path from s to a component with a future
discount less than 1, to a component with a past discount less than 1, to t. If we
use a cycle repeatedly in the future discount component with discount < 1 and
similarly use a cycle in the past discount component, we drive the cost to 0. ut

Now, we are ready to prove our results.

Theorem 2. The decision version of the past and future discount problem (that
is, given K, is there path p with C(p) ≤ K) is NP-complete .

Proof. First, the problem is NP. From Lemma 4, we know that in a topological
ordering, the strongly connected components with a past discount occur before
strongly connected components with a future discount. From Lemma 1, we know
that the structure of an optimum subpath in the strongly connected components
must be a simple path or a lasso. Thus, a sufficient proof would be the path itself.

The problem is NP-hard, by a reduction from subset product (which is shown
to be NP-hard in [7]). ut

Now we proceed to establish that the problem can be approximated effi-
ciently.

On the Complexity of Shortest Path Problems on Discounted Cost Graphs 7

Theorem 3. The past and future discount problem has a polynomial-time ap-
proximation scheme.

Proof. Given a graph G = (V,E), cost and discount functions c, f, p, and an
approximation factor ε, we will give an approximation scheme that finds a path
with cost at most (1 + ε) times that of the minimum cost path. We will assume
that G has the structure imposed by the preceding lemmas.

By Lemma 4, we note that in a topological ordering of the strongly con-
nected components of G, all of the components with past discounts precede all
of the components with future discounts. Let us denote the strongly connected
components S1, . . . , Sr (in topological sort order), and let us say that k is such
that for all i ≤ k, Si is either trivial (consisting of a single vertex) or has a past
discount, and for all i > k, Si is either trivial or has a future discount. We use
dynamic programming from s through Sk, and a similar, reversed process, from
t backwards through Sk+1, and then stitch the results together.

Let δ = log(1+ε)
2n where |V | = n, and let c be the highest cost value on any

edge. At each vertex, we will store the path with the best future discount that
has cost in the interval [(1+δ)i, (1+δ)i+1). Then the cost of a simple s-t path is

at most n · c, and so we need to manage at most O
(

n log c
log (1+ε)

)
such buckets. Let

Tv[i] denote the best (least) discount for paths in the bucket [(1+δ)i, (1+δ)i+1).

We start our dynamic program at s, where we have no paths. The program
then processes entire strongly connected components at a time. For a component
Si, we first consider all of the edges from outside Si to a vertex of Si. Let
e = (u, v) with u ∈ Si′ for some i′ < i and v ∈ Si. Then for each l that Tu[l] is
not empty, we look in the bucket for the interval j containing p(e) · (1 + δ)l+1 +
c(e) · Tu[l], and if Tu[l] · f(e) is less than Tv[j], then we update Tv[j] with this
new value.

Having resolved any paths to vertices in Si that do not use any other vertices
in Si, we now address paths to vertices in Si through other vertices. Note that if
a strongly connected component is trivial, this case does not arise. For each pair
of vertices u, v ∈ Si, and each Tu[l] that is not empty, we build a graph which
is just Si, except we add a vertex t′ and an edge (v, t′) with cost (1 + δ)l+1 and
past discount Tu[l]. All other edges will have the same costs and discounts as
in G. Now, since Si had only past discounts < 1, we can solve a past discount
problem to find the best (possibly infinite) path from u to t′. Note then that
this represents a path from s to v, going through u, where the subpath from s
to u is the one stored in Tu[l]. Repeating this for each l and each pair of vertices
completely resolves the table Tv for each v ∈ Si.

We can do this for all i up to k. We perform the analogous process for Sk+1

and subsequent components: we reverse the roles of past and future discounts,
and reverse the orientations on the edges. So for v ∈ Si for i ≤ k, Tv[l] will have
the path with the best future discount in the l-th bucket, while for v ∈ Si for
i > k, Tv[l] will have the path with the best past discount. Now, for all edges
(u, v) with u ∈ Si and v ∈ Sj with i ≤ k < j, and all l1, l2 for which Tu[l1] and
Tv[l2] are non-empty, we consider the path adjoining the path in the l1-th bucket

8 Rajeev Alur, Sampath Kannan, Kevin Tian, and Yifei Yuan

at u to (u, v) to the path in the l2-th bucket at v (note this is an s-t path). Now
the claim is that the minimum cost path from across all such u, v, l1, l2 has cost
at most (1 + ε) times the true optimum.

