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ABSTRACT

SPECIFICATION-GUIDED REINFORCEMENT LEARNING

Kishor Jothimurugan

Rajeev Alur

Recent advances in Reinforcement Learning (RL) have enabled data-driven controller design for

autonomous systems such as robotic arms and self-driving cars. Applying RL to such a system

typically involves encoding the objective using a reward function (mapping transitions of the system

to real values) and then training a neural network controller (from simulations of the system) to

maximize the expected reward. However, many challenges arise when we try to train controllers

to perform complex long-horizon tasks—e.g., navigating a car along a complex track with multiple

turns. Firstly, it is quite challenging to manually define well-shaped reward functions for such tasks.

It is much more natural to use a high-level specification language such as Linear Temporal Logic

(LTL) to specify these tasks. Secondly, existing algorithms for learning controllers from logical

specifications do not scale well to complex tasks due to a number of reasons including the use of

sparse rewards and lack of compositionality. Furthermore, existing algorithms for verifying neural

network controllers (trained using RL) cannot be easily applied to verify controllers for complex

long-horizon tasks due to large approximation errors.

This thesis proposes novel techniques to overcome these challenges. We show that there are inherent

limitations in obtaining theoretical guarantees regarding RL algorithms for learning controllers from

temporal specifications. We then preset compositional RL algorithms that achieve state-of-the-art

performance in practice by leveraging the structure in the given logical specification. Finally, we

show that compositional approaches to learning enable faster verification of learned controllers

containing neural network components.
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CHAPTER 1

Introduction

Reinforcement Learning (RL) has recently been applied to solve challenging robotics control prob-

lems, including multi-agent control [94], object manipulation [19], and control from perception [100].

The ability to train a controller without having access to an explicit model of the underlying sys-

tem makes RL a practical choice for such applications. RL algorithms assume that the underlying

system can be represented by a Markov Decision Process (MDP) whose transition probabilities are

unknown. Furthermore, they also require a reward function assigning rewards (scalars) to transi-

tions of the MDP. The goal of an RL algorithm is to compute a policy (mapping states of the system

to actions) that maximizes the expected aggregate reward over runs of the system generated by the

policy. Since the transition probabilities are unknown, the algorithm has to infer a near-optimal

policy using samples collected by interacting with the system using an exploration policy—eg., a

policy that chooses actions at random.

Recent research has primarily focused on scaling RL to high-dimensional control systems with

complex dynamics such as autonomous cars [80], robotic arms [7] and hot-air balloons [25]. In most

of these applications, the tasks considered are relatively simple—e.g., reachability and safety. Most

RL algorithms, however, do not scale well to complex long-horizon tasks such as navigating a car

through a series of turns or controlling a robotic arm to pick and place multiple objects. This is

due to a number of drawbacks of existing techniques.

One key shortcoming is that the user must manually encode the task using a real-valued reward

function, which can be challenging for several reasons. First, for complex tasks with multiple

objectives and constraints, the user must manually devise a single reward function that balances

different parts of the task. Second, the state space must often be extended to encode non-Markovian

tasks—e.g., adding indicators that keep track of which subtasks have been completed. Third,

oftentimes, different reward functions can encode the same task, and the choice of reward function

can have a large impact on the convergence of the RL algorithm. Poor reward functions can make it
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hard for the RL algorithm to achieve the objective; for instance, it can result in reward hacking [15],

where the agent learns to optimize rewards without achieving the objective.

This has motivated many researchers to develop RL algorithms to train policies using formal speci-

fications instead of rewards [8, 49, 29, 39, 67, 66, 158, 61, 156, 82, 102, 76, 28, 145]. Most algorithms

follow a common high-level approach which is to (1) translate the specification to an automaton that

accepts executions that satisfy the specification, (2) define an MDP that is the product of the MDP

being controlled and the specification automaton, (3) associate rewards with the transitions of the

product MDP so that the expected aggregate reward (roughly) captures probability of acceptance

by the automaton, and (4) apply an off-the-shelf RL algorithm to synthesize a near-optimal policy.

Some direct approaches without the use of rewards have also been proposed [49]; however, they are

not applicable in settings with continuous state spaces.

Another major drawback of existing algorithms is that the number of samples required to train a

policy increases rapidly with increase in the size of the specification. This is due to a few factors

including the use of sparse rewards—i.e., the agent is given a non-zero reward only upon either

completing the full task or reaching an undesirable state. Furthermore, in continuous state systems,

most approaches train a single neural network policy for the entire task in an end-to-end fashion.

In principle, one could leverage the compositional structure in the specification to decompose a

long-horizon task into multiple short-horizon ones as is done in hierarchical RL [116, 115].

Another important shortcoming of existing algorithms for learning from formal specifications is that

they lack strong theoretical guarantees regarding convergence to an optimal policy. Traditionally,

RL algorithms for maximizing expected (discounted) reward either have a Probably Approximately

Correct (PAC) guarantee or converge to an optimal policy in the limit almost surely. Such guarantees

for logical specifications are only provided under the assumption that some additional information

about the transition probabilities (e.g., the smallest non-zero probability) is known to the learner

[28, 61, 49]. Additionally, there are subtle but important variations in the guarantees provided by

different approaches—e.g., some only consider finite executions with a known time horizon [8] and

some provide convergence guarantees only when the optimal policy satisfies the specification almost

2



surely.

To summarize, some of the main challenges in scaling RL techniques to complex long-horizon tasks

are as follows.

• Unsuitability of transition-based rewards as specifications. Most state-of-the-art RL methods

use reward signals as the only way to specify the desired outcome. For a complex task, it is

often preferable to use a logical specification such as a Linear Temporal Logic (LTL) formula

to describe the task.

• Sparse rewards. The performance of RL algorithms depend greatly on the rewards provided

and it is, in general, impractical to train policies to perform complex tasks using sparse

rewards. However, most existing algorithms for training policies from logical specifications

generate sparse rewards.

• Lack of compositionality. Existing approaches train monolithic policies without utilizing the

structure in the specification during training. This leads to high sample complexity as well as

poor generalization of the learnt policy to new tasks.

• Lack of a common theoretical framework. Different approaches for learning from logical spec-

ifications have different kinds of guarantees and it is difficult to compare and contrast them.

For example, multiple translations from logical specifications to rewards have been proposed;

however, there is no formal notion of a reduction in the RL setting defining which translations

are meaningful.

• Scalability of verification. Recent work [80] has shown that it is possible to verify the safety of

neural network controllers in closed loop systems for short horizons. However, such techniques

do not scale to long horizons rendering applications of RL to safety-critical systems impractical.

In this thesis, we propose new techniques to overcome the above-mentioned challenges.

3



1.1. Contributions

This study is primarily focused on using logical specifications to specify RL tasks and learning

policies to perform such tasks without requiring additional user-defined reward functions. We first

study theoretical limitations of RL from logical specifications, formalizing two notions of reductions

between RL task specifications along the way. Then, we design a simple specification language,

called Spectrl, for specifying robotics tasks. We present compositional algorithms for learning

policies from Spectrl specifications, both in single- and multi-agent scenarios. We show that our

algorithms can be used to train policies to perform complex tasks using much fewer samples than

existing approaches. Finally, we demonstrate that introducing logical compositionality in RL tasks

helps with formally verifying the safety of neural network controllers. The main contributions of

this thesis are outlined below.

• Theoretical considerations in the infinite-horizon setting. We show that optimality preserving

translations of LTL specifications to discounted rewards do not exist. We define a general no-

tion of a sampling-based reduction which provides a unified framework to understand existing

work on RL from LTL specifications. We also show that there does not exist a probably-

approximately correct (PAC) RL algorithm for LTL specifications; in particular, for safety

and reachability specifications.

• Systematic generation of shaped rewards. Using our simple specification language, Spectrl,

we show that it is possible to automatically generate a well-shaped reward function for a given

task as well as for each subtask inferred from the specification.

• Compositional RL algorithm. We design an RL algorithm that leverages the structure in

the given specification to improve learning. Unlike existing hierarchical methods which only

provide recursive optimality guarantees, we justify the overall maximization objective of our

algorithm by showing that it is a lower bound on the probability of satisfying the given

specification. We empirically demonstrate that our algorithm can be used to train policies to

perform complex tasks using fewer samples than existing approaches.
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• Multi-agent RL algorithm in the competitive setting. We formalize the RL problem in the

multi-agent setting where each agent has its own task specification. Here, instead of computing

an arbitrary Nash equilibrium, we aim to compute one with high social welfare. We provide a

natural extension of our compositional RL algorithm to this setting and show that the learnt

policy is guaranteed to be an ε-Nash equilibrium with high probability.

• Compositional verification. We demonstrate that decomposing a long-horizon task into mul-

tiple short-horizon subtasks enables faster verification. We also provide a synthesis algorithm

to automatically generate pre- and post-conditions corresponding to the subtasks. We train

and verify a controller for the F1/10th car [80] that works for all tracks of a certain kind.

1.2. Overview

We begin with the necessary background in Chapter 2. In Chapter 3, we first study specification

translations in the context of RL in which one specification is transformed into another. We show

that certain translations from LTL specifications to discounted rewards are impossible. This mo-

tivates the need for a more general notion of reductions in the RL setting. We then formalize the

notion of a sampling-based reduction in which one is also allowed to modify the underlying MDP

along with the specification; however, it should be possible to collect samples from the new MDP by

interacting with the system corresponding to the original MDP. We then present some existing re-

sults in this framework. Finally, we conclude by showing that there does not exist a PAC algorithm

[139] for safety and reachability specifications.

In Chapter 4, we introduce Spectrl, a simple specification language based on a subclass of G-free

LTL [137]. We then present an algorithm to generate an automaton model called task monitor from a

given Spectrl specification and show that the structure of the task monitor can be used to define

a compositional neural network architecture for the control policy. In a Spectrl specification,

each predicate is associated with a quantitative semantics which makes it possible to obtain a well-

shaped reward function for each subtask. In the finite-horizon setting, we also provide a method to

automatically obtain a reward function for the full task from the task monitor which can be used

in conjunction with existing RL algorithms to train policies from Spectrl specifications.
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In Chapter 5, we propose a compositional RL algorithm that interleaves high-level planning with RL

for low-level control. We first reduce the problem of learning a policy to maximize the probability

of satisfying a Spectrl specification to an abstract reachability problem defined over a Directed

Acyclic Graph (DAG); intuitively, vertices and edges of the graph correspond to regions of the

state space and simpler sub-tasks, respectively. We then provide an algorithm to solve the abstract

reachability problem that incorporates reinforcement learning to learn neural network policies for

each edge (sub-task) within a Dijkstra-style planning algorithm to compute a high-level plan in the

graph.

In Chapter 6, we extend the algorithm presented in Chapter 5 to the multi-agent setting. Specifically,

we consider the competitive setting in which each agent has an individual objective given by a

Spectrl specification. The goal is to compute a joint policy that is in an ε-Nash equilibrium while

also achieving high social welfare. We provide an enumerate-and-verify framework in which one

first uses heuristics to enumerate candidate policies in decreasing value of social welfare. Then,

given a candidate policy, a stochastic verification algorithm is used to check if a joint policy can

be constructed such that (1) it is an ε-Nash equilibrium and (2) has the same behaviour as the

candidate policy.

In Chapter 7, we show that compositionality helps with verification. Intuitively, policies corre-

sponding to subtasks can be individually verified since the subtasks are completed within a much

shorter time horizon than the overall task. In this chapter, we study a more general setting in which

the environment adversely selects a sequence of subtasks; this setting is useful when one requires

guarantees regarding worst-case performance across multiple tasks (where a task is a sequence of

subtasks). We present a synthesis algorithm for synthesizing pre- and post-conditions for the indi-

vidual subtasks from simulations of the system. We then show that the problem of verifying safety

for the entire task duration (possibly infinite) can be decomposed into simpler problems each of

which can be solved using existing techniques.

Finally, we discuss some possible directions for future work in Chapter 8. The main content of this

dissertation is based on primary references [13, 81, 84, 85, 87].
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1.3. Related Work

In this section, we give an overview of recent research in areas broadly related to the topic of this

thesis. At the end of each chapter, we also discuss works more closely related to the technical

contents of the chapter.

1.3.1. Reinforcement Learning from Temporal Specifications

There has been a lot of recent interest in designing reinforcement learning algorithms for learning

policies from temporal specifications. Research in this direction can be classified into two categories

depending on whether the specification describes (i) the desired behavior of the system over a fixed

finite duration or (ii) the entire infinite-time behavior.

Fixed horizon. Aksaray et al. [8] propose an RL algorithm for a fragment of Signal Temporal Logic

(STL) in which an approximate semantics of STL is used to assign rewards to (finite) trajectories. Li

et al. [102] use a quantitative semantics of LTL (over finite horizon) to assign continuous (non-sparse)

rewards to trajectories of the system; an algorithm to optimize the expected value of this semantics

is proposed in [103]. Camacho et al. [32] propose a reduction from deterministic finite automata

(DFA) to sparse rewards which are then shaped using a potential-based reward shaping mechanism;

such a reduction can be used in conjunction with existing reductions from formal specifications to

DFAs.

Infinite horizon. Some recent works [66, 67, 158, 28, 61, 62] propose reductions from LTL speci-

fications to rewards which proceed by first constructing a product of the MDP with a Limit De-

terministic Büchi automaton (LDBA) Aφ [137] derived from the LTL formula φ and then gener-

ate transition-based rewards in the product MDP. There is work on similar reductions for more

complex lexicographic ω-regular objectives [64] as well as in the context of stochastic games [63].

These approaches, however, produce sparse rewards which are ill-suited for training policies to per-

form complex tasks. Furthermore, they either lack convergence guarantees or only provide weak

guarantees—e.g., under the assumption that a lower bound on non-zero transition probabilities of

the MDP is known [28, 61, 62]. A recent paper [49] proposes a Probably Approximately Correct
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(PAC) algorithm for LTL specifications under the assumption that the structure of the MDP (tran-

sitions with non-zero probability) is known; this is an adaptation of the R-max [30] algorithm for

limit-average rewards.

There has also been work on reward generation and reinforcement learning from STL specifica-

tions [22, 90]. These methods either use a quantitative semantics of STL to assign shaped re-

wards [22] or a model-based approach in conjunction with a planning algorithm such as model

predictive control [90]. These approaches lack strong theoretical guarantees and their scalability

with respect to complexity in the task specification has not been studied.

Multi-task Learning. In multi-task learning, the goal is to train a policy to perform multiple tasks,

preferably without additional task-specific training or fine-tuning. Kuo et al. [96] and Vaezipoor

et al. [145] propose frameworks for multi-task learning using LTL specifications; however, such

approaches use sparse rewards and require a lot of samples even for relatively simple environments

and tasks. In a recent work [88], we propose a compositional approach for multi-task generalization

in which subtask policies are trained in a robust way to enable them to be composed sequentially

(in any order).

Multi-agent RL. There has also been work on using temporal logic specifications for multi-agent

RL [65, 118]; these approaches focus primarily on cooperative scenarios in which there is a common

objective that all agents are trying to achieve.

We empirically compare our methods to some of the above-mentioned approaches in our experiments

(see Sections 4.5, 5.4 and 6.7).

1.3.2. Policy Synthesis from Temporal Specifications

There has been a lot of work on algorithms for synthesizing an optimal policy for a given MDP and

a temporal specification under the assumption that the transition probabilities are known; see [21]

for a survey. These techniques, however, can only be applied to finite-state systems and furthermore

require an exact model of the environment.
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There is also work on practical approaches for synthesizing controllers for cyber-physical systems

from temporal specifications under the assumption that a model of the system dynamics is avail-

able [99, 53, 113, 105, 133, 123, 60]. Lahijanian et al. [99] and Garg and Panagou [53] propose

algorithms for robotic motion planning from temporal logic specifications. Moarref and Kress-Gazit

[113] propose algorithms for automated synthesis of decentralized controllers to satisfy a common

temporal objective in the context of multi-agent systems. In [133], the authors extend STL to

incorporate stochastic properties and provide an algorithm to synthesize controllers from such spec-

ifications. Quantitative semantics of STL has also been used to encode STL objectives into model

predictive control optimization problems for synthesizing controllers for robots [123, 60].

1.3.3. Structured Rewards

There has been research on models for expressing non-Markovian reward functions that enable the

user to encode complex tasks. Brafman et al. [29] and De Giacomo et al. [39] consider reward

functions which depend on whether or not the current history of the system satisfies certain LTLf

specifications. Icarte et al. [76] propose an automaton-based model called reward machine (RM)

for high-level task specification and decomposition as well as an RL algorithm (Qrm) that exploits

this structure. In a later paper [77], they propose variants of Qrm including an hierarchical RL

algorithm (Hrm) to learn policies for tasks specified using RMs. Camacho et al. [32] show that one

can generate RMs from temporal specifications but RMs generated this way lead to sparse rewards.

1.3.4. Hierarchical Reinforcement Learning

Several reinforcement learning approaches have been developed where the controller has a hierar-

chical structure, similar to the ones proposed in this thesis [140, 115, 116]. In these methods, a

high-level controller/planner decides on the next high-level action and selects a low-level controller

to implement the specific actuator commands. By abstracting away details of the low-level dynam-

ics, the high-level policy can efficiently plan over much longer time horizons. However, research

has, for the most part, focused only on simple specifications—e.g., reachability of far away and

hard-to-reach goals. See [125] for a recent survey on hierarchical methods in RL.
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1.3.5. Safe Reinforcement Learning

Formal specifications are often used to express safety properties that a system must have—e.g.,

an autonomous car should never collide with another car. There has been a lot of research on

deveoloping RL algorithms to train policies that satisfy such safety properties in addition to max-

imizing rewards. For instance, researchers have combined reinforcement learning and safe control

via shielding, where a safe controller overrides the neural network (NN) controller when a control

action is deemed unsafe [51, 149, 159, 101]. Such an architecture can be naturally augmented with

a hierarchical controller, so as to enable performing more complex control tasks [51]. There has

also been work on safe exploration [114, 5, 26] to enforce safety during training; however, these

techniques typically only scale to finite or low-dimensional state spaces. A recent review on safe RL

methods can be found in [59]; see [52] for a slightly dated but comprehensive survey on this topic.

1.3.6. Interpretable Reinforcement Learning

There has been some recent work on using formal methods to learn and verify interpretable policies.

One technique involves synthesizing a symbolic policy to imitate the NN policy trained using RL—

e.g., a program in a domain specific language [147] or a decision tree [24]. Verma et al. [148] propose

an algorithm that uses a form of mirror descent to train (interpretable) programmatic policies. A

(broad) survey on interpretable reinforcement learning can be found in [56]. The scalability of such

approaches to complex long-horizon tasks, however, remains a challenge.

1.3.7. Neural Network Verification

Existing research on NN verification can be broadly classified into two categories depending on

whether the focus is on verifying input-output properties of NNs or on verifying properties of

closed-loop systems with NN components.

Functional properties. Many techniques for verifying general input-output (IO) properties of NNs

have been proposed including approaches based on satisfiability modulo theories (SMT) [43, 91, 75],

abstract interpretation [55] and mixed-integer linear programming (MILP) [41]. A key focus has

been on verifying a special IO property called adversarial robustness [142, 57, 23]—e.g., by casting
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the problem into a semi-definite program (SDP) [130], a relaxed linear program [155, 151], or a

reachability problem [150, 16]. Alternatively, abstraction techniques based on computing Lipschitz

constant bounds [47] have been developed.

Closed-loop systems. More closely related to this thesis is the research on verifying NN-based

controllers in closed-loop systems. The first class of approaches [124, 117] employ assume-guarantee

reasoning such that if the NN component satisfies a given IO property (as verified using an NN

verification tool [91]), then the closed-loop system is safe as well. The challenge with these methods

is that in general, it is challenging to reduce a closed-loop property to an IO property for the NN

(essentially, this problem is equivalent to synthesizing a loop invariant). Thus, these methods only

apply when such a reduction is available.

Alternatively, researchers have developed methods to directly reason about the closed-loop system by

adapting control & hybrid system reachability methods. In particular, several techniques have been

developed to analyze closed-loop systems with NN controllers [79, 74, 42, 141, 144]. These works

combine ideas from NN verification with standard hybrid automaton verification tools [36, 95]—e.g.,

by transforming the NN into an equivalent hybrid system [79], approximating it with a polynomial

with error bounds [42], or using other set representations such as star sets [144]. A key drawback

of these techniques is that they do not scale well to long horizons.
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CHAPTER 2

Background

In this chapter, we introduce some basic concepts in reinforcement learning necessary for under-

standing the rest of the thesis. We begin with the definition of a Markov Decision Process (MDP)

which models an interactive stochastic environment. We then define various kinds of specifications

and the corresponding optimization objectives. Finally, we define what a learning algorithm is and

what kinds of convergence guarantees are desired.

2.1. Markov Decision Processes

A finite Markov Decision Process (MDP) is a tuple M = (S,A, s0, P ), where S is a finite set of

states, s0 is the initial state,1 A is a finite set of actions, and P : S×A×S → [0, 1] is the transition

probability function, with
∑

s′∈S P (s, a, s
′) = 1 for all s ∈ S and a ∈ A.

An infinite run (or trajectory) ζ ∈ (S×A)ω is a sequence ζ = s0a0s1a1 . . ., where si ∈ S and ai ∈ A

for all i ∈ N. Similarly, a finite run ζ ∈ (S×A)∗×S is a finite sequence ζ = s0a0s1a1 . . . at−1st. For

any run ζ of length at least j and any i ≤ j, we let ζi:j denote the subsequence siaisi+1ai+1 . . . aj−1sj .

We use Z(S,A) = (S × A)ω and Zf (S,A) = (S × A)∗ × S to denote the set of infinite and finite

runs, respectively. We omit (S,A) and simply use Z and Zf when it is clear from context.

Let D(A) = {∆ : A → [0, 1] |
∑

a∈A∆(a) = 1} denote the set of all distributions over actions. A

policy π : Zf (S,A) → D(A) maps a finite run ζ ∈ Zf (S,A) to a distribution π(ζ) over actions.

We denote by Π(S,A) the set of all such policies. A policy π is positional if π(ζ) = π(ζ ′) for all

ζ, ζ ′ ∈ Zf (S,A) with last(ζ) = last(ζ ′) where last(ζ) denotes the last state in the run ζ. For

a positional policy π, we have π(s) = π(ζ) for all ζ with last(ζ) = s and the policy is simply a

function π : S → D(A). A policy π is deterministic if, for all finite runs ζ ∈ Zf (S,A), there is an

action a ∈ A with π(ζ)(a) = 1. For a deterministic policy π, we use π(ζ) to also denote the action

a that satisfies π(ζ)(a) = 1 in which case π : Zf (S,A)→ A maps finite runs to actions.
1A distribution η over initial states can be modeled by adding a new state s0 from which taking any action leads

to a state sampled from η.
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Given a finite run ζ = s0a0 . . . at−1st, the cylinder of ζ, denoted by Cyl(ζ), is the set of all infinite

runs starting with prefix ζ. Given an MDPM and a policy π ∈ Π(S,A), we define the probability

of the cylinder set by DM
π (Cyl(ζ)) =

∏t−1
i=0 π(ζ0:i)(ai)P (si, ai, si+1). It is known that DM

π can be

uniquely extended to a probability measure over the σ-algebra generated by all cylinder sets. We

omit the superscriptM when it is clear from context.

Continuous state systems. We can model continuous state systems by letting S ⊆ Rn and

denoting by P (s, a, s′) the probability density function corresponding to the distribution over next

states s′ when action a is taken in state s—i.e., we have P : S×A×S → R≥0 and
∫
S P (s, a, s

′)ds′ = 1

for all s ∈ S and a ∈ A. Optionally, we can also have an infinite set of actions A.

Simulator. In reinforcement learning, the standard assumption is that the set of states S, the

set of actions A, and the initial state s0 are known but the transition probability function P is

unknown. The learning algorithm has access to a simulator S which can be used to sample runs of

the system ζ ∼ DM
π using any policy π. The simulator can also be the real system, such as a robot,

that M represents. Internally, the simulator stores the current state of the MDP which is denoted

by S.state. It makes the following functions available to the learning algorithm.

S.reset(): This function sets S.state to the initial state s0.

S.step(a): Given as input an action a, this function samples a state s′ ∈ S according to the

transition probability function P—e.g., ifM is finite, the probability that a state s′ is sampled

is P (s, a, s′) where s = S.state. It then updates S.state to the newly sampled state s′ and

returns s′.

2.2. Task Specification

In this section, we present many different ways in which one can specify the learning objective. We

define a reinforcement learning task to be a pair (M, φ) whereM is an MDP and φ is a specification

for M. In general, a specification φ for M = (S,A, s0, P ) defines a function JM
φ : Π(S,A) → R

and the reinforcement learning objective is to compute a policy π that maximizes JM
φ (π). Let

J ∗(M, φ) = supπ J
M
φ (π) denote the maximum value of JM

φ . We let Πopt(M, φ) denote the set of
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all optimal policies in M w.r.t. φ—i.e., Πopt(M, φ) = {π | JM
φ (π) = J ∗(M, φ)}. In many cases,

it is sufficient to compute an ε-optimal policy π̃ with JM
φ (π̃) ≥ J ∗(M, φ) − ε; we let Πε

opt(M, φ)

denote the set of all ε-optimal policies inM w.r.t. φ.

2.2.1. Rewards

The most common kind of specifications used in reinforcement learning is reward functions that

map transitions in M to real values. We first define the more general reward machines and then

define standard transition-based reward functions as a special case.

Reward Machines. Reward Machines [76] extend simple transition-based reward functions to

history-dependent ones by using an automaton model. Formally, a reward machine for an MDP

M = (S,A, s0, P ) is a tuple R = (U, u0, δu, δr), where U is a finite set of states, u0 is the initial

state, δu : U × S → U is the state transition function, and δr : U → [S × A × S → R] is the

reward function. Given an infinite run ζ = s0a0s1a1 . . ., we can construct an infinite sequence of

reward machine states ρR(ζ) = u0u1, . . . defined by ui+1 = δu(ui, si+1). Then, we can assign either

a discounted-sum or a limit-average reward to ζ:

• Discounted Sum. Given a discount factor γ ∈ (0, 1), the full specification is φ = (R, γ) and

we have

Rγ(ζ) =
∞∑
i=0

γiδr(ui)(si, ai, si+1).

Though less standard, one can use different discount factors in different states ofM, in which

case we have γ : S → (0, 1) and

Rγ(ζ) =

∞∑
i=0

( i−1∏
j=0

γ(sj)
)
δr(ui)(si, ai, si+1).

The value of a policy π is JM
φ (π) = Eζ∼DM

π
[Rγ(ζ)].

• Limit Average. The specification is just a reward machine φ = R. The t-step average reward

of the run ζ is

Rt
avg(ζ) =

1

t

t−1∑
i=0

δr(ui)(si, ai, si+1).
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The value of a policy π is JM
φ (π) = lim inft→∞ Eζ∼DM

π
[Rt

avg(ζ)].

A standard transition-based reward function R is simply a reward machine R with a single state u0;

in this case, we use R(s, a, s′) to denote δr(u0)(s, a, s′).

2.2.2. Abstract Specifications

The above specifications are defined w.r.t. a given set of states S and actions A, and can only be

interpreted over MDPs with the same state and action spaces. In this section, we look at abstract

specifications, which are defined independently of S and A. To achieve this, a common assumption

is that there is a fixed set of propositions P, and the simulator provides access to a labeling function

L : S → 2P denoting which propositions are true in any given state. Given a run ζ = s0a0s1a1 . . .,

we let L(ζ) denote the corresponding sequence of labels L(ζ) = L(s0)L(s1) . . .. A labeled MDP is a

tupleM = (S,A, s0, P, L). When clear from context, we use MDPs to mean labeled MDPs.

Abstract Reward Machines. Reward machines can be adapted to the abstract setting quite

naturally. An abstract reward machine (ARM) is similar to a reward machine except δu and δr are

independent of S and A—i.e., δu : U × 2P → U and δr : U → [2P → R]. Given current ARM state

ui and next MDP state si+1, the next ARM state is given by ui+1 = δu(ui, L(si+1)), and the reward

is given by δr(ui)(L(si+1)).

Languages. Formal languages can be used to specify qualitative properties about runs of the

system. A language specification φ = L ⊆ (2P)ω is a set of “desirable” sequences of labels. The

value of a policy π is the probability of generating a sequence in L—i.e.,

JM
φ (π) = DM

π

(
{ζ ∈ Z(S,A) | L(ζ) ∈ L}

)
.

Some common ways to define languages are as follows.

• Reachability. Given an accepting set of propositions X ∈ 2P , we have

Lreach(X) = {w ∈ (2P)ω | ∃i. wi ∩X ̸= ∅}.
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• Safety. Given a safe set of propositions X ∈ 2P , we have

Lsafe(X) = {w ∈ (2P)ω | ∀i. wi ⊆ X}.

• Linear Temporal Logic (LTL). Linear Temporal Logic [127] over propositions P is defined by

the grammar

φ := b ∈ P | φ ∨ φ | ¬φ | ⃝ φ | φ U φ

where ⃝ denotes the “Next” operator and U denotes the “Until” operator. Given an LTL

formula φ and an infinite word w ∈ (2P)ω, we use w |= φ to denote w satisfies φ and this

relation is defined inductively as follows.

w |= b iff b ∈ w0

w |= φ1 ∨ φ2 iff w |= φ1 or w |= φ2

w |= ¬φ iff w ̸|= φ

w |=⃝φ iff w1:∞ |= φ

w |= φ1 U φ2 iff ∃ i, wi:∞ |= φ2 and ∀ 0 ≤ j < i, wj:∞ |= φ1

where b ∈ P and wi:∞ denotes the suffix of w starting at position i. We use ♢ and □ to

denote the derived “Eventually” and “Always” operators, respectively—i.e., ♢φ = true U φ

and □φ = ¬♢¬φ. Given an LTL specification φ over propositions P, we have Lltl(φ) =

{w ∈ (2P)ω | w |= φ}. When clear from context, we abuse notation to denote the language

specification Lltl(φ) simply using φ.

2.3. Reinforcement Learning Algorithms

A learning algorithm A is an iterative process that in each iteration (i) either resets the simulator

or takes a step inM from the current state of the simulator, and (ii) outputs its current estimate of

an optimal policy π. A learning algorithm A induces a random sequence of output policies {πn}∞n=1

where πn is the policy output in the nth iteration.
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In the finite MDP setting, one can obtain different kinds of convergence guarantees for learning

algorithms. First, we can have algorithms that converge in the limit almost surely.

Definition 2.1. A learning algorithm A is said to converge in the limit for a class of specifications

C if, for any RL task (M, φ) with φ ∈ C,

JM
φ (πn)→ J ∗(M, φ) as n→∞ almost surely.

Q-learning [152] is an example of a learning algorithm for finite MDPs that converges in the limit

for discounted-sum rewards. There are variants of Q-learning for limit-average rewards [4] which

have been shown to converge in the limit under some additional assumptions on the MDP M.

Another kind of learning algorithms is the class of Probably Approximately Correct (PAC-MDP)

[89] algorithms which is defined as follows.

Definition 2.2. A learning algorithm A is said to be PAC-MDP for a class of specifications C if,

there is a function h such that for any p > 0, ε > 0, and any RL task (M, φ) withM = (S,A, s0, P )

and φ ∈ C, taking N = h(|S|, |A|, |φ|, 1p ,
1
ε ), with probability at least 1− p, we have

∣∣∣{n | πn /∈ Πε
opt(M, φ)

}∣∣∣ ≤ N.
We say a PAC-MDP algorithm is efficient if the sample complexity function h is polynomial in

|S|, |A|, 1p and 1
ε . There are many efficient PAC-MDP algorithms for discounted rewards [92, 139].
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CHAPTER 3

Theoretical Framework and Hardness Results

In this chapter, we study some theoretical properties of reinforcement learning from logical spec-

ifications with an emphasis on Linear Temporal Logic (LTL). In particular, we propose a formal

framework for defining transformations among RL tasks. Recall that an RL task consists of an

MDPM together with a specification φ. We define sampling-based reductions to formalize the pro-

cess of transforming one RL task (M, φ) into another (M̄, φ′). While the relationship between the

transformed model M̄ and the original modelM is inspired by the classical definitions of simulation

maps over (probabilistic) transition systems, the main challenge is that the transition probabilities

of M̄ cannot be directly defined in terms of the unknown transition probabilities ofM. Intuitively,

the step-function to sample transitions of M̄ should be definable in terms of the step-function of

M used as a black-box, and our formalization allows this.

The notion of reduction among RL tasks naturally leads to formalization of preservation of optimal

policies, convergence, and robustness (that is, near-optimal policies for the new task get mapped to

near-optimal policies for the original task). We use this framework to revisit existing results, fill in

some gaps, and identify some open problems aimed at improving our theoretical understanding of

RL from formal specifications.

Throughout this chapter, we restrict our attention to finite MDPs; however, many concepts and

results can be naturally extended to the infinite-state setting as well. The rest of the chapter

is organized as follows. In Section 3.1, we show that it is not possible to reduce certain LTL

specifications to (discounted-sum) reward machines when the underlying MDP M is kept fixed.

We then define sampling-based reductions and restate existing results using our framework. In

Section 3.2, we introduce the notions of robust specifications and robust reductions, and show

that robust sampling-based reductions do not exist for transforming safety (as well as reachability)

specifications to discounted-sum rewards. Finally, we present our result on non-existence of RL

algorithms with PAC guarantees for safety (and reachability) specifications in Section 3.3.
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3.1. Reductions

There has been a lot of research on RL algorithms for reward-based specifications. The most

common approach for language-based specifications is to transform the given specification into

a reward function and then apply an existing RL algorithm that tries to maximize the expected

reward. In such cases, it is important to ensure that maximizing the expected reward corresponds to

maximizing the probability of satisfying the specification. In this section, we study such reductions

and formalize a general notion of sampling-based reductions in the RL setting—i.e., the transition

probabilities are unknown and only a simulator ofM is available.

3.1.1. Specification Translations

We first consider the simplest form of reductions, which involves translating the given specification

into another one. Given a specification φ for MDP M = (S,A, s0, P, L) we want to construct

another specification φ′ such that for any π ∈ Πopt(M, φ′), we also have π ∈ Πopt(M, φ). This

ensures that φ′ can be used to compute a policy that maximizes the objective of φ. Note that

since the transition probabilities P are not known, the translation has to be independent of P and

furthermore the above optimality preservation criterion must hold for all P .

Definition 3.1. An optimality preserving specification translation is a computable function F that

maps the tuple (S,A, s0, L, φ) to a specification φ′ such that for all transition probability functions

P , letting M = (S,A, s0, P, L), we have Πopt(M, φ′) ⊆ Πopt(M, φ).

A first attempt at a reinforcement learning algorithm for language-based specifications is to translate

the given specification to a reward machine (either discounted sum or limit average). However there

are some limitations to this approach. First, we show that it is not possible to reduce reachability

and safety objectives to reward machines with discounted-sum rewards.

Theorem 3.2. Let P = {b} and φ = Lreach({b}). There exists S, A, s0, L such that for any reward

machine specification with a discount factor φ′ = (R, γ), there is a transition probability function P

such that for M = (S,A, s0, P, L), we have Πopt(M, φ′) ̸⊆ Πopt(M, φ).
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Figure 3.1: Counterexample for reducing reachability to discounted RM.

The main idea behind the proof is that one can make the transition probabilities small enough so

that the expected time taken to reach the goal is large while maintaining an optimal probability of 1

for eventually reaching the goal. Using this idea, it is possible to define transition probabilities such

that the expected reward w.r.t. an optimal policy is smaller than the expected reward obtained by

a suboptimal policy.

Proof. Consider the MDP in Figure 3.1, which has states S = {s0, s1, s2, s3}, actions A = {a1, a2},

and labeling function L given by L(s1) = {b} (marked with double circles) and L(s0) = L(s2) =

L(s3) = ∅. Each edge denotes a state transition and is labeled by an action followed by the transition

probability; the latter are parameterized by p1, p2, and p3. At states s1, s2, and s3 the only action

available is a1.2 There are only two deterministic policies π1 and π2 in M; π1 always chooses a1,

whereas π2 first chooses a2 followed by a1 afterwards.

For the sake of contradiction, suppose there is a φ′ = (R, γ) that preserves optimality w.r.t. φ for

all values of p1, p2, and p3. WLOG, we assume that the rewards are normalized—i.e. δr : U →

[S × A × S → [0, 1]]. If p1 = p2 = p3 = 1, then taking action a1 in s0 achieves reach probability

of 1, whereas taking action a2 in s0 leads to a reach probability of 0. Hence, we must have that

Rγ(s0a1(s1a1)
ω) ≥ Rγ(s0a2(s2a1)

ω) + ε for some ε > 0, as otherwise, π2 maximizes JM
φ′ but does

not maximize JM
φ .

For any finite run ζ ∈ Zf (S,A), let Rγ(ζ) denote the finite discounted-sum reward of ζ. Let t be
2This can be modeled by adding an additional dead state that is reached upon taking action a2 in these states.
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such that γt

1−γ ≤
ε
2 . Then, for any ζ ∈ Z(S,A), we have

Rγ(s0a1(s1a1)
ω) ≥ Rγ(s0a2(s2a1)

ω) + ε

≥ Rγ(s0a2(s2a1)
ts2) + ε

≥ Rγ(s0a2(s2a1)
ts2) +

γt

1− γ
+
ε

2
.

Since limp3→1 p
t
3 = 1, there exists p3 < 1 such that 1 − pt3 ≤ ε

8(1 − γ). Let p1 < 1 be such that

p1 · Rγ(s0a1(s1a1)
ω) ≥ Rγ(s0a2(s2a1)

ts2) +
γt

1−γ + ε
4 and let p2 = 1. Then, we have

JM
φ′ (π1) ≥ p1 · Rγ(s0a1(s1a1)

ω)

≥ Rγ(s0a2(s2a1)
ts2) +

γt

1− γ
+
ε

4

≥ pt3 ·
(
Rγ(s0a2(s2a1)

ts2) +
γt

1− γ

)
+
ε

4

≥ pt3 ·
(
Rγ(s0a2(s2a1)

ts2) +
γt

1− γ

)
+ (1− pt3) ·

( 1

1− γ

)
+
ε

8

> JM
φ′ (π2),

where the last inequality followed from the fact that when using π2, the system stays in state s2 for

at least t steps with probability pt3, and the reward of such trajectories is bounded from above by

Rγ(s0a2(s2a1)
ts2)+

γt

1−γ , along with the fact that the reward of any other trajectory is bounded by

1
1−γ . This leads to a contradiction since π1 maximizes JM

φ′ but JM
φ (π1) = p1 < 1 = JM

φ (π2).

We do not use the fact that the reward machine is finite state in the proof; therefore, the above

result applies to general non-Markovian reward functions of the form R : Zf (S,A) → [0, 1] with

γ-discounted reward defined by Rγ(ζ) =
∑∞

i=0 γ
iR(ζ0:i). The proof can be easily modified to show

the result for safety specifications as well.

The main challenge in translating to discounted-sum rewards is the fact that the rewards vanish

over time and the overall reward depends primarily on the first few steps. This issue can be partly

overcome by using limit-average rewards. In fact, we have the following theorem.
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u0 u1
any(X) / 1

¬any(X) / 0 ⊤ / 1

Figure 3.2: ARM for φ = Lreach(X).

Theorem 3.3. There exists an optimality preserving specification translation from reachability and

safety specifications to abstract reward machines (with limit-average aggregation).

Proof. An abstract reward machine for the specification φ = Lreach(X) is shown in Figure 3.2. Each

transition is labeled by a Boolean formula over P followed by the reward. We use any(X) to denote∨
b∈X b. It is easy to see that for any MDPM and any policy π ofM, we have JM

R (π) = JM
φ (π). An

ARM for φ = Lsafe(P\X) is obtained by replacing the reward value r by 1−r on all transitions.

However, we can show that there does not exist an ARM for the specification φ = Lltl(□♢b), which

requires the proposition b to be true infinitely often. Intuitively, the result follows from the fact

that, given any ARM, we can construct an infinite word w ∈ (2P)ω in which b holds true rarely but

infinitely often such that w achieves a lower limit-average reward than another word w′ in which b

holds true more frequently.

Theorem 3.4. Let P = {b} and φ = Lltl(□♢b). For any ARM specification φ′ = R with limit-

average rewards, there exists an MDP M = (S,A, s0, P, L) such that Πopt(M, φ′) ̸⊆ Πopt(M, φ).

Proof. For the sake of contradiction, let φ′ = R = (U, u0, δu, δr) be an ARM that preserves opti-

mality w.r.t φ for all MDPs. The extended state transition function δu : U × (2P)∗ → U is defined

naturally. WLOG, we assume that all states in R are reachable from the initial state and that the

rewards are normalized—i.e., δr : U → [2P → [0, 1]].

A cycle in R is a sequence C = u1ℓ1u2ℓ2 . . . ℓkuk+1 where ui ∈ U , ℓi ∈ 2P , ui+1 = δu(ui, ℓi) for all i,

uk+1 = u1, and the states u1, . . . , uk are distinct. A cycle is negative if ℓi = ∅ for all i, and positive if

ℓi = {b} for all i. The average reward of a cycle C is given by Ravg(C) =
1
k

∑k
i=1 δr(ui)(ℓi). For any

cycle C = u1ℓ1 . . . ℓkuk+1 we can construct a deterministic MDPMC with a single action that first
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generates a sequence of labels σ such that δu(u0, σ) = u1, and then repeatedly generates the sequence

of labels ℓ1 . . . ℓk. The limit average reward of the only policy π inMC is JMC
R (π) = Ravg(C) since

the cycle C repeats indefinitely.

Now, given any positive cycle C+ and any negative cycle C−, we claim that Ravg(C+) > Ravg(C−).

To show this, consider an MDP M with two actions a1 and a2 such that taking action a1 in the

initial state s0 leads to MC+ , and taking action a2 in s0 leads to MC− . The policy π1 that takes

action a1 in s0 achieves a satisfaction probability of JM
φ (π1) = 1, whereas the policy π2 taking

action a2 in s0 achieves JM
φ (π2) = 0. Since JM

R (π1) = Ravg(C+) and JM
R (π2) = Ravg(C−), we must

have that Ravg(C+) > Ravg(C−) to preserve optimality w.r.t. φ. Since there are only finitely many

cycles in R, there exists an ε > 0 such that for any positive cycle C+ and any negative cycle C− we

have Ravg(C+) ≥ Ravg(C−) + ε.

Consider a bottom strongly connected component (SCC) of the graph of R. We show that this com-

ponent contains a negative cycle C− = u1ℓ1 . . . ℓkuk+1 along with a second cycle C = u′1ℓ
′
1 . . . ℓ

′
k′u

′
k′+1

such that u′1 = u1 and ℓ′1 = {b}. To construct C−, from any state in the bottom SCC of R, we

can follow edges labeled ℓ = ∅ until we repeat a state, and let this state be u1. Then, to construct

C, from u′1 = u1, we can follow the edge labeled ℓ′1 = {b} to reach u′2 = δ(u′1, ℓ
′
1); since we are in

the bottom SCC, there exists a path from u′2 back to u′1. Now, consider a sequence of the form

Cm = Cm
−C, where m ∈ N. We have

Ravg(Cm) =
mkRavg(C−) + k′Ravg(C)

mk + k′

≤ mk

mk + k′
Ravg(C−) +

k′

mk + k′

≤ Ravg(C−) +
k′

mk + k′
.

Letm be such that k′

mk+k′ ≤
ε
2 and C+ be any positive cycle. Then, we haveRavg(C+) ≥ Ravg(Cm)+

ε
2 ; therefore, there exists p < 1 such that p · Ravg(C+) ≥ Ravg(Cm) + ε

4 . Now, we can construct an

MDPM in which (i) taking action a1 in initial state s0 leads toMC+ with probability p, and to a

dead state (where b does not hold) with probability 1− p, and (ii) taking action a2 in initial state
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s0 leads to a deterministic single-action component that forces R to reach u1 (recall that WLOG,

all states in R are assumed to be reachable from u0), and then generates the sequence of labels in

Cm indefinitely. Let π1 and π2 be policies that select a1 and a2 in s0, respectively. Then, we have

JM
R (π1) ≥ p · Ravg(C+) ≥ Ravg(Cm) +

ε

4
= JM

R (π2) +
ε

4
.

However JM
φ (π1) = p < 1 = JM

φ (π2), which is a contradiction.

Note that the above theorem only claims the non-existence of abstract reward machines for the LTL

specification □♢b, whereas Theorem 3.2 holds for arbitrary reward machines and history dependent

reward functions. Also, we do not rule out the possibility of a specification translation that con-

structs different ARMs (with limit-average rewards) for the same LTL objective depending on S,

A, s0 and L. This leads to the following natural question.

Open Problem 1. Does there exist an optimality preserving specification translation from LTL

specifications to reward machines with limit-average rewards?

3.1.2. Sampling-based Reduction

The previous section suggests that keeping the MDP M fixed might be insufficient for reducing

LTL specifications to reward-based ones. In this section, we formalize the notion of a sampling-

based reduction where we are allowed to modify the MDP M in a way that makes it possible to

simulate the modified MDP M̄ using a simulator for M without the knowledge of the transition

probabilities ofM.

Given an RL task (M, φ) we want to construct another RL task (M̄, φ′) and a function f that maps

policies in M̄ to policies inM such that for any policy π̄ ∈ Πopt(M̄, φ′), we have f(π̄) ∈ Πopt(M, φ).

Since it should be possible to simulate M̄ without the knowledge of the transition probability

function P ofM, we impose several constraints on M̄.

Let M = (S,A, s0, P, L) and M̄ = (S̄, Ā, s̄0, P̄ , L̄). First, it must be the case that S̄, Ā, s̄0, L̄

and f are independent of P . Second, since the simulator of M̄ uses the simulator of M we can
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assume that at any time, the state of the simulator of M̄ includes the state of the simulator ofM.

Formally, there is a map β : S̄ → S such that for any s̄, β(s̄) is the state ofM stored in s̄. Since it

is only possible to simulateM starting from s0 we must have β(s̄0) = s0. Next, when taking a step

in M̄, a step in M may or may not occur, but the probability that a transition is sampled from

M should be independent of P . Given these desired properties, we are ready to define a step-wise

sampling-based reduction.

Definition 3.5. A step-wise sampling-based reduction is a computable function F that maps the

tuple (S,A, s0, L, φ) to a tuple (S̄, Ā, s̄0, L̄, f, β, α, q1, q2, φ
′) where f : Π(S̄, Ā) → Π(S,A), β : S̄ →

S, α : S̄ × Ā→ D(A), q1 : S̄ × Ā× S̄ → [0, 1], q2 : S̄ × Ā×A× S̄ → [0, 1] and φ′ is a specification

such that

• β(s̄0) = s0,

• q1(s̄, ā, s̄
′) = 0 if β(s̄) ̸= β(s̄′) and,

• for any s̄ ∈ S̄, ā ∈ Ā, a ∈ A, and s′ ∈ S we have

∑
s̄′∈β−1(s′)

q2(s̄, ā, a, s̄
′) = 1−

∑
s̄′∈S̄

q1(s̄, ā, s̄
′). (3.1)

For any transition probability function P : S×A×S → [0, 1], the new transition probability function

P̄ : S̄ × Ā× S̄ → [0, 1] is defined by

P̄ (s̄, ā, s̄′) = q1(s̄, ā, s̄
′) + Ea∼α(s̄,ā)[q2(s̄, ā, a, s̄

′)P (β(s̄), a, β(s̄′))]. (3.2)

In Equation 3.2, q1(s̄, ā, s̄′) denotes the probability with which M̄ steps to s̄′ without sampling a

transition fromM. In the event that a step inM does occur, α(s̄, ā)(a) gives the probability of the

action a taken in M and q2(s̄, ā, a, s̄′) is the (unnormalized) probability with which M̄ transitions

to s̄′ given that action a in M caused a transition to β(s̄′). It is easy to see that, for any P , P̄

defined in Equation 3.2 is a valid transition probability function.
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Lemma 3.6. Given a step-wise sampling-based reduction F , for any MDP M = (S,A, s0, P, L)

and specification φ, the function P̄ defined by F is a valid transition probability function.

Proof. It is easy to see that P̄ (s̄, ā, s̄′) ≥ 0 for all s̄, s̄′ ∈ S̄ and ā ∈ Ā. Now for any s̄ ∈ S̄ and ā ∈ Ā,

letting
∑

s̄′ q1(s̄, ā, s̄
′) = p(s̄, ā), we have

∑
s̄′∈S̄

P (s̄, ā, s̄′) = p(s̄, ā) +
∑
s̄′∈S̄

Ea∼α(s̄,ā)[q2(s̄, ā, a, s̄
′)P (β(s̄), a, β(s̄′))]

= p(s̄, ā) + Ea∼α(s̄,ā)

[ ∑
s̄′∈S̄

q2(s̄, ā, a, s̄
′)P (β(s̄), a, β(s̄′))

]
= p(s̄, ā) + Ea∼α(s̄,ā)

[ ∑
s′∈S

∑
s̄′∈β−1(s′)

q2(s̄, ā, a, s̄
′)P (β(s̄), a, β(s̄′))

]
= p(s̄, ā) + Ea∼α(s̄,ā)

[ ∑
s′∈S

P (β(s̄), a, s′)
∑

s̄′∈β−1(s′)

q2(s̄, ā, a, s̄
′))

]
= p(s̄, ā) + Ea∼α(s̄,ā)

[ ∑
s′∈S

P (β(s̄), a, s′)(1− p(s̄, ā))
]

= 1,

where the penultimate step followed from Equation 3.1.

Example 3.1. A simple example of a step-wise sampling-based reduction is the product construction

used to translate reward machines to regular reward functions [76]. Let R = (U, u0, δu, δr). Then,

we have S̄ = S×U , Ā = A, s̄0 = (s0, u0), L̄(s, u) = L(s), β(s, u) = s, α(a)(a′) = 1(a′ = a), q1 = 0,

and q2((s, u), a, a
′, (s′, u′)) = 1(u′ = δu(u, s

′)). The specification φ′ is a reward function given by

R((s, u), a, (s′, u′)) = δr(u)(s, a, s
′), and f(π̄) is a policy that keeps track of the reward machine state

and acts according to π̄.

Given an MDPM = (S,A, s0, P, L) and a specification φ, the reduction F defines a unique triplet

(M̄, φ′, f) with M̄ = (S̄, Ā, s̄0, P̄ , L̄), where S̄, Ā, s̄0, L̄, f and φ′ are obtained by applying F to

(S,A, s0, L, φ) and P̄ is defined by Equation 3.2. We let F(M, φ) denote the triplet (M̄, φ′, f).

Given a simulator S ofM, we can construct a simulator S̄ of M̄ as follows.
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Algorithm 1 Step function of the simulator S̄ of M̄ given β, α, q1, q2 and a simulator S ofM.

function S̄.step(ā)
s̄← S̄.state
p←

∑
s̄′ q1(s̄, ā, s̄

′)
x ∼ Uniform(0, 1)
if x ≤ p then

S̄.state← s̄′ ∼ q1(s̄, ā, s̄
′)

p
else
a ∼ α(s̄, ā)
s′ ← S.step(a)

S̄.state← s̄′ ∼ q2(s̄, ā, a, s̄
′)1(β(s̄′) = s′)

1− p
{Ensures β(s̄′) = s′}

end if
return S̄.state

end function

S̄.reset(): This function internally sets the current state of the MDP to s̄0 and calls the reset

function ofM.

S̄.step(ā): This function is outlined in Algorithm 1. We use s̄′ ∼ ∆(s̄′) to denote that s̄′ is sampled

from the distribution defined by ∆. It takes a step without calling S.step with probability p.

Otherwise, it samples an action a according to α(s̄, ā), calls S.step(a) to get next state s′ of

M and then samples an s̄′ satisfying β(s̄′) = s′ based on q2. Equation 3.1 ensures that q2
1−p

defines a valid distribution over β−1(s′).

We call the reduction step-wise since at most one transition of M can occur during a transition of

M̄. Under this assumption, we justify the general form of P̄ . Let s̄ and ā be fixed. Let XS̄ be a

random variable denoting the next state in M̄ and XA be a random variable denoting the action

taking in M (it takes a dummy value ⊥ /∈ A when no step in M is taken). Then, for any s̄′ ∈ S̄,

we have

Pr[XS̄ = s̄′] = Pr[XS̄ = s̄′ ∧XA = ⊥] +
∑
a∈A

Pr[XS̄ = s̄′ ∧XA = a].
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Now, we have

Pr[XS̄ = s̄′ ∧XA = a]

= Pr[XA = a] Pr[XS̄ = s̄′ | XA = a]

= Pr[XA = a] Pr[β(XS̄) = β(s̄′) | XA = a] Pr[XS̄ = s̄′ | XA = a, β(XS̄) = β(s̄′)]

= P (β(s̄), a, β(s̄′)) · Pr[XA = a] Pr[XS̄ = s̄′ | XA = a, β(XS̄) = β(s̄′)].

Taking q1(s̄, ā, s̄
′) = Pr[XS̄ = s̄′ ∧ XA = ⊥], α(s̄, ā)(a) = Pr[XA = a]/Pr[XA ̸= ⊥], and

q2(s̄, ā, a, s̄
′) = Pr[XS̄ = s̄′ | XA = a, β(XS̄) = β(s̄′)] · Pr[XA ̸= ⊥], we obtain the form of P̄

in Definition 3.5. Note that Equation 3.1 holds since both sides evaluate to Pr[XA ̸= ⊥].

To be precise, it is also possible to reset the MDPM to s0 in the middle of a run of M̄. This can be

modeled by taking α(s̄, ā) to be a distribution over A×{0, 1}, where (a, 0) represents taking action

a in the current state β(s̄) and (a, 1) represents taking action a in s0 after a reset. We would also

have q2 : S̄×Ā×A×{0, 1}× S̄ → [0, 1] and furthermore q1(s̄, ā, s̄′) can be nonzero if β(s̄′) = s0. For

simplicity, we use Definition 3.5 without considering resets inM during a step of M̄. However, the

discussions in the rest of the chapter apply to the general case as well. Now we define the optimality

preservation criterion for sampling-based reductions.

Definition 3.7. A step-wise sampling-based reduction F is optimality preserving if for any RL task

(M, φ) letting (M̄, φ′, f) = F(M, φ) we have the property f(Πopt(M̄, φ′)) ⊆ Πopt(M, φ) where

f(Π) = {f(π) | π ∈ Π} for a set of policies Π.

It is easy to see that the reduction in Example 3.1 is optimality preserving for both discounted-

sum and limit-average rewards since JM̄
φ′ (π̄) = JM

φ (f(π̄)) for any policy π̄ ∈ Π(S̄, Ā). Another

interesting observation is that we can reduce discounted-sum rewards with multiple discount factors

γ : S →]0, 1[ to the usual case with a single discount factor.

Theorem 3.8. There is an optimality preserving step-wise sampling-based reduction F such that

for any M = (S,A, s0, P ) and φ = (R, γ), where R : S × A × S → R and γ : S → (0, 1), we have
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f(M, φ) = (M̄, φ′, f), where φ′ = (R′, γ′), with R′ : S̄ × Ā× S̄ → R and γ′ ∈ (0, 1).

Proof. Let S̄ = S ⊔ {s⊥}, where s⊥ is a new sink state, Ā = A, and s̄0 = s0. We set γ′ = γmax =

maxs∈S γ(s), and define R′ by R′(s, a, s′) = γmax

γ(s) R(s, a, s
′) if s, s′ ∈ S and 0 otherwise. We define

P̄ (s⊥, a, s⊥) = 1 for all a ∈ A. For any s ∈ S, we have P̄ (s, a, s′) = γ(s)
γmax

P (s, a, s′) if s′ ∈ S and

P̄ (s, a, s⊥) = 1− γ(s)
γmax

. Intuitively, M̄ transitions to the sink state s⊥ with probability 1− γ(s)
γmax

from

any state s on taking any action a which has the effect of reducing the discount factor from γmax to

γ(s) in state s since all future rewards are 0 after transitioning to s⊥. Although we explicitly defined

P̄ , note that it has the general form of Equation 3.2 and can be sampled from without knowing P .

Now, we take φ′ = (R′, γ′), and f(π̄) to be π̄ restricted to Zf (S,A). It is easy to see that for any

π̄ ∈ Π(S̄, A), we have JM̄
φ′ (π̄) = JM

φ (f(π̄)); therefore, this reduction preserves optimality.

3.1.3. Reductions from Temporal Logic Specifications

A number of strategies have been recently proposed for learning policies from temporal specifications

by reducing them to reward-based specifications. For instance, Hasanbeig et al. [66, 67] propose

a reduction from LTL specifications to discounted rewards which proceeds by first constructing a

product of the MDPM with a Limit Deterministic Büchi automaton (LDBA) Aφ derived from the

LTL formula φ and then generates transition-based rewards in the product MDP. The strategy is

to assign a fixed positive reward of r when an accepting state in Aφ is reached and 0 otherwise. As

shown in [61], this strategy does not always preserve optimality if the discount factor γ is required

to be strictly less that one. Similar approaches are proposed in [158, 32], though they do not provide

optimality preservation guarantees.

A recent paper [61] presents a step-wise sampling-based reduction from LTL specifications to limit-

average rewards. It first constructs an LDBA Aφ from the LTL formula φ and then considers a

productM⊗Aφ of the MDPM with Aφ in which the nondeterminism of Aφ is handled by adding

additional actions that represent the choice of possible transitions in Aφ that can be taken. Now, the

reduced MDP M̄ is obtained by adding an additional sink state s̄⊥ with the property that whenever

an accepting state of Aφ is reached in M̄, there is a (1−λ) probability of transitioning to s̄⊥ during
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the next transition in M̄. They show that for a large enough value of λ, any policy maximizing

the probability of reaching s̄⊥ in M̄ can be used to construct a policy that maximizes JM
Lltl(φ)

. As

shown before, this reachability property in M̄ can be translated to limit-average rewards. The main

drawback of this approach is that the lower bound on λ for preserving optimality depends on the

transition probability function P ; hence, it is not possible to correctly pick the value of λ without

the knowledge of P . A heuristic used in practice is to assign a default large value to λ. Their result

can be summarized as follows.

Theorem 3.9 ([61]). There is a family of step-wise sampling-based reductions {Fλ}λ∈(0,1) such that

for any MDP M and LTL specification φ, there exists a λM,φ ∈ (0, 1) such that for all λ ≥ λM,φ,

letting (M̄λ, φ
′
λ, fλ) = Fλ(M, φ), we have fλ(Πopt(M̄λ, φ

′
λ)) ⊆ Πopt(M, φ) and φ′

λ = Rλ : S ×A×

S → R is a limit-average reward specification.

Hahn et al. [62] show that the above approach can be modified to get less sparse rewards with

similar guarantees using two discount factors γ1 < 1 and γ2 = 1 (where γ2 = 1 is only used in steps

at which the reward is zero).

Another approach [28] with an optimality preservation guarantee reduces LTL specifications to

discounted rewards with two discount factors γ1 < γ2 < 1 which are applied in different states.

This approach uses the product M× Aφ as M̄ and assigns a reward of 1 − γ1 to the accepting

states (where discount factor γ1 is applied) and 0 to the remaining states (where discount factor

γ2 is applied). Applying Theorem 3.8 we get the following result as a corollary of the optimality

preservation guarantee of this approach.

Theorem 3.10 ([28]). There is a family of step-wise sampling-based reductions {Fγ}γ∈(0,1) such

that for any MDPM and LTL specification φ, there exists γM,φ ∈ (0, 1) such that for all γ ≥ γM,φ,

letting (M̄γ , φ
′
γ , fγ) = Fγ(M, φ), we have fγ(Πopt(M̄γ , φ

′
γ)) ⊆ Πopt(M, φ) and φ′

γ = (Rγ , γ) is a

discounted-sum reward specification.

Similar to [61], the optimality preservation guarantee only applies to large enough γ, and the lower

bound on γ depends on the transition probability function P .
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It is unknown if there exists an optimality preserving step-wise sampling-based reduction from LTL

specifications to reward-based specifications that is completely independent of P .

Open Problem 2. Does there exist an optimality preserving step-wise sampling-based reduction F

such that for any RL task (M, φ) where φ is an LTL specification, letting (M̄, φ′, f) = F(M, φ),

we have that φ′ is a reward-based specification (either limit-average or discounted-sum)?

3.2. Robustness

A key property of discounted reward specifications that is exploited by RL algorithms is robustness.

In this section, we discuss the concept of robustness for specifications as well as reductions. We

show that robust reductions from LTL specifications to discounted rewards are not possible due to

the fact that LTL specifications are not robust.

3.2.1. Robust Specifications

A specification φ is said to be robust [108] if an optimal policy for φ in an estimateM′ of the MDP

M achieves close to optimal performance in M. Formally, an MDP M = (S,A, s0, P, L) is said to

be δ-close to another MDPM′ = (S,A, s0, P
′, L) if their states, actions, initial states, and labeling

functions are identical and their transition probabilities differ by at most a δ amount—i.e.,

|P (s, a, s′)− P ′(s, a, s′)| ≤ δ

for all s, s′ ∈ S and a ∈ A.

Definition 3.11. A specification φ is robust if for any MDPM for which φ is a valid specification

and ε > 0, there exists a δM,ε > 0 such that if MDPM′ is δM,ε-close toM, then an optimal policy

in M′ is an ε-optimal policy in M—i.e., Πopt(M′, φ) ⊆ Πε
opt(M, φ).

The simulation lemma in [92] proves that discounted-sum rewards are robust. On the other hand,

[108] shows that language-based specifications, even safety specifications, are not robust. Here, we

give a slightly modified example (that we will use later) to show that the specification φ = Lsafe({b})

is not robust which also shows that limit-average rewards are not robust.
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Figure 3.3: Example showing non-robustness of Lsafe({b}).

Theorem 3.12 ([108]). There exists an MDP M and a safety specification φ such that, for any

δ > 0, there is an MDP Mδ that is δ-close to M which satisfies Πopt(Mδ, φ) ∩Πε
opt(M, φ) = ∅ for

all ε < 1.

Proof. Consider the MDPM in Figure 3.3 with p1 = p2 = 1; the double circles denote states where b

holds. Then, an optimal policy for φ = Lsafe({b}) always selects action a1 and achieves a satisfaction

probability of 1. Now let Mδ denote the same MDP with p1 = p2 = 1 − δ. Then, any optimal

policy for φ inMδ must select a2 almost surely, which is not optimal forM. In fact, such a policy

achieves a satisfaction probability of 0 inM. Therefore, we have Πopt(Mδ, φ)∩Πε
opt(M, φ) = ∅ for

any δ > 0 and any ε < 1.

3.2.2. Robust Reductions

In our discussion of reductions, we were interested in optimality preserving sampling-based re-

ductions mapping an RL task (M, φ) to another task (M̄, φ′). However, in the learning setting,

if we use a PAC-MDP algorithm to compute a policy π̄ for (M̄, φ′), it might be the case that

π̄ /∈ Πopt(M̄, φ′). Therefore, we cannot conclude anything useful about the optimality of the corre-

sponding policy f(π̄) in M w.r.t. φ. Ideally, we would like to ensure that for any ε > 0 there is a

ε′ > 0 such that an ε′-optimal policy for (M̄, φ′) corresponds to an ε-optimal policy for (M, φ).

Definition 3.13. A step-wise sampling-based reduction F is robust if for any RL task (M, φ) with

(M̄, φ′, f) = F(M, φ) and any ε > 0, there is an ε′ > 0 such that f(Πε′
opt(M̄, φ′)) ⊆ Πε

opt(M, φ).

Observe that for any optimal policy π̄ ∈ Πopt(M̄, φ′) for M̄ and φ′, we have f(π̄) ∈
⋂

ε>0Π
ε
opt(M, φ) =

Πopt(M, φ); hence, a robust reduction is also optimality preserving. Although a robust reduction

32



is preferred when translating LTL specifications to discounted-sum rewards, the following theorem

shows that such a reduction is not possible.

Theorem 3.14. Let P = {b} and φ = Lsafe({b}). Then, there does not exist a robust step-wise

sampling-based reduction F with the property that for any given M, if (M̄, φ′, f) = F(M, φ), then

φ′ is a robust specification and Πopt(M̄, φ′) ̸= ∅.

Proof. Consider the MDP M = (S,A, s0, P, L) in Figure 3.3 with p1 = p2 = 1, and consider any

ε < 1. From Theorem 3.12, we know that for any δ > 0 there is an MDPMδ = (S,A, s0, Pδ, L) that

is δ-close to M such that Πopt(Mδ, φ) ∩ Πε
opt(M, φ) = ∅. For the sake of contradiction, suppose

that such a reduction exists. Then, since M and Mδ represent the same input (S,A, s0, L, φ), the

reduction outputs the same tuple (S̄, Ā, s̄0, L̄, f, β, α, q1, q2, φ
′) in both cases. Furthermore, from

Equation 3.2 it follows, that the new transition probability functions P̄ and P̄δ corresponding to P

and Pδ differ by at most a δ amount—i.e., |P̄ (s̄, ā, s̄′)− P̄δ(s̄, ā, s̄
′)| ≤ δ for all s̄, s̄′ ∈ S̄ and ā ∈ Ā.

Let M̄ and M̄δ be the MDPs corresponding to P̄ and P̄δ.

Let ε′ > 0 be such that f(Πε′
opt(M̄, φ′)) ⊆ Πε

opt(M, φ). Since the specification φ′ is robust, there is

a δ = δM̄,ε′ > 0 such that Πopt(M̄δ, φ
′) ⊆ Πε′

opt(M̄, φ′). Let π̄ ∈ Πopt(M̄δ, φ
′) be an optimal policy

for M̄δ w.r.t. φ′. Now, since the reduction is optimality preserving, we have f(π̄) ∈ Πopt(Mδ, φ).

But then, we also have f(π̄) ∈ Πε
opt(M, φ), which contradicts our assumption onMδ.

We observe that the above result holds when the reduction is allowed to take at most one step in

M during a step in M̄ (and can be generalized to a bounded number of steps). This leads to the

following open problem.

Open Problem 3. Does there exist a robust sampling-based reduction F such that for any RL task

(M, φ), where φ is an LTL specification, letting (M̄, φ′, f) = F(M, φ), we have that φ′ is a dis-

counted reward specification (allowing M̄ to take unbounded number of steps in M per transition)?

Note that even if such a reduction is possible, simulating M̄ would be computationally hard since

there might be no bound on the time it takes for a step in M̄ to occur.
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3.3. Reinforcement Learning from LTL Specifications

We formalized a notion of sampling-based reduction for MDPs with unknown transition probabil-

ities. Although reducing LTL specifications to discounted rewards is a natural approach towards

obtaining learning algorithms for LTL specifications, we showed that step-wise sampling-based re-

ductions are insufficient to obtain learning algorithms with guarantees. This leads us to the natural

question of whether it is possible to design learning algorithms for LTL specifications with guaran-

tees. Unfortunately, it turns out that it is not possible to obtain PAC-MDP algorithms for safety

specifications.

Theorem 3.15. There does not exist a PAC-MDP algorithm for the class of safety specifications.

Theorem 3.14 shows that it is not possible to obtain a PAC-MDP algorithm for safety specifi-

cations by simply applying a step-wise sampling-based reduction followed by a PAC-MDP algo-

rithm for discounted-sum reward specifications. Also, Theorem 3.14 does not follow from Theo-

rem 3.15 because, the definition of a robust reduction allows the maximum value of ε′ that satisfies

f(Πε′
opt(M̄, φ′)) ⊆ Πε

opt(M̄, φ) to depend on the transition probability function P of M. However

the sample complexity function h of a PAC-MDP algorithm (Definition 2.2) should be independent

of P .

Intuitively, Theorem 3.15 follows from that fact that, when learning from simulation, it is highly

likely that the learning algorithm will encounter identical transitions when the underlying MDP is

modified slightly. This makes it impossible to infer an ε-optimal policy using a number of samples

that is independent of the transition probabilities since safety specifications are not robust.

Proof. Suppose there is a PAC-MDP algorithm A for the class of safety specifications. Consider

P = {b} and the family of MDPs shown in Figure 3.4 where double circles denote states at which

b holds. Let φ = Lsafe({b}) and 0 < ε < 1
2 . For any δ > 0, we use M1

δ to denote the MDP with

p1 = 1 and p2 = 1 − δ, and M2
δ to denote the MDP with p1 = 1 − δ and p2 = 1. Finally, let M

denote the MDP with p1 = p2 = 1. We first show the following.
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Figure 3.4: A class of MDPs for showing no PAC-MDP algorithm exists for safety specifications.

Lemma 3.16. For any δ ∈ (0, 1), we have Πε
opt(M1

δ , φ) ∩Πε
opt(M2

δ , φ) = ∅.

Proof. Suppose π ∈ Πε
opt(M1

δ , φ) is an ε-optimal policy forM1
δ w.r.t. φ. Let xi = π((s0a1)

is0)(a1)

denote the probability that π chooses a1 after i self-loops in s0. Then J
M1

δ
φ (π) = limt→∞

∏t
i=0 xi

since choosing a2 in s0 leads to eventual violation of the safety specification. The policy π∗1 that

always chooses a1 achieves a value of JM1
δ

φ (π∗1) = J ∗(M1
δ , φ) = 1. Since π ∈ Πε

opt(M1
δ , φ) we

have limt→∞
∏t

i=0 xi ≥ 1 − ε. Therefore
∏t

i=0 xi ≥ 1 − ε for all t ∈ N since zt =
∏t

i=0 xi is a

non-increasing sequence.

Now let Et = Cyl((s0a1)ts1) denote the set of all runs that reach s1 after exactly t steps while

staying in s0 until then. We have

DM2
δ

π (Et) = (1− p1)pt−1
1

t−1∏
i=0

xi ≥ δ(1− δ)t−1(1− ε).

Since {Et}∞t=1 are pairwise disjoint sets, letting E =
⋃∞

t=1Et, we have

DM2
δ

π (E) =

∞∑
t=1

DM2
δ

π (Et) ≥
∞∑
t=1

δ(1− δ)t−1(1− ε) = 1− ε.

But we have that E ⊆ B = {ζ ∈ Z(S,A) | L(ζ) /∈ Lsafe({b})} and hence JM2
δ

φ (π) = 1−DM2
δ

π (B) ≤

1−DM2
δ

π (E) ≤ ε. Any policy π∗2 that picks a2 in the first step achieves JM2
δ

φ (π∗2) = J ∗(M2
δ , φ) = 1.

Since ε < 1
2 , we have JM2

δ
φ (π) ≤ ε < 1

2 < 1 − ε = J ∗(M2
δ , φ) − ε which implies π /∈ Πε

opt(M2
δ , φ).
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Therefore Πε
opt(M1

δ , φ) ∩Πε
opt(M2

δ , φ) = ∅ for all δ ∈ (0, 1).

Now let h be the sample complexity function of A as in Definition 2.2. We let p = 0.1 and

N = h(|S|, |A|, |φ|, 1p ,
1
ε ). We let K = 2N + 1 and choose δ ∈ (0, 1) such that (1 − δ)K ≥ 0.9. Let

{πn}∞n=1 denote the sequence of output policies of A when run onM with the precision ε < 1
2 and

p = 0.1. For j ∈ {1, 2}, let Ej denote the event that at most N out of the first K policies {πn}Kn=1

are not ε-optimal forMj
δ (when A is run onM). Then we have PrMA (E1) + PrMA (E2) ≤ 1 because

E1 and E2 are disjoint events (due to Lemma 3.16).

For j ∈ {1, 2}, we let {πjn}∞n=1 be the sequence of output policies of A when run on Mj
δ with the

same precision ε and p = 0.1. Let Fj denote the event that at most N out of the first K policies

{πjn}Kn=1 are not ε-optimal forMj
δ (when A is run onMj

δ). Then PAC-MDP guarantee of A gives

us that Pr
Mj

δ
A (Fj) ≥ 0.9 for j ∈ {1, 2}. Now let Gj denote the event that the the first K samples

from Mj
δ correspond to the deterministic transitions in M—i.e., taking a1 in s0 leads to s0 and

taking any action in s2 leads to s2. We have that Pr
Mj

δ
A (Gj) ≥ (1− δ)K ≥ 0.9 for j ∈ {1, 2}.

Applying union bound, we get that Pr
Mj

δ
A (Fj ∧ Gj) ≥ 0.8 for j ∈ {1, 2}. The probability of any

execution (sequence of output policies, actions taken, resets performed and transitions observed)

of A on Mj
δ that satisfies the conditions of Fj and Gj is less than or equal to the probability of

obtaining the same execution when A is run onM and furthermore such an execution also satisfies

the conditions of Ej . Therefore, we have PrMA (Ej) ≥ Pr
Mj

δ
A (Fj ∧Gj) ≥ 0.8 for j ∈ {1, 2}. But this

contradicts the fact that PrMA (E1) + PrMA (E2) ≤ 1.

We can also conclude that PAC-MDP algorithms do not exist for limit-average rewards since safety

specifications can be encoded using limit-average rewards. Our proof of Theorem 3.15 can be

modified to show the result for reachability as well.

A concurrent work [157] characterizes the class of LTL specifications for which PAC-MDP algorithms

exist. An LTL formula φ is finitary if there exists a horizonH such that infinite length words sharing

the same prefix of length H are either all accepted or all rejected by φ. Then, their result can be
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summarized as follows.

Theorem 3.17 ([157]). There exists a PAC-MDP algorithm for an LTL specification φ if and only

if φ is finitary.

Next, to the best of our knowledge, it is unknown if there is a learning algorithm that converges in

the limit for the class of LTL specifications.

Open Problem 4. Does there exist a learning algorithm that converges in the limit for the class

of LTL specifications?

Observe that algorithms that converge in the limit do not necessarily have a bound on the number

of samples needed to learn an ε-optimal policy; instead, they only guarantee that the values of the

policies {JM
φ (πn)}∞n=1 converge to the optimal value J ∗(M, φ) almost surely. Therefore, the rate

of convergence can be arbitrarily small and can depend on the transition probability function P .

3.4. Summary

We have established a formal framework for sampling-based reductions of RL tasks. Given an

RL task (an MDP and a specification), the goal is to generate another RL task such that the

transformation preserves optimal solutions and is (optionally) robust. A key challenge is that the

transformation must be defined without the knowledge of the transition probabilities.

This framework offers a unified view of the literature on RL from logical specifications, in which an

RL task with a logical specification is transformed to one with a reward-based specification. We

defined optimality preserving as well as robust sampling-based reductions of RL tasks. Specification

translations are a special form of sampling-based reductions in which the underlying MDP is not

altered. We showed that specification translations from LTL to reward machines with discounted-

sum objectives do not preserve optimal solutions. This motivated the need for transformations

in which the underlying MDP may be altered. By revisiting such transformations from existing

literature within our framework, we exposed the nuances in their theoretical guarantees about opti-

mality preservation. Specifically, known transformations from LTL specifications to rewards are not
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strictly optimality preserving sampling-based reductions since they depend on parameters which

are not available in the RL setting such as some information about the transition probabilities of

the MDP. We showed that LTL specifications, which are non-robust, cannot be robustly trans-

formed to a robust specification, such as discounted-sum rewards. We also proved that there are

LTL specifications, including simple safety specifications, that do not admit PAC-MDP learning

algorithms.

Finally, we are left with multiple open problems. Notably, it is unknown whether there exists a

learning algorithm for LTL that converges in the limit and does not depend on any unavailable

information about the MDP. However, existing algorithms for learning from LTL specifications

have been demonstrated to be effective in practice, even for continuous state MDPs. This shows

that there is a gap between the theory and practice suggesting that we need better measures for

theoretical analysis of such algorithms; for instance, realistic MDPs may have additional structure

that makes learning possible.

3.5. Related Work

A recent paper [49] proposes a PAC algorithm for LTL specifications under the assumption that

the structure of the MDP M (transitions with non-zero probability) is known. Concurrent to this

work, Yang et al. [157] show that PAC algorithms do not exist for any non-finitary LTL objective.

Closely related to this work is the work on expressivity of discounted rewards [3] which studies

whether certain kinds of tasks can be encoded using discounted rewards. There are a couple of

key differences to this work. First, they do not consider reductions that involve modifying the

underlying MDP M. Second, the tasks considered are based on explicit orderings among policies

or trajectories rather than succinct formal specifications.
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CHAPTER 4

Spectrl: A Task Specification Language

In Chapter 3, we demonstrated the difficulty in obtaining theoretical guarantees for RL from LTL

specifications. The primary hurdle lies in the fact that temporal logics such as LTL were designed

to specify properties about infinite-horizon behaviour of systems. However, in many practical

applications such as robotics, it is sufficient to specify the desired behaviour over a fixed finite

duration—e.g., the robot must reach a particular location within H steps. Such finite-horizon spec-

ifications help us circumvent the theoretical hardness results and obtain PAC learning algorithms;

for example, by assigning a reward of 1 when the specification is satisfied and 0 otherwise. Nonethe-

less, such simple reward schemes are usually not practical and do not enable efficient learning for

complex tasks.

In this chapter, we define a simple specification language based on a fragment of LTLf which can

be used to specify complex control tasks. Our language allows the user to specify objectives and

safety constraints as logical predicates over states, and then compose these primitives sequentially

or as disjunctions. We then show that we can generate well-shaped reward functions for tasks

specified in our language and demonstrate empirically that the generated rewards can be used in

conjunction with exiting RL algorithms to train policies to perform complex tasks in continuous-

state environments.

4.1. Motivation

As a simple example, consider the task in Figure 4.1, where the state is the robot position and its

remaining fuel, the action is a (bounded) robot velocity, and the task is

“Reach target q, then reach target p, while maintaining positive fuel and avoiding ob-

stacle O.”