Lemma 5. For each u ∈
⋃
i≤k Si, and each l, the path from s to u realizing the

discount Tu[l] has cost at most (1+δ)l+1

1+ε .

Proof. Observe that the only time a path’s cost becomes overestimated is when
it is placed in bucket j (representing paths with approximate costs in the interval
[(1+δ)j , (1+δ)j+1)), where the cost can only be overestimated by a factor (1+δ).
Since a path can be put in a bucket only twice per strongly connected component,

we see that its cost is overestimated by at most (1 + δ)2n = (1 + log(1+ε)
2n)2n ≤

elog(1+ε) = 1 + ε. ut
A similar lemma applies for u ∈

⋃
i>k Si and t. Thus we have found the path

with the least approximate cost, where for each path, the approximate cost is
at most (1 + ε) times its true cost, and in particular, this path has cost at most
(1 + ε) times the cost of the optimum path. ut

4 Prioritized Discounting

In this section, we look at the prioritized discounting problem which corresponds
to the min-cost problem for DCRAs with two registers where one register always
leads the other in both update and output.

4.1 Shortest Path in Prioritized Discounted Graph

We first define the Prioritized Discounted Graph and the shortest path problem
in a Prioritized Discounted Graph.

A prioritized discounted graph is a labeled directed graph G = (V,E,Lx,
Ly), where Lx, Ly : E → D are labeling functions. Given a prioritized dis-
counted graph G = (V,E, Lx, Ly) and s, t ∈ V , the prioritized shortest-
path problem seeks to find the s-t path p minimizing the cost defined as
C(p) = (Lx(p)⊗ Ly(p)) .cost.

The prioritized shortest-path corresponds to the min-cost problem of DCRAs
with two registers x and y, and each update is of the form {x := x⊗(cx, dx); y :=
y ⊗ (cy, dy)} and the output function is x⊗ y.

We show that the decision version of the shortest path problem for prioritized
discounted graph is decidable, assuming that D = Q≥0 × [0, 1].

Theorem 4. Given a prioritized discount graph G and a nonnegative rational
K, deciding whether there is an s-t path in G such that C(p) ≤ K is solvable in
Nexptime.

Proof. For a path p, let (Cx(p), Dx(p)) = Lx(p) and (Cy(p), Dy(p)) = Ly(p). We
call cycle l a “x-neutral cycle” if Lx(l) = (0, 1). If there is a path p such that
C(p) = Cx(p) + Dx(p)Cy(p) ≤ K, then the x-cost of p (i.e. Cx(p)) is at most

On the Complexity of Shortest Path Problems on Discounted Cost Graphs 9

K. Let us call a path p a “candidate path” if Cx(p) ≤ K. If there is an edge
e in p such that Dx(e) = 0, then p has the simple structure as in the future
discount problem. Therefore, we may assume G doesn’t contain such edges.
We first consider the case where G doesn’t contain any x-neutral cycles. Let
p0l be the “best” lasso minimizing limi→∞ Cx(p0l

i). If K ≥ limi→∞ Cx(p0l
i),

limi→∞ C(p0l
i) = limi→∞ Cx(p0l

i) ≤ K. Otherwise, the length of any candidate
path cannot exceed L for some natural number L. The following lemma shows
an exponential upper bound for L.

Lemma 6. Let T be the least limiting x-cost among all the lassos. If K < T ,
the length of any candidate path is at most L, for some L = 2O(nb), where n is
the number of vertices in G and b is the maximum number of bits to describe the
labeling functions and the bound K.

Proof. Fix a vertex v. Let m be the maximum number of occurrences of v in a
candidate path. Let’s consider the candidate path p with the least x-cost among
all the paths in which v appears m times. Suppose p = p0l1l2...lm−1pm. Here,
p0 is a path from s to v and li’s are cycles that start and end in v, pm is a path
from v to t. For brevity, let ci = Cx(li) and di = Dx(li). By Lemma 1, we further
assume that p0, pm are simple paths and li’s are simple cycles.