To encode this task using rewards, we would have to combine rewards for (i) reaching q, and

then reaching p (where “reach x” denotes the task of reaching an ε-box around x—the regions
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Figure 4.1: Example control task. The blue dashed trajectory satisfies the specification φex (ignoring
the fuel budget), whereas the red dotted trajectory does not satisfy φex as it passes through the
obstacle.

corresponding to p and q are denoted by P and Q respectively), (ii) avoiding region O, and (iii)

maintaining positive fuel, into a single reward function. Furthermore, we would have to extend the

state space to keep track of whether q has been reached—otherwise, the control policy would not

know whether the current goal is to move towards q or p. Finally, we might need to shape the

reward to assign partial credit for getting closer to q, or for reaching q without reaching p. This

task can be expressed in our language as

φex = achieve (reach q; reach p) ensuring (avoid O ∧ fuel > 0), (4.1)

where fuel is the component of the state space keeping track of how much fuel is remaining.

The principle underlying our approach is that in many applications, users have in mind a sequence

of high-level actions that are needed to accomplish a given task. For example, φex may encode the

scenario where the user wants a quadcopter to fly to a location q, take a photograph, and then

return back to its owner at position p, while avoiding a building O and without running out of

battery. Alternatively, a user may want to program a warehouse robot to go to the next room, pick

up a box, and then bring this item back to the first room. In addition to specifying sequences of

tasks, users can also specify choices between multiple tasks (e.g., bring back any box).

A key aspect of our approach is to allow the user to specify a task without providing the low-level

rewards. Instead, analogous to how a compiler generates machine code from a program written by

the user, we propose a compiler for our language that takes the user-provided task specification and

40



generates a reward function.

A key challenge is that our specifications may encode rewards that are not Markov—e.g., in φex,

the robot needs memory that keeps track of whether its current goal is reach q or reach p. Thus,

our compiler automatically extends the state space using a task monitor, which is an automaton

that keeps track of which subtasks have been completed.3 Furthermore, this automaton may have

nondeterministic transitions; thus, our compiler also extends the action space with actions for

choosing state transitions. Intuitively, there may be multiple points in time at which a subtask is

considered completed, and the robot must choose which one to use.

Another challenge is that the naïve choice of rewards—i.e., reward 1 if the task is completed and

0 otherwise—can be very sparse, especially for complex tasks. Thus, our compiler automatically

performs two kinds of reward shaping based on the structure of the specification—it assigns partial

credit for (i) partially accomplishing intermediate subtasks, and (ii) for completing more subtasks.

For deterministic MDPs, our reward shaping is guaranteed to preserve the optimal policy; we

empirically find it also works well for stochastic MDPs.

4.2. Task Specification Language

Specification language. Intuitively, a specification φ in our language, Spectrl, is a logical

formula specifying whether a given run ζ successfully accomplishes the desired task—in particular,

given an MDP M = (S,A, s0, P ) it can be interpreted as a function φ : Zf (S,A) → B, where

B = {true, false}, defined by

φ(ζ) = 1[ζ successfully achieves the task],

where 1 is the indicator function. Formally, the user first defines a set of atomic predicates4 P0,

where every p ∈ P0 is associated with a function JpK : S → B such that JpK(s) indicates whether s
3Intuitively, this construction is analogous to compiling a regular expression to a finite state automaton.
4Note that predicates here are defined in a slightly different way as compared to Chapter 2.
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satisfies p. For example, given s′ ∈ S, the atomic predicate

Jreach s′K(s) = (∥s− s′∥∞ < 1)

indicates whether the robot is in a state near s′, and given a rectangular region O ⊆ S, the atomic

predicate

Javoid OK(s) = (s ̸∈ O)

indicates if the robot is avoiding O. In general, the user can define a new atomic predicate as an

arbitrary function JpK : S → B. Next, predicates b ∈ P are conjunctions and disjunctions of atomic

predicates. In particular, the syntax of predicates is given by

b ::= p | b1 ∧ b2 | b1 ∨ b2,

where p ∈ P0. Similar to atomic predicates, each predicate b ∈ P corresponds to a function

JbK : S → B, defined recursively by Jb1 ∧ b2K(s) = Jb1K(s)∧Jb2K(s) and Jb1 ∨ b2K(s) = Jb1K(s)∨Jb2K(s).

Finally, the syntax of our specifications is given by 5

φ ::= achieve b | φ1 ensuring b | φ1;φ2 | φ1 or φ2,

where b ∈ P. Intuitively, the first construct means that the robot should try to reach a state s such

that JbK(s) = true. The second construct says that the robot should try to satisfy φ1 while always

staying in states s such that JbK(s) = true. The third construct says the robot should try to satisfy

task φ1 and then task φ2. The fourth construct means that the robot should try to satisfy either

task φ1 or task φ2. Formally, we associate a function JφK : Zf (S,A) → B with φ, mapping finite
5Here, achieve and ensuring correspond to the “eventually” and “always” operators in temporal logic.
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runs to Boolean values, recursively as follows:

Jachieve bK(ζ) = ∃ i ≤ t, JbK(si)

Jφ ensuring bK(ζ) = JφK(ζ) ∧ (∀ i ≤ t, JbK(si))

Jφ1;φ2K(ζ) = ∃ i < t, (Jφ1K(ζ0:i) ∧ Jφ2K(ζi+1:t))

Jφ1 or φ2K(ζ) = Jφ1K(ζ) ∨ Jφ2K(ζ),

where ζ = s0a0s1 . . . at−1st. The function JφK can be naturally extended to infinite runs; for

an infinite run ζ ∈ Z(S,A) we have JφK(ζ) = true if and only if there is a t ≥ 0 such that

JφK(ζ0:t) = true. A run ζ (finite or infinite) satisfies φ if JφK(ζ) = true, which is denoted ζ |= φ.

Objective function. In this chapter, we study the finite-horizon setting where there is a fixed

horizon H; however, the reward generation and reward shaping techniques presented here are also

useful in a slightly more general setting that we study in the next chapter. Given an MDP M, a

horizon H ∈ N and a Spectrl specification φ, the objective function JM
φ,H is given by

JM
φ,H(π) = Pr

ζ∼DM
π

[
JφK(ζ0:H) = true

]
.

4.3. Compilation and Learning Algorithms

In this section, we describe our algorithm for reducing a Spectrl specification φ for a given MDP

(S,A, s0, P ) to an augmented MDP M̃ and a reward function R̃. This is essentially a simulation-

based reduction in the finite-horizon setting. At a high level, our algorithm extends the state space

S to keep track of completed subtasks and constructs a reward function R : Zf (S,A)→ R encoding

φ. A key feature of our algorithm is that the user has control over the compilation process—we

provide a natural default compilation strategy, but the user can extend or modify our approach to

improve the performance of the RL algorithm.
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Quantitative semantics. So far, we have associated specifications φ with Boolean semantics

(i.e., JφK(ζ) ∈ B). A naïve strategy is to assign rewards to runs based on whether they satisfy φ:

R(ζ) =


1 if ζ |= φ

0 otherwise.

However, it is usually difficult to learn a policy to maximize this reward due to its discrete nature.

A common strategy is to provide a shaped reward that quantifies the “degree” to which ζ satisfies

φ. Our algorithm uses an approach based on quantitative semantics for temporal logic [40, 46, 110].

In particular, we associate an alternate interpretation of a specification φ as a real-valued function

JφKq : Zf (S,A) → R. To do so, the user provides quantitative semantics for atomic predicates

p ∈ P0—in particular, they provide a function JpKq : S → R that quantifies the degree to which p

holds for s ∈ S. For example, we can use

Jreach s′Kq(s) = 1− d∞(s, s′)

Javoid OKq(s) = d∞(s,O),

where d∞ is the L∞ distance between points, with the usual extension to sets. These semantics

should satisfy JpKq(s) > 0 if and only if JpK(s) = true, and a larger value of JpKq should correspond to

an increase in the “degree” to which p holds. Then, the quantitative semantics for predicates b ∈ P

are Jb1 ∧ b2Kq(s) = min{Jb1Kq(s), Jb2Kq(s)} and Jb1 ∨ b2Kq(s) = max{Jb1Kq(s), Jb2Kq(s)}. Assuming

JpKq satisfies the above properties, then JbKq > 0 if and only if JbK = true.

In principle, we could now define quantitative semantics for specifications φ. For a run ζ of length
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q1 q2

q3q4ρ : min{x1, x2, x3, x4}

x1 ← 0
x2 ← 0

x3 ←∞
x4 ←∞

Σ : s ∈ Q
x1 ← 1− d∞(s, q)

Σ : min{x1, x3, x4} > 0

Σ : s ∈ P
x2 ← 1− d∞(s, p)

Figure 4.2: An example of a task monitor. Final states are labeled with rewards (prefixed with “ρ :”).
Transitions are labeled with transition conditions (prefixed with “Σ :”), as well as register update
rules. A transition from q2 to q4 is omitted for clarity. The two updates x3 ← min{x3, d∞(s,O)}
and x4 ← min{x4, fuel(s)} are applied in every transition and are also omitted for clarity.

t we have,

Jachieve bKq(ζ) = max
i≤t

JbKq(si)

Jφ ensuring bKq(ζ) = min{JφKq(ζ), JbKq(s0), ..., JbKq(st)}

Jφ1;φ2Kq(ζ) = max
i<t

min{Jφ1Kq(ζ0:i), Jφ2Kq(ζi+1:t)}

Jφ1 or φ2Kq(ζ) = max{Jφ1Kq(ζ), Jφ2Kq(ζ)}.

Then, it is easy to show that JφK(ζ) = true if and only if JφKq(ζ) > 0, so we could define a reward

function R(ζ) = JφKq(ζ). However, one of our key goals is to extend the state space so the policy

knows which subtasks have been completed. On the other hand, the semantics JφKq quantify over all

possible ways that subtasks could have been completed in hindsight (i.e., once the entire trajectory

is known). For example, there may be multiple points in a trajectory when a subtask reach q could

be considered as completed. Below, we describe our construction of the reward function, which is

based on JφKq, but applied to a single choice6 of time steps at which each subtask is completed.

Task monitor. Intuitively, a task monitor is a finite-state automaton (FSA) that keeps track of

which subtasks have been completed and which constraints are still satisfied. Unlike an FSA, its

transitions may depend on the state s ∈ S of a given MDP. Also, since we are using quantitative

semantics, the task monitor has to keep track of the degree to which subtasks are completed and

the degree to which constraints are satisfied; thus, it includes registers that keep track of the these
6Chosen by the RL agent.
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values. A key challenge is that the task monitor is nondeterministic; as we describe below, we let

the policy resolve the nondeterminism, which corresponds to choosing which subtask to complete

at each step.

Formally, a task monitor is a tuple T = (Q,X,Σ, U,∆, q0, v0, F, ρ). First, Q is a finite set of monitor

states, which are used to keep track of which subtasks have been completed. Also, X is a finite set

of registers, which are variables used to keep track of the degree to which the specification holds so

far. Given an MDP M = (S,A, s0, P ), an augmented state is a tuple (s, q, v) ∈ S ×Q × V , where

V = RX—i.e., an MDP state s ∈ S, a monitor state q ∈ Q, and a vector v ∈ V encoding the value

of each register in the task monitor. An augmented state can be viewed as a state in the product

ofM and T .

The transitions ∆ of the task monitor depend on the augmented state; thus, they need to specify

two pieces of information: (i) conditions on the MDP states and registers for the transition to be

enabled, and (ii) how the registers are updated. To handle (i), we consider a set Σ of predicates over

S×V , and to handle (ii), we consider a set U of functions u : S×V → V . Then, ∆ ⊆ Q×Σ×U×Q is

a finite set of (nondeterministic) transitions, where (q, σ, u, q′) ∈ ∆ encodes augmented transitions

(s, q, v)
a−→ (s′, q′, u(s, v)), where s

a−→ s′ is an MDP transition, which can be taken as long as

σ(s, v) = true. Finally, v0 ∈ RX is the vector of initial register values, F ⊆ Q is a set of final

monitor states, and ρ is a reward function ρ : S × F × V → R.

Given an MDP M = (S,A, s0, P ) and a specification φ, our algorithm constructs a task monitor

Tφ = (Q,X,Σ, U,∆, q0, v0, F, ρ) whose states and registers keep track which subtasks of φ have been

completed. Our task monitor construction algorithm is analogous to compiling a regular expression

to an FSA. More specifically, it is analogous to algorithms for compiling temporal logic formulas to

automata [146]. We detail this algorithm in Section 4.4. The underlying graph of a task monitor

constructed from any given specification is acyclic (ignoring self loops) and final states correspond

to sink vertices with no outgoing edges (except a self loop).

As an example, the task monitor for φex is shown in Figure 4.2. It has monitor states Q =
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{q1, q2, q3, q4} and registers X = {x1, x2, x3, x4}. The monitor states encode when the robot (i)

has not yet reached q (q1), (ii) has reached q, but has not yet returned to p (q2 and q3), and (iii)

has returned to p (q4); q3 is an intermediate monitor state used to ensure that the constraints are

satisfied before continuing. Register x1 records Jreach qK(s) = 1−d∞(s, q) when transitioning from

q1 to q2, and x2 records Jreach pKq = 1 − d∞(s, p) when transitioning from q3 to q4. Register x3

keeps track of the minimum value of Javoid OK(s) = d∞(s,O) over states s in the run, and x4 keeps

track of the minimum value of Jfuel > 0K(s) over states s in the run.

Augmented MDP. Given an MDPM, a specification φ, and its task monitor Tφ, our algorithm

constructs an augmented MDP, M̃ = (S̃, Ã, s̃0, P̃ ) and a (run-based) reward function R̃. Intuitively,

if π̃∗ is a good policy (one that achieves a high expected reward) for the augmented MDP, then

runs generated using π̃∗ should satisfy φ with high probability.

In particular, we have S̃ = S×Q×V and s̃0 = (s0, q0, v0). The transitions P̃ are based on P and ∆.

However, the task monitor transitions ∆ may be nonderministic. To resolve this nondeterminism,

we require that the policy decides which task monitor transitions to take. In particular, we extend

the actions Ã = A × Aφ to include a component Aφ = ∆ indicating which one to take at each

step. An augmented action (a, τ) ∈ Ã, where τ = (q, σ, u, q′), is only available in augmented state

s̃ = (s, q, v) if σ(s, v) = true. Then, the augmented transition probability is given by,

P̃ ((s, q, v), (a, (q, σ, u, q′))), (s′, q′, u(s, v))) = P (s, a, s′).

Next, an augmented run of length t is a sequence ζ̃ = (s0, q0, v0)
a0−→ ...

at−1−−−→ (st, qt, vt) of augmented

transitions. The projection proj(ζ̃) = s0
a0−→ ...

at−1−−−→ st of ζ̃ is the corresponding (normal) run.

Then, the augmented rewards

R̃(ζ̃) =


ρ(st, qt, vt) if qt ∈ F

−∞ otherwise

are constructed based on F and ρ. The augmented rewards satisfy the following property.
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Theorem 4.1. For any MDP M, specification φ, and run ζ of M of length t, ζ satisfies φ if and

only if there exists an augmented run ζ̃ of length t+1 such that (i) R̃(ζ̃) > 0, and (ii) proj(ζ̃0:t) = ζ.

This theorem follows by structural induction on φ and Lemmas 4.3 and 4.4 in Section 4.4. Thus,

if we use RL to learn an optimal augmented policy π̃∗ over augmented states, then π̃∗ is likely to

generate runs ζ̃ such that proj(ζ̃0:t) satisfies φ.

Reward shaping. As discussed before, our algorithm constructs a shaped reward function that

provides “partial credit” based on the degree to which φ is satisfied. We have already described

one step of reward shaping—i.e., using quantitative semantics instead of the Boolean semantics.

However, the augmented rewards R̃ are −∞ unless a run reaches a final state of the task monitor.

Thus, our algorithm performs an additional step of reward shaping—in particular, it constructs a

reward function R̃s that gives partial credit for accomplishing subtasks in the MDP.

For a non-final monitor state q, let α : S ×Q× V → R be defined by

α(s, q, v) = max
(q,σ,u,q′)∈∆, q′ ̸=q

JσKq(s, v).

Intuitively, α quantifies how “close” an augmented state s̃ = (s, q, v) is to transitioning to another

augmented state with a different monitor state. Then, our algorithm assigns partial credit to

augmented states where α is larger.

However, to ensure that a good policy according to the shaped rewards R̃s is also a good policy

according to R̃, it does so in a way that preserves the ordering of the cumulative rewards for

runs—i.e., for two length t runs ζ̃ and ζ̃ ′, it guarantees that if R̃(ζ̃) > R̃(ζ̃ ′), then R̃s(ζ̃) > R̃s(ζ̃
′).

To this end, we assume that we are given a lower bound Cℓ on the final reward achieved when

reaching a final monitor state—i.e., Cℓ < R̃(ζ̃) for all ζ̃ with final state s̃t = (st, qt, vt) such that

qt ∈ F is a final monitor state. Furthermore, we assume that we are given an upper bound Cu on

the absolute value of α over non-final monitor states—i.e., Cu ≥ |α(s, q, v)| for any augmented state

such that q ̸∈ F .
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Now, for any q ∈ Q, let dq be the length of the longest path from q0 to q in the graph of Tφ (ignoring

self loops in ∆) and D = maxq∈Q dq. Given an augmented run ζ̃, let s̃i = (si, qi, vi) be the first

augmented state in ζ̃ such that qi = qi+1 = ... = qt. Then, the shaped reward is

R̃s(ζ̃) =


maxi≤j<t α(sj , qt, vj) + 2Cu · (dqt −D) + Cℓ if qt ̸∈ F

R̃(ζ̃) otherwise.

If qt ̸∈ F , then the first term of R̃s(ζ̃) computes how close ζ̃ was to transitioning to a new monitor

state. The second term ensures that moving closer to a final state always increases reward. Finally,

the last term ensures that rewards R̃(ζ̃) for qt ∈ F are always higher than rewards for qt ̸∈ F . The

following theorem justifies our reward shaping mechanism.

Theorem 4.2. For two finite augmented runs ζ̃, ζ̃ ′,

1. if R̃(ζ̃) > R̃(ζ̃ ′), then R̃s(ζ̃) > R̃s(ζ̃
′), and

2. if ζ̃ and ζ̃ ′ end in distinct non-final monitor states qt and q′t with dqt > dq′t , then we have

R̃s(ζ̃) ≥ R̃s(ζ̃
′).

Proof. The proof follows from the definitions of constants Cu and Cℓ.

1. Let ζ̃, ζ̃ ′ be two augmented rollouts such that R̃(ζ̃) > R̃(ζ̃ ′). There are three cases to consider:

• If both ζ̃ and ζ̃ ′ end in final monitor states, we have

R̃s(ζ̃) = R̃(ζ̃) > R̃(ζ̃ ′) = R̃s(ζ̃
′).

• If ζ̃ ends in a non-final monitor state, R̃(ζ̃) = −∞ and hence the claim is vacuously true.

• If ζ̃ ends in a final monitor state but ζ̃ ′ ends in a monitor state q′T /∈ F , we have
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R̃s(ζ̃
′) = max

i′≤j<t
α(s′j , q

′
t, v

′
j) + 2Cu · (dqt −D) + Cℓ

≤ max
i′≤j<t

α(s′j , q
′
t, v

′
j)− 2Cu + Cℓ (dqt ≤ D − 1)

≤ Cℓ (Cu is an upper bound on α)

< R̃(ζ̃) = R̃s(ζ̃). (Cℓ is a lower bound on R̃)

2. Let ζ̃, ζ̃ ′ be two augmented rollouts ending in distinct (non-final) monitor states qt and q′t

such that dqt > dq′t . Then,

R̃s(ζ̃) = max
i≤j<t

α(sj , qt, vj) + 2Cu · (dqt −D) + Cℓ

≥ max
i≤j<t

α(sj , qt, vj) + 2Cu + 2Cu · (dq′t −D) + Cℓ (dqt ≥ dq′t − 1 & Cu ≥ 0)

≥ Cu + 2Cu · (dq′t −D) + Cℓ (Cu is an upper bound on −α)

≥ max
i′≤j<t

α(s′j , q
′
t, v

′
j) + 2Cu · (dq′t −D) + Cℓ (Cu is an upper bound on α)

= R̃s(ζ̃ ′).

This concludes the proof.

Reinforcement learning. Once our algorithm has constructed an augmented MDP M̃, it can

use any RL algorithm to learn an augmented policy π̃ : S̃ → Ã for the augmented MDP:

π̃∗ ∈ argmax
π̃

E
ζ̃∼DM̃

π̃
[R̃s(ζ̃0:H+1)]

We solve this RL problem using augmented random search (ARS) [111].

After computing π̃∗, we can convert π̃∗ to a projected policy π∗ = proj(π̃∗) for the original MDP by

integrating π̃∗ with the task monitor Tφ, which keeps track of the information needed for π̃∗ to make
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decisions. More precisely, proj(π̃∗) includes internal memory that keeps track of the current monitor

state and register value (qi, vi) ∈ Q×V . It initializes this memory to the initial monitor state q0 and

initial register valuation v0. Given an augmented action (a, (q, σ, u, q′)) = π̃∗((st, qi, vi)), it updates

this internal memory using the rules qi+1 = q′ and vi+1 = u(si, vi).

Finally, we use a neural network architecture similar to neural module networks [17, 18], where

different neural networks accomplish different subtasks in φ. In particular, an augmented policy π̃

is a set of neural networks {Nq | q ∈ Q}, where Q are the monitor states in Tφ. Each Nq takes

as input (s, v) ∈ S × V and outputs an augmented action Nq(s, v) = (a, a′) ∈ A × Rk, where k is

the out-degree of q in Tφ and the transitions out of q are {(q, σ1, u1, q′1), . . . , (q, σk, uk, q′k)}; then,

π̃(s, q, v) = (a, τ) with τ = argmaxi∈valid(s,v) a
′
i where valid(s, v) = {i | σi(s, v) = true}.

4.4. Task Monitor Construction Algorithm

In this section, we detail our algorithm for constructing a task monitor Tφ for a given specification

φ. Our construction algorithm proceeds recursively on the structure of φ. Implicitly, our algorithm

maintains the property that every monitor-state q has a self-transition (q, true, u, q); here, the

update function u is the identity by default, but may be modified as part of the construction.

Notation. We use ⊔ to denote the disjoint union. Given v ∈ RX , v′ ∈ RX′ , we define v′′ =

v ⊕ v′ ∈ RX⊔X′ to be their concatenation—i.e.,

v′′(x) =


v(x) if x ∈ X

v′(x) otherwise.

Given v ∈ RX and Y ⊆ X, we define v ↓Y ∈ RY to be the restriction of v to Y . Given v ∈ RX and

Y ⊇ X, we define v′ = extend(v)Y ∈ RY to be

v′(y) =


v(y) if y ∈ X

0 otherwise.
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We drop the subscript Y when it is clear from context. Finally, given v ∈ RX and k ∈ R, we define

v′ = v[x 7→ k] ∈ V to be

v(x′) =


v(x′) if x′ ̸= x

k otherwise.

Also, recall that a predicate b ∈ P is defined over states s ∈ S; it can straightforwardly be extended

to a predicate in Σ over (s, v) ∈ S×V by ignoring v. Note that every predicate b ∈ P is a negation

free Boolean combination of atomic predicates p ∈ P0.

Finally, the definition of Σ depends on the set X of registers in the task monitor. When necessary,

we use the notation ΣX to make this dependence explicit. Finally, for X ⊆ X ′, any σ ∈ ΣX can be

interpreted as a predicate in ΣX′ by ignoring the components of X ′ not in X.

Objectives. Consider the case φ = achieve b, where b ∈ P. For this specification, our algorithm

constructs the following task monitor:

q0 q1
x← 0

Σ : b

x← JbK(s)

ρ : x

The initial state is marked with an arrow into the state. Final states are double circles. Predicates

σ ∈ Σ labeling a transition appear prefixed by “Σ :”. Rewards ρ labeling a state appear prefixed by

“ρ :”. Self loops are associated with the true predicate (omitted). Updates u ∈ U are by default the

identity function. Intuitively, the state q0 on the left indicates that subtask b is not yet completed,

and the state q1 on the right indicates that b is completed, and x1 records the degree to which b is

satisfied while transitioning from q0 to q1.

Constraints. Consider the case φ = φ1 ensuring b, where b ∈ P. Let

Tφ1 = (Q1, X1,Σ, U1,∆1, q
0
1, v

0
1, F1, ρ1).
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xb ← min(xb, JbK(s))

xb ←∞
ρ : xb

Figure 4.3: Task monitor for ensuring b.

Then, Tφ is the product of Tφ and T ensuring b defined as

Tφ = (Q1, X1 ⊔ {xb},Σ, U,∆, q01, v0, F1, ρ),

where T ensuring b is shown in Figure 4.3. Then, we have (q, σ, u′, q′) ∈ ∆ if and only if there is a

transition (q, σ, u, q′) ∈ ∆1 such that

u′(s, v) = extend(u(s, v ↓X1))[xb 7→ min(v(xb), JbK(s))].

Furthermore, the initial register valuation is v0 = extend(v01)[xb 7→ ∞] and the reward function ρ is

ρ(s, q, v) = min{ρ1(s, q, v ↓X1), v(xb)}.

Intuitively, xb encodes the minimum degree to which b is satisfied during a run.

Sequencing. An overview of the constructions for sequencing and choice operators is provided in

Figure 4.4. Consider φ = φ1;φ2. Intuitively, Tφ is constructed by concatenating the registers of Tφ1

and Tφ2 (extending the update functions u as needed), and adding transitions (q, σ, u, q0) from each

final state q of Tφ1 to the initial state q0 of Tφ2 , where σ = true and u is the identity on registers

for Tφ1 and sets the registers of Tφ2 to their initial values. A subtle issue is that transitioning from

φ1 to φ2 takes one time step, yet it should take zero time steps. Therefore, we add transitions from

each final state of Tφ1 to all successors of the initial state of Tφ2 .
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T1 T2

T1 T2

ρ : r1

ρ : r2

ρ : r3

Σ : r1 > 0

Σ : r1 > 0

Σ : r1 > 0
ρ : min(r2, xR)

ρ : min(r3, xR)

xR ← r1

xR ← r1

xR ← r1

Tϕ1
Tϕ2

Tϕ1;ϕ2

T1

T2

ρ : r1

ρ : r2

ρ : r3

Tϕ1 or ϕ2

Figure 4.4: Overview of monitor construction for sequencing and choice operators.

More precisely, let

Tφ1 = (Q1, X1,Σ, U1,∆1, q
0
1, v

0
1, F1, ρ1),

Tφ2 = (Q2, X2,Σ, U2,∆2, q
0
2, v

0
2, F2, ρ2).

Assume without loss of generality that X2 ⊆ X1. Then,

Tφ = (Q1 ⊔Q2, X1 ⊔ {xR},Σ, U,∆, q01, v0, F2, ρ).

Here, ∆ = ∆′
1 ∪∆′

2 ∪∆1→2, where (q, σ, u′, q′) ∈ ∆′
i if there exists (q, σ, u, q′) ∈ ∆i such that

u′(s, v) = u(s, v ↓Xi)⊕ v ↓X\Xi
,

and (q, σ′ ∧ σR, u′, q′) ∈ ∆1→2 if q ∈ F1 and there exists (q02, σ, u, q
′) ∈ ∆2 such that the atomic
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predicate σR is given by JσRK(s, v) = ρ1(s, q, v ↓X1) > 0, the predicate σ′ is given by Jσ′K(s, v) =

JσK(s, v02), and u′ is given by

u′(s, v) = extend(u(s, v02))[xR 7→ ρ1(s, q, v ↓X1)].

The initial register valuation is v0 = extend(v01), and for any q ∈ F2, the reward function ρ is

ρ(s, q, v) = min{ρ2(s, q, v ↓X2), v(xR)}.

Choice. Consider the case φ = φ1 or φ2. Intuitively, Tφ is constructed by combining the initial

states of Tφ1 and Tφ2 into a single initial state q0, and concatenating their registers. The transitions

from q0 are the union of the transitions from the initial states of Tφ1 and Tφ2 . More precisely, let

Tφ1 = (Q1, X1,Σ, U1,∆1, q
0
1, v

0
1, F1, ρ1),

Tφ2 = (Q2, X2,Σ, U2,∆2, q
0
2, v

0
2, F2, ρ2).

This construction assumes that there are self loops on the initial states of Tφ1 and Tφ2 . Then,

Tφ = (Q,X1 ⊔X2,Σ, U,∆, q0, v
0
1 ⊕ v02, F1 ⊔ F2, ρ).

Here,

Q = (Q1 \ {q01}) ⊔ (Q2 \ {q02}) ⊔ {q0},

and ∆ = ∆′
1∪∆′

2∪∆0, where where (q, σ, u′, q′) ∈ ∆′
i if q ̸= q0 and there is a transition (q, σ, u, q′) ∈

∆i such that

u′(s, r, v) = extend(u(s, r, v ↓Xi)).
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Also, let (q01,⊤, u01, q01) ∈ ∆1 and (q02,⊤, u02, q02) ∈ ∆2 be the self loops on the initial states of Tφ1

and Tφ2 respectively. Let

u0(s, r, v) = u01(s, r, v ↓X1)⊕ u02(s, r, v ↓X2).

Then, (q0, σ, u′, q) ∈ ∆0 if either (i) (q0, σ, u
′, q) = (q0,⊤, u0, q0), or (ii) there exists i ∈ {1, 2} such

that (q0i , σ, u, q) ∈ ∆i, where q ∈ Qi \ {q0i } and

u′(s, r, v) = extend(u(s, r, v ↓Xi)).

The reward function ρ for q ∈ Fi is given by

ρ(s, q, v) = ρi(s, q, v ↓Xi).

4.4.1. Properties of the Constructed Task Monitor

The task monitor Tφ = (Q,X,Σ, U,∆, q0, v0, F, ρ) constructed from a Spectrl specification φ

admits some key properties that enable us to check satisfaction of φ and also assign shape rewards

to any finite run ζ as described in Section 4.3. First, the following lemma follows by structural

induction on φ.

Lemma 4.3. For σ ∈ Σ, JσK(s, v) = true if and only if JσKq(s, v) > 0.

Next, let GTφ denote the underlying state transition graph of the task monitor Tφ. Then we have

the following lemma.

Lemma 4.4. The task monitor Tφ constructed by our algorithm satisfies the following properties.

1. The only cycles in GTφ are self loops.

2. The finals states are precisely those states from which there are no outgoing edges except for

self loops in GTφ.
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3. In GTφ , every state is reachable from the initial state and for every state there is a final state

that is reachable from it.

4. For any pair of states q and q′, there is at most one transition from q to q′.

5. There is a self loop on every state q given by a transition (q,⊤, u, q) for some update function

u where ⊤ denotes the predicate that assigns true to all (s, v) ∈ S × V .

The first three properties ensure progress when switching from one monitor state to another. The

last two properties enable simpler composition of task monitors. The lemma follows by structural

induction on φ.

4.5. Experiments

Setup. We implemented our algorithm in a tool, also called Spectrl7, and used it to learn

policies for a variety of specifications. We consider a dynamical system with states S = R2 × R,

where (x, r) ∈ S encodes the robot position x and its remaining fuel r, actions A = [−1, 1]2 where

an action a ∈ A is the robot velocity, and transitions f(x, r, a) = (x + a + ϵ, r − 0.1 · |x1| · ∥a∥2),

where ϵ ∼ N (0, σ2I) and the fuel consumed is proportional to the product of speed and distance

from the y-axis. The initial state is s0 = (5, 0, 7), and the horizon is H = 40.

In Figure 4.5, we consider the following specifications, where O = [4, 6]× [4, 6]:

• φ1 = achieve reach (5, 10) ensuring (avoid O)

• φ2 = achieve reach (5, 10) ensuring (avoid O ∧ (r > 0))

• φ3 = achieve (reach [(5, 10); (5, 0)]) ensuring avoid O

• φ4 = achieve (reach (5, 10) or reach (10, 0); reach (10, 10)) ensuring avoid O

• φ5 = achieve (reach [(5, 10); (5, 0); (10, 0)]) ensuring avoid O

• φ6 = achieve (reach [(5, 10); (5, 0); (10, 0); (10, 10)]) ensuring avoid O

• φ7 = achieve (reach [(5, 10); (5, 0); (10, 0); (10, 10); (0, 0)]) ensuring avoid O

where achieve (b; b′) denotes achieve b; achieve b′ and the abbreviation reach [p1; p2] denotes

reach p1; reach p2. For all specifications, each Nq has two fully connected hidden layers with
7The implementation can be found at https://github.com/keyshor/spectrl_tool.
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30 neurons each and ReLU activations, and tanh function as its output layer. We compare our

algorithm to [102] (Tltl), which directly uses the quantitative semantics of the specification as the

reward function (with ARS as the learning algorithm), and to the constrained cross entropy method

(Cce) [154], which is an RL algorithm for learning policies to perform tasks with constraints. We

used neural networks with two hidden layers and 50 neurons per layer for both the baselines.

Results. Figure 3 shows learning curves of Spectrl (our tool), Tltl, and Cce. In addition, it

shows Spectrl without reward shaping (Unshaped), which uses rewards R̃ instead of R̃s. These

plots demonstrate the ability of Spectrl to outperform similar approaches previously proposed.

For specifications φ1, ..., φ5, the curve for Spectrl gets close to 100% in all executions, and for φ6

and φ7, it gets close to 100% in 4 out of 5 executions. The performance of Cce drops when multiple

constraints (here, obstacle and fuel) are added (i.e., φ2). Tltl performs similar to Spectrl on

tasks φ1, φ3 and φ4 (at least in some executions), but Spectrl converges faster for φ1 and φ4.

Since TLTL and CCE use a single neural network to encode the policy as a function of state, they

perform poorly in tasks that require memory—i.e., φ5, φ6, and φ7. For example, to satisfy φ5, the

action that should be taken at s = (5, 0) depends on whether (5, 10) has been visited. In contrast,

Spectrl performs well on these tasks since its policy is based on the monitor state.

These results also demonstrate the importance of reward shaping. Without it, ARS cannot learn

unless it randomly samples a policy that reaches final monitor state. Reward shaping is especially

important for specifications that include many sequencing operators (φ;φ′)—i.e., specifications φ5,

φ6, and φ7.

Figure 4.6 (left) shows how sample complexity grows with the number of nested sequencing operators

(φ1, φ3, φ5, φ6, φ7). Each curve indicates the average number of samples needed to learn a policy

that achieves a satisfaction probability ≥ τ . Spectrl scales well with the size of the specification.

Cartpole. Finally, we applied Spectrl to a different control task—namely, to learn a policy for

the version of cart-pole in OpenAI Gym, in which we used continuous actions instead of discrete

actions. The specification is to move the cart to the right and move back left without letting the
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Figure 4.5: Learning curves for φ1, φ2 and φ3 (top, left to right), and φ4, φ5, and φ6 (middle, left
to right) and, φ7 (bottom), for Spectrl (green), Tltl (blue), Cce (yellow), and Spectrl without
reward shaping (purple). The x-axis shows the number of sample trajectories, and the y-axs shows
the probability of satisfying the specification (estimated using samples). To exclude outliers, we
omitted one best and one worst run out of the 5 runs. The plots are the average over the remaining
3 runs with error bars indicating one standard deviation around the average.
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Figure 4.6: Sample complexity curves (left) with number of nested sequencing operators on the x-
axis and average number of samples to converge on the y-axis. Learning curve for cartpole example
(right).

pole fall. The formal specification is given by

φ = achieve (reach 0.5; reach 0.0) ensuring balance

where the predicate balance holds when the vertical angle of the pole is smaller than π/15 in

absolute value. Figure 4.6 (right) shows the learning curve for this task averaged over 3 runs of the

algorithm along with the three baselines. Tltl is able to learn a policy to perform this task, but it

converges slower than Spectrl; Cce is unable to learn a policy satisfying this specification.

4.6. Summary

We have proposed a language for formally specifying control tasks and an algorithm to learn policies

to perform tasks specified in the language. Our algorithm first constructs a task monitor from the

given specification, and then uses the task monitor to assign shaped rewards to runs of the system.

Furthermore, the monitor state is also given as input to the controller, which enables our algorithm

to learn policies for non-Markovian specifications. Finally, we implemented our approach in a tool

called Spectrl, which enables the users to program what the agent needs to do at a high level;

then, it automatically learns a policy that tries to best satisfy the user intent. We also demonstrated

that Spectrl can be used to learn policies for complex specifications, and that it can outperform

baselines for generating shaped rewards from temporal specifications.
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4.7. Related Work

Imitation learning enables users to specify tasks by providing demonstrations of the desired task [119,

1, 160, 132, 69]. However, in many settings, it may be easier for the user to directly specify the

task—e.g., when programming a warehouse robot, it may be easier to specify waypoints describing

paths the robot should take than to manually drive the robot to obtain demonstrations. Also, unlike

imitation learning, our language allows the user to specify global safety constraints on the robot.

Indeed, we believe our approach complements imitation learning, since the user can specify some

parts of the task in our language and others using demonstrations.

Another approach is for the user to provide a policy sketch—i.e., a string of tokens specifying a

sequence of subtasks [18]. However, tokens have no meaning, except equal tokens represent the

same task. Thus, policy sketches cannot be compiled to a reward function, which must be provided

separately.

Our specification language is based on temporal logic [127], a language of logical formulas for spec-

ifying constraints over (typically, infinite) sequences of events happening over time. For example,

temporal logic allows the user to specify that a logical predicate must be satisfied at some point

in time (e.g., “eventually reach state q”) or that it must always be satisfied (e.g., “always avoid

an obstacle”). In our language, these notions are represented using the achieve and ensuring

operators, respectively. Our language restricts temporal logic in a way that enables us to perform

reward shaping, and also adds useful operators such as sequencing that allow the user to easily

express complex control tasks.

Reward machines have been proposed as a high-level way to specify tasks [76]. In their work, the

user provides a specification in the form of a finite state machine along with reward functions for

each state. Then, they propose an algorithm for learning multiple tasks simultaneously by applying

the Q-learning updates across different specifications. At a high level, these reward machines are

similar to the task monitors defined in our work. However, we differ from their approach in two ways.

First, in contrast to their work, the user only needs to provide a high-level logical specification; we
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automatically generate a task monitor from this specification. Second, our notion of task monitor

has a finite set of registers that can store real values; in contrast, their finite state reward machines

cannot store quantitative information. There has also been work on automatically constructing

reward machines from logical specifications [32]; however, reward machines generated this way

produce sparse rewards.
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CHAPTER 5

Dirl: A Compositional RL Algorithm

In Chapter 4, we introduced a specification language called Spectrl for specifying complex long-

horizon tasks and provided an algorithm to automatically generate shaped rewards for Spec-

trl specifications. A key feature of the approach is that it enables the user to specify tasks

compositionally—i.e., the user can independently specify a set of short-term subgoals, and then ask

the robot to perform a complex task that involves achieving some of these subgoals. In principle, this

exposes the compositional structure of the specified task—i.e., the decomposition of the task into a

set of subtasks—to the reinforcement learning algorithm. However, existing approaches for learning

from high-level specifications, including our approach in the previous chapter, do not exploit this

structure during training which is often handled by an off-the-shelf RL algorithm. Recent works

based on Reward Machines [76, 77] have proposed RL algorithms that exploit the structure of the

specification to improve learning. However, these algorithms are based on model-free RL at both

the high- and low-levels instead of model-based RL. Model-free RL has been shown to outperform

model-based approaches on low-level control tasks [35]; however, at the high-level, it is unable to

exploit the large amount of available structure. Thus, these approaches scale poorly to long-horizon

tasks involving complex decision making.