First we claim that ci/(1−di) ≤ ci+1/(1−di+1), for i = 1...m−2. Note that
we define ci/(1 − di) = ∞, if di = 1. Suppose not, there is a cycle li such that
ci/(1 − di) > ci+1/(1 − di+1). This results in a path p′ = p0l1...li+1li...lm−1pm
with the same occurrences of v and x-cost less than Cx(p).

Let Qi = Cx(lili+1...lm−1pm). We claim that Q1 > ... > Qm. Suppose not,
we have Qi ≤ Qi+1 for some i. Then T ≤ limn→∞ Cx(p0l1...li−1l

n
i) ≤ K.

Let T1 and T2 be the least and second least limiting x-cost among the simple
cycles that start and end in v. Let l1, l2, ..lk be the cycles with the limiting x-
cost T1, so the limiting x-cost of li(i > k) is at least T2, and Q1 < T1.Consider
any i > k. If di = 1, Qi − Qi+1 = ci + di · Qi+1 − Qi+1 = ci > 0. If di < 1,
Qi − Qi+1 = ci + di · Qi+1 − Qi+1 = ci − (1 − di)Qi+1 = (1 − di)(

ci
1−di −

Qi+1) ≥ (1 − d) · (T2 − T1). Here d is the largest x-discount among all the
simple cycles other than 1. Therefore, Qk+1 ≥ Qm + δ(m− k − 1), where δ =
min{ci, (1 − d)(T2 − T1)|i = 1...m − 1, ci > 0}. Also we know Qk+1 < T1, so
m < T1

δ + k + 1 = k + 2O(nb).
Finally, we show an exponential bound for k. Since Cx(p0l1...lk) ≤ K,we

know

Cx(p0l1...lk) = Cx(p0) +Dx(p0)T1(1−
k∏
i=l

di) ≤ K

Therefore, k ≤ log (1− K−Cx(p0)
T1Dx(p0)

)/ log d ≤ K
(Cx(p0)+T1Dx(p0)−K) log 1/d = 2O(nb).

Therefore, L ≤ 2O(nb). ut
Now consider the case where G contains x-neutral cycles. Let p be a path

such that C(p) ≤ K. If p does not contain any x-neutral cycles, either the best
lasso has the limiting cost at most K or by Lemma 6, the length of p is at

10 Rajeev Alur, Sampath Kannan, Kevin Tian, and Yifei Yuan

most L. Otherwise p = p0lp1 for some x-neutral simple cycle l. Without loss of
generality, assume there is no x-neutral cycles in p0 and Cy(lp1) < Cy(p1). Then
limi→∞ C(p0l

ip′1) ≤ C(p), where p′1 is the path obtained by eliminating all the
x-neutral cycles in p1. By Lemma 6, the length of p0lp

′
1 is at most L+ 2n. ut

We show a lower bound for the complexity of shortest path problem in a
prioritized discounted graph.

Theorem 5. Given a prioritized discounted graph G, and a source vertex s
and a target vertex t, deciding whether there is a path p from s to t such that
C(p) ≤ K is NP-hard.

Proof. We reduce from subset product problem [7]. ut

4.2 Shortest Path in Prioritized Past and Future Discounted Graph

Consider the most general min-cost problem for DCRAs with one register: each
update is of the form x := (c′, d′)⊗x⊗(c, d). In fact, these DCRAs can be modeled
by DCRAs with two registers, where each update is {x := (c′, d′) ⊗ x; y :=
y⊗ (c, d)} and the output is x⊗ y. The min-cost problem for this set of DCRAs
can be formalized as a variant shortest path problem in prioritized discounted
graphs: Given a prioritized discounted graph G = (V,E, Lx, Ly), and s, t ∈ V , we
wish to find an s-t path minimizing

(
Lx(pR)⊗ Ly(p)

)
.cost. Here, pR denote the

reverse of p (that is, if p = (e1e2...ek),pR = (ekek−1...e1)). By applying similar
idea as that in theorem 4 and analyzing the cost of the Lx(pR), it is easy to see
that this variant shortest path problem is decidable for D = Q≥0 × [0, 1].