In this chapter, we introduce Dirl, a novel compositional RL algorithm that leverages the structure

in the specification to decompose the policy synthesis problem into a high-level planning problem and

a set of low-level control problems. Then, it interleaves model-based high-level planning with model-

free RL to compute a policy that tries to maximize the probability of satisfying the specification.

In more detail, our algorithm begins by converting the user-provided specification into an abstract

graph whose edges encode the subtasks, and whose vertices encode regions of the state space where

each subtask is considered achieved. Then, it uses a Djikstra-style forward graph search algorithm

to compute a sequence of subtasks for achieving the specification, aiming to maximize the success

probability. Rather than compute a policy to achieve each subtask beforehand, it constructs them
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Figure 5.1: Left: The 9-rooms environment, with initial region S0 in the bottom-left, an obstacle
O in the middle-left, and three subgoal regions S1, S2, S3 in the remaining corners. Middle top: A
user-provided specification φex. Middle bottom: The abstract graph Gex Dirl constructs for φex.
Right: Learning curves for our approach and some baselines; x-axis is number of steps and y-axis
is probability of achieving φex.

on-the-fly for a subtask as soon as Djikstra’s algorithm requires the cost of that subtask.

5.1. Overview

Illustrative example. Consider an RL-agent in the environment of interconnected rooms in

Figure 5.1. The agent is initially in the blue box, and their goal is to navigate to either the top-left

room S1 or the bottom-right room S2, followed by the top-right room S3, all the while avoiding

the red block O. This goal is formally captured by the Spectrl specification φex (middle top).

This specification is comprised of four simpler RL subtasks—namely, navigating between the corner

rooms while avoiding the obstacle. Our approach, Dirl, leverages this structure to improve learning.

First, based on the specification alone, it constructs the abstract graph Gex (see middle bottom)

whose vertices represent the initial region and the three subgoal regions, and the edges correspond

to subtasks (labeled with a safety constraint that must be satisfied).

However, Gex by itself is insufficient to determine the optimal path—e.g., it does not know that there

is no path leading directly from S2 to S3, which is a property of the environment. These differences

can be represented as (a priori unknown) edge costs in Gex. At a high level, Dirl trains a policy

πe for each edge e in Gex, and sets the cost of e to be c(e;πe) = − logP (e;πe), where P (e;πe) is

the probability that πe succeeds in achieving e. For instance, for the edge S0 → S1, πe is trained

to reach S1 from a random state in S0 while avoiding O. Then, a naïve strategy for identifying the

optimal path is to (i) train a policy πe for each edge e, (ii) use it to estimate the edge cost c(e;πe),
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and (iii) run Djikstra’s algorithm with these costs.

One challenge is that πe depends on the initial states used in its training—e.g., training πe for

e = S1 → S3 requires a distribution over S1. Using the wrong distribution can lead to poor perfor-

mance due to distribution shift; furthermore, training a policy for all edges may unnecessarily waste

effort training policies for unimportant edges. To address these challenges, Dirl interweaves train-

ing policies with the execution of Djikstra’s algorithm, only training πe once Djikstra’s algorithm

requires the cost of edge e. This strategy enables Dirl to scale to complex tasks; in our example,

it quickly learns a policy that satisfies the specification with high probability. These design choices

are validated empirically—as shown in Figure 5.1, Dirl quickly learns to achieve the specification,

whereas it is beyond the reach of existing approaches.

Contributions. In summary, we make the following contributions.

• We propose a novel compositional algorithm to learn policies in continuous-state environments

from complex high-level specifications that interleaves high-level model-based planning with

low-level RL.

• We present a theoretical analysis of our algorithm showing that it aims to maximize a lower

bound on the satisfaction probability of the specification.

• We perform an empirical evaluation demonstrating that our algorithm outperforms several

state-of-the-art algorithms for learning from high-level specifications.

5.1.1. Problem Setting

Given an MDP8 M = (S,A, η, P ) with unknown transitions and a Spectrl specification (see

Section 4.2) φ, our goal is to compute a policy π∗ : Zf (S,A)→ A such that

π∗ ∈ argmax
π

Pr
ζ∼DM

π

[ζ |= φ],

8Continuous-state MDP with a distribution over initial states η : S → R≥0 (i.e., η(s) is the probability density of
the initial state being s) instead of a fixed initial state s0.
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where DM
π is the distribution over infinite trajectories (runs) generated by π. Similar to the focus

of the previous chapter, we want to learn a policy π∗ that maximizes the probability that a sampled

run ζ satisfies the specification φ. In the rest of the chapter, we use Zf and Z to denote Zf (S,A)

and Z(S,A) respectively.

We consider the reinforcement learning setting in which we do not know the probabilities P but

instead only have access to a simulator of M. Typically, we can only sample trajectories of M

starting at an initial state s0 ∼ η. Some parts of our algorithm are based on an assumption that we

can sample trajectories starting at any state that has been observed before. For example, if taking

action a0 in s0 leads to a state s1, we can store s1 and obtain future samples starting at s1.

Assumption 5.1. We can sample from p(· | s, a) = P (s, a, ·) for any previously observed state s

and any action a.

The rest of this chapter is organized as follows. In Section 5.2, we define the abstract reachability

problem and reduce the policy synthesis problem for Spectrl specifications to abstract reachability.

Next, in Section 5.3, we present an algorithm for the abstract reachability problem. In Section 5.4,

we present experiments that demonstrate that our approach is capable of learning policies to perform

complex tasks in high-dimensional environments.

5.2. Abstract Reachability

In this section, we describe how to reduce the RL problem for a given MDP M and specification

φ to a reachability problem on a directed acyclic graph (DAG) Gφ, augmented with information

connecting its edges to finite runs inM. In Section 5.3, we describe how to exploit the compositional

structure of Gφ to learn efficiently.

5.2.1. Abstract Reachability Problem

We begin by defining the abstract reachability problem, and describe how to reduce the problem of

learning from a Spectrl specification to abstract reachability. At a high level, abstract reachability

is defined as a graph reachability problem over a directed acyclic graph (DAG) whose vertices

correspond to subgoal regions—a subgoal region X ⊆ S is a subset of the state space S. As
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discussed below, in our reduction, these subgoal regions are derived from the given specification φ.

The constructed graph structure also encodes the relationships between subgoal regions.

Definition 5.1. An abstract graph G = (U,E, u0, F, β,Zsafe) is a directed acyclic graph (DAG)

with vertices U , (directed) edges E ⊆ U × U , initial vertex u0 ∈ U , final vertices F ⊆ U , subgoal

region map β : U → 2S such that for each u ∈ U , β(u) is a subgoal region,9 and safe trajectories

Zsafe =
⋃

e∈E Ze
safe, where Ze

safe ⊆ Zf denotes the safe trajectories for edge e ∈ E.

Intuitively, (U,E) is a standard DAG, and u0 and F define a graph reachability problem for (U,E).

Furthermore, β and Zsafe connect (U,E) back to the original MDP M; in particular, for an edge

e = u→ u′, Ze
safe is the set of trajectories inM that can be used to transition from β(u) to β(u′).

Definition 5.2. An infinite trajectory ζ = s0
a0−→ s1

a1−→ · · · in M satisfies abstract reachability

for G (denoted ζ |= G) if there is a sequence of indices 0 = i0 ≤ i1 < · · · < ik and a path

ρ = u0 → u1 → · · · → uk in G such that

• uk ∈ F ,

• for all j ∈ {0, . . . , k}, we have sij ∈ β(uj), and

• for all j < k, letting ej = uj → uj+1, we have ζij :ij+1 ∈ Z
ej
safe.

The first two conditions state that the trajectory should visit a sequence of subgoal regions corre-

sponding to a path from the initial vertex to some final vertex, and the last condition states that

the trajectory should be composed of subtrajectories that are safe according to Zsafe.

Definition 5.3. Given MDP M with unknown transitions and abstract graph G, the abstract

reachability problem is to compute a policy π̃ : Zf → A such that π̃ ∈ argmaxπ Prζ∼DM
π
[ζ |= G].

In other words, the goal is to find a policy for which the probability that a generated trajectory

satisfies abstract reachability is maximized.
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Figure 5.2: Abstract graph for achieve b.

5.2.2. Reduction to Abstract Reachability

In this section, we describe how to reduce the RL problem for a given MDP M = (S,A, η, P ) and

a specification φ to an abstract reachability problem for M by constructing an abstract graph Gφ

inductively from φ. At a high level, the construction works as follows. First, for each predicate b,

we define the corresponding subgoal region Sb = {s ∈ S | s |= b} denoting the set of states at which

b holds. Next, the abstract graph Gφ for φ = achieve b is shown in Figure 5.2. All trajectories in

Zf are considered safe for the edge e = u0 → u1 and the only final vertex is u1 with β(u1) = Sb.

The abstract graph for a specification of the form φ = φ1 ensuring b is obtained by taking the

graph Gφ1 and replacing the set of safe trajectories Ze
safe, for each e ∈ E, with the set Ze

safe ∩ Zb,

where Zb = {ζ ∈ Zf | ∀i . si |= b} is the set of trajectories in which all states satisfy b. For the

sequential specification φ = φ1;φ2, we construct Gφ by adding edges from every final vertex of Gφ1

to every vertex of Gφ2 that is a neighbor of its initial vertex. Finally, choice φ = φ1 or φ2 is handled

by merging the initial vertices of the graphs corresponding to the two sub-specifications. Figure 5.1

shows an example abstract graph. The labels on the vertices are regions in the environment. All

trajectories that avoid hitting the obstacle O are safe for all edges.

Definitions. We start with some definitions that are needed for describing the full construction.

Given two sets of finite trajectories Z1,Z2 ⊆ Zf , let us denote by Z1 ◦ Z2 the concatenation of the

two sets—i.e.,

Z1 ◦ Z2 =

{
ζ ∈ Zf

∣∣∣∣ ∃i < t . ζ0:i ∈ Z1 ∧ ζ(i+1):t ∈ Z2

}
.

In addition to the abstract graph G = (U,E, u0, F, β,Zsafe) we also construct a set of safe terminal

trajectories Zterm =
⋃

u∈F Zu
term where Zu

term ⊆ Zf is the set of terminal trajectories for the final

vertex u ∈ F . Now, we define what it means for a finite trajectory ζ to satisfy the pair (G,Zterm).
9We do not require that the subgoal regions partition the state space or that they be non-overlapping.
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Definition 5.4. A finite trajectory ζ = s0
a0−→ s1

a1−→ · · · at−1−−−→ st in M satisfies the pair (G,Zterm)

(denoted ζ |= (G,Zterm)) if there is a sequence of indices 0 = i0 ≤ i1 < · · · < ik ≤ t and a path

ρ = u0 → u1 → · · · → uk in G such that

• uk ∈ F ,

• for all j ∈ {0, . . . , k}, we have sij ∈ β(uj),

• for all j < k, letting ej = uj → uj+1, we have ζij :ij+1 ∈ Z
ej
safe, and

• ζik:t ∈ Z
uk
term.

We now outline the inductive construction of the pair (Gφ,Zterm,φ) from a specification φ such that

any finite trajectory ζ ∈ Zf satisfies φ if and only if ζ satisfies (Gφ,Zterm,φ).

Objectives (φ = achieve b). The abstract graph is Gφ = (U,E, u0, F, β,Zsafe) where

• U = {u0, ub} with β(u0) = S and β(ub) = Sb = {s | s |= b},

• E = {u0 → ub},

• F = {ub} and,

• Z(u0,ub)
safe = Zub

term = Zf .

Constraints (φ = φ1 ensuring b). Let the abstract graph for φ1 be Gφ1 = (U1, E1, u
1
0, F1, β1,Zsafe,1)

and the terminal trajectories be Zterm,1. Then, the abstract graph for φ is Gφ = (U,E, u0, F, β,Zsafe)

where

• U = U1, u0 = u10, E = E1 and F = F1.

• β(u) = β1(u) ∩ Sb for all u ∈ U \ {u0} where Sb = {s | s |= b}, and β(u0) = S.

• Ze
safe = Ze

safe,1 ∩ Zb for all e ∈ E where

Zb = {ζ ∈ Zf | ∀i . si |= b}.

69



• Zu
term = Zu

term,1 ∩ Zb for all u ∈ F .

Sequencing (φ = φ1;φ2). Let the abstract graph for φi be Gφi = (Ui, Ei, u
i
0, Fi, βi,Zsafe,i) and

the terminal trajectories be Zterm,i for i ∈ {1, 2}. The abstract graph Gφ = (U,E, u0, F, β,Zsafe) is

constructed as follows.

• U = U1 ⊔ U2 \ {u20}.

• E = E1 ⊔ E′
2 ⊔ E1→2 where

E′
2 = {u→ u′ ∈ E2 | u ̸= u20} and

E1→2 = {u1 → u2 | u1 ∈ F1 & u20 → u2 ∈ E2}.

• u0 = u10 and F = F2.

• β(u) = βi(u) for all u ∈ Ui and i ∈ {1, 2}.

• The safe trajectories are given by

– Ze
safe = Ze

safe,1 for all e ∈ E1,

– Ze
safe = Ze

safe,2 for all e ∈ E′
2 and,

– Zu1→u2

safe = Zu1

term,1 ◦ Z
u2
0→u2

safe,2 for all u1 → u2 ∈ E1→2.

• Zu
term = Zu

term,2 for all u ∈ F .

Choice (φ = φ1 or φ2). Let the abstract graph for φi be Gφi = (Ui, Ei, u
i
0, Fi, βi,Zsafe,i) and the

terminal trajectories be Zterm,i for i ∈ {1, 2}. The abstract graph for φ is Gφ = (U,E, u0, F, β,Zsafe)

where:

• U =
(
U1 \ {u10}

)
⊔
(
U2 \ {u20}

)
⊔ {u0}.

70



• E = E′
1 ⊔ E′

2 ⊔ E0 where

E′
i = {u→ u′ ∈ Ei | u ̸= ui0} and

E0 = {u0 → ui | i ∈ {1, 2} & ui0 → ui ∈ Ei}.

• F = F1 ⊔ F2.

• β(u) = βi(u) for all u ∈ Ui, i ∈ {1, 2} and β(u0) = S.

• The safe trajectories are given by

– Ze
safe = Ze

safe,i for all e ∈ E′
i and i ∈ {1, 2},

– Zu0→ui

safe = Zui
0→ui

safe,i for all u0 → ui ∈ E0 with ui ∈ Ui.

• Zu
term = Zu

term,i for all u ∈ Fi and i ∈ {1, 2}.

The constructed pair (Gφ,Zterm,φ) has the following important properties which enable us to justify

the reduction.

Lemma 5.5. For any Spectrl specification φ, the following hold.

• For any finite trajectory ζ ∈ Zf , ζ |= φ if and only if ζ |= (Gφ,Zterm,φ).

• For any final vertex u of Gφ and any state s ∈ β(u), the length-1 trajectory ζ = s is contained

in Zu
term,φ.

Proof. Follows from the above construction by structural induction on φ.

We now have the following key guarantee.

Theorem 5.6. Given a Spectrl specification φ, we can construct an abstract graph Gφ such that,

for every infinite trajectory ζ ∈ Z, we have ζ |= φ if and only if ζ |= Gφ. Furthermore, the number
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of vertices in Gφ is O(|φ|) where |φ| is the size of the specification φ.

Proof. Let ζ = s0
a0−→ s1

a1−→ · · · be an infinite trajectory. First we show that ζ |= φ if and only if

ζ |= Gφ.

( =⇒ ) Suppose ζ |= φ. Then, there is a t ≥ 0 such that ζ0:t |= φ. From Lemma 5.5, we get that

ζ0:t |= (Gφ,Zterm,φ) which implies that ζ |= Gφ.

(⇐= ) Suppose ζ |= Gφ. Then, let 0 = i0 ≤ i1 < · · · < ik be a sequence of indices realizing a path

u0 → · · · → uk to a final vertex uk in Gφ. Since sik ∈ β(uk), from Lemma 5.5 we have ζik:ik ∈ Z
uk
term,φ

and hence ζ0:ik |= (Gφ,Zterm,φ). From Lemma 5.5, we conclude that ζ0:ik |= φ and therefore ζ |= φ.

Next, it follows by a straightforward induction on φ that the number of vertices in Gφ is at most

|φ|+ 1 where |φ| is the number of operators (achieve, ensuring, ;, or) in φ.

As a consequence, we can solve the reinforcement learning problem for φ by solving the abstract

reachability problem for Gφ. As described below, we leverage the structure of Gφ in conjunction

with reinforcement learning to do so.

5.3. Compositional Reinforcement Learning

In this section, we propose a compositional approach for learning a policy to solve the abstract

reachability problem for MDPM (with unknown transition probabilities) and abstract graph G.

5.3.1. Overview

At a high level, our algorithm proceeds in three steps:

• For each edge e = u → u′ in G, use RL to learn a neural network (NN) policy πe to try and

transition the system from any state s ∈ β(u) to some state s′ ∈ β(u′) in a safe way according

to Ze
safe. Importantly, this step requires a distribution ηu over initial states s ∈ β(u).

• Use sampling to estimate the probability P (e;πe, ηu) that πe safely transitions from β(u) to

β(u′) when the distribution over initial states in β(u) is given by ηu.
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Algorithm 2 Compositional reinforcement learning algorithm for solving abstract reachability.
function Dirl(M, G)

Initialize processed vertices Up ← ∅
Initialize Γu0 ← {u0}, and Γu ← ∅ for u ̸= u0
Initialize edge policies Π← ∅
while true do
u← NearestVertex(U \ Up,Γ,Π)
ρu ← ShortestPath(Γu)
ηu ← ReachDistribution(ρu,Π)
if u ∈ F then return PathPolicy(ρu,Π)
for e = u→ u′ ∈ Outgoing(u) do
πe ← LearnPolicy(e, ηu)
Add ρu ◦ e to Γu′ and πe to Π

end for
Add u to Up

end while
end function

• Use Djikstra’s algorithm in conjunction with the edge costs c(e) = − log(P (e;πe, ηu)) to com-

pute a path ρ∗ = u0 → u1 → · · · → uk in G that minimizes c(ρ) = −
∑k−1

j=0 log(P (ej ;πj , ηj)),

where ej = uj → uj+1, πj = πej , and ηj = ηuj .

Then, we could choose π to be the sequence of policies π1, ..., πk−1—i.e., execute each policy πj until

it reaches β(uj+1), and then switch to πj+1.

There are two challenges that need to be addressed in realizing this approach effectively. First,

it is unclear what distribution to use as the initial state distribution ηu to train πe. Second, it

might be unnecessary to learn all the policies since a subset of the edges might be sufficient for the

reachability task. Our algorithm (Algorithm 2) addresses these issues by lazily training πe—i.e.,

only training πe when the edge cost c(e) is needed by Djikstra’s algorithm.

In more detail, Dirl iteratively processes vertices in G starting from the initial vertex u0, continuing

until it processes a final vertex u ∈ F . It maintains the property that for every u it processes, it has

already trained policies for all edges along some path ρu from u0 to u. This property is satisfied by

u0 since there is a path of length zero from u0 to itself. In Algorithm 2, Γu is the set of all paths

from u0 to u discovered so far, Γ =
⋃

u Γu, and Π = {πe | e = u→ u′ ∈ E, u ∈ Up} is the set of all
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edge policies trained so far. In each iteration, Dirl processes an unprocessed vertex u nearest to

u0, which it discovers using NearestVertex, and performs the following steps:

1. ShortestPath selects the shortest path from u0 to u in Γu, denoted ρu = u0 → · · · → uk = u.

2. ReachDistribution computes the distribution ηu over states in β(u) induced by using the

sequence of policies πe0 , ..., πek−1
∈ Π, where ej = uj → uj+1 are the edges in ρu.

3. For every edge e = u→ u′, LearnPolicy learns a policy πe for e using ηu as the initial state

distribution, and adds πe to Π and ρu′ to Γu′ , where ρu′ = u0 → · · · → u → u′; πe is trained

to ensure that the resulting trajectories from β(u) to β(u′) are in Ze
safe with high probability.

5.3.2. Definitions and Notation

Edge costs. We begin by defining the edge costs used in Djikstra’s algorithm. Given a policy πe

for edge e = u→ u′, and an initial state distribution ηu over the subgoal region β(u), the cost c(e)

of e is the negative log probability that πe safely transitions the system from s0 ∼ ηu to β(u′). First,

we say a trajectory ζ starting at s0 achieves an e if it safely reaches β(u′)—formally:

Definition 5.7. An infinite trajectory ζ = s0 → s1 → · · · achieves edge e = u→ u′ in G (denoted

ζ |= e) if (i) s0 ∈ β(u), and (ii) there exists i (constrained to be positive if u ̸= u0) such that

si ∈ β(u′) and ζ0:i ∈ Ze
safe; we denote the smallest such i by i(ζ, e).

Then, the probability that π achieves e from an initial state s0 ∼ ηu is

P (e;πe, ηu) = Pr
s0∼ηu,ζ∼Dπe,s0

[ζ |= e],

where Dπe,s0 is the distribution over infinite trajectories induced by using πe from initial state s0.

Finally, the cost of edge e is c(e) = − logP (e;πe, ηu). Note that c(e) is nonnegative for any edge e.

Path policies. Given edge policies Π along with a path ρ = u0 → u1 → · · · → uk = u in G, we

define a path policy πρ to navigate from β(u0) to β(u). In particular, πρ executes πuj→uj+1 (starting

from j = 0) until reaching β(uj+1), after which it increments j ← j + 1 (unless j = k). That is, πρ
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is designed to achieve the sequence of edges in ρ. Note that πρ is stateful since it internally keeps

track of the index j of the current policy.

Induced distribution. Let path ρ = u0 → · · · → uk = u from u0 to u be such that edge policies

for all edges along the path have been trained. The induced distribution ηρ is defined inductively

on the length of ρ. Formally, for the zero length path ρ = u0 (so u = u0), we define ηρ = η to be the

initial state distribution of the MDP M. Otherwise, we have ρ = ρ′ ◦ e, where e = u′ → u. Then,

we define ηρ to be the state distribution over β(u) induced by using πe from s0 ∼ ηρ′ conditioned on

ζ |= e. Formally, ηρ is the probability distribution over β(u) such that for a set of states S′ ⊆ β(u),

the probability of S′ according to ηρ is

Pr
s∼ηρ

[s ∈ S′] = Pr
s0∼ηρ′ ,ζ∼Dπe,s0

[
si(ζ,e) ∈ S′ | ζ |= e

]
.

Path costs. The cost of a path ρ = u0 → · · · → uk = u is c(ρ) = −
∑k−1

j=0 logP (ej ;πej , ηρ0:j ) where

ej = uj → uj+1 is the j-th edge in ρ, and ρ0:j = u0 → · · · → uj is the j-th prefix of ρ.

5.3.3. Algorithm Details

Dirl interleaves Djikstra’s algorithm with using RL to train policies πe. Note that the edge weights

to run Dijkstra’s are not given a priori since the edge policies and initial state/induced distributions

are unknown. Instead, they are computed on-the-fly beginning from the subgoal region u0 using

Algorithm 2. We describe each subprocedure below.

Processing order (NearestVertex). On each iteration, Dirl chooses the vertex u to process

next to be an unprocessed vertex that has the shortest path from u0—i.e.,

u ∈ argmin
u′∈U\Up

min
ρ∈Γu′

c(ρ).

This choice is an important part of Djikstra’s algorithm. For a graph with fixed costs, it ensures

that the computed path ρu to each vertex u is minimized. While the costs in our setting are not

fixed since they depend on ηu, this strategy remains an effective heuristic.
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Shortest path computation (ShortestPath). This subroutine returns a path of minimum

cost, ρu ∈ argminρ∈Γu
c(ρ). These costs can be estimated using Monte Carlo sampling.

Initial state distribution (ReachDistribution). A key choice Dirl makes is what initial

state distribution ηu to choose to train policies πe for outgoing edges e = u→ u′. Dirl chooses the

initial state distribution ηu = ηρu to be the distribution of states reached by the path policy πρu

from a random initial state s0 ∼ η.10

Learning an edge policy (LearnPolicy). Now that the initial state distribution ηu is known,

we describe how Dirl learns a policy πe for a single edge e = u → u′. At a high level, it trains

πe using a standard RL algorithm, where the rewards 1(ζ |= e) are designed to encourage πe

to safely transition the system to a state in β(u′). To be precise, Dirl uses RL to compute

πe ∈ argmaxπ P (e;π, ηu). Shaped rewards can be used to improve learning; see subsection 5.3.4.

Constructing a path policy (PathPolicy). Given edge policies Π along with a path ρ =

u0 → · · · → u, where u ∈ F is a final vertex, Dirl returns the path policy πρ.

Theoretical Guarantee. We guarantee that minimizing the path cost c(ρ) corresponds to maxi-

mizing a lower bound on the objective of the abstract reachability problem. Formally, we have the

following theorem.

Theorem 5.8. Given a path policy πρ corresponding to a path ρ = u0 → · · · → uk = u, where

u ∈ F , we have Prζ∼DM
πρ
[ζ |= G] ≥ exp(−c(ρ)).

Proof. Let the abstract graph be G = (U,E, u0, F, β,Zsafe). Let us first define what it means for a

rollout to achieve a path in G.

Definition 5.9. We say that an infinite trajectory ζ achieves the path ρ (denoted ζ |= ρ) if ζ |= Gρ

where Gρ = (Uρ, Eρ, u0, {uk}, β ↓ ρ,Zsafe ↓ρ) with Uρ = {uj | 0 ≤ j ≤ k}, Eρ = {uj → uj+1 | 0 ≤
10This choice is the distribution of states reaching u by the path policy πρ eventually returned by Dirl. Thus, it

ensures that the training and test distributions for edge policies in πρ are equal.
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j < k} and β ↓ ρ and Zsafe ↓ρ are β and Zsafe restricted to the vertices and the edges of Gρ,

respectively.

From the definition it is clear that for any infinite trajectory ζ, if ζ |= ρ then ζ |= G and therefore

Pr
ζ∼DM

πρ

[ζ |= G] ≥ Pr
ζ∼DM

πρ

[ζ |= ρ]. (5.1)

Let us now define a slightly stronger notion of achieving an edge.

Definition 5.10. An infinite trajectory ζ = s0 → s1 → · · · is said to greedily achieve the path ρ

(denoted ζ |=g ρ) if there is a sequence of indices 0 = i0 ≤ i1 < · · · < ik such that for all j < k,

• ζij :∞ |= ej = uj → uj+1 and,

• ij+1 = i(ζij :∞, ej),

where ζij :∞ = sij → sij+1 → · · · .

That is, ζ |=g ρ if a partition of ζ realizing ρ can be be constructed greedily by picking ij+1 to be

the smallest index i ≥ ij (strictly bigger if j > 0) such that si ∈ β(uj+1) and ζij :i ∈ Z
ej
safe. Since

ζ |=g ρ implies ζ |= ρ, we have

Pr
ζ∼DM

πρ

[ζ |= ρ] ≥ Pr
ζ∼DM

πρ

[ζ |=g ρ]. (5.2)

Let ρj:k denote the j-th suffix of ρ. We can decompose the probability Prζ∼Dπρ
[ζ |=g ρ] as follows.

Pr
ζ∼Dπρ

[ζ |=g ρ] = Pr
ζ∼Dπρ

[ζ |= e0 ∧ ζi(ζ,e0):∞ |=g ρ1:k]

= Pr
ζ∼Dπe0

[ζ |= e0] · Pr
ζ∼Dπρ

[ζi(ζ,e0):∞ |=g ρ1:k | ζ |= e0]

= P (e0;πe0 , η0) · Pr
s0∼ηρ0:1 ,ζ∼Dπρ1:k

,s0

[ζ |=g ρ1:k]
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where the last equality followed from the definition of ηρ0:1 and the Markov property ofM. Applying

the above decomposition recursively, we get

Pr
ζ∼Dπρ

[ζ |=g ρ] =
k−1∏
j=0

P (ej ;πej , ηρ0:j )

= exp(log(
k−1∏
j=0

P (ej ;πej , ηρ0:j )))

= exp(−(−
k−1∑
j=0

logP (ej ;πej , ηρ0:j )))

= exp(−c(ρ)).

Therefore, from Equations 5.1 and 5.2, we get the required bound.

5.3.4. Shaped Rewards for Learning Edge Policies

To improve learning, we use shaped rewards for learning each edge policy πe. To enable reward

shaping, we assume that the atomic predicates additionally have a quantitative semantics—i.e., each

atomic predicate p ∈ P0 is associated with a function JpKq : S → R. To ensure compatibility with

the Boolean semantics, we assume that

JpK(s) =
(
JpKq(s) > 0

)
. (5.3)

For example, given a state s ∈ S, the atomic predicate

Jreach sKq(s
′) = 1− ∥s′ − s∥

indicates whether the system is in a state near s w.r.t. some norm ∥ · ∥. Recall from the previous

chapter that we can extend the quantitative semantics to predicates b ∈ P by recursively defining

Jb1 ∧ b2Kq(s) = min{Jb1Kq(s), Jb2Kq(s)} and Jb1 ∨ b2Kq(s) = max{Jb1Kq(s), Jb2Kq(s)}. This preserves

(5.3)—i.e., b |= s if and only if JbKq(s) > 0.

In addition to quantitative semantics, we make use of the following property to define shaped
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rewards.

Lemma 5.11. The abstract graph Gφ = (U,E, u0, F, β,Zsafe) of a specification φ satisfies the

following:

• For every non-initial vertex u ∈ U \ {u0}, there is a predicate b ∈ P such that β(u) = Sb =

{s | s |= b}.

• For every e ∈ E, either Ze
safe = Zb = {ζ ∈ Z | ∀i . si |= b} for some b ∈ P or Ze

safe = Zb1◦Zb2

for some b1, b2 ∈ P.

Proof sketch. We prove a stronger property that, in addition to the above, requires that for any

e = u0 → u ∈ E, Ze
safe = Zb for some b ∈ P and for any final vertex u, Zu

term,φ = Zb for some

b ∈ P. This stronger property follows from a straightforward induction on φ.

We are now ready to define shaped rewards that can be used to train a policy πe for an edge

e = u→ u′ in Gφ. The rewards are given by

Rstep(s, a, s
′) = Rreach(s, a, s

′) +Rsafe(s, a, s
′).

Intuitively, the first term encodes a reward for reaching β(u′), and the second term encodes a reward

for maintaining safety. By Lemma 5.11, β(u′) = Sb for some b ∈ P. Then, we define

Rreach(s, a, s
′) = JbKq(s

′).

The safety reward is defined by

Rsafe(s, a, s
′) =


min{0, JbKq(s′)} if Ze

safe = Zb

min{0, Jb ∨ b′Kq(s′)} if Ze
safe = Zb ◦ Zb′ & ψb

min{0, Jb′Kq(s′)} if Ze
safe = Zb ◦ Zb′ & ¬ψb.
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(a) 16-Rooms: All doors open (b) 16-Rooms: Some doors open

Figure 5.3: 16-Rooms Environments. Blue square indicates the initial room. Red squares represent
obstacles. (a) illustrates the segments in the specifications.

Here, ψb is an internal state keeping track of whether b has held so far—i.e., ψb ← ψb ∧ JbK(s) at

state s. Intuitively, the first case is the simpler case, which checks if every state in the trajectory

satisfies b, and the latter two cases handle a sequence where b should hold for the first part of the

trajectory, and b′ should hold for the remainder.

5.4. Experiments

We implemented our approach in a tool called Dirl11 and empirically evaluated our tool on two

classes of continuous control environments, namely, the Rooms and the Fetch environments.

5.4.1. Rooms Environment

We considered environments with several interconnected rooms. The rooms are separated by thick

walls and are connected through bi-directional doors. The environments are a 9-Rooms environ-

ment, (Figure 5.1), a 16-Rooms environment with all doors open (Figure 5.3a), and a 16-Rooms

environment with some doors open (Figure 5.3b). The red blocks indicate obstacles. A robot can

pass through those rooms by moving around the red blocks. The robot is initially placed randomly

in the center of the room with the blue box (bottom-left corner). The robot has a state (x, y) ∈ R2

encoding its 2D position. At any step, it can perform an action (v, θ) ∈ R2 (encoding speed and

direction) which leads to a transition s′ ∼ N (s+ (v cos(θ), v sin(θ)), δI) where δ > 0.

Rooms are identified by a tuple (r, c) denoting the room in the r-th row and c-th column. We use
11Our implementation is available at https://github.com/keyshor/dirl.
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the convention that the bottom-left corner is room (0,0). Predicate reach (r, c) is interpreted as

reaching the center of the (r, c)-th room and predicate avoid (r, c) is interpreted as avoiding the

center of the (r, c)-th room. For clarity, we omit the word achieve from specifications of the form

achieve b denoting such a specification using just the predicate b.

Specifications in the 9-Rooms Environment

1. φ1 := reach (2, 0); reach (0, 0)

This specification is difficult for standard RL algorithms that do not store whether the first

subtask has been achieved. In these cases, a stateless policy will not be able to determine

whether to move upwards or downwards. In contrast, Dirl (as well as Spectrl and RM

based approaches) augments the state space to automatically keep track of which subtasks

have been achieved so far.

2. φ2 := reach (2, 0) or reach (0, 2)

3. φ3 := φ2; reach (2, 2)

This specification combines two choices of similar difficulty yet only one is favorable to fulfilling

the specification since the direct path to the top-right corner from the bottom-right one is

obstructed by walls.

4. φ4 := reach (2, 0) ensuring avoid (1, 0)

5. φ5 := φ4 or reach (0, 2); reach (2, 2)

This specification is similar to φ3 except that the choices are of unequal difficulty due to the

placement of the red obstacle. In this case, the non-greedy choice is favorable for completing

the task.

Specifications in the 16-Rooms Environments

We describe the five specifications used in the 16-rooms environments, which are designed to increase

in difficulty. First, we define a segment as the following specification: Given the current location of
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the agent, the goal is to reach a room diagonally opposite to it by visiting at least one of the rooms

at the remaining two corners of the rectangle formed by the current room and the goal room—e.g.,

in the 9-Rooms environment, to visit S3 from the initial room, the agent must visit either S1 or S2

first. Then, we design specifications of varying sizes by sequencing several segments one after the

other. In addition, the agent must always avoid the obstacles in the environment. We studied five

such specifications, one half-segment and specifications up to four segments (φ1 to φ5), as illustrated

in Figure 5.3a and described below.

1. φ1 corresponds to a half-segment—i.e., φ1 is simply a choice between (0,2) and (2,0).

2. φ2 is the first segment that goes from (0,0) to (2,2)

3. φ3 augments φ2 with a second segment from (2,2) to (3,1).

4. φ4 augments φ3 with a segment from (3,1) to (1,3)

5. φ5 augments φ4 with a segment from (1,3) to (0,1)

5.4.2. Fetch Environment

We also evaluated our approach in the Fetch-Pick-And-Place environment in OpenAI Gym [31],

consisting of a robotic arm that can grasp objects as well as a cuboidal block to manipulate (vi-

sualized in Figure 5.4). The state space is R25, which includes components encoding the gripper

position, the (relative) position of the block, and the distance between the gripper fingers. The

action space is R4, where the first 3 components encode the target gripper position and the last

encodes the target gripper width. The block’s initial position is a random location on a table. Let

us denote by sr = (sxr , s
y
r , szr) ∈ R3 the position of the gripper, so ∈ R3 the relative position of the

object (black block) w.r.t. the gripper, sg ∈ R3 the goal location (red sphere) and sw ∈ R the width

of the gripper. Let c denote the width of the object and zϵ = (0, 0, ϵ+ c) for ϵ > 0. Then, we define

the following predicates.

• NearObj holds true in states in which the gripper is wide open, aligned with the object and
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Figure 5.4: Fetch robotic arm.

is slightly above the object.

NearObj(s) =
(
∥so + zϵ∥22 + (sw − 2c)2 < δ1

)

• HoldingObj holds true in states in which the gripper is close to the object and its width is

close to the object’s width.

HoldingObj(s) =
(
∥so∥22 + (sw − c)2 < δ2

)

• LiftedObj holds true in states in which the object is above the surface level of the table.

LiftedObj(s) =
(
szr + szo > δ3

)

• ObjAt [g] holds true in states in which the object is close to g.

ObjAt[g](s) =
(
∥sr + so − g∥22 < δ4

)

Then the specifications we studied are the following.12

12We denote achieve b using just the predicate b.
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• PickAndPlace: NearObj; HoldingObj; LiftedObj; ObjAt[sg].

• PickAndPlaceStatic: NearObj; HoldingObj; LiftedObj; ObjAt[g1] where g1 is a fixed goal.

• PickAndPlaceChoice:
(
NearObj; HoldingObj; LiftedObj

)
;(

(ObjAt[g1]; ObjAt[g2]) or (ObjAt[g3]; ObjAt[g4])
)
.

Baselines. We compared our approach to four state-of-the-art algorithms for learning from spec-

ifications, Spectrl [84], Qrm [76], Hrm [77], and a Tltl [102] based approach, as well as a

state-of-the-art hierarchical RL algorithm, R-avi [86], that leverages state abstractions. We used

publicly available implementations of Spectrl, Qrm, Hrm and R-avi. For Qrm and Hrm, we

manually encoded the tasks as reward machines with continuous rewards. The variants Qrm+cr

and Hrm+cr use counterfactual reasoning to reuse samples during training. Our implementation

of Tltl uses the quantitative semantics defined in [102] with ARS to learn a single policy for each

task. We used the subgoal regions and the abstract graph generated by our algorithm as inputs to

R-avi. Since R-avi only supports disjoint subgoal regions and furthermore assumes the ability to

sample from any subgoal region, we only ran R-avi on supported benchmarks. The learning curves

for R-avi denote the probability of reaching the final goal region in the y-axis which is an upper

bound on the probability of satisfying the specification.

Setup. Our tool learns the low-level NN policies for edges using an off-the-shelf RL algorithm.

For the Rooms environment, we trained these policies using ARS [111] with shaped rewards; each

one is a fully connected NN with 2 hidden layers of 30 neurons each. For the Fetch environment,

we trained policies using TD3 [50] with shaped rewards; each one is a fully connected NN with 2

hidden layers of 256 neurons each.

For each specification in an environment, we first construct its abstract graph. In Dirl, each edge

policy πe is trained using k episodes of interactions with the environment. For the purpose of

generating a learning curve, we run Dirl for each specification with several values of k. For each k

value, we plot the sum total of the samples taken to train all edge policies against the probability

with which the computed policy reaches a final subgoal region. For a fair comparison with the

baselines, if each episode for learning an edge policy in Dirl is run for m steps, we run the episodes
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(e) Specification φ5

Figure 5.5: Learning curves for 9-Rooms environment with different specifications. x-axis denotes
the number of samples (steps) and y-axis denotes the estimated probability of success. Results are
averaged over 10 runs with error bars indicating ± standard deviation.

of the baselines for m · d+ c steps, where d is the maximum path length to reach a final vertex in

the abstract graph of the specification and c > 0 is a buffer. Intuitively, this approach ensures that

all tools get a similar number of steps in each episode to learn the specification.

Results. The learning curves for the 9-Rooms environment are shown in Figure 5.5. The learning

curves for the 16-Rooms environment with all open doors and the constrained 16-Rooms environment

with some open doors are shown in Figure 5.6 and Figure 5.7, respectively. Focusing on Figure 5.6,

we see that none of the baselines scale beyond ϕ2 (one segment), while Dirl quickly converges

to high-quality policies for all specifications. The Tltl baseline performs poorly since most of

these tasks require stateful policies, which it does not support. Though Spectrl can learn stateful

policies, it scales poorly since (i) it does not decompose the learning problem into simpler ones, and

(ii) it does not integrate model-based planning at the high-level. Reward Machine based approaches

(Qrm and Hrm) are also unable to handle complex specifications, likely because they are completely

based on model-free RL, and do not employ model-based planning at the high-level. Although R-
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Figure 5.6: (a)-(e) Learning curves for 16-Rooms environment with different specifications increasing
in complexity from from (a) to (e). x-axis denotes the number of samples (steps) and y-axis denotes
the estimated probability of success. Results are averaged over 10 runs with error bars indicating
± standard deviation. (f) shows the average number of samples (steps) needed to achieve a success
probability ≥ z (y-axis) as a function of the size of the abstract graph |Gφ|.

avi uses model-based planning at the high-level in conjunction with low-level RL, it does not scale

to complex specifications since it trains all edge policies multiple times (across multiple iterations)

with different initial state distributions; in contrast, our approach trains any edge policy at most

once. The results are similar for the other Rooms environments as well. Our experiments also

demonstrate the robustness of our tool on different specifications and environments. For instance,

in the 16-Rooms environment with blocked doors, fewer policies satisfy the specification, which

makes learning more challenging but Dirl is still able to learn high-quality policies for all the

specifications.

We summarize the scalability of Dirl in Figure 5.6f, where we show the average number of steps

needed to achieve a given success probability z as a function of the number of edges in Gφ (denoted

by |Gφ|). As can be seen, the sample complexity of Dirl scales roughly linearly in the graph size.
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Figure 5.7: (a)-(e) Learning curves for 16-Rooms environment with some blocked doors (Figure 5.3b)
with different specifications increasing in complexity from (a) to (e). x-axis denotes the number of
samples (steps) and y-axis denotes the estimated probability of success. Results are averaged over
10 runs with error bars indicating ± standard deviation. (f) shows the average number of samples
(steps) needed to achieve a success probability ≥ z (y-axis) as a function of the size of the abstract
graph |Gφ|.

Intuitively, each subtask takes a constant number of steps to learn, so the total number of steps

required is proportional to |Gφ|.

Next, we can see the results for the Fetch environment in Figure 5.8. The trends are similar to

before—Dirl leverages compositionality to quickly learn effective policies, whereas the baselines

are ineffective. The last task is especially challenging, taking Dirl somewhat longer to solve, but it

ultimately achieves similar effectiveness. These results demonstrate that Dirl can scale to complex

specifications even in challenging environments with high-dimensional state spaces.

5.5. Discussion

We have proposed Dirl, a reinforcement learning algorithm for logical specifications that leverages

the compositional structure of the specification to decouple high-level planning and low-level control.
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Figure 5.8: Learning curves for Fetch environment; x-axis denotes the total number of samples
(steps) and y-axis denotes the estimated probability of success. Results are averaged over 5 runs
with error bars indicating ± standard deviation.

Our experiments demonstrate that Dirl can effectively solve complex continuous control tasks,

significantly improving over existing approaches. Logical specifications are a promising approach

to enable users to more effectively specify robotics tasks; by enabling more scalable learning of

these specifications, we are directly enabling users to specify more complex objectives through the

underlying specification language. While we have focused on Spectrl specifications, we believe

our approach can also enable the incorporation of more sophisticated features into the underlying

language, such as conditionals (i.e., only perform a subtask upon observing some property of the

environment) and iterations (i.e., repeat a subtask until some objective is met).

A key limitation of Dirl is that it assumes the ability to sample trajectories starting at any

state s ∈ S that has been observed before, whereas in some cases it might only be possible to

obtain trajectories starting at some initial state. One way to overcome this limitation is to use

the learnt path policies for sampling—i.e., in order to sample a state from a subgoal region β(u)

corresponding to a vertex u in the abstract graph, we could sample an initial state s0 ∼ η from

β(u0) and execute the path policy πρu corresponding to the shortest path ρu from u0 to u starting at

s0. Upon successfully reaching β(u) (we can restart the sampling procedure if β(u) is not reached),

the system will be in a state s ∼ ηu in β(u) from which we can simulate the system further.

Another limitation of our approach is that we only consider path policies. It is possible that an

optimal policy must follow different high-level plans from different states within the same subgoal
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region. We believe this limitation can be addressed in future work by modifying our algorithm

appropriately.

5.6. Related Work

There has been recent interest in combining high-level planning with reinforcement learning [2, 86,

45]. These approaches all target MDPs with reward functions, whereas we target MDPs with logical

task specifications. Furthermore, in our setting, the high-level structure is derived from the given

specification, whereas in existing approaches it is manually provided. Illanes et al. [78] propose an

RL algorithm for reachability tasks that uses high-level planning to guide low-level RL; however,

unlike our approach, they assume that a high-level model is given and high-level planning is not

guided by the learned low-level policies.
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CHAPTER 6

A Framework for Multi-Agent RL from Temporal Specifications

In the previous chapters, we studied the use of temporal specifications in reinforcement learning

with a focus on the single-agent setting—i.e., there is one agent interacting with a stochastic envi-

ronment whose transition probabilities are unknown. However, recent successes of RL has lead to an

increased interest in applying RL to multi-agent systems in which multiple agents are interacting

with the same stochastic environment. In the multi-agent setting, we are once again faced with

issues regarding specifying the training objective using reward functions—for example, sparsity of

rewards and scalability with respect to task complexity. In particular, in non-cooperative systems,

each agent is trying to achieve its own goal [93]; for such systems, we need to devise a separate

reward function for each agent.

In this chapter, we study the use of formal specifications in multi-agent reinforcement learning

(MARL); in particular, we focus on non-cooperative systems in which each agent has its own

specification. The goal in MARL is typically to learn a policy for each agent such that the joint

strategy forms a Nash equilibrium. Existing approaches mostly focus on computing an arbitrary

Nash equilibrium. However, in many settings, the user is a social planner trying to optimize the

overall social welfare of the system, and most existing approaches are not designed to optimize such

additional criteria while making sure that the resulting joint strategy is a Nash equilibrium.

6.1. Overview

We propose a novel multi-agent RL framework for learning policies from high-level specifications

(one specification per agent) such that the resulting joint policy (i) has high social welfare, and (ii)

is an ϵ-Nash equilibrium (for a given ϵ). We formulate this problem as a constrained optimization

problem where the goal is to maximize social welfare under the constraint that the joint policy is

an ϵ-Nash equilibrium.

Our algorithm for solving this optimization problem uses an enumerative search strategy. First, it
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Figure 6.1: Intersection Example

enumerates candidate policies in decreasing order of social welfare. To ensure a tractable search

space, it restricts to policies that conform to the structure of the user-provided specification. Then,

for each candidate policy, it uses an explore-then-exploit self-play RL algorithm [20] to compute

punishment strategies that are triggered when some agent deviates from the original joint policy. It

also computes the maximum benefit each agent derives from deviating, which can be used to deter-

mine whether the joint policy augmented with punishment strategies forms an ϵ-Nash equilibrium;

if so, it returns the joint policy.

Intuitively, the enumerative search tries to optimize social welfare, whereas the self-play RL al-

gorithm checks whether the ϵ-Nash equilibrium constraint holds. Since this RL algorithm comes

with PAC (Probably Approximately Correct) guarantees, our algorithm is guaranteed to return an

ϵ-Nash equilibrium with high probability. In summary, we make the following contributions.

• We study the problem of maximizing social welfare under the constraint that the policies

form an ϵ-NE. To the best of our knowledge, this problem has not been studied before in the

context of learning (beyond single-step games).

• We provide an enumerate-and-verify framework for solving the said problem.

• We propose a verification algorithm with a probabilistic soundness guarantee in the RL setting

of probabilistic systems with unknown transition probabilities.
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Motivating example. Consider the road intersection scenario in Figure 6.1. There are four cars;

three are traveling east to west and one is traveling north to south. At any stage, each car can

either move forward one step or stay in place. Suppose each car’s specification is as follows:

• Black car: Cross the intersection before the green and orange cars.

• Blue car: Cross the intersection before the black car and stay a car length ahead of the green

and orange cars.

• Green car: Cross the intersection before the black car.

• Orange car: Cross the intersection before the black car.

We also require that the cars do not crash into one another. Clearly, not all agents can achieve their

goals. The next highest social welfare is for three agents to achieve their goals. In particular, one

possibility is that all cars except the black car achieve their goals. However, the corresponding joint

policy requires that the black car does not move, which is not a Nash equilibrium—there is always

a gap between the blue car and the other two cars behind, so the black car can deviate by inserting

itself into the gap to achieve its own goal. Our algorithm uses self-play RL to optimize the policy

for the black car, and finds that the other agents cannot prevent the black car from improving its

outcome in this way. Thus, it correctly rejects this joint policy. Eventually, our algorithm computes

a Nash equilibrium in which the black and blue cars achieve their goals.

6.2. Definitions

In this section, we provide some definitions and describe the multi-agent RL problem.

6.2.1. Markov Game.

Similar to the use of MDPs in the single-agent setting, the environment is modeled as a Markov

game in the multi-agent setting. An n-agent Markov game13 is a tuple M = (S,A, s0, P,H) with

a finite set of states S, actions A = A1 × · · · × An where Ai is a finite set of actions available to

agent i, transition probabilities P (s, a, s′) for s, s′ ∈ S and a ∈ A, finite horizon H, and initial state
13Here we fix a finite horizon H in advance.
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s0 [106]. A finite trajectory ζ ∈ Z = (S×A)∗×S is a finite sequence14 ζ = s0
a0−→ s1

a1−→ · · · at−1−−−→ st

where sk ∈ S, ak ∈ A; we use |ζ| = t to denote the length of the trajectory ζ and aik ∈ Ai to denote

the action of agent i in ak.

For any i ∈ [n], let D(Ai) denote the set of distributions over Ai—i.e., D(Ai) = {∆ : Ai → [0, 1] |∑
ai∈Ai

∆(ai) = 1}. A policy for agent i is a function πi : Z → D(Ai) mapping trajectories to

distributions over actions. A policy πi is deterministic if for every ζ ∈ Z, there is an action ai ∈ Ai

such that πi(ζ)(ai) = 1; in this case, we also use πi(ζ) to denote the action ai. A joint policy

π : Z → D(A) maps finite trajectories to distributions over joint actions. We use (π1, . . . , πn) to

denote the joint policy in which agent i chooses its action in accordance to πi. We denote by Dπ

the distribution over H-length trajectories inM induced by π.

Similar to Dirl, some parts of our algorithm are based on an assumption which allows us to obtain

sample trajectories starting at any state that has been observed before.

Assumption 6.1. We can obtain samples from P (s, a, ·) for any previously observed state s and

any action a.

6.2.2. Specification Language and Abstract Graph

We consider the specification language Spectrl to express agent specifications (see Section 4.2).

We choose Spectrl since we can construct an abstract graph from any Spectrl specification

which exposes the structure in the specification. However, we believe that our framework can be

adapted to other specification languages as well.

Abstract Graphs. We showed in the previous chapter that Spectrl specifications can be rep-

resented by abstract graphs which are DAG-like structures in which each vertex represents a set of

states (called subgoal regions) and each edge represents a set of concrete trajectories that can be

used to transition from the source vertex to the target vertex without violating safety constraints.

Since we are interested in the finite-horizon setting, we also have terminal safe trajectories for each

final vertex f (denoted by Zf
term in the previous chapter). Here, we incorporate the terminal safe

14We simply use Z to also denote the set of finite trajectories Zf in this chapter since we have a fixed finite horizon.

93



trajectories Zterm within Zsafe.

Definition 6.1. An abstract graph G = (U,E, u0, F, β,Zsafe) is a directed acyclic graph (DAG)

with vertices U , (directed) edges E ⊆ U × U , initial vertex u0 ∈ U , final vertices F ⊆ U , subgoal

region map β : U → 2S such that for each u ∈ U , β(u) is a subgoal region, and safe trajectories

Zsafe =
⋃

e∈E Ze
safe ∪

⋃
f∈F Z

f
safe, where Ze

safe ⊆ Z denotes the safe trajectories for edge e ∈ E

and Zf
safe ⊆ Z denotes the terminal safe trajectories for final vertex f ∈ F .

The satisfaction of an abstract graph by a finite trajectory ζ ∈ Z is defined according to Defini-

tion 5.4 (in which Zf
term denotes Zf

safe). Recall that for every Spectrl specification φ, we can

construct an abstract graph Gφ such that for every trajectory ζ ∈ Z, ζ |= φ if and only if ζ |= Gφ.

6.2.3. Nash Equilibrium and Social Welfare

Given a Markov gameM with unknown transitions and Spectrl specifications φ1, . . . , φn for the

n agents respectively, the score of agent i from a joint policy π is given by

Ji(π) = Pr
ζ∼Dπ

[ζ |= φi].

Our goal is to compute a high-value ϵ-Nash equilibrium in M w.r.t these scores. Given a joint

policy π = (π1, . . . , πn) and an alternate policy π′i for agent i, let (π−i, π
′
i) denote the joint policy

(π1, . . . , π
′
i, . . . , πn). Then, a joint policy π is an ϵ-Nash equilibrium if for all agents i and all alternate

policies π′i, Ji(π) ≥ Ji((π−i, π
′
i)) − ϵ. Our goal is to compute a joint policy π that maximizes the

social welfare given by

welfare(π) =
1

n

n∑
i=1

Ji(π)

subject to the constraint that π is an ϵ-Nash equilibrium.

6.3. Our Framework

Our framework for computing a high-welfare ϵ-Nash equilibrium consists of two phases. The first

phase is a prioritized enumeration procedure that learns deterministic joint policies in the envi-

ronment and ranks them in decreasing order of social welfare. The second phase is a verification
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phase that checks whether a given joint policy can be extended to an ϵ-Nash equilibrium by adding

punishment strategies. A policy is returned if it passes the verification check in the second phase.

Algorithm 3 summarizes our framework.

For the enumeration phase, it is impractical to enumerate all joint policies even for small environ-

ments, since the total number of deterministic joint policies is Ω(|A||S|H−1
), which is Ω(2n|S|

H−1
)

if each agent has atleast two actions. Thus, in the prioritized enumeration phase, we apply a

specification-guided heuristic to reduce the number of joint policies considered. The resulting search

space is independent of |S| and H, depending only on the specifications {φi}i∈[n]. Since the transi-

tion probabilities are unknown, these joint policies are trained using an efficient compositional RL

approach.

Since the joint policies are trained cooperatively, they are typically not ϵ-Nash equilibria. Hence,

in the verification phase, we use a probably approximately correct (PAC) procedure (Algorithm 6)

to determine whether a given joint policy can be modified by adding punishment strategies to form

an ϵ-Nash equilibrium. Our approach is to reduce this problem to solving two-agent zero-sum

games. The key insight is that for a given joint policy to be an ϵ-Nash equilibrium, unilateral

deviations by any agent must be successfully punished by the coalition of all other agents. In such

a punishment game, the deviating agent attempts to maximize its score while the coalition of other

agents attempts to minimize its score, leading to a competitive min-max game between the agent

and the coalition. If the deviating agent can improve its score by a margin ≥ ϵ, then the joint policy

cannot be extended to an ϵ-Nash equilibrium. Alternatively, if no agent can increase its score by a

margin ≥ ϵ, then the joint policy (augmented with punishment strategies) is an ϵ-Nash equilibrium.

Thus, checking if a joint policy can be converted to an ϵ-Nash equilibrium reduces to solving a

two-agent zero-sum game for each agent. Each punishment game is solved using a self-play RL

algorithm for learning policies in min-max games with unknown transitions [20], after converting

specification-based scores to reward-based scores. While the initial joint policy is deterministic, the

punishment strategies can be probabilistic.

Overall, we provide the guarantee that with high probability, if our algorithm returns a joint policy,
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Algorithm 3 HighNashSearch
Inputs: Markov game (with unknown transition probabilities) M with n-agents, agent specifica-
tions φ1, . . . , φn, Nash factor ϵ, precision δ, failure probability p.
Outputs: ϵ-NE, if found.
1: PrioritizedPolicies← PrioritizedEnumeration(M, φ1, . . . , φn)
2: for joint policy π ∈ PrioritizedPolicies do
3: // Can π be extended to an ϵ-NE?
4: isNash, τ ← VerifyNash(M, π, φ1, · · · , φn, ϵ, δ, p)
5: if isNash then return π ⋊⋉ τ // Add punishment strategies
6: end for
7: return No ϵ-NE found

it will be an ϵ-Nash equilibrium.

6.4. Prioritized Enumeration

In this section, we describe our specification-guided compositional RL algorithm for learning a finite

number of deterministic joint policies in an unknown environment under Assumption 6.1. These

policies are then ranked in decreasing order of their (estimated) social welfare.

6.4.1. Overview

Our learning algorithm harnesses the structure of specifications, exposed by their abstract graphs,

to curb the number of joint policies to learn. For every set of active agents B ⊆ [n], we construct

a product abstract graph, from the abstract graphs of all active agents’ specifications. A property

of this product is that if a trajectory ζ in M corresponds to a path in the product that ends in a

final state then ζ satisfies the specification of all active agents. Then, our procedure learns one joint

policy for every path in the product graph that reaches a final state. Intuitively, policies learned

using the product graph corresponding to a set of active agents B aim to maximize satisfaction

probabilities of all agents in B. By learning joint policies for every set of active agents, we are able

to learn policies under which some agents may not satisfy their specifications. This enables learning

joint policies in non-cooperative settings. Note that the number of paths (and hence the number

of policies considered) is independent of |S| and H, and depends only on the number of agents and

their specifications.

One caveat is that the number of paths may be exponential in the number of states in the product
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u1 v1
Z1 = ZnoCollision

Figure 6.2: Abstract Graph of black car.

u2 v2
Z2 = ZnoCollision∩
ZdistanceGreenOrange

Figure 6.3: Abstract Graph of blue car.

u1, u2

u1, v2

v1, u2

v1, v2

First(Z1) ∩ Z2

Z1 ∩ First(Z2)

Z1 ∩ Z2

Z1 ∩ Zv2

Zv1 ∩ Z2

Figure 6.4: Product Abstract Graph of black and
blue cars. Zv1 and Zv2 refer to safe trajectories
after the black and blue cars have reached their
final states, respectively.

graph. It would be impractical to naïvely learn a joint policy for every path. Instead, we design an

efficient compositional RL algorithm that learns a joint policy for each edge in the product graph;

these edge policies are then composed together to obtain joint policies for paths in the product

graph.

6.4.2. Product Abstract Graph

Let φ1, . . . , φn be the specifications for the n-agents, respectively, and let Gi =

(Ui, Ei, u
i
0, Fi, βi,Zsafe,i) be the abstract graph of specification φi in the environment M. We

construct a product abstract graph for every set of active agents in [n]. The product graph for a set

of active agents B ⊆ [n] is used to learn joint policies which satisfy the specification of all agents in

B with high probability.

Definition 6.2. Given a set of agents B = {i1, . . . , im} ⊆ [n], the product graph GB =

(U,E, u0, F , β,Zsafe) is the asynchronous product of Gi for all i ∈ B, with

• U =
∏

i∈B Ui is the set of product vertices,

• An edge e = (ui1 , . . . , uim) → (vi1 , . . . , vim) ∈ E if at least for one agent i ∈ B the edge

ui → vi ∈ Ei and for the remaining agents, ui = vi,

• u0 = (ui10 , . . . , u
im
0 ) is the initial vertex,
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• F = Πi∈BFi is the set of final vertices,

• β = (βi1 , . . . , βim) is the collection of concretization maps, and

• Zsafe = (Zsafe,i1 , . . . ,Zsafe,im) is the collection of safe trajectories.

We denote the i-th component of a product vertex u ∈ U by ui for agent i ∈ B. Similarly, the i-th

component in an edge e = u → v is denoted by ei = ui → vi for i ∈ B; note that ei can be a self

loop which is not an edge in Gi. For an edge e ∈ E, we denote the set of agents i ∈ B for which

ei ∈ Ei, and not a self loop, by progress(e).

Abstract graphs of the black car and the blue car from the motivating example are shown in

Figures 6.2 and 6.3 respectively. The vertex v1 denotes the subgoal region βblack(v1) consisting of

states in which the black car has crossed the intersection but the orange and green cars have not.

The subgoal region βblue(v2) is the set of states in which the blue car has crossed the intersection

but the black car has not. Z1 denotes trajectories in which the black car does not collide and Z2

denotes trajectories in which the blue car does not collide and stays a car length ahead of the orange

and green cars. The product abstract graph for the set of active agents B = {black, blue} is shown

in Fig 6.4. The safe trajectories on the edges reflect the notion of achieving a product edge which

we discuss below.

A trajectory ζ = s0
a0−→ s1

a1−→ · · · at−1−−−→ st achieves an edge e = u→ v in GB if all progressing agents

i ∈ progress(e) reach their target subgoal region βi(vi) along the trajectory and the trajectory is

safe for all agents in B. For a progressing agent i ∈ progress(e), the initial segment of the rollout

until the agent reaches its subgoal region should be safe with respect to the edge ei. After that,

the rollout should be safe with respect to every future possibility for the agent. This is required to

ensure continuity of the rollout into adjacent edges in the product graph GB. For the same reason,

we require that the entire rollout is safe with respect to all future possibilities for non-progressing

agents. Note that we are not concerned with non-active agents in [n] \ B. In order to formally

define this notion, we need to setup some notation.
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For a predicate b ∈ P, let the set of safe trajectories w.r.t. b be given by

Zb = {ζ = s0
a0−→ s1

a1−→ · · · at−1−−−→ st ∈ Z | ∀ 0 ≤ k ≤ t, sk |= b}.

We known that safe trajectories along an edge in an abstract graph constructed from a Spec-

trl specification is either of the form Zb or Zb1 ◦ Zb2 , where b, b1, b2 ∈ P and ◦ denotes concatena-

tion (see Lemma 5.11). In addition, for every final vertex f , Zf
safe is of the form Zb for some b ∈ P.

We define First as follows:

First(Z ′) =


Zb, if Z ′ = Zb

Zb1 , if Z ′ = Zb1 ◦ Zb2

We are now ready to define the notion of satisfiability of a product edge.

Definition 6.3. A rollout ζ = s0
a0−→ s1

a1−→ · · · at−1−−−→ sk achieves an edge e = u→ v in GB (denoted

ζ |=B e) if

1. for all progressing agents i ∈ progress(e), there exists an index ki ≤ k such that ski ∈ βi(vi)

and ζ0:ki ∈ Z
ei
safe,i. If vi ∈ Fi then ζki:k ∈ Z

vi
safe,i. Otherwise, ζki:k ∈ First(Zvi→wi

safe,i ) for all

wi ∈ outgoing(vi). Furthermore, we require ki > 0 if ui ̸= ui0.

2. for all non-progressing agents i ∈ B \ progress(e), if ui /∈ Fi, ζ ∈ First(Zui→wi
safe,i ) for all wi ∈

outgoing(ui). Otherwise (if ui ∈ Fi), ζ ∈ Zui
safe,i

We can now define what it means for a trajectory to achieve a path in the product graph GB.

Definition 6.4. Given B ⊆ [n], a rollout ζ = s0 → · · · → st achieves a path ρ = u0 → · · · → uℓ in

GB (denoted ζ |=B ρ) if there exists indices 0 = k0 ≤ k1 ≤ · · · ≤ kℓ ≤ t such that (i) uℓ ∈ F , (ii)

ζkz :kz+1 achieves uz → uz+1 for all 0 ≤ z < ℓ, and (iii) ζkℓ:t ∈ Z
uℓ,i

safe,i for all i ∈ B.

Theorem 6.5. Let ρ = u0 → u1 → · · · → uℓ be a path in the product abstract graph GB for B ⊆ [n].

Suppose trajectory ζ |=B ρ. Then ζ |= φi for all i ∈ B.
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Proof. We show that if ζ |=B ρ then every agent i ∈ B achieves a path in the abstract graph Gi

of its specification φi. Let 0 = k0 ≤ k1 ≤ · · · ≤ kℓ ≤ t be the indices that satisfy the criteria in

Definition 6.4.

For agent i ∈ B, let indices 0 ≤ z0 < · · · < zx < ℓ be such that the agent makes progress along the

edge ezy = uzy → uzy+1 for 0 ≤ y ≤ x. Note that agents can make progress only till they reach

a final state in their abstract graph. So, (uzy)i /∈ Fi and (uzx+1)i ∈ Fi for all 0 ≤ y ≤ x. Further

note, (uz0)i = ui0 and (uzy+1)i = (uzy+1)i for 0 ≤ y < x since the agent i has not made any progress

in between.

Let ζy = ζkzy :kzy+1 be the sub-trajectory that achieves the edge ezy for 0 ≤ y ≤ x, i.e. ζy |=B ezy for

0 ≤ y ≤ x. Since, agent i has made progress along ezy , using Definition 6.3, we can obtain indices

0 = p0 ≤ · · · < px+1 ≤ t on the trajectory such that

• py ≤ kzy ≤ py+1 for 0 ≤ y < x,

• spy+1 ∈ βi((uzy+1)i) for all 0 ≤ y ≤ x,

• ζkzy :py+1 ∈ Z
(ezy )i
safe,i for all 0 ≤ y ≤ x,

• ζpx+1:kzx+1 |= Z
(uzx+1)i
safe,i , and

• ζpy+1:kzy+1 ∈ First(Z(uzy+1)i→wi

safe,i ) for wi ∈ outgoing((uzy+1)i) and 0 ≤ y < x.

This is because (uzy)i /∈ Fi and (uzx+1)i ∈ Fi for all 0 ≤ y ≤ x, as observed earlier.

Additionally, by using, (uzy+1)i = (uzy+1)i for 0 ≤ y < x since the agent i has not made any progress

in between, the above is simplified to: there exists indices 0 = p0 ≤ · · · < px+1 ≤ t on the trajectory

such that

• py ≤ kzy ≤ py+1 for 0 ≤ y ≤ x,

• spy+1 ∈ βi((uzy+1)i) for all 0 ≤ y ≤ x,
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• ζkzy :py+1 ∈ Z
(ezy )i
safe,i for all 0 ≤ y ≤ x,

• ζpx+1:kzx+1 |= Z
(uzx+1)i
safe,i , and

• ζpy+1:kzy+1 ∈ First(Z
(ezy+1 )i
safe,i ) for 0 ≤ y < x.

This is because (ezy+1)i is an outgoing edge from (uzy+1)i.

Our goal is to show that ζpy :py+1 ∈ Z
(ezy )i
safe,i for 0 ≤ y ≤ x. We already know that ζkzy :py+1 ∈ Z

(ezy )i
safe,i

for all 0 ≤ y ≤ x. Observing the fact that for any edge e of Gi the set First(Ze
safe,i) is closed under

concatenation, it is sufficient to show ζpy :kzy ∈ First(Z(ezy )i
safe,i ) for 0 ≤ y ≤ x. We do this in two cases.

• Case y = 0: In this case ζp0:kz0 = ζk0:kz0 . So, it has made no progress along the path till

skz0 . So, the non-progressing agent will ensure its trajectory is safe with respect to outgoing

edges from vertex (uz0)i = (u0)i. Now, (ez0)i is an outgoing edge from (uz0)i. So, we get that

ζ0:kz0 ∈ First(Z(ez0 )i
safe,i).

• Case 0 < y ≤ x: Here, we know that ζpy :kzy−1+1 ∈ First(Z(ezy )i
safe,i ). So, it is sufficient to show

that ζkzy−1+1:kzy ∈ First(Z(ezy )i
safe,i ). This is true because agent i is has not progressed on any of

the edges between uzy−1+1 and uzy . The ith component of all vertices between these states is

(uzy)i, since agent i will not change its vertex. Now (ezy)i is an outgoing edge from (uzy)i.

So, in particular, we get that ζkzy−1+1:kzy ∈ First(Z(ezy )i
safe,i ).

Now consider the path (u0)i → (uz0)i → (uz1)i → (uzx)i → (uzx+1)i ∈ Fi in graph Gi. There exists

indices 0 = p0 ≤ p1 < ... < px+1 ≤ t such that

• sp0 = s0 ∈ βi((u0)i) (from Definition 6.4), spy ∈ βi((uzy)i) for 0 < y ≤ x and spx+1 ∈

βi((uzx+1)i) (from inferences made above),

• ζpy :py+1 ∈ Z
(ezy )i
safe,i for 0 ≤ y ≤ x, and

• ζpx+1:t ∈ Z
(uzx+1)i
safe,i because agent i cannot progress further after visiting state (uzx+1)i ∈ Fi.

Thus, for agent i, ζ |= Gi, which implies ζ |= φi.

101



We can conclude from the above theorem that joint policies that maximize the probability of achiev-

ing paths (to final vertices) in the product abstract graph GB have high social welfare w.r.t. the

active agents B.

6.4.3. Compositional RL Algorithm

Our compositional RL algorithm learns joint policies corresponding to paths in product abstract

graphs. For every B ⊆ [n], it learns a joint policy πe for each edge in the product abstract graph

GB, which is a (deterministic) policy that maximizes the probability of achieving e from a given

initial state distribution. We assume all agents are acting cooperatively; thus, we treat the agents

as one and use single-agent RL to learn each edge policy. We will check whether any deviation

to this co-operative behaviour by any agent can be punished by the coalition of other agents in

the verification phase. The reward function is designed to capture the reachability objective of

progressing agents and the safety objective of all active agents.

The edges are learned in topological order, allowing us to learn an induced state distribution for each

product vertex u prior to learning any edge policies from u; this distribution is used as the initial

state distribution when learning outgoing edge policies from u. In more detail, the distribution for

the initial vertex of GB is taken to be the initial state distribution of the environment; for every

other product vertex, the distribution is the average over distributions induced by executing edge

policies for all incoming edges. This is possible because the product graph is a DAG.

Given edge policies Π along with a path ρ = u0 → u1 → · · · → uℓ = u ∈ F in GB, we define a path

policy πρ to navigate from u0 to u. In particular, πρ executes πe[z], where e[z] = uz → uz+1 (starting

from z = 0) until the resulting trajectory achieves e[z], after which it increments z ← z + 1 (unless

z = ℓ). That is, πρ is designed to achieve the sequence of edges in ρ. Note that πρ is a finite-state

deterministic joint policy in which vertices on the path correspond to the memory states that keep

track of the index of the current policy. This way, we obtain finite-state joint policies by learning

edge policies only.

This process is repeated for all sets of active agents B ⊆ [n]. These finite-state joint policies are
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Algorithm 4 PrioritizedEnumeration
Inputs: n-agent environmentM and agent specifications φ1, . . . , φn

Output: Ranking scheme
1: Initialize pathPolicyWelfareMaxHeap← ∅
2: for i ∈ [n] do Gi ← AbstractGraph(φi)
3: for B ∈ 2[n] do
4: GB ← ProductAbstractGraph(G1, . . .Gn, B)
5: Initialize path policies Π(u0)← {ε} and Π(u)← ∅ if u ̸= u0
6: Initialize state distribution Γ(u0)← {At(s0)} and Γ(u)← ∅ if u ̸= u0
7: topoSortedVertexStack← TopologicalSort(U,E)
8: while topoSortedVertexStack ̸= ∅ do
9: u← topoSortedVertexStack.pop()

10: ηu ← AverageDistribution(Γ(u))
11: for e = u→ v ∈ outgoing(u) do
12: πe ← LearnEdgePolicy(e, ηu)
13: ηv,e ← ReachDistribution(e, πe, ηu)
14: Add ηv,e to Γ(v)
15: for πρ ∈ Π(u) do Add πρ ◦ πe to Π(v)
16: end for
17: if u ∈ F then
18: for πρ ∈ Π(u) do
19: c← EstimatePolicyWelfare(πρ, φ1, . . . , φn)
20: Add (πρ, c) to pathPolicyWelfareMaxHeap
21: end for
22: end if
23: end while
24: end for
25: return pathPolicyWelfareMaxHeap

then ranked by estimating their social welfare on several simulations.

6.4.4. Complete Enumeration Algorithm

The complete algorithm for prioritized enumeration is outlined in Algorithm 4. The details of

non-standard functions are given below.

AverageDistribution: The set Γ(u) consists of as many state distributions as there are incoming

edges into the state when u ̸= u0. When u = u0, Γ(u) only contains the distribution corresponding

to the initial state distribution of the underlying environment. The function AverageDistribution

computes an initial state distribution for the input abstract product vertex u by taking an average

of all of the distributions in Γ(u).
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LearnEdgePolicy: Use (single agent) RL to learn a co-operative joint policy πe so that πe achieves

the edge e = u→ v from the given initial state distribution ηu. We use single-agent RL, specifically

Q-learning, to learn a co-operative joint policy to achieve an edge with the reward 1(ζ |=B e).

Precisely, we learn πe such that

πe ∈ argmax
π

Pr
s0∼ηu,ζ∼Dπ,s0

[ζ |=B e]

where ζ ∼ Dπ,s0 is the trajectory sampled by executing policy π from state s0.

ReachDistribution: Given an edge e = u→ v, edge policy πe, and initial state distribution ηu, this

function evaluates the state distribution induced on v upon executing policy πe with an initial state

distribution ηu. Formally, for any s ∈ S

Pr
s′∼ηv,e

[s = s′] = Pr
s0∼ηu,ζ∼Dπe,s0

[
s = sk | ζ0:k |=B e and ∀k′ < k, ζ0:k′ ̸|=B e

]
where ζ ∼ Dπe,s0 is the trajectory sampled from executing policy πe from state s0 and k is the

length of the smallest prefix of ζ that achieves e.

EstimatePolicyWelfare: Once a path policy πρ is learnt, we estimate the probability of satisfaction of

the specifications Ji(πρ) for all agents i using Monte-Carlo sampling. Then welfare(πρ) is computed

by taking the mean of the probabilities of satisfaction of agent specifications.

6.5. Nash Equilibria Verification

The prioritized enumearation phase produces a list of path policies which are ranked by the total

sum of scores. Each path policy is deterministic and also finite state. Since the joint policies are

trained cooperatively, they are typically not ϵ-Nash equilibria. Thus, our verification algorithm not

only tries to prove that a given joint policy is an ϵ-Nash equilibrium, but also tries to modify it so

it satisfies this property. In particular, our verification algorithm attempts to modify a given joint

policy by adding punishment strategies so that the resulting policy is an ϵ-Nash equilibrium.

Concretely, it takes as input a finite-state deterministic joint policy π = (M,α, σ,m0) where M is

a finite set of memory states, α : S ×A×M →M is the memory update function, σ : S ×M → A
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Figure 6.5: πi augmented with punishment strategies.

maps states to (joint) actions and m0 is the initial policy state. The extended memory update

function α̂ : Z → M is given by α̂(ϵ) = m0 and α̂(ζstat) = α(st, at, α̂(ζ)). Then, π is given by

π(ζst) = σ(st, α̂(ζ)). The policy πi of agent i simply chooses the ith component of π(ζ) for any

history ζ.

The verification algorithm learns one punishment strategy τij : Z → D(Ai) for each pair (i, j)

of agents. As outlined in Figure 6.5, the modified policy for agent i uses πi if every agent j has

taken actions according to πj in the past. In case some agent j′ has taken an action that does not

match the output of πj′ , then agent i uses the punishment strategy τij , where j is the agent that

deviated the earliest (ties broken arbitrarily). The goal of verification is to check if there is a set of

punishment strategies {τij | i ̸= j} such that after modifying each agent’s policy to use them, the

resulting joint policy is an ϵ-Nash equilibrium.

6.5.1. Problem Formulation

We denote the set of all punishment strategies of agent i by τi = {τij | j ̸= i}. We define the

composition of πi and τi to be the policy π̃i = πi ⋊⋉ τi such that for any trajectory ζ = s0
a0−→

· · · at−1−−−→ st, we have

• π̃i(ζ) = πi(ζ) if for all 0 ≤ k < t, ak = π(ζ0:k)—i.e., no agent has deviated so far,

• π̃i(ζ) = τij(ζ) if there is a k such that (i) ajk ̸= πj(ζ0:k) and (ii) for all ℓ < k, aℓ = π(ζ0:ℓ). If

there are multiple such j’s, an arbitrary but consistent choice is made (e.g., the smallest j).
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Given a finite-state deterministic joint policy π, the verification problem is to check if there exists a

set of punishment strategies τ =
⋃

i τi such that the joint policy π̃ = π ⋊⋉ τ = (π1 ⋊⋉ τ1, . . . , πn ⋊⋉ τn)

is an ϵ-Nash equilibrium. In other words, the problem is to check if there exists a policy π̃i for each

agent i such that (i) π̃i follows πi as long as no other agent j deviates from πj and (ii) the joint

policy π̃ = (π̃1, . . . , π̃n) is an ϵ-Nash equilibrium.

6.5.2. High-Level Procedure

Our approach is to compute the best set of punishment strategies τ∗ w.r.t. π and check if π ⋊⋉ τ∗

is an ϵ-Nash equilibrium. The best punishment strategy against agent j is the one that minimizes

its incentive to deviate. To be precise, we define the best response of j with respect to a joint

policy π′ = (π′1, . . . , π
′
n) to be brj(π

′) ∈ argmaxπ′′
j
Jj(π

′
−j , π

′′
j ). Then, the best set of punishment

strategies τ∗ w.r.t. π is one that minimizes the value of brj(π ⋊⋉ τ) for all j ∈ [n]. To be precise,

define τ [j] = {τij | i ̸= j} to be the set of punishment strategies against agent j. Then, we want to

compute τ∗ such that for all j,

τ∗ ∈ argmin
τ
Jj((π ⋊⋉ τ)−j , brj(π ⋊⋉ τ)). (6.1)

We observe that for any two sets of punishment strategies τ , τ ′ with τ [j] = τ ′[j] and any policy π′j ,

we have Jj((π ⋊⋉ τ)−j , π
′
j) = Jj((π ⋊⋉ τ ′)−j , π

′
j). This is because, for any τ , punishment strategies

in τ \ τ [j] do not affect the behaviour of the joint policy ((π ⋊⋉ τ)−j , π
′
j), since no agent other than

agent j will deviate from π. Hence, brj(π ⋊⋉ τ) as well as Jj((π ⋊⋉ τ)−j , brj(π ⋊⋉ τ)) are independent

of τ \ τ [j]; therefore, we can separately compute τ∗[j] (satisfying Equation 6.1) for each j and take

τ∗ =
⋃

j τ
∗[j]. We now have the following theorem.