Theorem 6. Given a prioritized discounted G and a nonnegative rational K,
deciding whether there is an s-t path in G such that

(
Lx(pR)⊗ Ly(p)

)
.cost ≤ K

is solvable in Nexptime.

4.3 Shortest Path in Prioritized Discounted Resetting Graph

A prioritized discounted resetting graph is a labeled directed graph G =
(V,E1, E2, Lx, Ly). V is the set of vertices and there are two types of edges E1

and E2. The labeling functions are only defined on the edges in E1, i.e. Lx, Ly :
E1 → D are the labeling functions. E2 is the set of resetting edges. We denote
p ∈ E∗i if the path p only consists of edges from Ei, for i = 1, 2. Given a prioritized
discounted resetting graph G = (V,E1, E2, Lx, Ly) and two vertices s, t ∈ V , the
shortest path problem forG is to find the s-t path p = (p1e1p2e2...pkek) which
minimizes the cost defined as C(p) = (Lx(p1)⊗Ly(p1) · · ·Lx(pk)⊗Ly(pk)).cost.
Here pi ∈ E∗1 , ei ∈ E2 and we assume that every path from s to t ends with an
edge in E2 without loss of generality.

The shortest path problem for prioritized discounted resetting graphs corre-
sponds to the min-cost problem of a subset of DCRAs, where there are two reg-
isters x, y and each update is of the form {x := x⊗ (cx, dx); y := y⊗ (cy, dy)}(we
model this update as the edges in E1) or {x := x⊗ y, y := (0, 1)} (we model this
update as the edges in E2), and the output function is x⊗ y.

On the Complexity of Shortest Path Problems on Discounted Cost Graphs 11

Now we show that the decision version of the shortest problem in a prioritized
discounted resetting graph is decidable, with the assumption that D = Q≥0 ×
[0, 1].

Theorem 7. Given a prioritized discounted resetting graph G = (V,E1, E2, Lx,
Ly), and s, t ∈ V and a nonnegative rational K ∈ Q≥0, deciding whether there
is an s-t path p in G, such that C(p) ≤ K is decidable.

Proof. We reduce the shortest path problem inG to the generalized shortest path
problem in a graph G′ = (V ′, E′, L′) with finitely many vertices but potentially
infinitely many edges. First, for each edge e ∈ E2, we construct a vertex ve. We
also create a source vertex s′ and target vertex t′. Thus, V ′ = {s′, t′, ve|e ∈ E2}.
Now we show the construction of the edges in G′ and the labeling functions.
Consider any edge e = (u, v) ∈ E2, and any path p ∈ E∗1 from s to u, we
construct an edge ep = (s′, ve) with label L′(ep) = Lx(p)⊗Ly(p). Consider each
(ordered) pair of edges (e1, e2) such that ei = (ui, vi) ∈ E2 for i = 1, 2. For
any path p ∈ E∗1 from v1 to u2 we construct an edge ep = (ve1 , ve2) with label
L′(ep) = Lx(ep) ⊗ Ly(p). Finally, for any edge e = (v, t) ∈ E2, we construct
an edge e′ = (ve, t

′) with label L′(e′) = (0, 1). It is easy to see the equivalence
between the shortest path in G and G′.

Lemma 7. For any s-t path p in G, there exists an s′-t′ path p′ in G′ such that
C(p) = C(p′). For any s′-t′ path p′ in G′, there exists an s-t path p in G, such
that C(p) = C(p′).

Let G1 = (V,E1, Lx, Ly) and Lx(p) ⊗ Ly(p) = (C1(p), D1(p)) for any path
p ∈ E∗1 . We now describe a nondeterministic algorithm to solve the shortest
path in the prioritized discounted resetting graph G. By Lemma 1, there is a
generalized shortest path in G′, which is a simple path or a lasso. First, the
algorithm guesses the structure of the generalized shortest path p′ in G′. If
p′ is a simple path, by Lemma 7, the shortest path in G has the structure
p = (p1e1 . . . pkek), where ei = (ui, vi) ∈ E2 and pi ∈ E∗1 for i = 1 . . . k and
k ≤ |E2|. Second, since C(p) ≤ K, the cost of the subpath p1e1, which is from s to
v1 through u1, is at most K, i.e. C1(p1) = C(p1e1) = (Lx(p1)⊗Ly(p1)).cost ≤ K.
Therefore, the algorithm suffices to solve the prioritized shortest-path problem
in G1 with source s and target u1 and bound K. If there is an infinite se-
quence of paths p′j in G1 with unbounded length and limiting cost at most K,
then by theorem 4, limj→∞D1(p′j) = 0. Therefore, the algorithm outputs “yes”,
since by taking any finite path p′2 from v1 to t, we have limj→∞ C(p′je1p