Theorem 6.6. Given a finite-state deterministic joint policy π = (π1, . . . , πn), if there is a set

of punishment strategies τ such that π ⋊⋉ τ is an ϵ-Nash equilibrium, then π ⋊⋉ τ∗ is an ϵ-Nash

equilibrium, where τ∗ is the set of best punishment strategies w.r.t. π. Furthermore, π ⋊⋉ τ∗ is an

ϵ-Nash equilibrium iff for all j,

Jj((π ⋊⋉ τ∗)−j , brj(π ⋊⋉ τ∗))− ϵ ≤ Jj(π ⋊⋉ τ∗) = Jj(π).
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Proof. It follows from the definition of π ⋊⋉ τ that the distribution overH-length trajectories induced

by π ⋊⋉ τ in M is the same as the one induced by π since τ is never triggered when all agents are

following π. Therefore, Jj(π ⋊⋉ τ) = Jj(π) for all j and τ . Now, suppose there is a τ such that

π ⋊⋉ τ is an ϵ-Nash equilibrium. Then for all j,

Jj((π ⋊⋉ τ)−j ,brj(π ⋊⋉ τ)) ≤ Jj(π ⋊⋉ τ) + ϵ = Jj(π) + ϵ.

But τ∗[j] minimizes the LHS of above equation which is independent of τ \ τ [j]. Hence, for all j,

Jj((π ⋊⋉ τ∗)−j ,brj(π ⋊⋉ τ∗)) ≤ Jj((π ⋊⋉ τ)−j ,brj(π ⋊⋉ τ))

≤ Jj(π) + ϵ

= Jj(π ⋊⋉ τ∗) + ϵ.

Therefore, π ⋊⋉ τ∗ is an ϵ-Nash equilibrium. The rest of the theorem follows from the definition of

ϵ-Nash equilibrium.

Thus, to solve the verification problem, it suffices to compute (or estimate), for all j, the optimal

deviation scores

devπj = min
τ [j]

max
π′
j

Jj((π ⋊⋉ τ)−j , π
′
j). (6.2)

6.5.3. Reduction to Min-Max Games

Next, we describe how to reduce the computation of optimal deviation scores to a standard self-play

RL setting. We first translate the problem from the specification setting to a reward-based setting

using reward machines15.

Reward Machines. A reward machine (RM) [76] is a tuple R = (Q, δu, δr, q0) where Q is a

finite set of states, δu : S × A × Q → Q is the state transition function, δr : S × Q → [−1, 1] is

the reward function and q0 is the initial RM state. Given a trajectory ζ = s0
a0−→ . . .

at−1−−−→ st, the

reward assigned by R to ζ is R(ζ) =
∑t−1

k=0 δr(sk, qk), where qk+1 = δu(sk, ak, qk) for all k. For any
15We use slightly different and simplified notation for reward machines in this chapter for clarity.
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Spectrl specification φ, we can construct an RM such that the reward assigned to a trajectory ζ

indicates whether ζ satisfies φ. We provide the construction in subsection 6.5.5.

Theorem 6.7. Given any Spectrl specification φ, we can construct an RM Rφ such that for any

trajectory ζ of length t+ 1, Rφ(ζ) = 1(ζ0:t |= φ).

For an agent j, let Rj denote Rφj = (Qj , δ
j
u, δ

j
r , q

j
0). Letting D̃π be the distribution over length

H +1 trajectories induced by using π, we have Eζ∼D̃π
[Rj(ζ)] = Jj(π). The deviation values defined

in Eq. 6.2 are now min-max values of expected reward, except that it is not in a standard min-max

setting since the policy of every non-deviating agent i ̸= j is constrained to be of the form πi ⋊⋉ τi.

This issue can be handled by considering a product of M with the reward machine Rj and the

finite-state joint policy π. This is formalized in the following theorem.

Theorem 6.8. Given a finite-state deterministic joint policy π = (M,α, σ,m0), for any agent j, we

can construct a simulator for an augmented two-player zero-sum Markov game Mπ
j (with rewards)

which has the following properties.

• The number of states in Mπ
j is at most 2|S||M ||Qj |.

• The actions of player 1 is Aj, and the actions of player 2 is A−j =
∏

i ̸=j Ai.

• The min-max value of the two player game corresponds to the deviation cost of j, i.e.,

devπj = min
π̄2

max
π̄1

J̄π
j (π̄1, π̄2),

where J̄π
j (π̄1, π̄2) = E

[∑H
k=0Rj(s̄k, ak) | π̄1, π̄2

]
is the expected sum of rewards w.r.t. the

distribution over (H + 1)-length trajectories generated by the joint policy (π̄1, π̄2) in Mπ
j .

• Given any policy π̄2 for player 2 in Mπ
j , we can construct a set of punishment strategies

τ [j] = PunStrat(π̄2) against agent j in M such that

max
π̄1

J̄π
j (π̄1, π̄2) = max

π′
j

Jj((π ⋊⋉ τ [j])−j , π
′
j).
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Given an estimate M̃ of M, we can also construct an estimate M̃π
j of Mπ

j .

We omit the superscript π from Mπ
j when there is no ambiguity. We denote by

ConstructGame(M̃, j,Rj , π) the product construction procedure that returns M̃π
j .

Proof of Theorem 6.8. For an agent j, the two-player zero-sum game Mj is defined by Mj =

(Sj , Aj , A−j , s
j
0, Pj , H + 1, Rj) with rewards where,

• The set of states Sj is the product Sj = S ×M ×Qj × {⊥,⊤}.

• The set of actions of the max-agent is Aj and the set of actions of the min-agent is A−j =∏
i ̸=j Ai. Given aj ∈ Aj and a−j ∈ A−j , we denote the joint action by (aj , a−j) ∈ A.

• The last component of a state denotes whether agent j has deviated from πj in the past or not.

Intuitively, ⊥ implies that agent j has not deviated from πj in the past and ⊤ implies that it

has deviated from πj in the past. We define an update function fj which is used to update this

information at every step. The deviation update function fj : S ×A×M ×{⊥,⊤} → {⊥,⊤}

is defined by fj(s, a,m,⊤) = ⊤ and fj(s, a,m,⊥) = ⊥ if aj = σ(s,m)j and ⊤ otherwise.

The transitions of Mj are such that the action of the min-agent a−j is ignored and replaced

with the output of π−j until agent j deviates from πj (or equivalently, until the last component

of the state is ⊤). The transition probabilities are given by

– Pj((s,m, q, b), a, (s
′,m′, q′, b′)) = P (s, (aj , σ(s,m)−j), s

′) if m′ = α(s, (ai, σ(s,m)−j),m),

q′ = δu(s, (ai, σ(s,m)−j), q), b = ⊥ and b′ = fj(s, a,m, b).

– Pj((s,m, q, b), a, (s
′,m′, q′, b′)) = P (s, a, s′) if m′ = α(s, a,m), q′ = δu(s, a, q), b = ⊤ and

b′ = fj(s, a,mj , b).

– Pj((s,m, q, b), a, (s
′,m′, q′, b′)) = 0 otherwise.

• The initial state is sj0 = (s0,m0, q
j
0,⊥).
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• The rewards are given by Rj((s,m, q, b), a) = δjr(s, q).

Let us denote by π̄1 and π̄2 the policies of the max-agent and the min-agent respectively. Then the

expected reward attained by the max-agent is

J̄j(π̄1, π̄2) = E
[ H∑
k=0

Rj(s̄k, ak) | π̄1, π̄2
]

where the expectation is w.r.t. the distribution over trajectories of length H+1 generated by using

(π̄1, π̄2) in Mj . Given a trajectory ζ̄ = s̄0
a0−→ s̄1

a1−→ . . .
at−1−−−→ s̄t in Mj , we denote by ζ̄ ↓M

the trajectory projected to the state space of M—i.e., ζ̄ ↓M= s0
a0−→ s1

a1−→ . . .
at−1−−−→ st. From

Theorem 6.7 and the above definition of Mj it follows that for any trajectory ζ̄ in Mj of length

H + 1 we have
H∑
k=0

Rj(s̄k, ak) = Rj(ζ̄ ↓M) = 1(ζ̄0:H ↓M|= φj).

Let DM[π] denote the distribution over length H trajectories in M generated by π and DMj [π̄]

denote the distribution over length H + 1 trajectories inMj generated by π̄. It is easy to see that

any policy π′j for agent j in M can be interpreted as a policy g(π′j) for the max-agent in Mj and

any policy π̄1 for the max-agent inMj can be interpreted as a policy g′(π̄1) for agent j inM. Since

the actions of the min-agent in Mj are only taken into account after agent j deviates from πj , we

also have that any policy of the form (π ⋊⋉ τ)−j for the punishing agents in M corresponds to a

policy h(τ) of the min-agent in Mj and any policy π̄2 of the min-agent in Mj corresponds to a

policy (π ⋊⋉ h′(π̄2))−j for the punishing agents in M. Furthermore the mappings g, g′, h, h′ satisfy

the property that for any trajectory ζ̄ of length H + 1 inMj , we have

• for any τ and π′j inM, DM[(π ⋊⋉ τ)−j , π
′
j ](ζ̄ ↓M) = DMj [g(π′j), h(τ)](ζ̄) and,

• for any π̄1 and π̄2 inM, DM[(π ⋊⋉ h′(π̄2))−j , g
′(π̄1)](ζ̄ ↓M) = DMj [π̄1, π̄2](ζ̄).
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Therefore we have

devπj = min
τ [j]

max
π′
j

Jj((π ⋊⋉ τ)−j , π
′
j)

= min
τ [j]

max
π′
j

Eζ∼DM[(π⋊⋉τ)−j ,π′
j ]

[
ζ |= φi

]
= min

π̄2

max
π̄1

E
ζ̄∼DMj [π̄1,π̄2]

[ H∑
k=0

Rj(s̄k, ak)
]

= min
π̄2

max
π̄1

J̄j(π̄1, π̄2).

It is easy to see that the function h′ has the desired properties of PunStrat. Finally, we observe

that given a simulator forM it is straightforward to construct a simulator forMj . Similarly, given

an estimate M̃ ofM we can use the above definition ofMj to construct an estimate M̃j ofMj .

6.5.4. Solving Min-Max Games

The min-max game Mj can be solved using self-play RL algorithms. Many of these algorithms

provide probabilistic approximation guarantees for computing the min-max value of the game. We

use a model-based algorithm, similar to the one proposed in [20], that first estimates the modelMj

and then solves the game in the estimated model.

Estimating the Markov Game. One approach is to use existing algorithms for reward-free

exploration to estimate the model [83], but this approach requires estimating each Mj separately.

Under Assumption 6.1, we provide a simpler and more sample-efficient algorithm, called BFS-

Estimate, for estimatingM which is outlined in Algorithm 5. BFS-Estimate performs a search

over the transition graph of M by exploring previously seen states in a breadth first manner. In

order to figure out all outgoing edges from a state s, multiple samples are collected by taking each

possible action K-times from s. Newly discovered states are then added to the state space of M̃ and

the collected samples are used to estimate transition probabilities. The value K is defined in line 2

of the algorithm in which |Q| denotes the maximum size of the state space of reward machine Rj

for any agent j—i.e., |Q| = maxj |Qj |. BFS-Estimate has the following approximation guarantee.

111



Algorithm 5 BFS-Estimate
Inputs: Precision δ, failure probability p.
Outputs: Estimated model M̃ ofM.
1: M̃ ← (S̃ = {s0}, A, s0, P̃ = ∅, H)

2: K ←
⌈
2|S|2|M |2|Q|2H4

δ2
log

(
2|S|2|A|

p

)⌉
3: queue← [s0]
4: while ¬ queue.isempty() do
5: s← queue.pop()
6: for a ∈ A do
7: // Initialize number of visits to each state
8: N ← empty-map()
9: for s′ ∈ S̃ do

10: N [s′]← 0
11: end for
12: // Obtain K samples for the state-action pair (s, a)
13: for x ∈ {1, . . . ,K} do
14: s′ ∼ P (s, a, ·)
15: // Add any newly discovered state to S̃ and the map N
16: if s′ /∈ S̃ then
17: S̃ ← S̃ ∪ {s′}
18: queue.add(s′)
19: N [s′]← 0
20: end if
21: // Increment number of visits to s′

22: N [s′]← N [s′] + 1
23: end for
24: // Store estimated transition probabilities in P̃
25: for s′ ∈ S̃ do
26: P̃ (s, a, s′)← N [s′]

K
27: end for
28: end for
29: end while
30: return M̃
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Lemma 6.9. With probability at least 1− p, for all s ∈ S̃, a ∈ A and s′ ∈ S,

∣∣P̃ (s, a, s′)− P (s, a, s′)∣∣ ≤ ε = δ

2|S||M ||Q|H2

where P̃ (s, a, s′) is taken to be 0 if s′ /∈ S̃.

Proof. For any given s ∈ S̃, a ∈ A and s′ ∈ S, the probability P̃ (s, a, s′) is estimated using K

independent samples from P (s, a, ·). Therefore, using Chernoff bounds, we get

Pr
[∣∣P̃ (s, a, s′)− P (s, a, s′)∣∣ > ε

]
≤ 2e−2Kε2

Applying union bound over all triples (s, a, s′) ∈ S̃ ×A×S and substituting the values of K and ε,

we get

Pr

[ ⋃
s,a,s′

{∣∣P̃ (s, a, s′)− P (s, a, s′)∣∣ > ε
}]
≤ 2|S|2|A|e−2Kε2

≤ 2|S|2|A|e− log(
2|S|2|A|

p
)
= p.

Hence we obtained the desired bound.

Obtaining estimates ofMπ
j . After estimatingM, for any finite-state deterministic joint policy

π and any agent j, we perform the product construction outlined in Section 6.5.3 with the estimated

model M̃ to obtain an estimate M̃π
j of the punishment gameMπ

j . The constructed model M̃π
j can

be used to estimate devπj as claimed in the following theorem.

Theorem 6.10. For any δ > 0 and p ∈ (0, 1], BFS-Estimate(M, δ, p) computes an estimate M̃

of M using O
(
|S|3|M |2|Q|4|A|H4

δ2
log

(
|S||A|

p

))
sample steps such that with probability at least 1 − p,

for any finite-state deterministic joint policy π and any agent j,

∣∣∣min
π̄2

max
π̄1

J̄M̃π
j (π̄1, π̄2)− devπj

∣∣∣ ≤ δ,
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Algorithm 6 VerifyNash
Inputs: Finite-state deterministic joint policy π, specifications φj for all j, Nash factor ϵ, precision
δ, failure probability p.
Outputs: True or False along with a set of punishment strategies τ .
1: existsNE← True
2: τ ← ∅
3: M̃ ← BFS-Estimate(M, δ, p) // Only run ifM has not been estimated before.
4: for agent j ∈ {1, . . . , n} do
5: Rj ← ConstructRM(φj)
6: M̃j ← ConstructGame(M̃, j,Rj , π)

7: ˜devj ← minπ̄2 maxπ̄1 J̄
M̃j (π̄1, π̄2)

8: π̄∗2 ← argminπ̄2 maxπ̄1 J̄
M̃j (π̄1, π̄2)

9: existsNE← existsNE ∧ ( ˜devj ≤ Jj(π) + ϵ− δ)
10: τ ← τ ∪ PunStrat(π̄∗2)
11: end for
12: return existsNE, τ

where J̄M̃π
j (π̄1, π̄2) is the expected reward over length H+1 trajectories generated by (π̄1, π̄2) in M̃π

j .

Furthermore, letting π̄∗2 ∈ argminπ̄2 maxπ̄1 J̄
M̃j (π̄1, π̄2) and τ [j] = PunStrat(π̄∗2), we have

∣∣∣max
π̄1

J̄M̃π
j (π̄1, π̄

∗
2)−max

π′
j

Jj((π ⋊⋉ τ [j])−j , π
′
j)
∣∣∣ ≤ δ. (6.3)

Proof. Since the transition probabilities in M̃π
j are inherited from M̃, from Lemma 6.9 we have

that with probability at least 1 − p, for any π, j, s̄, s̄′ ∈ Sj and a ∈ A such that s̄ is in the state

space of M̃π
j , ∣∣P̃j(s̄, a, s̄

′)− Pj(s̄, a, s̄
′)
∣∣ ≤ ε = δ

2|S||M ||Q|H2

where P̃j represents the transition probabilities of M̃j
16. Consider the model M̃′

j which is a mod-

ification of M̃j that has state space Sj (state space of Mj) and for any s̄, s̄′ ∈ Sj and a ∈ A, its

transition probabilities are defined by P̃ ′
j(s̄, a, s̄

′) = P̃j(s̄, a, s̄′) if s̄ is in the state space of M̃j and

Pj(s̄, a, s̄′) otherwise. We have
∣∣P̃ ′

j(s̄, a, s̄
′)−Pj(s̄, a, s̄

′)
∣∣ ≤ ε for all s̄, s̄′ ∈ Sj and a ∈ A. For any two

policies π̄1 and π̄2 of the max-agent and the min-agent inMj respectively, we denote by J̄M̃j (π̄1, π̄2)

and J̄M̃′
j (π̄1, π̄2) the expected reward over H + 1 length trajectories generated by (π̄1, π̄2) in M̃j

and M̃′
j respectively. Then J̄M̃j (π̄1, π̄2) = J̄M̃′

j (π̄1, π̄2) because both the models assign the same

16Omitting the superscript π in M̃π
j
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probability to all runs as any run that leaves the state space of M̃j has probability zero in both the

models. Now we can apply Lemma 4 of [30] to conclude that |J̄M̃′
j (π̄1, π̄2) − J̄π

j (π̄1, π̄2)| ≤ δ and

hence |J̄M̃j (π̄1, π̄2)− J̄π
j (π̄1, π̄2)| ≤ δ for any π̄1 and π̄2. This implies that for any π̄2 we have

|max
π̄1

J̄M̃j (π̄1, π̄2)−max
π̄1

J̄π
j (π̄1, π̄2)| ≤ δ (6.4)

and therefore can conclude that

|min
π̄2

max
π̄1

J̄M̃j (π̄1, π̄2)−min
π̄2

max
π̄1

J̄π
j (π̄1, π̄2)| ≤ δ.

Applying Theorem 6.8 we get

|min
π̄2

max
π̄1

J̄M̃j (π̄1, π̄2)− devπj | ≤ δ.

Now, let π̄∗2 = argminπ̄2 maxπ̄1 J̄
M̃j (π̄1, π̄2) and τ [j] = PunStrat(π̄∗2). Then from Equation 6.4

we can conclude that |maxπ̄1 J̄
M̃j (π̄1, π̄

∗
2)−maxπ̄1 J̄

π
j (π̄1, π̄

∗
2)| ≤ δ. Using Theorem 6.8 we get

∣∣∣max
π̄1

J̄M̃π
j (π̄1, π̄

∗
2)−max

π′
j

Jj((π ⋊⋉ τ [j])−j , π
′
j)
∣∣∣ ≤ δ.

Finally the total number of samples used is at most |S||A|K = O
(
|S|3|M |2|Q|4|A|H4

δ2
log

(
|S||A|

p

))
.

Our full verification algorithm is summarized in Algorithm 6. For each j, the min-max game M̃j is

solved in polynomial time using value iteration [20] to compute an estimate ˜devj of devπj which is

used in Line 9 of Algorithm 6 to check whether agent j can successfully deviate from πj . It checks

if ˜devj ≤ Jj(π) + ϵ− δ for all j, and returns True if so and False otherwise. It also simultaneously

computes the punishment strategies τ using the optimal policies for player 2 in the punishment

games. Note that BFS-Estimate is called only once (i.e., the first time VerifyNash is called)

and the obtained estimate M̃ is stored and used for verification of every candidate policy π. The

following soundness guarantee follows from Theorem 6.10.
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Corollary 6.11 (Soundness). For any p ∈ (0, 1], ε > 0 and δ ∈ (0, ε), with probability at least 1−p,

if HighNashSearch returns a joint policy π̃ then π̃ is an ϵ-Nash equilibrium.

Proof. From Theorem 6.10 we get that with probability at least 1 − p, if a policy π̃ = π ⋊⋉ τ is

returned by our algorithm, then for all j we have

max
π′
j

Jj((π ⋊⋉ τ)−j , π
′
j) ≤ ˜devj + δ (Equation 6.3)

≤ Jj(π) + ϵ (Line 9 of Algorithm 6)

= Jj(π ⋊⋉ τ) + ϵ.

Therefore, π ⋊⋉ τ is an ϵ-Nash equilibrium.

6.5.5. Reward Machine Construction

In this section, we detail the construction of reward machines from Spectrl specifications such

that the reward of any finite-length trajectory is 1 if the trajectory satisfies the specification and 0

otherwise. This section can be skipped without loss of continuity and is provided for completeness.

We begin by constructing deterministic finite-state automata (DFA) that accepts all trajectories

which satisfy the specification. Next, we will convert the DFA into a reward machine with the

desired reward function.

DFA Construction. A finite-state automaton is a tuple D = (Q,B,∆, qinit, F ) where Q is a

finite-set of states, B is a finite-set of propositions, qinit is the initial state, and F ⊆ Q is the set of

accepting states. The transition relation is defined as ∆ ⊆ Q×Formula(B)×Q where Formula(B) is

the set of boolean formulas over propositions B. A finite-state automaton is deterministic if every

assignment σ ∈ 2P can transition to a unique state from every state, i..e, if for all states q ∈ Q

and assignments σ ∈ 2B, |{q′ | (q, b, q′) ∈ ∆ and σ |= b}| ≤ 1. Otherwise, it is non-deterministic.

Every non-deterministic finite-state automata (NFA) can be converted to a deterministic finite-state

automata (DFA). A run of a word (sequence of assignments over B) given by w = w0 . . . wm ∈ (2B)∗

is a sequence of states ρ = q0 . . . qm+1 such that q0 = qinit and there exists (qi, bi, qi+1) ∈ ∆ such
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that wi |= bi for all 0 ≤ i < m. A run q0 . . . qm+1 is accepting if qm+1 ∈ F . A word w is accepted

by D if it has an accepting run.

Let Spectrl specifications be defined over the set of basic predicates P0. We define a labelling

function L : S → 2P0 such that L(s) = {p | JpK(s) = true}. Given a trajectory ζ = s0, . . . , st in the

environmentM, let its proposition sequence L(ζ) be given by L(s0), . . . ,L(st).

Lemma 6.12. Given Spectrl specification φ, we can construct a DFA Dφ such that a trajectory

ζ |= φ iff L(ζ) is accepted by Dφ.

Proof. We use structural induction on Spectrl specifications to construct the desired DFA. The

construction is very similar to the construction of finite-state automata from regular expressions,

and hence details of proof have been skipped [71]. The construction is given below:

Eventually (φ ::= achieve b). Construct finite-state automata Dφ = ({qinit, q},P0,∆, qinit, {q})

where

∆ = {(qinit,¬b, qinit), (qinit, b, q), (q,True, q)}.

Clearly, Dφ is deterministic because the only state from which more that two transitions emanate

is qinit and these transitions are defined on predicate functions that negate one another (b and ¬b).

Always (φ ::= φ1 ensuring b). Let the DFA for φ1 be D1 = (Q,P0,∆1, qinit, F ). Then the DFA

for φ is given by Dφ = (Q,P0,∆, qinit, F ) where

∆ = {(q, b ∧ b′, q′) | (q, b′, q′) ∈ ∆1}.

Dφ is deterministic because D1 is deterministic.

Sequencing (φ1;φ2). Let the DFA for φ1 and φ2 be D1 = (Q1,P0,∆1, q
1
init, F1) and D2 =

(Q2,P0,∆2, q
2
init, F2), respectively. Construct the NFA Nφ = (Q1 ⊔Q2,P0,∆, q1init, F2) with

∆ = ∆1 ∪∆2 ∪
⋃

f∈F1

DivertAwayFrom(f)
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where DivertAwayFrom(f) = {(q11, b, q2init)} | (q11, b, f) ∈ ∆1}. Essentially, transitions in

DivertAwayFrom(f) divert all incoming transitions to f ∈ F1 to the initial state of the second

DFA. Then, the DFA Dφ is obtained from determinization of Nφ.

Choice (φ ::= φ1 or φ2). Let the DFA for φ1 and φ2 be D1 = (Q1,P0,∆1, q
1
init, F1) and D2 =

(Q2,P0,∆2, q
2
init, F2), respectively. Construct NFA Nφ = (Q1⊔Q2\{q2init},P0,∆, q1init, F1⊔F2) where

∆ = ∆1 ∪ ∆2 \ {(q21, b, q22) | (q21, b, q22) ∈ ∆2 and q21 = q2init}

∪ {(q1init, b, q22) | (q21, b, q22) ∈ ∆2 and q21 = q2init}.

Then, the DFA Dφ is obtained from determinization of Nφ.

Lastly, we can extend DFA Dφ to make it complete, i.e., if for all states q ∈ Q and assignments

σ ∈ 2P0 , |{q′ | (q, b, q′) ∈ ∆ and σ |= b}| = 1.

Reward Machine. Given a Spectrl specification φ, let Dφ = (Q,P0,∆, qinit, F ) be the DFA

such that a trajectory ζ |= φ iff L(ζ) is accepted by the DFA Dφ, where L : S → 2P0 is the

labelling function. WLOG, assume Dφ is complete. We construct a reward machine Rφ = (Q ∪

{dead}, δu, δr, qinit) where the state transition function δu : S ×A×Q→ Q is defined as

δu(s,−, q) = q′where (q, b, q′) ∈ ∆ s.t. L(s) |= b

and the reward function δr : S ×Q→ [−1, 1] is given by

δr(s, q) =


1 if q /∈ F, q′ = δu(s,−, q′) and q′ ∈ F

−1 if q ∈ F, q′ = δu(s,−, q′) and q′ /∈ F

0 otherwise

Observe that the above functions are well defined since the DFA is deterministic and complete.

Proof of Theorem 6.7. Let Rφ be as constructed above. Let ζ = s0, s1, . . . st, st+1. Then, by con-
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struction a run ρ = q0, q1 . . . qt+1 of L(ζ0:t) in Dφ is also a run of ζ in Rφ. Then, the reward function

is design so that (a) each time the run visits a state in F from a non-accepting state, it will receive

a reward of 1, (b) each time the run visits a state in Q \F from a state in F , and it receives -1, and

(c) 0 otherwise.

Suppose ζ0:t does not satisfy φ. Then ρ is not an accepting run in Dφ. Then, each time the run

visits a state in F , the run will exit states in F after a finite amount of time. Thus, either ζ receives

a reward of 0 or it receives a reward of 1 and −1 an equal number of times. In this case, Rφ(ζ) = 0

since the +1s and −1s will cancel each other out.

Suppose ζ |= φ. Then, ρ is an accepting run in Dφ. Let k be the largest index such that qk /∈ F and

qℓ ∈ F for all k < ℓ ≤ t+ 1. So, δr(sk, qk) = 1 and δr(sℓ, qℓ) = 0 for all k < ℓ ≤ t. Additionally, the

run q0, . . . , qk is not an accepting run in Dφ. Thus, the trajectory ζ0:k−1 does not satisfy φ, thus

Rφ(ζ0:k−1) = 0. So, Rφ(ζ) = Σt
z=0δr(sz, qz) = Σk−1

z=0δr(sz, qz) + δr(sk, qk) + Σt
z=k+1δr(sz, qz). Since

Σk−1
z=0δr(sz, qz) = Σt

z=k+1δr(sz, qz) = 0, we get that Rφ(ζ) = 1.

6.6. Complexity

In this section, we analyze the time and sample complexity of the complete MARL algorithm in

terms of the number of agents n, size of the specification |φ| = maxi∈[n] |φi|, number of states in the

environment |S|, number of joint actions |A|, time horizon H, precision δ and failure probability p.

Sample Complexity. We know that the number of edges in the abstract graph Gi corresponding

to specification φi is O(|φi|2). Hence for any set of active agents B, the number of edges in

the product abstract graph GB is O(|φ|2|B|). Hence total number of edge policies learned by our

compositional RL algorithm is
∑

B⊆[n]O((|φ|2)|B|) = O((|φ|2 + 1)n). We learn each edge using a

fixed number of sample steps C, which is a hyperparameter.

The number of samples used in the verification phase is the same as the number used by BFS-

Estimate. The maximum size of a candidate policy output by the enumeration algorithm |M |

is at most the length of the longest path in a product abstract graph. Since the maximum path

length in a single abstract graph Gi is bounded by |φi| and at least one agent must progress along
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every edge in a product graph, the maximum length of a path in any product graph is at most

n|φ|. Also, the number of states in the reward machine Rj corresponding to |φj | is O(2|φj |).

Hence, from Theorem 6.10 we get that the total number of sample steps used by our algorithm is

O
(
(|φ|2 + 1)nC + 24|φ||S|3n2|φ|2|A|H4

δ log
( |S||A|

p

))
.

Time Complexity. As with sample complexity, the time required to learn all edge policies is

O((|φ|2 + 1)n(C + |A|)) where the term |A| is added to account for the time taken to select an

action from A during exploration (we use Q-learning with ε-greedy exploration for learning edge

policies). Similarly, time taken for constructing the reward machines and running BFS-Estimate

is O(2
4|φ||S|3n2|φ|2|A|H4

δ log
( |S||A|

p

)
).

The total number of path policies considered for a given set of active agents B is bounded by

the number of paths in the product abstract graph GB that terminate in a final product state.

First, let us consider paths in which exactly one agent progresses in each edge. The number of

such paths is bounded by (|B||φ|)|B||φ| since the length of such paths is bounded by |B||φ| and

there are at most |B||φ| choices at each step—i.e., progressing agent j and next vertex of the

abstract graph Gφj . Now, any path in GB can be constructed by merging adjacent edges along

such a path (in which at most one agent progresses at any step). The number of ways to merge

edges along such a path is bounded by the number of groupings of edges along the path into at

most |B||φ| groups which is bounded by (|B||φ|)|B||φ|. Therefore, the total number of paths in

GB is at most 22|B||φ| log(n|φ|). Finally, the total number of path policies considered is at most∑
B⊆[n] 2

2|B||φ| log(n|φ|) ≤ ((n|φ|)2|φ| + 1)n = O(22n|φ| log(2n|φ|)).

Now, for each path policy π, the verification algorithm solves M̃π
j using value iteration which takes

O(|S̃||A|Hf(|A|)) = O(2|φ|n|φ||S||A|Hf(|A|)) time, where f(|A|) is the time required to solve a

linear program of size |A|. Also accounting for the time taken to sort the path policies, we arrive

at a time complexity bound of 2O(n|φ| log(n|φ|))poly(|S|, |A|, H, 1p ,
1
δ ).

It is worth noting that the procedure halts as soon as our verification procedure successfully verifies

a policy; this leads to early termination for cases where there is a high value ϵ-Nash equilibrium
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(among the policies considered). Furthermore, our verification algorithm runs in polynomial time

and therefore one could potentially improve the overall time complexity by reducing the search

space in the prioritized enumeration phase—e.g., by using domain specific insights.

6.7. Experiments

We evaluated our algorithm on finite state environments and a variety of specifications, aiming to

answer the following:

• Can our approach be used to learn ϵ-Nash equilibria?

• Can our approach learn policies with high social welfare?

We compared our approach to two baselines described below, using two metrics: (i) the social

welfare welfare(π) of the learned joint policy π, and (ii) an estimate of the minimum value of ϵ for

which π forms an ϵ-Nash equilibrium:

ϵmin(π) = max{Ji(π−i, bri(π))− Ji(π) | i ∈ [n]}.

Here, ϵmin(π) is estimated using single agent RL (specifically, Q-learning) to compute bri(π) for

each agent i.

6.7.1. Environments and Specifications

Single Lane Environment. The environment consists of k agents along a straight track of

length l. All agents are initially placed at the 0th location and the destination is at the lth location.

In a single step, each agent can either move forward one location (with a failure probability of

0.05) or remain in its current position. We create competitive and co-operative scenarios through

agent specifications. For example, we can create competitive scenarios in which an agent meets its

specification only if it reaches the final location before all other or a set of other agents. We can

also create co-operative scenarios in which the i-th agent must reach its goal before the j-th agent,

for various pairs of agents (i, j). In these cases, the highest social welfare would occur when the

agents manage to coordinate so that all ordering constraints are satisfied (we ensure that there are
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no cycles in the ordering constraints). The specifications are described below.

φ1 All agents should reach the final state

φ2 Agent 1 should reach its destination before Agent 0. Agent 2 must reach the destination.

φ3 Agent 1 should reach its destination before Agent 0. All agents must reach their destination.

φ4 Agent 0 and Agent 1 are competing to reach the destination first. Only the agent reaching first

meets the specification. Agent 2’s goal is to reach the destination.

φ5 Agent 0 should reach the mid-point before Agent 1. However, Agent 1 should reach the final

destination before Agent 0. All agents should eventually reach the final destination.

φ6 Agent 0 should reach the mid-point before Agent 1. However, Agent 1 and Agent 2 should reach

the final destination before Agent 0. All agents should reach the final destination.

Intersection Environment. This is the environment illustrated in Figure 6.1, which consists of

k-cars (agents) at a 2-way intersection of which k1 and k2 cars are placed along the N-S and E-W

axes, respectively. The state consists of the location of all cars where the location of a single car

is a non-negative integer. 1 corresponds to the intersection, 0 corresponds to the location one step

towards the south or west of the intersection (depending on the car) and locations greater than 1

are to the east or north of the intersection. Each agent has two actions. STAY stays at the current

position. MOVE decreases the position value by 1 with probability 0.95 and stays with probability

0.05. The specifications and the corresponding initial states are described below.

φ1 Two N-S cars both starting at 3 and one E-W car starting at 2. N-S cars’ goal is to reach 0

before the E-W car without collision. E-W car’s goal is to reach 0 before both N-S agents

without collision.

φ2 Same as motivating example except that blue car is not required to stay a car length away from

green and orange cars.
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φ3 Same as motivating example.

φ4 Two N-S agents (0 and 1) both starting at 3 and one E-W agent (2) starting at 3. Agent 0’s

task is to reach 0 before other two agents. Agent 1’s task is to reach 0. Agent 2’s task is to

reach 0 before agent 1. All agents must avoid collision.

φ5 Two N-S cars starting at 2 and 3 and three E-W cars all starting at 2, 3 and 4, respectively.

N-S cars’ goal is to reach 0 before the E-W cars without collision. E-W cars’ goal is to reach

0 before both N-S cars without collision.

Gridworld Environment. The environment is a 4 × 4 discrete grid with 2-agents. The agents

are initially placed at opposite corners of the grid. In every step, each agent can either move in one

of four cardinal directions (with a failure probability) or remain in position. The task of each agent

is to visit a series of locations on the grid while ensuring no collision between the agents. The agents

must learn to coordinate between themselves to accomplish their tasks. As an example, each agent’s

task is to visit any one of the other two corners in the grid. In this case, the agents must learn to

choose and navigate to different corners to minimize their risk of collision. This specification can

be increased in length (thus, in complexity) by sequencing visits to more locations on the grid. All

scenarios are cooperative. The specifications are described below.

φ1 Swap the positions of both agents without collision.

φ2 Both agents should choose to visit one of the other two corners of the grid without collision.

φ3 Append φ2 with the specification to reach the corner that is diagonally opposite the initial

position of the agent without collision.

φ4 Append φ3 with the agents swapping their positions without collision.

φ5 Append φ4 with the agents swapping their positions again without collision.
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Algorithm 7 Nash Value Iteration
Inputs: n-agent Markov gameM with rewards, horizon H.
Outputs: Nash equilibrium joint policy π = (π1, . . . , πn).
1: Initialize joint policy π = (π1, . . . , πn)
2: Initialize value function V : S × [H + 1]→ Rn to be the zero map
3: for t ∈ {H,H − 1, . . . , 1} do
4: for s ∈ S do
5: Initialize step game Gt

s : A→ Rn

6: for a = (a1, . . . , an) ∈ A do
7: Gt

s(a1, . . . , an) = R(s, a) + Es′∼P (s,a,·)[V (s′, t+ 1)]
8: end for
9: (d1, d2, . . . , dn)← Best-Nash-General-Sum(Gt

s) ∈ D(A1)× · · · × D(An)
10: V (s, t)← Ea1∼d1,a2∼d2,...,an∼dn [G

t
s(a1, . . . , an)]

11: π(s, t)← (d1, d2, . . . , dn)
12: end for
13: end for
14: return π

6.7.2. Baselines

We compared our NE computation method (HighNashSearch) to two approaches (maqrm and

nvi) for learning in non-cooperative games. Both maqrm and nvi learn from rewards as opposed

to specification; thus, we supply rewards in the form of reward machines constructed from the

specifications. nvi is guaranteed to return an ϵ-Nash equilibrium with high probability, but maqrm

is not guaranteed to do so.

Nash Value Iteration. This baseline first computes an estimate M̃ ofM using BFS-Estimate

(Algorithm 5) and then computes a product of M̃ with the reward machines corresponding to the

agent specifications in order to define rewards at every step. It then solves the resulting general

sum game M̃′ using value iteration. The value iteration procedure is outlined in Algorithm 7 which

uses Best-Nash-General-Sum to solve n-player general-sum strategic games (one-step games) at

each step. When there are multiple Nash equilibria for a step game, Best-Nash-General-Sum

chooses one with the highest social welfare (for that step). In our experiments, we used the library

gambit [112] for solving the step games.

Multi-agent QRM. The second baseline (Algorithm 8) is a multi-agent variant of QRM [76, 77].

We learn one Q-function for each agent. The Q-function for the i-th agent, denoted Qi : S ×
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Algorithm 8 Multi-agent QRM
Inputs: n-agent Markov game M = (S,A = Πi∈[n]Ai, s0, P,H), agent specifications φ1, . . . φn,
learning rate α ∈ (0, 1], discount factor γ ∈ (0, 1], ε ∈ (0, 1]
Outputs: Joint policy π = (π1, . . . , πn).
1: for i ∈ [n] do (Qi, δ

i
u, δ

i
r, q

i
0)← RewardMachine(φi)

2: // Initialize environment state, reward machines state, and Q-functions
3: Current state s← s0
4: for i ∈ [n] do qi ← qi0
5: for i ∈ [n] do Initialize Qi(s, (q1, . . . , qn), ai) for all states s ∈ S, qi ∈ Qi, and actions ai ∈ Ai

6: for l ∈ {0, . . . , N} do
7: // Sample actions from policy derived from Q-functions
8: for i ∈ [n] do choose action ai ∈ Ai at (s, (q1, . . . , qn)) using exploration policy derived from

Qi (e.g., ε-greedy)
9: // Take a step in environment and the reward machines

10: Take action a = (a1, . . . an) inM and observe the next state s′

11: for i ∈ [n] do compute the reward ri ← δir(s, qi) and next RM state q′i ← δiu(s, a, qi)
12: // Update all Q-functions
13: if s′ is terminal then
14: for i ∈ [n] do Qi(s, (q1, . . . , qn), a)

α←− ri
15: else
16: for i ∈ [n] do Qi(s, (q1, . . . , qn), ai)

α←− ri + γ ·maxa′i∈Ai
Qi(s

′, (q′1, . . . , q
′
n), a

′
i)

17: end if
18: if s′ is terminal then
19: // Reset environment state and reward machines state
20: s← s0 and for i ∈ [n] do qi ← qi0
21: else
22: s← s′ and for i ∈ [n] do qi ← q′i
23: end if
24: end for
25: for i ∈ [n] do πi ← Best action policy derived from Qi

26: return (π1, . . . , πn)

Πi∈[n]Qi → Ai, can be used to derive the best action for the i-th agent from the current state of

the environment and reward machines of all agents. In every step, Qi is used to sample an action

ai for the i-th agent. The joint action (ai)i∈[n] is used to take a step in the environment and all

reward machines. Finally, each Qi is individually updated according to the reward gained by the

i-th agent. For notational convenience, we let q α−→ q′ denote q ← (1− α) · q + α · q′.

Results. Our results are summarized in Tables 6.1, 6.2 and 6.3. We focus on the Intersection

environment (Table 6.2) in the discussion here. For each specification, we ran all algorithms 10

times with a timeout of 24 hours. Along with the average social welfare and ϵmin, we also report
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Spec. Num. of
agents Algorithm welfare(π)

(avg ± std)
ϵmin(π)

(avg ± std)
Num. of

runs terminated

Avg. num. of
sample steps
(in millions)

φ1 3
HighNashSearch 1.00 ± 0.00 0.00 ± 0.00 10 3.02

nvi 1.00 ± 0.00 0.00 ± 0.00 10 5.00
maqrm 1.00 ± 0.00 0.01 ± 0.00 10 4.00

φ2 3
HighNashSearch 1.00 ± 0.00 0.00 ± 0.00 10 3.01

nvi 1.00 ± 0.00 0.00 ± 0.00 10 5.00
maqrm 0.66 ± 0.00 0.99 ± 0.00 10 4.00

φ3 3
HighNashSearch 1.00 ± 0.00 0.00 ± 0.00 10 3.50

nvi 1.00 ± 0.00 0.00 ± 0.00 8 5.00
maqrm 0.81 ± 0.01 0.56 ± 0.03 10 4.00

φ4 3
HighNashSearch 0.67 ± 0.00 0.00 ± 0.00 10 3.03

nvi 0.33 ± 0.00 0.00 ± 0.00 10 5.00
maqrm 0.63 ± 0.00 0.57 ± 0.01 10 4.00

φ5 3
HighNashSearch 1.00 ± 0.00 0.00 ± 0.00 10 3.60

nvi 0.33 ± 0.00 0.00 ± 0.00 10 5.00
maqrm 0.62 ± 0.01 0.47 ± 0.02 10 4.00

φ6 3
HighNashSearch 1.00 ± 0.00 0.00 ± 0.00 10 3.68

nvi 0.00 ± 0.00 0.00 ± 0.00 10 5.00
maqrm 0.44 ± 0.01 0.55 ± 0.02 10 4.00

Table 6.1: Results for all specifications in Single Lane Environment. Total of 10 runs per benchmark.
Timeout = 24 hrs.

the average number of sample steps taken in the environment as well as the number of runs that

terminated before timeout. For a fair comparison, all approaches were given a similar number of

samples from the environment.

Nash equilibrium. Our approach learns policies that have low values of ϵmin, indicating that it

can be used to learn ϵ-Nash equilibria for small values of ϵ. nvi also has similar values of ϵ, which is

expected since nvi provides guarantees similar to our approach w.r.t. Nash equilibria computation.

On the other hand, maqrm learns policies with large values of ϵmin, implying that it fails to converge

to a Nash equilibrium in most cases.

Social Welfare. Our experiments show that our approach consistently learns policies with high

social welfare compared to the baselines. For instance, φ3 corresponds to the specifications in the

motivating example for which our approach learns a joint policy that causes both blue and black cars

to achieve their goals. Although nvi succeeds in learning policies with high social welfare for some

specifications (φ1, φ3, φ4), it fails to do so for others (φ2, φ5). Experiments in the Single Lane and

Gridworld environments indicate that nvi can achieve high social welfare (similar to our approach)
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Spec. Num. of
agents Algorithm welfare(π)

(avg ± std)
ϵmin(π)

(avg ± std)

Num. of
terminated

runs

Avg. num. of
sample steps
(in millions)

φ1 3
HighNashSearch 0.33 ± 0.00 0.00 ± 0.00 10 1.78

nvi 0.32 ± 0.00 0.00 ± 0.00 10 1.92
maqrm 0.18 ± 0.01 0.51 ± 0.01 10 2.00

φ2 4
HighNashSearch 0.55 ± 0.10 0.01 ± 0.02 10 11.53

nvi 0.04 ± 0.01 0.02 ± 0.01 10 12.60
maqrm 0.12 ± 0.01 0.20 ± 0.03 10 15.00

φ3 4
HighNashSearch 0.49 ± 0.01 0.00 ± 0.01 10 11.26

nvi 0.45 ± 0.01 0.00 ± 0.01 10 12.60
maqrm 0.11 ± 0.01 0.22 ± 0.02 10 15.00

φ4 3
HighNashSearch 0.90 ± 0.15 0.00 ± 0.00 10 2.16

nvi 0.98 ± 0.00 0.00 ± 0.00 4 2.18
maqrm 0.23 ± 0.01 0.39 ± 0.04 10 2.00

φ5 5
HighNashSearch 0.58 ± 0.02 0.00 ± 0.00 10 62.17

nvi 0.05 ± 0.01 0.01 ± 0.01 7 80.64
maqrm Timeout Timeout 0 Timeout

Table 6.2: Results for all specifications in Intersection Environment. Total of 10 runs per benchmark.
Timeout = 24 hrs.

for specifications in which all agents can successfully achieve their goals (cooperative scenarios).

However, in many other scenarios in which only some of the agents can fulfill their objectives, our

approach achieves higher social welfare.

6.8. Discussion

We have proposed a framework for maximizing social welfare under the constraint that the joint

policy should form an ϵ-Nash equilibrium. Our approach involves learning and enumerating a small

set of finite-state deterministic policies in decreasing order of social welfare and then using a self-

play RL algorithm to check if they can be extended with punishment strategies to form an ϵ-Nash

equilibrium. Our experiments demonstrate that our approach is effective in learning Nash equilibria

with high social welfare.

One limitation of our approach is that our algorithm does not have any guarantee regarding optimal-

ity with respect to social welfare. The policies considered by our algorithm are chosen heuristically

based on the specifications, which may lead to scenarios where we miss high welfare solutions. For

example, φ2 in the Intersection environment corresponds to specifications in the motivating example

except that the blue car is not required to stay a car length ahead of the other two cars. In this
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Spec. Num. of
agents Algorithm welfare(π)

(avg ± std)
ϵmin(π)

(avg ± std)
Num. of

runs terminated

Avg. num. of
sample steps
(in millions)

φ1 2
HighNashSearch 0.95 ± 0.02 0.00 ± 0.00 10 18.86

nvi 1.00 ± 0.00 0.00 ± 0.00 10 22.40
maqrm Timeout Timeout 10 Timeout

φ2 2
HighNashSearch 0.99 ± 0.01 0.00 ± 0.00 10 29.74

nvi 1.00 ± 0.00 0.00 ± 0.00 8 38.40
maqrm Timeout Timeout 10 Timeout

φ3 2
HighNashSearch 0.98 ± 0.02 0.00 ± 0.00 10 48.40

nvi 1.00 ± 0.00 0.00 ± 0.00 4 57.60
maqrm Timeout Timeout 10 Timeout

φ4 2
HighNashSearch 0.94 ± 0.02 0.00 ± 0.00 10 65.91

nvi 0.94 ± 0.01 0.00 ± 0.00 7 92.80
maqrm Timeout Timeout 10 Timeout

φ5 2
HighNashSearch 0.86 ± 0.05 0.00 ± 0.00 10 87.05

nvi 0.13 ± 0.01 0.00 ± 0.00 10 128.00
maqrm Timeout Timeout 10 Timeout

Table 6.3: Results for all specifications in Gridworld Environment. Total of 10 runs per benchmark.
Timeout = 24 hrs.

scenario, it is possible for three cars to achieve their goals in an equilibrium solution if the blue car

helps the cars behind by staying in the middle of the intersection until they catch up. Such a joint

policy is not among the set of policies considered; therefore, our approach learns a solution in which

only two cars achieve their goals. We believe that such limitations can be overcome in future work

by modifying the various components within our enumerate-and-verify framework.

6.9. Related Work

Multi-agent RL. There has been work on learning Nash equilibria in the multi-agent RL setting

[72, 73, 107, 126, 129, 6]; however, these approaches focus on learning an arbitrary equilibrium and

do not optimize social welfare. There has also been work on studying weaker notions of equilibria

in this context [161, 58], as well as work on learning Nash equilibria in two agent zero-sum games

[20, 153, 106].

Equilibrium in Markov games. There has been work on computing Nash equilibrium in Markov

games [93, 134], including work on computing ϵ-Nash equilibria from logical specifications [34, 33],

as well as recent work focusing on computing welfare-optimizing Nash equilibria from temporal

specifications [97, 98]; however, all these works focus on the planning setting where the transition
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probabilities are known. Checking for existence of Nash equilibrium, even in deterministic games,

has been shown to be NP-complete for reachability objectives [27].

Social welfare. There has been work on computing welfare maximizing Nash equilibria for bimatrix

games, which are two-player one-step Markov games with known transitions [37, 68]; in contrast,

we study this problem in the context of general Markov games.
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CHAPTER 7

Compositional Verification of Neural Network Controllers

The previous chapters focused on designing and analysing reinforcement learning algorithms for

synthesizing policies from complex temporal specifications. We primarily studied the single-task

setting in which the training objective encodes only one task. However, there are many scenarios

in which we want to train a single policy to perform multiple tasks—e.g., we might want to train

a controller for an autonomous racing car that works in all race tracks. Furthermore, in realistic

settings with continuous state spaces, the trained policy is either a single neural network (NN) or

contains many neural network components. In such cases, we often do not have strong guarantees

regarding the safety of the learned controllers—e.g., there is no evidence for why an NN policy

trained using reinforcement learning for autonomous driving will never cause a crash.

In this chapter, we present a compositional approach to multi-task learning and utilize our framework

to also design an algorithm to verify the safety of the trained policy across all tasks. We focus on

closed-loop safety, where the goal is to ensure that the controller, composed with a model of the robot

dynamics and its environment, is safe over the entire planning horizon—e.g., that an autonomous

car does not run into an obstacle, or a walking robot does not fall over.

7.1. Overview

A key challenge is proving safety for the full closed-loop system. One approach is to unroll the safety

property over a finite horizon [79]. However, this approach becomes intractable as the planning

horizon becomes large. In particular, existing verification algorithms rely on overapproximating

the dynamics [36], and the approximation error accumulates over the horizon. Thus, very precise

abstractions are required to verify safety for long horizons. An alternative approach is to establish

the existence of an inductive invariant such as a Lyapunov function [38, 143] or a control barrier

function [128, 10]. This strategy reduces the problem to a verification problem over a single step,

since it suffices to prove that a candidate invariant is inductive and that it implies safety. However,

establishing such an invariant can be intractable for high-dimensional state spaces, especially when
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Figure 7.1: An overview of our compositional learning and verification framework.

using neural network controllers with many parameters.

These challenges are further exacerbated for real-world robotics systems, which are typically only

partially observable (e.g., the inputs to the NN are LiDAR scans), and the geometry of the en-

vironment is a priori unknown (e.g., the robot is acting in a building with an unknown layout of

hallways).

To address the above challenges, we propose a framework for compositional learning and verification

of NN controllers17 (Figure 7.1). Our framework is inspired by classical techniques such as Hoare

logic [70] for compositional program verification. The idea is to verify a program by decomposing

it into modular components, devising verification conditions (VCs) for all components that suffice

to prove safety, and then proving that each VC holds for its respective component.

In particular, our framework leverages this strategy to both learn an NN controller to solve a

given control task and verify the learned controller. Following the theme of compositionality in the

previous chapters, we first decompose the task into a sequence of sub-tasks, where each sub-task

is associated with a precondition (e.g., the region of the state space where the robot starts) and a

postcondition (e.g., the region where the robot ends up). This decomposition is designed to satisfy

two properties:
17Although the proposed framework can be used with any verification tool, we use Verisig [79] for closed-loop

verification. Since Verisig supports fully-connected NNs with sigmoid/tanh activations, we focus on this class of NNs
as well.
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• Mode safety and progress: For any single sub-task, using the NN controller from any

state satisfying the precondition should safely transition the system to a state satisfying the

postcondition within some bounded number of steps.

• Switching safety: The postcondition of one sub-task should imply the precondition of the

next.

As long as these two properties are satisfied, the NN controller is guaranteed to be safe for the entire

planning horizon. Furthermore, these two properties are sufficient to guarantee a particular liveness

property which states that any finite sequence of sub-tasks will be completed eventually. Intuitively,

our strategy combines verification over a finite horizon (i.e., mode safety) with establishing inductive

invariants (i.e., switching safety), except that the inductive invariants are established at the level

of sub-tasks rather than individual steps in the system. Formally, we model the system as a hybrid

automaton [11, 120, 10]—i.e., a model of the system is a set of modes of operation, with differential

equations specifying the state dynamics of each mode; in our approach, the discrete transitions

encode switching from one sub-task to the next. Many practical control tasks can be decomposed

in such a way—e.g., navigation problems can be decomposed into sequences of sub-goals.

Given a hybrid automaton, our framework performs the following steps:

• Compositional learning: First, it learns a separate NN controller for each mode, using

shaped rewards to encourage it to satisfy mode safety and progress. An added advantage of

this approach is that we can use simpler NNs that are easier to both train and verify.

• Pre/postcondition synthesis: Next, it synthesizes candidate pre/postconditions (i.e., a

candidate pair of pre- and postconditions for each mode) that satisfy switching safety and are

consistent with a set of traces obtained by simulating the system with the learned controllers.

• Compositional verification: Finally, it uses hybrid systems verification tools [36, 79] to

independently check mode safety and progress for each mode.

The second step builds on recent work on invariant synthesis [54]. In particular, our synthesis algo-
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rithm uses testing to identify implication examples that connect the different (pre/postcondition)

sets, and then tries to synthesize candidate pre/postconditions consistent with these examples.

One challenge is that in partially observed environments, the controller may not know when one sub-

task has been completed and/or what the next sub-task is. To address this issue, we additionally

train a mode predictor, which is a separate NN that predicts whether the postcondition for the

current sub-task holds in the current state and if so, predicts the next sub-task. This mode predictor

is incorporated into the overall controller. To ensure correctness, the safety and progress conditions

are verified with respect to the full compositional controller (including the mode predictor). For

instance, consider a robot navigating in a building with an unknown layout; then, it may not know

if the next segment is to go straight, turn left, or turn right. Our approach naturally handles this

setting since it proves safety for arbitrary compositions of the sub-tasks as long as the switching

safety property is satisfied. Thus, the sequence of sub-tasks can be chosen dynamically based on

observations of the environment—e.g., if a robot comes to a left turn at the end of a hallway, then

the mode predictor would determine that the next sub-task is to make that left turn. Therefore, our

framework enables us to learn and verify a controller that generalizes to multiple tasks composed

of the same set of sub-tasks.

We evaluate our approach on a challenging benchmark—namely, a simulation model of the F1/10

autonomous racing system [121], where the goal is for an NN-controlled car to complete a track

without crashing into the walls. Verifying safety for this system has received recent attention [79];

however, these approaches do not scale to verifying safety beyond short time horizons on a single,

predefined track, due to two main reasons. First, the controller must rely on high-dimensional

LiDAR observations of the environment, which poses challenges for scalability. Second, we ideally

want to ensure safety for a wide variety of complex track geometries. As a consequence, this system

is beyond the reach of existing state-of-the-art verification techniques.

We demonstrate that our framework can successfully learn and verify an NN controller for this

system, by decomposing tracks into sequences of individual segments. In particular, we consider

sub-tasks that include going straight or executing four different kinds of turns, and verify safety for
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Figure 7.2: Different types of track segments.

(a) (b) (c)

Figure 7.3: Example tracks decomposed into segments.

any sequence of such sub-tasks. We also provide evidence that training a monolithic controller for

an example track is significantly harder than our compositional learning approach.

In summary, our main contributions are:

• A framework for compositional verification of NN controllers for hybrid systems (Section 7.2).

• An algorithm for automatically inferring pre/postconditions given a controller π, as well as a

compositional learning algorithm for training π.

• An extensive evaluation18 via a case study based on a model of the F1/10 autonomous car

(Sections 7.4 & 7.5).

7.1.1. Motivating Example

We now give a brief overview of our approach using the F1/10 autonomous racing system as a

motivating example.

F1/10 car. The objective is to safely navigate the autonomous F1/10 car along a racing track

to complete a lap as quickly as possible. The safety property states that the car should not crash

into the track walls. Ignoring modes for now, the state space is X ⊆ R4 (a state x ∈ X denotes the
18Our implementation is available at https://github.com/keyshor/autonomous_car_verification.
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Figure 7.4: A sharp right turn.

2D position, speed, and angle of the car), the action space is U ⊆ R2 (an action u ∈ U consists of

acceleration and steering angle), and the dynamics are the bicycle dynamics [131].

We assume the track is decomposed into a sequence of segments, where each segment is either a

straight track, a left/right turn, or a sharp left/right turn as shown in Figure 7.2; these are the

five modes of the system. Our goal is not to learn and verify a controller for a given specific track,

but rather to learn and verify a controller that works for all tracks constructed by composing these

segments. Some example tracks are shown in Figure 7.3.

The F1/10 car observes its environment with a LiDAR sensor, which uses laser rays to determine the

distance to the nearest obstacle along different directions. In particular, it produces an observation

o ∈ O ⊆ Rm, where each oi ∈ R corresponds to an angle ψ ∈ [−135, 135] and denotes the distance

from the car position to the nearest wall in the direction ϑ + ψ, where ϑ is the angle the car is

currently facing. An example of a scan is shown in Figure 7.4a; each green point is the obstacle

observed by one of the m = 1081 LiDAR rays.

Control problem. Our goal is to learn a controller π : O → U that maps LiDAR observations

to actions. Designing a safe controller for the F1/10 car is challenging due to the high-dimensional

observation space. One approach is to train a neural network (NN) controller π using reinforcement

learning, and then verify post-hoc that π is safe. This technique has been used to verify that the

car can safely navigate a right turn [80]. However, existing verification approaches [42, 79, 144] do

not scale to more complex tasks such as the tracks in Figure 7.3—even when the track is known
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ahead of time—due to the long planning horizon.

Compositional verification (fully observed). For now, let us assume that the controller π

is given and that the state is fully observed, and describe how we verify that π is safe. We also

assume that we are given a pre-region and a post-region for each mode, which are subsets of the

state space such that the car always starts in the pre-region of the mode and ends in its post-region.

Intuitively, membership in the pre-region (resp., post-region) corresponds to the precondition (resp.,

postcondition) for that mode. An example of the pre- and post-regions for the sharp right turn

mode is shown in Figure 7.4b. These regions are chosen so that the system immediately and safely

transitions from the post-region of any mode q to the pre-region of some subsequent mode q′ (i.e.,

switching safety). If we know the sequence of track segments, then the choice of q′ is unique. In

our case, since we do not know the sequence of track segments a priori, we prove switching safety

for every pair of modes q, q′, which, together with mode safety and progress guarantees that the

car safely completes any track consisting of an arbitrary sequence of these five kinds of segments.

Finally, to prove mode safety and progress, it suffices to verify that π safely navigates the car from

the pre-region of each mode to the corresponding post-region without crashing.

Compositional verification (partially observed). Verification is more challenging when the

state is partially observed—e.g., π only has access to LiDAR observations. We assume π is decom-

posed into a mode predictor µ together with a controller πq for each mode q. Then, π uses πq, where

q is the predicted mode at the current step.

Importantly, we do not assume that the mode predictor is correct; thus, π may use the incorrect

controller. For example, in the case of the sharp right turn, if the LiDAR range is smaller than

the distance of the corner from the entry region, there will be regions where the mode predictor

cannot distinguish the sharp turn segment from a straight segment using just LiDAR observations

(see Figure 7.4b). Thus, we need to prove that the full controller π is correct, even if µ is wrong.

This involves simultaneously reasoning about the controllers πq′′ for all modes q′′, along with the

mode predictor µ.

136



Compositional learning. We use deep reinforcement learning to train one neural network con-

troller πq for each mode q to drive the car from the pre-region to the post-region. Since the controller

can only observe the LiDAR observations, we also train a mode predictor that predicts the current

mode from the observations. We can do so using supervised learning from observations encountered

while training πq.

Importantly, we find that our compositional approach benefits not only verification but also learning.

In particular, we can train simpler neural networks with fewer parameters, and training is less likely

to get stuck at local maxima that are characteristic of long planning horizons.

Candidate pre/post-region synthesis. Finally, manually specifying the pre- and post-regions

for each mode can be challenging. We propose an algorithm for automatically inferring these regions.

Our algorithm, based on invariant inference [48, 135, 54], alternates between synthesizing candidate

pre/post-regions that are consistent with all the example traces generated so far, and generating

new example traces using π.

In particular, the synthesis algorithm uses the example traces to identify both unsafe examples z

from which π is known to be unsafe, and implication examples z → z′, which say that z′ is reachable

from z using π. Then, it represents the pre- and post-regions as boxes in Rn, and infers a set of

boxes that are consistent with the identified examples. Finally, it uses the inferred pre/post-regions

to try and verify that π is safe.

7.2. Compositional Verification

In this section, we describe our framework for compositional verification of controllers. Our model

of the system is based on hybrid automata [120, 12, 11] tailored to our setting. We define safety

and liveness in our context and show that we can reduce safety and liveness to a set of verification

conditions (VCs) that are local to the modes of the hybrid automaton and can be checked using

existing verification tools.
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7.2.1. Problem Formulation

Dynamics. We consider a hybrid dynamical system19 with states z ∈ Z and actions U ⊆ Rk. We

assume the state space has structure Z = Q×X , where Q is a finite set of modes and X ⊆ Rn is the

continuous component of the state space. We denote the states in mode q by Zq = {q}×X . Within

a mode q ∈ Q, the dynamics are given by a function f : Z × U → Rn; in particular, the system

evolves according to the differential equation ẋ(t) = f(z(t), u(t)) (with respect to time t). When

there is no ambiguity, we simply write ẋ = f(z, u). The mode transitions are given by a relation

T ⊆ Z × Z, where an edge z → z′ ∈ T means the system can transition from state z to state z′.

We let ZF = {z ∈ Z | ∃z′ ∈ Z s.t. z → z′ ∈ T } denote the set of states where mode transitions

can occur. The mode transitions are assumed to be urgent—i.e., a mode transition occurs as soon

as the system reaches some z ∈ ZF ; we assume that ZF is closed so this property is well-defined.

Intuitively, the corresponding discrete time dynamics are given by z+ = z′ if z → z′ ∈ T and

z+ = (q, x + f(z, u) · ∆t) otherwise. Note that the mode transitions are nondeterministic, since

the condition z → z′ ∈ T may be satisfied by multiple z′ ∈ Z. This nondeterminism is needed

to capture settings where the sequence of sub-tasks is a priori unknown. In our F1/10 example,

at a state z about to exit the current mode, transitions z → (q′, x′) exist for all modes q′ ∈

{straight, left turn, ...}. Finally, our goal is to control the system based on observations o ∈ O ⊆ Rm;

in particular, an observation function h : Z → O maps states to observations. If the system is fully

observable, O can be taken to be Z with h(z) = z for all z ∈ Z.

We formally represent the dynamical system as a hybrid automaton which is defined as:

Definition 7.1. A hybrid automaton A is a tuple A = (Q,X ,U , T ,O, f, h).

Control. A controller is a function π : O → U , where u = π(h(z)) specifies the action to use in

state z. We use f(z, π, t) ∈ Z to denote the state reached at time t ∈ R≥0 by evolving the system

according to ẋ = f(z, π(h(z))). Furthermore, let F (z, π, t) ⊆ Z denote the set of states visited until

time t—i.e., F (z, π, t) = {f(z, π, t′) | 0 ≤ t′ ≤ t}.
19The environment is no longer an MDP as we study the verification problem in the continuous-time setting.
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We decompose π into controllers πq : O → U designed to be used in mode q ∈ Q, and a mode

predictor µ : O → Q that predicts the current mode. Then, we have π(o) = πq(o) where q = µ(o).

We do not assume that the mode predictor is always correct—i.e., we may have µ(o) = q even

though the current mode is q′ ̸= q, in which case π would use the wrong controller.

Trajectories. Next, we describe the space of trajectories that may be generated by a given con-

troller π. Since the dynamics are continuous-time, the trajectory is a curve in the state space

parameterized by time t ∈ R≥0. However, formally reasoning about this representation is difficult.

Instead, we represent a trajectory as an infinite sequence ρ = (z0
t0−→ z1

t1−→ · · · ), where ti ∈ R≥0 for

all i ∈ N. In particular, an edge zi
ti−→ zi+1 in ρ says that the system transitions from zi to zi+1 in

time ti. For clarity, we omit the ti’s from ρ when it is not needed. There are two kinds of transitions

zi → zi+1 that can occur:

• Continuous transition: This kind of transition occurs when zi ̸∈ ZF . Then, the system

evolves according to the continuous dynamics f—i.e., zi+1 = f(zi, π, ti), where ti > 0. We

assume that no mode transition is triggered—i.e., f(zi, π, t) ̸∈ ZF for all t ∈ [0, ti). We denote

such a transition by zi →f zi+1.

• Mode transition: This kind of transition occurs when zi ∈ ZF . Then, the system instan-

taneously transitions to some zi+1 such that zi → zi+1 ∈ T—i.e., ti = 0. We denote such a

transition by zi →T zi+1.

We assume all trajectories are non-Zeno—i.e.,
∑∞

i=0 ti = ∞. It is only necessary to consider Zeno

trajectories if subsequent mode transitions can occur after arbitrarily small amounts of time, which

cannot happen if the system requires a minimum amount of time before triggering the next mode

transition. In our F1/10 example, the car must traverse an entire segment to trigger another mode

transition, which cannot happen arbitrarily quickly since velocity is bounded from above.

Correctness properties. We consider a safety property specified as a region Zsafe ⊆ Z in which

we expect the system to stay. In addition, we assume given a set of initial states Z0 ⊆ Zsafe from

which we want to ensure safety.
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Definition 7.2. A controller π is safe for a hybrid automaton A if for any trajectory ρ starting

from z0 ∈ Z0, for all i ∈ N, we have f(zi, π, t) ∈ Zsafe for all t ∈ [0, ti].

That is, the system should be safe for the duration of any trajectory generated using π from an

initial state. Next, liveness says the system should switch modes infinitely often.

Definition 7.3. A controller π is live for a hybrid automaton A if for any trajectory ρ starting

from z0 ∈ Z0, we have zi →T zi+1 for infinitely many i ∈ N.

7.2.2. Verification Conditions

Our verification algorithm reduces the problem of verifying safety and liveness to a set of verification

conditions (VCs).

Pre- and post-regions. Following our compositional approach, our VCs decompose the problem

into properties of individual modes or pairs of modes. For each mode q, we assume given a pre-

region X q
pre ⊆ X and a post-region X q

post ⊆ X . In addition, we define Zq
pre = {q} × X q

pre and

Zq
post = {q}×X

q
post. Intuitively, the precondition (resp., postcondition) for q is membership in its pre-

region (resp., post-region). We require that pre- and post-regions satisfy the following conditions,

which we call compatibility conditions (CCs) since they are not checked by the verifier, but are

directly enforced when we generate the pre/post regions.

Definition 7.4 (CC 1). We have Z0 ⊆
⋃

q∈QZ
q
pre.

That is, every initial state is contained in a pre-region.

Definition 7.5 (CC 2). We have
⋃

q∈QZ
q
post ⊆ ZF .

That is, every state in the post-region triggers a mode transition; intuitively, the post-region should

only include states that “exit” the mode. Now, we have two kinds of VCs:

• Mode safety and progress: For each mode q ∈ Q, the system safely transitions from Zq
pre

to Zq
post.

• Switching safety: For each pair of modes q, q′ ∈ Q with a mode transition (q, x)→ (q′, x′) ∈
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T , the system safely transitions from Zq
post to Zq′

pre.

First, our VC for mode safety and progress is:

Definition 7.6 (VC 1). For any z ∈ Zq
pre, there exists t ∈ R>0 such that f(z, π, t) ∈ Zq

post,

F (z, π, t) ⊆ Zsafe, and f(z, π, t′) ̸∈ ZF for all t′ ∈ [0, t).

That is, π safely transitions the system from any state in the pre-region of mode q to the post-region

of q. The last condition is needed to ensure that the system does not trigger a mode transition

z → z′ ∈ T at some state z ̸∈ Zq
post. That is, f(z, π, t) is the first state reached that triggers a mode

transition (such a state exists since we have assumed ZF is closed).

Remark 7.7. Although VC 1 is local to a mode q ∈ Q, it is a property of the full controller π which

includes the mode predictor µ and controllers πq′ for all q′ ∈ Q.

Next, our VC for switching safety is:

Definition 7.8 (VC 2). For all z ∈ Zq
post and all z → z′ ∈ T , we have z′ ∈ Zq′

pre for some q′ ∈ Q.

That is, for every state z in a post-region and every mode transition z → z′, the target state z′ is

contained in the pre-region of another mode q′.

Together, CCs 1 & 2 and VCs 1 & 2 imply that π is safe and live for A. First, CC1 ensures that the

initial states satisfy the precondition of some mode q. Then, VC 1 says that the precondition of mode

q implies the postcondition of mode q. Next, VC 2 and CC 2 together say that the postcondition

of mode q implies the precondition of another mode q′.

Theorem 7.9. Given controller π for hybrid automaton A, if CCs 1 & 2 and VCs 1 & 2 hold, then

π is safe and live for A.

Proof. Let π be a compositional controller such that VCs 1 and 2 hold. Let ρ be a non-Zeno
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trajectory of the automaton generated by π,

ρ = (z0
t0−→ z1

t1−→ · · · ).

Let us the denote the cumulative times using Ti =
∑i−1

j=0 ti. We define Zpre = ∪q∈QZq
pre and

Zpost = ∪q∈QZq
post. Note that VC 1 implies Zpre ⊆ Zsafe and WLOG we can also take Zpost =

Zpost ∩ Zsafe ⊆ Zsafe. Let IT denote the set of indices at which a mode transition occurs from a

state in Zpost—i.e., IT = {i | zi →T zi+1 and zi ∈ Zpost}. We first show that IT is infinite, thereby

proving liveness.

Lemma 7.10. IT contains infinitely many indices.

Proof. We give a proof by contradiction. Suppose IT is finite. If IT = ∅, let z = z0 ∈ Z0 ⊆ Zpre. If

IT is nonempty, let imax be the largest index in IT and z = zimax+1. We have zimax →T zimax+1 and

from VC 2 we get that z = zimax+1 ∈ Zpre.

In either case, we have z = zi ∈ Zq
pre for some q ∈ Q and i ≥ 0. From VC 1 we get that there

is a t ∈ R≥0 such that f(z, π, t) ∈ Zq
post and for all t′ ∈ [0, t), f(z, π, t′) /∈ ZF . Since the run ρ is

non-Zeno, there is an index j ≥ i such that Tj − Ti ≤ t ≤ Tj+1− Ti. Since f(zi, π, t′) /∈ ZF if t′ < t,

we get that zk →f zk+1 for all k with i ≤ k ≤ j − 1. We now have two cases to consider.

• Case 1: t = Tj − Ti. In this case, zj = f(zi, π, t) ∈ Zq
post. Since zj ∈ ZF we must have

zj →T zj+1 in ρ and hence j ∈ IT .

• Case 2: t > Tj −Ti. In this case, zj = f(zi, π, Tj −Ti) /∈ ZF . Hence we must have zj →f zj+1

in ρ. From the definition of→f , it follows that f(zi, π, t′) /∈ ZF for all t′ < Tj+1−Ti. Therefore

t = Tj+1 − Ti and zj+1 = f(zi, π, t) ∈ Zq
post and we can conclude that j + 1 ∈ IT

Therefore, in either case, we reach a contradiction as we showed that there is a k ∈ IT with

k ≥ i = imax + 1 > imax.
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We now prove safety.

Lemma 7.11. For all i ≥ 0, f(zi, π, t) ∈ Zsafe for all t ∈ [0, ti].

Proof. Let i1 < i2 < · · · be the ordered sequence of indices in IT . Let i0 = −1. We show that for

all k ≥ 0 and any i ≥ 0 with ik ≤ i < ik+1, f(zi, π, t′) ∈ Zsafe for all t′ ∈ [0, ti].

Let z = zik+1 ∈ Zpre (VC 2). Then by VC 1, there is a t ∈ R≥0 such that f(z, π, t) ∈ Zpost,

F (z, π, t) ⊆ Zsafe and for all t′ ∈ [0, t), f(z, π, t′) /∈ ZF . Let j ≥ ik + 1 be the smallest index

after ik such that zj ∈ ZF . Such a j exists since zik+1
∈ ZF . Let T = Tj − Tik+1. Then we have

zi →f zi+1 for all i with ik + 1 ≤ i < j. Hence zj = f(z, π, T ) and for all t′ < T , f(z, π, t′) /∈ ZF .

From this we can conclude that t = T and zj = f(z, π, t) ∈ Zpost. Therefore, j is also the smallest

index after ik such that j ∈ IT , so j = ik+1. Now for any i with ik + 1 ≤ i < ik+1, we have

f(zi, π, t
′) = f(z, π, t′ + Ti − Tik+1) ∈ Zsafe for all t′ ∈ [0, ti] since t′ + Ti − Tik+1 ≤ t. If k > 0, we

have zik ∈ Zpost ⊆ Zsafe and therefore f(zik , π, t
′) = zik ∈ Zsafe for all t′ ∈ [0, ti] = {0}.

Lemmas 7.10 and 7.11 together imply the theorem.

7.2.3. Checking Verification Conditions

We now describe how we check each of the VCs for a given controller π and a hybrid automaton A.

Verification condition 1. We observe that VC 1 is local to the dynamics of a single mode—i.e.,

it suffices to verify a safe reachabililty property for the dynamics ẋ = f(z, π(z)), where the mode

of z does not change. Thus, we can drop the mode and express these dynamics as ẋ = f q(x, π̄(x)),

where f q : X×U → Rn and we have defined π̄ : X → U by π̄(x) = π(h(q, x)). We let F q(x, π̄, t) ⊆ X

denote the trajectory generated by evolving the system according to this differential equation from

state x ∈ X for time t ∈ R≥0.

Although verification tools like Verisig can only check safety properties, we can encode the reacha-

bility condition as a safety condition by considering a time-limit Tmax within which we require the
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Algorithm 9 Compositional learning and synthesis. Inputs: Hybrid automaton A and initial
candidate pre/post-regions B0. Output: A verified controller π or FAIL. Hyperparameters: Number
of synthesis iterations K ∈ N.
1: function LearnController(A, B0)
2: π ← Learn(A, B0)
3: Bπ ← Synthesize(A, π,B0)
4: if Bπ = ∅ then return FAIL
5: if Verify(A, π,Bπ) then return π
6: return FAIL
7: end function
8:
9: function Synthesize(A, π,B)

10: E ← ∅
11: for i ∈ {1, . . . ,K} do
12: E ← E ∪ Test(A, π,B)
13: B ← Infer(E)
14: if B = ∅ then return ∅
15: end for
16: return B
17: end function

system to reach X q
post when started in any state in X q

pre. Note that the mode predictor has a discrete

output; we model each output as a separate mode of the hybrid system.

Verification condition 2. Next, for VC 2, we need to check that for all q, q′ ∈ Q, we have

{x′ | (q, x)→ (q′, x′) ∈ T , x ∈ X q
post} ⊆ X

q′
pre. In other words, every state reachable from x ∈ X q

post

is contained in X q′
pre for some q′ ∈ Q. This check is problem-specific. For instance, in our F1/10

example, the transitions (x, q) → (x′, q′) ∈ T involve an affine change of coordinates—i.e., x′ =

Aq→q′x+ bq→q′ . Thus, assuming X q
post and X q′

pre are represented by convex polytopes P q
post and P q′

pre,

respectively, then we can verify VC2 by checking for q, q′ ∈ Q, whether Aq→q′P q
post + bq→q′ ⊆ P q′

pre.

To check this, it suffices to check that each vertex of the polytope Aq→q′Ppost + bq→q′ is contained

in P q′
pre, which corresponds to checking feasibility of a system of linear inequalities, which we can do

efficiently via linear programming.

7.3. Compositional Learning and Synthesis

Our overall framework is summarized in Algorithm 9. Suppose we are given initial pre/post-regions

B0—i.e., a pre- and a post-region for every mode q ∈ Q. Then, the method consists of the following

144



steps:

• Learning: Train a controller π that tries to drive the system from every state in the pre-region

of each mode q to the post-region of q, where we use the pre/post regions in B0.

• Pre/post-region synthesis: Synthesize new candidate pre/post-regions Bπ for π.

• Verification: Use the algorithm in Section 7.2 with Bπ to try and prove that π is safe and

live.

A natural choice for the initial pre/post-regions is to take Zq
pre = Z0 ∩ Zq and Zq

post = ZF ∩ Zq

for all q ∈ Q. The above procedure can fail because of two reasons: either synthesis fails (i.e., no

set of pre/post-regions consistent with the generated examples exists) or verification fails. In either

case, we retry the above steps with modified rewards for learning and/or a different choice of initial

pre/post-regions. In our experiments, we retried our procedure (Algorithm 9) a few (3-4) times

with different reward functions until we were able to verify the learned controller.

The subroutine for synthesizing a candidate set of pre/post-regions alternates between the following

two steps:

• Testing: Generate new examples using testing.

• Inference: Infer a candidate set of pre/post-regions B based on examples E generated so far.

The examples E include both implication examples z → z′ ∈ Z2 such that z′ is reachable from z

using π, and unsafe examples z ∈ Z that reach an unsafe state using π.

Below, we describe our pre/post-region inference algorithm (Section 7.3.1) and our testing algorithm

(Section 7.3.2), as well as our compositional learning algorithm (Section 7.3.3).

7.3.1. Pre/Post-Region Inference

Problem formulation. We describe our algorithm for inferring pre- and post-regions given a set

of examples. First, we represent the regions using boxes–i.e., products of intervals.
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Definition 7.12. A box b ∈ B in Rn is defined by b =
∏n

i=1[xi, yi] ⊆ Rn, where xi ≤ yi for all

i ∈ {1, ..., n}.

We synthesize a set of boxes B = {bα | α ∈ {pre, post}×Q} denoting the pre- and post-regions of all

the modes. For now, we assume given lower and upper bounds b⊥α , b⊤α for all α ∈ A = {pre, post}×Q.

As discussed below, these bounds are used to enforce CCs 1 & 2. Then, our goal is to find boxes bα

for all α ∈ A satisfying b⊥α ⊆ bα ⊆ b⊤α , such that taking X q
pre = b(pre,q) and X q

post = b(post,q), VCs 1

& 2 are satisfied. We denote the set of lower and upper bounds by B⊥ and B⊤ respectively.