′
2) =

limj→∞ C1(p′j) ≤ K; otherwise, there are finitely many candidate paths. Among
all the candidate paths, the algorithm guesses one path p1. Now, the algo-
rithm will solve for the second subpath p2 between v1 and u2. Note that, since

C(p1e1p2e2) ≤ K, we know C1(p2) = C(p2e2) ≤ K1, where K1 = K−C1(p1)
D1(p1)

.

Therefore, the algorithm solves the prioritized shortest-path problem in G1 with
source v1 and target u2 and bound K1. The algorithm solves other subpaths
similarly. Finally, if there is a guessed path from s to t with cost at most K,
output “yes”, otherwise output “no”. If the guessed path p′ in G′ is a lasso,

12 Rajeev Alur, Sampath Kannan, Kevin Tian, and Yifei Yuan

again by Lemma 7, the corresponding shortest path in G has the structure
p = (p1e1 · · · pjej · · · pkekpk+1ej · · · pkekpk+1ej · · ·), where ei = (ui, vi) ∈ E2 for
i = 1 . . . k, k ≤ |E2|, and the cycle l = (ej · · · pkekpk+1ej) repeats after the sub-
path p0 = (p1e1 · · · pj). The algorithm behaves as the same when guessing the
subpath pi between vi−1 and ui. If there is a guessed path p with limiting cost
limi→∞ C(p0l

i) ≤ K, output “yes”, otherwise output “no”. ut

5 Conclusions

The model of Discounted Cost Register Automata defines a robust class of func-
tions for mapping strings to costs using the discounted sum operator in a regular
manner. The min-cost problem for this class offers a unifying framework for gen-
eralizing the classical notion of discounting. While decidability of the min-cost
problems for the general class of DCRAs remains an open problem, we have
solved two interesting special cases. The shortest path problem in presence of
past-and-future discounting is NP-complete with a polynomial-time approxima-
tion scheme. In prioritized discounting, two cost criteria with future discounting
are combined using discounted sum. The structure of the optimal path becomes
significantly more complex in this case, and we have established Nexptime up-
per bound for this problem, and also proved decidability for variants.

References

1. Alur, R., Černý, P.: Streaming Transducers for Algorithmic Verification of Single-
pass List-processing Programs. In: Proc. of Principles of Programming Languages.
pp. 599–610 (2011)

2. Alur, R., D’Antoni, L., Deshmukh, J.V., Raghothaman, M., Yuan, Y.: Regular func-
tions, cost register automata, and generalized min-cost problems (2012), available
at http://www.cis.upenn.edu/ãlur/rca12.pdf

3. Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative languages. ACM Trans.
Comput. Log. 11(4) (2010)

4. Courcelle, B.: Graph Operations, Graph Transformations and Monadic Second-
Order Logic: A survey. Electronic Notes in Theoretical Computer Science 51, 122 –
126 (2002)

5. Engelfriet, J., Hoogeboom, H.J.: MSO definable String Transductions and Two-way
Finite-State Transducers. ACM Transactions on Computational Logic 2(2), 216–254
(2001)

6. Filar, J., Vrieze, F.: Competitive Markov Decision Processes. Springer (1997)
7. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory

of NP-Completeness. W. H. Freeman & Co., New York, NY, USA (1990)
8. Goldberg, A.V., Plotkin, S.A., Tardos, É.: Combinatorial Algorithms for the Gen-

eralized Circulation Problem. In: Foundations of Computer Science. pp. 432–443
(1988)

9. Oldham, J.D.: Combinatorial Approximation Algorithms for Generalized Flow
Problems. In: Symposium On Discrete Algorithms. pp. 704–714 (1999)