First, we describe the kinds of examples that are available. Examples are states (or pairs of states)

that encode a necessary condition for the VCs to hold—i.e., if the invariant does not satisfy an

example, then it cannot possibly satisfy the VCs, but the converse is not true. First, we have states

from which using π is unsafe.

Definition 7.13. An unsafe example is a pair (α, x) where α = (pre, q) ∈ A and x ∈ X such that

there exists t ∈ R≥0 with f((q, x), π, t) /∈ Zsafe and f((q, x), π, t′) /∈ ZF for all t′ ∈ [0, t).

Next, we have examples that correspond to pairs of states z and z′ where z′ is reachable from z.

Definition 7.14. An implication example is a pair (α, x) → (α, x′) with α, α′ ∈ A and x, x′ ∈ X

such that either (i) α = (post, q) and α′ = (pre, q′), with (q, x) → (q′, x′) ∈ T , or (ii) α = (pre, q)

and α′ = (post, q), and there exists t ∈ R≥0 with (q, x′) = f((q, x), π, t) ∈ ZF , F ((q, x), π, t) ⊆ Zsafe

and f((q, x), π, t′) /∈ ZF for all t′ ∈ [0, t).

Given these two kinds of examples, our goal is to synthesize a candidate set of boxes that is consistent

with them—i.e., it excludes examples that are inconsistent with our VCs.

Definition 7.15. Given lower and upper bounds B⊥, B⊤, unsafe examples C and implication ex-

amples I, a candidate set of boxes B is consistent if the following hold:

• For all (α, x) ∈ C, we have x /∈ bα.

• For all (α, x)→ (α′, x′) ∈ I, x ∈ bα ⇒ x′ ∈ bα′.
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Algorithm 10 Pre/post-region inference. Inputs: Implication & unsafe examples E. Output:
Candidate pre/post-regions B. Hyperparamters: B⊥, B⊤

1: function Infer(E)
2: I, C ← E
3: for α ∈ A do
4: X+

α ← ∅
5: X−

α ← {x | (α, x) ∈ C}
6: end for
7: while true do
8: for α ∈ A do
9: bα ← ConsistentBox

(
X+

α , X
−
α , b

⊥
α , b

⊤
α

)
10: if bα = ∅ then return ∅
11: end for
12: ψ ← true
13: for (α, x)→ (α′, x′) ∈ I do
14: if x ∈ bα and x′ ̸∈ bα′ then
15: X+

α′ ← X+
α′ ∪ {x′}

16: ψ ← false
17: end if
18: end for
19: if ψ then return {bα | α ∈ A}
20: end while
21: end function

• For all α ∈ A, we have b⊥α ⊆ bα ⊆ b⊤α .

Furthermore, B is minimal if for any candidate set of boxes B̃ satisfying these conditions, bα ⊆ b̃α

for all α ∈ A.

Given bounds B⊥, B⊤, unsafe examples C, and implication examples I, the Infer subroutine used

in Algorithm 9 returns a minimal consistent candidate set of boxes (if one exists, returning ∅

otherwise).

Algorithm. Next, we describe our algorithm for synthesizing minimal set of boxes given a set

of examples. This algorithm is outlined in Algorithm 10. Our approach is to reduce the synthesis

problem to the following:

Definition 7.16 (Consistent Box). Given positive examples X+ ⊆ Rn, negative examples X− ⊆ Rn
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and boxes b⊥, b⊤, the (minimal) consistent box is

b∗ =argmin
b∈B

n∏
i=1

(yi − xi) subj. to X+ ⊆ b, b ∩X− = ∅, b⊥ ⊆ b ⊆ b⊤.

That is, the goal is to find the smallest box that includes X+ and excludes X−. This problem can

be solved efficiently—in particular, let b =
∏n

i=1[xi, yi], where xi = min{x′i | x′ ∈ X+} ∪ {x⊥i } and

yi = max{x′i | x′ ∈ X+}∪{y⊥i } where b⊥ =
∏n

i=1[x
⊥
i , y

⊥
i ]. Then, return b if b∩X− = ∅ and b ⊆ b⊤;

otherwise, we return ∅ (i.e., no such box exists).

Our synthesis algorithm initializes positive examples X+
α = ∅, and negative examples X−

α to be the

unsafe examples, for each α ∈ A. Then, at each iteration, it independently synthesizes a consistent

box bα to be the minimal consistent box20 for positive examples X+
α , negative examples X−

α , and

boxes b⊥α , b⊤α . Next, it handles implication examples in I by expanding the sets X+
α for α ∈ A.

In particular, it checks if any of the implication examples (α, x) → (α′, x′) ∈ I violate the current

candidate invariant—i.e., x ∈ bα but x′ ̸∈ bα′ . If so, it requires that x′ ∈ bα′ by adding x′ to X+
α′ . It

continues the iterative process until either all examples in I are satisfied, in which case it returns

the current candidate boxes B, or the consistent box subroutine fails, in which case it returns ∅.

Suppose there exists a set of minimal consistent boxes {b∗α | α ∈ A}. Then, our algorithm maintains

the invariant that the current candidate boxes {bα | α ∈ A} are contained in the minimal consistent

boxes—i.e., bα ⊆ b∗α for all α ∈ A. Therefore, when dealing with an inconsistent implication example

(α, x) → (α′, x′) ∈ I with x ∈ bα, we can infer that x′ ∈ b∗α′ and hence it correctly adds x′ to X+
α′ ,

forcing bα′ in the next iteration to include x′. Since we deal with any implication example at most

once and we deal with at least one implication example in every iteration (except the last iteration),

we have:

Theorem 7.17. Algorithm 10 terminates after at most |I| iterations and computes a set of minimal

consistent boxes if one exists and returns ∅ otherwise.
20Although X+

α is initialized to ∅, bα is not empty since it has to contain b⊥α .
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Algorithm 11 Testing to check verification conditions. Inputs: Hybrid automatonA, NN controller
π, and candidate pre/post-regions B. Output: Implication & unsafe examples E. Hyperparameters:
Horizon T ∈ R>0, iterations K ∈ N.

function Test(A, π,B)
E ← ∅
for i ∈ {1, ...,K} do
α← (β, q) ∼ Uniform(A)
z ← (q, x) where x ∼ P(bα)
if β = pre then
ζ ← F (z, π, T ) (stop as soon as ζ enters ZF )
z′ ← (q, x′) = f(z, π, T )
if ζ ̸⊆ Zsafe then E.C.Add((α, x))
if z′ ̸∈ Zq

post then E.I.Add
(
(α, x)→ ((post, q), x′)

)
else
z′ ← (q′, x′) ∼ P({z′ | z → z′ ∈ T })
if z′ ̸∈ Zq′

pre then E.I.Add
(
(α, x)→ ((pre, q′), x′)

)
end if

end for
return E

end function

Choosing upper and lower bounds. Finally, we use the upper and lower bounds to handle

CCs 1 & 2. First, CC 1 says that for every state (q, x) ∈ Z0, we have x ∈ bα where α = (pre, q).

Thus, to ensure this condition holds, it suffices to choose b⊥α such that X q
0 ⊆ b⊥α for all q ∈ Q.

Similarly, CC 2 says that for every x ∈ bα with α = (post, q), we have (q, x) ∈ ZF ; thus, it suffices

to choose b⊤α ⊆ X
q
F for all q ∈ Q.

7.3.2. Testing

Our testing subroutine takes as input candidate pre/post-regions B and uses simulated trajectories

from random start states to try and discover examples that are inconsistent with our VCs. Our

testing algorithm is summarized in Algorithm 11.

At a high level, it samples trajectories ζ ⊆ Z starting from random states z = (q, x), where

α = (β, q) ∼ Uniform(A), and x ∼ P(bα)—e.g., we can take P(bα) to be the uniform distribution

over bα. Then, it checks whether ζ is an unsafe or an implication example that is inconsistent with

B; if so, it adds z to E.C and/or z → z′ (z′ is the last state in ζ) to E.I, respectively. Finally, it

returns the set of examples E which is then used by our pre/post-region inference algorithm.
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Algorithm 12 Compositional learning to try and satisfy verification conditions. Inputs: Hybrid
automaton A, candidate pre/post-regions B. Output: Compositional controller π.

function Learn(A, B)
for q ∈ Q do
p(x) = pq(x) where x ∼ P(b(pre,q))
r(x) = rq(x, b(post,q))
πq ← ReinforcementLearning(f q, p(x), r(x))

end for
p(q, x) = p(q)p(x) where q ∼ Uniform(Q), x ∼ Pπq

µ← SupervisedLearning(p(z), h(z))
return π

end function

7.3.3. Controller & Mode Predictor Learning

We describe our approach for learning the compositional controller π, which involves learning the

controller πq for each mode q ∈ Q as well as learning the mode predictor µ. Our approach is

summarized in Algorithm 12.

Controllers. First, we use reinforcement learning to learn the controllers πq for each mode q. We

parameterize πq = πqθ as a neural network πqθ : O → U mapping observations to actions. The inputs

to the reinforcement learning algorithm are the dynamics f q for mode q, a distribution p(x) over

initial states x, and a reward function r : X → R. For the initial state distribution, we assume

given a distribution P(b(pre,q)) over the pre-region of q—e.g., the uniform distribution. The reward

function should encourage the system to reach the next region. We can use any reinforcement

learning algorithm in conjunction with these inputs to learn πq. We use the twin delayed deep

deterministic policy gradient (TD3) algorithm [50], which is a more stable variant of the popular

deep deterministic policy gradient (DDPG) algorithm [104].

Mode predictor. Next, we learn the mode predictor using supervised learning. To do so, we need

to construct a training set consisting of input-output examples (o, q) ∈ O×Q, where observation o

is the input and mode q is the ground truth mode. To do so, we sample states z = (q, x), compute

the observations o = h(z), and then construct the training examples (o, q). For the distribution

p(z) = p(q, x) over states z, we use the uniform distribution over q and the distribution Pπq over x

visited by the controller πq. The reason we use this distribution over x is that it is the distribution
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Figure 7.5: LiDAR observation for a straight segment.

of x values that the mode predictor will encounter when running π. Finally, we parameterize µ

using a neural network µθ : O × Q → [0, 1] (i.e., predict the probability µθ(q | o) of mode q ∈ Q

given observation o ∈ O).

7.4. System Modeling

We briefly describe the F1/10 car model used in our evaluation, and how we train the controllers

πq and the mode predictor µ.

Dynamics model. We use the model in [80]. We use vector notations x⃗ ∈ X and u⃗ ∈ U for clarity.

The car dynamics are given by a kinematic bicycle model with 4D state space x⃗ = (x, y, ϑ, v) ∈ X ⊆

R4, including 2D position (x, y), orientation ϑ, and velocity v. The actions are u⃗ = (a, ϕ) ∈ U ⊆ R2,

where a denotes throttle and ϕ is the orientation of the front wheels. We assume throttle is constant

at a = 16 (resulting in a top speed of 2.4m/s), whereas ϕ is set by the controller at a sampling rate

of 10Hz. The dynamics are governed by the following differential equations (with respect to time):

ẋ = v · cos(ϑ) v̇ = −ca · v + ca · cm · (a− ch)

ẏ = v · sin(ϑ) ϑ̇ =
v

ℓ
· tan(ϕ)

(7.1)

where ca = 1.633 is the car’s acceleration constant, cm = 0.2 is its motor constant, ch = 4 is its

hysteresis constant, and ℓ = 0.45 is the its length. We consider two different observation models.

State-feedback system First, we consider a variant of the F1/10 car with state-feedback—i.e.,

O = Z and the controller πq : Z → U has access to the true state of the car; similarly, the mode

predictor µ : Z → Q outputs the true mode µ(q, x) = q. This setting allows us to evaluate the

controllers in isolation of the mode detector.
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LiDAR observation model. Next, we consider a LiDAR based observation model. A LiDAR

scan consists of a number of laser rays emanating at a range of degrees with respect to the car’s

orientation. For each ray, the car receives the distance to the nearest object reached by the ray,

or the maximum LiDAR range of 5m if no obstacle is in that range. The controller has access to

the LiDAR measurements only and cannot observe the position, orientation or the velocity of the

car. Similar to prior work [80], we focus on a LiDAR scan with 21 rays since the complexity of the

verification task increases exponentially with the number of rays. This gives us a 21-dimensional

observation o ∈ R21. The rays range from −115 to 115 degrees relative to the car’s orientation—i.e.,

there are rays at −115,−103.5, . . . , 115 degrees relative to the car’s orientation. Each LiDAR ray

can be modeled as a function of the car’s state relative to the current track segment. Figure 7.5

illustrates the scenario of a ray reaching the right wall in a straight segment. The specific equation

for such a ray is

oi = h(x⃗)i =
dr

cos(ϑ− αi)
,

where dr is the distance to the right wall, and αi is the relative angle (in radians) of ray i with

respect to the car’s orientation ϑ. Rays for other walls and segments can be modeled similarly,

depending on which walls are in range.

Tracks. We consider tracks consisting of a sequence of segments, each corresponding to one of five

modes: right and left 90-degree turns, right and left 120-degree turns, and straight segments. Each

segment is 1.5m wide and is of a fixed length. Straight segments can be of arbitrary lengths but

must be sufficiently long to allow for an inductive proof of our VCs; see Section 7.5. The segments

are lined up with the end of one segment meeting the start of the next one. We represent each

segment as having coordinates where the top-most corner is at the origin. Then, a mode transition

z → z′ ∈ T is an (instantaneous) affine change of coordinates21 to bring the car into this coordinate

system. Furthermore, there is a mode transition from any state at the end of any segment to a state

at the start of every segment, thereby modeling all possible tracks in a single hybrid automaton.
21The post-region of one segment is contained within the pre-region of the next segment (after change of coordinates)

since mode transitions are instantaneous and do not involve movement of the car.
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Safety. The safety property is that the car should not run into any of the walls. We model the

car as a square of size γ = 0.15m and the walls as line segments. Then, the car should not intersect

the wall—i.e., X q
safe = {x⃗ ∈ X | ∀w ∈ walls[q] . ∥(x, y)− (wx, wy)∥∞ ≥ γ}.

Controller. For the state-feedback system, each controller has 5 inputs: the x and y distances to

each of the two corners in the turn and the car’s orientation relative to the segment. For LiDAR-

feedback, each controller has 21 inputs corresponding to the LiDAR rays. We use reinforcement

learning to train the controllers πq. We represent the policy as an NN πq = πqθ with two fully

connected layers with tanh activations and 16 neurons per layer for the state-feedback system and

64 neurons per layer for the LiDAR system. We use a uniform distribution on the pre-region as

the initial state distribution. We use a reward function that aims to achieve two goals: (i) stay

in the safe region, (ii) stay in regions where we can compose the different verification results. The

second goal is necessary for our compositional approach to work, since we need the car to visit

the post-region when started in the pre-region. To achieve this goal, we train controllers that stay

in the middle of each segment after turns, with the exception of the sharp turns, where it seems

challenging to train controllers to stay in the middle. For instance, the reward function used for a

right turn (the left-turn case is symmetric) is

r(x⃗, u⃗) =



gs − gi · ϕ2 − gm · d(x⃗) if before turn

gs − gh · h(x⃗) if during turn

gs + gf · δ(x⃗, u⃗)− gm · d(x⃗) if after turn

gc if crash,

where gs = 5 is a reward for each safe step, gi is a loss penalizing high steering angle ϕ, gm is

a penalty on the car’s distance d(x⃗) from the middle of the lane, gh = 3 is a loss penalizing the

difference h(x⃗) between the car’s orientation and the turn angle (either 90 or 120 degrees), gf = 10

is a reward for the distance δ(x⃗, u⃗) covered on the current step after the turn in the new segment

direction, and gc = 100 is a penalty for crashing. The values gi and gm depend on the mode and

are chosen as follows: (i) gi = −0.05, gm = −2 for state-feedback; (ii) gi = 0, gm = −3 for a
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Figure 7.6: Regions for training the mode predictor

90-degree turn and LiDAR-feedback; and (iii) gi = −0.05, gm = −0.5 for a 120-degree turn and

LiDAR-feedback.

Mode predictor. We decompose the mode predictor into two parts: (i) a new mode predictor

µp : O → Q and (ii) an exit detector µq : O → {0, 1}, one for each mode q. Intuitively, µp is used to

determine the mode q the system is about to enter; once q is determined, the corresponding µq is

run until it predicts that system has exited mode q (at which point µp is run again). Since standard

control systems are sampled periodically, let ok denote the observation at sampling step k. Then,

the output of the overall mode predictor at step k, qk, is defined as follows:

qk = qk−1 if µqk−1(ok) = 0

qk = µp(ok) if µqk−1(ok) = 1,
(7.2)

where q0 = µp(o0). This decomposition simplifies mode predictor training since each individual NN

is trained either only on data from one mode (in the case of µq) or on data from the pre-regions of

all the modes (in the case of µp). Specifically, we divide each track segment into two regions: one

consisting of the 50cm at the beginning of the segment, and the other of the rest of the segment;

examples are shown in Figure 7.6. Each exit detector µq is trained to predict 0 (i.e., “not exited”) on

LiDAR scans taken in its own mode q (both in the beginning region and the remainder region) and 1

(i.e., “exited”) on scans from the beginning region of other modes q′ ̸= q. The new mode detector µp

is trained to predict the mode in which the LiDAR scan was taken, with half the training examples

from beginning regions of each mode and half from remaining regions. This strategy allows the

mode predictor to recover from incorrect predictions by µp—i.e., if qk = µp(ok) is an error, then
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µqk should predict that qk is wrong at the next step (i.e., µqk(ok+1) should be 1) and ask µp to

update its prediction. In summary, the mode predictor consists of a total of six NNs: a new mode

predictor and five exit detectors, one for each track segment. All NNs have two hidden layers, with

32 neurons per layer; the hidden layers have tanh activations, whereas the output layer is linear.

We train them with a batch size of 32 and learning rate of 0.001. Training is fairly fast and takes a

few minutes per NN.

Verification. We use the Verisig tool [79] for verification. Verisig verifies neural networks with

smooth activation functions (e.g., sigmoid, tanh) by transforming the networks into hybrid systems.

The neural network hybrid system is then composed with the dynamics model, thereby converting

the closed-loop problem into a hybrid system verification problem that is solved by Flow∗ [36].

7.5. Experimental Results

We evaluate our framework on the F1/10 car, aiming to address the following research questions:

• Can our compositional learning strategy improve the scalability of reinforcement learning?

• Can our compositional verification algorithm be used to prove that the learned controller safe

and live for arbitrary sequences of track segments?

7.5.1. Benefits of Compositional Learning

For both state-feedback and LiDAR systems, we trained two controllers: one for the 90-degree right

turn and one for the 120-degree right turn. Since left and right turns are symmetric, we use the

right-turn controller for a left turn by reflecting the observations and negating the control input.

We also use the 90-degree controller in straight segments, since it is able to steer the car close to

the middle.

To illustrate the benefit of compositional learning, we trained a single NN controller for the full

track in Figure 7.3c. We used increasingly larger NNs (with 32, 64, 128 neurons per layer for state-

feedback and 64, 128 and 256 neurons per layer for observation-feedback); however, none safely

completed a lap in the entire track. Figures 7.7a & 7.7b show the performance of these controllers

along with the performance of the compositional controller (the individual controllers combined with

155



(a) State-feedback system. (b) LiDAR-feedback system.

Figure 7.7: Training evolution for state- and LiDAR-feedback controllers. The “Compositional"
controller curve shows the combined number of training steps for controllers trained on each indi-
vidual turn, whereas the “Monolithic" controllers are trained on the track from Figure 7.3c. All
NNs have two fully connected layers, with the number of neurons per layer indicated in the legend.
Results are averaged over five runs per setup.

(a) (b) (c)

Figure 7.8: Example trajectories with LiDAR-feedback using the compositional controller. The
color of each position indicates the mode predictor output.

a pre-trained mode predictor) on the full track, as a function of the number of training steps. As

expected, training is fast and stable for our compositional controller, whereas the monolithic ones

are unable to converge to a stable policy. While it may be possible to train a monolithic controller

using a larger NN or a different reward function, our results provide evidence that the compositional

approach is simpler and requires less expert domain knowledge, both in reinforcement learning and

in the specific system.

Our compositional controller performs well (and can be verified, as shown in the verification ex-

periments below) on all tracks constructed using the five kinds of segments. Figure 7.8 shows the
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simulated trajectories of the compositional controller on the tracks in Figure 7.3. While the mode

predictor sometimes predicts the wrong mode when far from the turn, it eventually switches to the

correct one selecting the appropriate controller for the remainder of the turn.

7.5.2. Pre/Post-Region Synthesis

Our synthesis algorithm is used to compute pre/post-regions for all the modes. We abuse notation

and use y to denote the y-distance (in meters) from the start of the segment and x to denote

the distance from the left wall. The synthesized pre-region is the same for all the modes because

we have implication examples from the post-region of every mode to the pre-region of each mode.

The pre-region computed for the LiDAR-feedback system is given by x ∈ [0.75, 0.83], y ∈ [0, 0.24],

ϑ ∈ [π2 − 0.0042, π2 + 0.002], and v ∈ [2.4, 2.4]. The post-regions are the corresponding boxes at the

end of each segment. For example, the post-region computed for the 90-degree right turn is given

by x ∈ [8, 8.24], y ∈ [5.67, 5.75], ϑ ∈ [−0.0042, 0.002] and v ∈ [2.4, 2.4].

7.5.3. Verification Results for LiDAR-Feedback System

Verifying safety for the LiDAR-feedback system is challenging due to multiple discrete computations.

First, the controller π has a discrete internal state due to use of the mode predictor, which creates

additional modes in the hybrid automaton given to Flow∗. In addition, if a given LiDAR ray

can reach multiple walls in a given reachable set of states, then each case needs to be encoded

as a different mode of the hybrid automaton. During verification, a reachable set can get split

into multiple reachable sets due to case analysis, generating multiple branches each of which is a

verification instance of its own. The number of such branches can be exponential in the number

of modes since branching occurs dynamically as time progresses. Thus, it is essential to keep the

uncertainty as small as possible as reachable sets are propagated through time. However, closed-

loop verification tools such as Verisig rely on overapproximating the system’s reachable set, and

this approximation error can grow quickly over time. A standard strategy is to partition the initial

set and verify each subset separately. This process can also suffer from exponential blowup, but it

alleviates the compounding uncertainty issue. Another benefit of this partitioning is that we can

parallelize verification.
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Mode # instances # branches Verification time (hours)

Composed system NN only

90-degree right 1000 8.22 5.80 0.31
90-degree left 1000 6.77 7.08 0.35
120-degree right 1000 12.17 12.22 0.580
120-degree left 1000 14.62 11.41 0.531
90-degree right∗ 20 2.30 2.18 0.110
90-degree left∗ 20 1.95 2.38 0.110
120-degree right∗ 20 3.45 2.97 0.150
120-degree left∗ 20 2.15 2.87 0.130
straight initial 20 1.35 0.93 0.043
straight inductive 1 1.00 0.04 0.002

Table 7.1: Verification results for LiDAR observations. Verification times and number of branches
are averaged across all the instances for that mode. The cases labeled ∗ do not handle discrete
sampling of the controller. “Composed system” is the (average) time for fully verifying a single
instance, and “NN only” is the time spent propagating reachable sets through the NNs during
closed loop verification.

An additional verification challenge is that for a real system, we need to sample the controller at

discrete points in time. Thus, we cannot switch modes at the exact point in time after the mode

transition happens. We can account for this error by enlarging the pre-region—e.g., for a controller

sampled at 0.1s intervals, we need to enlarge the pre-region by 0.25m in the y-direction. We report

results both with and without this modification, in order to illustrate the challenge introduced by

an extra dimension of uncertainty.

Verification of turns. The results are summarized in Table 7.1. We use slightly larger pre/post-

regions than those computed by the synthesis algorithm to account for overapproximation errors

introduced in verification. We split the initial set by increments of 0.005 along the x-dimension and

0.005 along the y-dimension, resulting in 1000 verification instances per turn. We verify them in

parallel on an 80-core machine running at 1.2GHz. Although the left and right turns are symmetric,

we need to verify them separately since the full compositional controller may not be symmetric.

As shown in Table 7.1, most instances took a few hours to verify on average, depending mostly on

the number of branches (of reachable sets) through the hybrid automaton. Note that verification
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requires significantly less computation for the case when no y uncertainty due to the discrete control

sampling is considered. Note also that the 120-degree turn verification is much more challenging

because of the larger open space in the turn, resulting in more branching due to LiDAR rays reaching

different walls. Furthermore, the controller needs to take a more drastic action to make the turn,

which makes the reachable set computation harder since the NN is sensitive to small changes to its

input, which amplifies approximation errors. In particular, there were some instances with more

that 70 branches, taking more than 60 hours to finish.

Verification of straight segments. The straight segment verification is different since straights

can be of arbitrary length (above some minimum). Thus, we need an inductive argument to perform

verification. Ideally, we would establish an inductive invariant Xinv such that if the car starts in

Xinv at step k, then it remains in Xinv until step k + 1 while making progress along the track (i.e.,

in the y-direction).

For a typical choice of such a region, the car might leave but then return after multiple steps. For

example, if ϑ = π
2 − 0.005 and x = 0.85, then the car is facing to the right and will reach a value

of x greater than 0.85 as soon as it moves; however, our NN controller eventually steers the car

back to a smaller x value. We find it is significantly easier to identify a recurrent set such that the

system returns to this set periodically. Let22 X̃post = {(x, ϑ, v) | ∃y . (x, y, ϑ, v) ∈ Xpost}. Then, we

compute a subset X̃rec ⊆ X̃post, and prove (i) the car reaches X̃rec from Xpre in i steps, and (ii) if

the car starts in X̃rec, then it returns to X̃rec in j steps for some j ∈ N; during this time, it always

stays in X̃post and makes progress in the y-direction. Intuitively, (i) is the base case and (ii) is the

inductive case of a safety proof by induction. We do not need to consider y-uncertainty for this

case; thus, the number of instances is just 20.

More formally, we want to verify straight segments of all lengths ℓ ≥ ℓmin where ℓmin is a bound

on the shortest straight segment. We first choose Zq
post to be of the form Zq

post = {(q, (x, y, ϑ, v)) |

(x, ϑ, v) ∈ X̃post, y ∈ [yℓinf , y
ℓ
sup]}, where X̃post

23 ⊆ R3 is a set of possible values for x, ϑ and v. Next,

we identify a recurrent set X̃rec ⊆ X̃post and define Zq
rec = {(q, (x, y, ϑ, v)) | (x, ϑ, v) ∈ X̃rec}. Then

22We only consider x, ϑ, and v since y does not affect the observations.
23The superscript q is omitted since it is clear from context.
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we split VC 1 into two VCs as follows.

Definition 7.18 (VC 1.1). For any z ∈ Zq
pre, there is a t ∈ [0, ℓmin/vmax] such that f(z, π, t) ∈ Zq

rec

and F (z, π, t) ⊆ Zsafe.

This VC says that the car safely reaches Zq
rec from any state in Zq

pre within time ℓmin/vmax where

vmax is the maximum speed of the car. The time bound guarantees that the car does not reach a

state in ZF before reaching Zq
rec. For the next VC, we define the progress region with respect to a

state z = (q, (x, y, ϑ, v)) ∈ Zq
rec as Zq

>z = {(q, (x′, y′, ϑ′, v′)) | (x′, ϑ′, v′) ∈ X̃rec, y
′ ≥ y + ε} where

ε ∈ R>0 is a lower bound on the increase in y-position24.

Definition 7.19 (VC 1.2). For any z ∈ Zq
rec, there is a t ∈ R>0 such that f(z, π, t) ∈ Zq

>z and

F (z, π, t) ⊆ Z̃q
post where Z̃q

post = {(q, (x, y, ϑ, v)) | (x, ϑ, v) ∈ X̃post}.

This VC says that the car stays in Z̃q
post while making progress in the y-direction. Since the

observation in a straight segment is independent of the y position, it is enough to verify VC 1.2 for

a fixed starting value of y. Furthermore, the progress criterion ensures that the car will safely reach

the post-region of any straight segment of length ℓ ≥ ℓmin when started in its pre-region.

7.5.4. Verification Results for State-Feedback System

In this section, we provide verification results for the F1/10 system with a state-feedback controller.

In this setting, it is sufficient to verify the 90-degree right, 120-degree right and the straight segments

since the left turns are symmetric. This is not the case with the LiDAR-feedback system since the

mode predictor is not symmetric.

Similar to the LiDAR-feedback system, pre-region is the same for all modes, given by x ∈ [0.6, 0.9],

y ∈ [0, 0.24], ϑ ∈ [−0.005, 0.005] and v ∈ [2.4, 2.4]; the post-regions are similar. To reduce the

overapproximation error introduced during verification, we split the initial set by increments of 0.05

along the x-dimension and 0.06 along the y-dimension, thus ending up with 24 verification instances

per turn. For the initial straight segment, we split the initial set by increments of 0.01 along the
24Here y and y′ denote y-distances from the start of the straight segment.
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Mode # instances # branches Verification time (seconds)

Composed system NN only

90-degree right 24 1.50 258 40
120-degree right 24 1.75 285 38
straight initial 30 1.00 71 17
straight inductive 1 1.00 11 3

Table 7.2: Verification results for state-feedback system. Verification times and number of branches
are averaged across all the instances for that mode. “Composed system” is the (average) time for
fully verifying a single instance, and “NN only” is the time spent propagating reachable sets through
the NNs during closed loop verification. All times are in seconds.

x-dimension and there is no uncertainty in the y-dimension.

Finally, in order to apply inductive reasoning in straights, we clip the y-distances to a maximum

value of 5 (before feeding the state to the NN controller) which makes the observations independent

of y in the straights. The verification results are summarized in Table 7.2.

7.6. Related Work

Verifying control & hybrid systems. There has been significant interest in verifying controllers for

hybrid systems. Traditional techniques rely on inferring invariant such as Lyapunov functions [38,

143] or control barrier functions [128, 10]. More recent techniques have been proposed for checking

safety and reachability properties in hybrid systems [36, 95]. Compositional reasoning principles

for hybrid systems have also been developed [109, 9], but their focus is mainly on decomposing

the problem of reasoning about concurrent composition of hybrid automata into reasoning about

individual components. Finally, there has also been work on compositional control synthesis through

control verification [143]; however, these techniques are designed for state-feedback systems.

Invariant synthesis. There has been work on automatically inferring program invariants from

tests [48, 44]. Recent work has leveraged ideas similar to counterexample-guided inductive syn-

thesis (CEGIS) [138], that alternate between synthesizing an invariant that satisfies the current

counterexamples and using testing and verification to identify new counterexamples [136, 135, 122].

A particular challenge is handling implication examples [54], which connect different parts of the
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invariant. We designed a novel pre/post-region synthesis algorithm based on these ideas.
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CHAPTER 8

Future Work

This thesis shows that logical specifications and formal methods can be successfully used to im-

prove the sample-efficiency and usability of reinforcement learning as well as the reliability and

interpretability of policies trained using RL. This motivates the long-term research agenda of dis-

covering ways to incorporate formal reasoning in machine learning tools and techniques to enable

the building of reliable, interpretable, and intelligent systems. This can potentially lead to a future

where AI systems leverage the benefits of both symbolic reasoning and machine learning while min-

imizing their drawbacks. A few concrete research directions that follow as natural next steps to the

work presented in this thesis are discussed below.

8.1. Formal Reasoning in Reinforcement Learning

The hardness results in Chapter 3 imply that existing specification languages such as LTL are not

well-suited for RL. One potential direction is to develop specification languages that are expressive

and user-friendly while simultaneously admitting RL algorithms with strong theoretical guarantees.

There is already some preliminary work on analyzing different ways of defining time-discounted

semantics for LTL in this context [108, 14]. On the other hand, one can also look at assumptions on

the underlying MDP that are often satisfied by realistic systems which make PAC learning possible.

On the practical front, motivated by the promise shown by compositional approaches, one could

explore algorithms for decomposing a given task into simpler subtasks that represent logical steps

required to complete the whole task. This will involve considering a wide range of ways of specifying

the overall objective and handling the lack of an exact model of the environment.

One benefit of formal specifications is that they have precise semantics and are more interpretable

when compared to reward functions. In this thesis, we showed that we can achieve a logical decom-

position of the policy into subtask policies when learning from Spectrl specifications. A potential

direction for future work is to study the use of formal specifications in interpretable reinforcement

learning–e.g., synthesizing programmatic policies to perform complex tasks.
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There is growing interest among researchers in studying offline reinforcement learning algorithms

which use a dataset of past interactions with the environment to reduce the number of additional

samples needed to learn to perform new tasks. The use of temporal specifications in offline RL

has not been explored and offers a lot of potential for future research. For example, one could

study the problem of learning temporal specifications from expert demonstrations or the problem

of identifying subtasks from the offline dataset to enable compositional learning.

Another interesting direction is to develop statistical verification algorithms to provide guarantees

about neural network policies in the model-free setting; such approaches are more widely applicable

to real-life scenarios. Such methods enable obtaining probabilistic guarantees without needing access

to a model of the environment. A concrete idea is to explore whether the compositional verification

framework from Chapter 7 can be adapted to this setting.

8.2. Specification-Guided Machine Learning

Traditional synthesis has always been associated with formal specifications such as LTL, Hoare

triples, and input-output examples. Viewing ML as a method for program synthesis (where the

programs are ML models), it is often possible to write (partial) formal specifications for the model

being trained. For instance, requiring adversarial robustness of a vision model at some input is an

example of such a specification. Existing work, including the work presented in this thesis, provides

evidence that one can leverage such specifications to improve the learning algorithm.

Looking beyond RL, one broad direction is to develop learning algorithms that are guided by formal

specifications in other domains. One such domain is large-language models for code generation

where the user can often provide formal requirements for the generated code in the form of assert

statements, in addition to a natural language prompt. This research direction can potentially lead

to new domain-specific learning algorithms that require fewer data and generate models that are

interpretable and verifiable.
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automata for linear temporal logic. In Computer Aided Verification: 28th International Con-
ference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part II, pages
312–332. Springer, 2016.

[138] Armando Solar-Lezama and Rastislav Bodik. Program synthesis by sketching. Citeseer, 2008.

[139] Alexander L Strehl, Lihong Li, Eric Wiewiora, John Langford, and Michael L Littman. PAC
model-free reinforcement learning. In Proceedings of the 23rd international conference on
Machine learning, pages 881–888, 2006.

[140] Shao-Hua Sun, Te-Lin Wu, and Joseph J. Lim. Program guided agent. In International
Conference on Learning Representations, 2020.

[141] X. Sun, H. Khedr, and Y. Shoukry. Formal verification of neural network controlled au-
tonomous systems. In Proceedings of the 22nd ACM International Conference on Hybrid
Systems: Computation and Control, pages 147–156. ACM, 2019.

[142] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Good-
fellow, and Rob Fergus. Intriguing properties of neural networks. In International Conference
on Learning Representations, 2014.

[143] Russ Tedrake, Ian R Manchester, Mark Tobenkin, and John W Roberts. Lqr-trees: Feed-
back motion planning via sums-of-squares verification. The International Journal of Robotics
Research, 29(8):1038–1052, 2010.

[144] H. Tran, F. Cai, D. M. Lopez, P. Musau, T. T. Johnson, and X. Koutsoukos. Safety verifi-
cation of cyber-physical systems with reinforcement learning control. ACM Transactions on
Embedded Computing Systems, 18(5s):105, 2019.

[145] Pashootan Vaezipoor, Andrew C Li, Rodrigo A Toro Icarte, and Sheila A Mcilraith. Ltl2action:
Generalizing ltl instructions for multi-task rl. In International Conference on Machine Learn-
ing, pages 10497–10508. PMLR, 2021.

[146] M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Information and Compu-
tation, 115(1):1–37, 1994.

[147] Abhinav Verma, Vijayaraghavan Murali, Rishabh Singh, Pushmeet Kohli, and Swarat Chaud-

176



huri. Programmatically interpretable reinforcement learning. In International Conference on
Machine Learning, pages 5045–5054. PMLR, 2018.

[148] Abhinav Verma, Hoang M Le, Yisong Yue, and Swarat Chaudhuri. Imitation-projected pro-
grammatic reinforcement learning. In Advances in Neural Information Processing Systems,
2019.

[149] Kim P Wabersich and Melanie N Zeilinger. Linear model predictive safety certification for
learning-based control. In Conference on Decision and Control (CDC), pages 7130–7135.
IEEE, 2018.

[150] S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana. Efficient formal safety analysis of
neural networks. In Advances in Neural Information Processing Systems, pages 6367–6377,
2018.

[151] Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and J Zico Kolter.
Beta-crown: Efficient bound propagation with per-neuron split constraints for neural network
robustness verification. Advances in Neural Information Processing Systems, 34:29909–29921,
2021.

[152] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279–292,
1992.

[153] Chen-Yu Wei, Yi-Te Hong, and Chi-Jen Lu. Online reinforcement learning in stochastic
games. In Proceedings of the 31st International Conference on Neural Information Processing
Systems, pages 4994–5004, 2017.

[154] Min Wen and Ufuk Topcu. Constrained cross-entropy method for safe reinforcement learning.
In Advances in Neural Information Processing Systems, pages 7450–7460, 2018.

[155] T. Weng, H. Zhang, H. Chen, Z. Song, C. Hsieh, L. Daniel, D. Boning, and I. Dhillon. Towards
fast computation of certified robustness for relu networks. In International Conference on
Machine Learning, pages 5273–5282, 2018.

[156] Zhe Xu and Ufuk Topcu. Transfer of temporal logic formulas in reinforcement learning. In
International Joint Conference on Artificial Intelligence, pages 4010–4018, 7 2019.

[157] Cambridge Yang, Michael Littman, and Michael Carbin. Reinforcement learning for general
ltl objectives is intractable. arXiv preprint arXiv:2111.12679, 2021.

[158] Lim Zun Yuan, Mohammadhosein Hasanbeig, Alessandro Abate, and Daniel Kroening.
Modular deep reinforcement learning with temporal logic specifications. arXiv preprint
arXiv:1909.11591, 2019.

[159] He Zhu, Zikang Xiong, Stephen Magill, and Suresh Jagannathan. An inductive synthesis

177



framework for verifiable reinforcement learning. In Programming Language Design and Im-
plementation, pages 686–701, 2019.

[160] Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, and Anind K Dey. Maximum entropy
inverse reinforcement learning. In Proceedings of the 23rd AAAI Conference on Artificial
Intelligence, pages 1433–1438, 2008.

[161] Martin Zinkevich, Amy Greenwald, and Michael Littman. Cyclic equilibria in markov games.
Advances in Neural Information Processing Systems, 18:1641, 2006.

178


	ACKNOWLEDGEMENT
	ABSTRACT
	LIST OF ILLUSTRATIONS
	Introduction
	Background
	Theoretical Framework and Hardness Results
	Spectrl: A Task Specification Language
	Dirl: A Compositional RL Algorithm
	A Framework for Multi-Agent RL from Temporal Specifications
	Compositional Verification of Neural Network Controllers
	Future Work
	BIBLIOGRAPHY

