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Abstract. We introduce a temporal logic for the specification of real-time systems. Our logic,
TPTL, employs a novel quantifier construct for referencing time: the freeze quantifier binds a

variable to the time of the local temporal context.
TPTL is both a natural language for specification and a suitable formalism for verification. We

present a tableau-based decision procedure and a model-checking algorithm for TPTL. Several
genemlizations of TPTL are shown to be highly undecidable.
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1. Introduction

Linear temporal logic is a widely accepted language for specifying properties of

reactive systems and their behavior over time [Manna and Pnueli, 1992; Owicki

and Lamport, 1982; Pnueli, 1977]. The tableau-based satisfiability algorithm for

its propositional version, PTL, forms the basis for the automatic verification

and synthesis of finite-state systems [Liechtenstein and Pnueli, 1985; Manna and

Wolper, 1984].

PTL is interpreted over models that abstract away from the actual times at

which events occur, retaining only temporal ordering information about the
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states of a system. The analysis of systems with hard real-time requirements,

such as bounded response time, calls, however, for the development of for-

malisms with explicit time. Several attempts have been made to introduce time

explicitly in PTL, and to interpret it over models that associate a time with

every system state [Bernstein and Harter, 1981; Koymans, 1990; Ostroff, 1990;

Pnueli and Harel, 1988]. Although these logics allow the specification of typical

real-time requirements, most of the important decidability and complexity

questions have not been answered. In particular, it has not been understood

which timing constraints may be permitted in PTL without sacrificing the

decidability of the verification problem.

Our objective is the development of a real-time extension of PTL that admits

a generalization of the PTL-based tools for algorithmic verification. To begin

with, a notational extension of PTL must be capable of relating the times of

different system states. One commonly proposed method employs first-order

temporal logic, with one of the state variables representing time [Abadi and

Lamport, 1992; Ostroff, 1990; Pnueli and Harel, 1988]. We claim that the

unconstrained quantification of time variables allowed by this approach does

not restrict the user to reasonable and readable specifications.

Instead, we propose a novel, restricted, form of quantification—we call it

freeze quarztficatio~l-in which every variable is bound to the time of a

particular state. Freeze quantification identifies, so we argue, precisely the

subclass of “intended” specifications, and it leads to a concise and readable

notation. For instance, the typical time-bounded response requirement that

every request p is followed by a response q within 10 time units, can be

asserted by the formula

Ux.(p + Oy.(q Ay <x + lo))

(read “whenever there is a request p, and the variable x is frozen to the

current time, the request is followed by a response q, at time y, such that y is

at most x + 10”).

Secondly, we need to identify how expressive a theory of time maybe added,

in this fashion, to PTL without sacrificing its elementary complexity. Our main

results are twofold: we develop a near-optimal decision procedure and a

model-checking algorithm for real-time PTL by restricting both the syntax of

the timing constraints and the precision of the time model, and we show that

these restrictions cannot be relaxed without losing decidability. In particular,

adding to PTL the theory of the natural numbers with successor, ordering, and

congruence operations, yields the EXPSPACE-complete real-time temporal

logic TPTL. The tableau method for PTL can be generalized to TPTL.
However, allowing either addition over time or a dense time domain results in

highly undecidable (11~-complete) logics.

Thus, we lay out a theoretical basis for the automatic verification of finite-

state real-time systems and, simultaneously, identify a boundary between the

decidability and undecidability of finite-state formalisms with explicit time.

Alternative approaches to the automatic verification of real-time systems

using temporal logic include work on the branching-time logic RTCTL

[Emerson et al., 1990] and the explicit-clock logic XCTL [Harel et al., 1990].

RTCTL makes the simplifying assumption of modeling synchronous real-time

systems, all of whose events occur with the ticks of a global clock. In the case of
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XCTL, all formulas are quantifier-free and their variables are implicitly univer-

sally quantified, which makes it difficult to compose requirements, like assert-

ing that an implementation implies a specification. We will find both restric-

tions unnecessary.

Since an earlier version of this paper was published [Alur and Henzinger,

1989], many new results concerning real-time temporal logics have been

obtained [Alur et al., 1990, 1991; Alur and Henzinger, 1990; Wang et al., 1992].

We refer to Henzinger [1990] for a complete axiomatization of TPTL and to

Alur and Henzinger [1992] for a survey of recent results.

2. Timed Temporal Logic

We define Timed Propositional Temporal Logic (TPTL) and demonstrate its

adequacy as a real-time specification language.

2.1. TIMED STATE SEQUENCES. The formulas of TPTL are interpreted over

timed state sequences. Let P be a set of proposition symbols (p, q, r, . . . ) and
let N be the set of nonnegative integers. A state is an interpretation for the

propositions in P (i.e., a subset of P). A timed state sequence is an infinite

sequence of states, each of which is labeled with a time from the discrete time

domain T = N.

Definition 1 (Timed state seque?zce). A state sequence ~ = PII PI V? “”” $ an

infinite sequence of states m, c P, i > 0. A time sequence ~ = ~o~l~z “o” is an

infinite sequence of times ~, = T, i > 0, that satisfies the following two condi-

tions:

(1) Monotonicity. r, s ~1+~ for all i >0, and

(2) Progress. For all t E T, there is some i >0 such that ~, > t.

A timed state sequence p = (u, ~) is a pair consisting of a state sequence ff

and a time sequence r.

By O=‘(~z) we denote the state (time) sequence that results from the state

sequence o (time sequence r) by deleting the first i elements. We let
p’ = ( u‘, T‘) and use the convention that n ~ = O.

At this point, a few words about our model of time are in order. Time is

discrete but not a state counter; rather, the time between successive states of a

timed state sequence may remain the same, or it may increase by an arbitrary

amount. Although a state counter would suffice to model synchronous real-time

systems, the events of asynchronous processes take place in a dense time

domain. Reasoning about dense time, on the other hand, maybe prohibitively

difficult (see Section 4). As a compromise, the fictitious-clock (or digital-clock)

assumption for real-time systems has enjoyed increasing popularity [Alur and

Henzinger, 1992; Henzinger et al., 1992]: The true, dense times of events are

recorded with the finite precision of a discrete clock. Our definition of timed

state sequences is chosen sufficiently general to accommodate the fictitious-

clock assumption (states between successive clock ticks can be labeled with

identical times).

2.2. SYNTAX AND SEMANTICS OF TPTL. We are given an infinite supply 1’

of variables (x, y, z, . . . ). The formulas of TPTL are built from proposition

symbols and timing constraints by Boolean connective, temporal operators,

and freeze quantifiers.
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Definition 2 (Syntax of TPTL). The terms m and formulas @ of TPTL are

inductively defined as follows:

for x = V, p = P, and nonnegative integer constants c, d G N, d # O.

2.2.1. The Timing Constraints. The timing constraints of TPTL are of the

form TI s nz and ml =d rrz (“time T1 is congruent to time nz modulo the

constant d“). The abbreviations x (for x + O), = , < , > , > , true, n, A, and

V are defined as usual. If each term of a formula ~ contains a variable, we say

that @ contains Izo absolute time references. On the other hand, each term of a

formula may contain at most one variable. Although from a logical point of

view, this restriction confines TPTL to the successor operation on time, we do

not define terms using a unary successor operator; rather, for determining the

length of a formula, we assume that all constants are given in a reasonably

succinct (e.g., binary) encoding. The size of a formula will be important for

locating the computational complexity of problems whose input includes for-

mulas of TPTL.

2.2.2. The Temporal Operators. TPTL is based on the two temporal opera-

tors of PTL [Gabbay et al., 1980]. The next formula Op asserts about a timed

state sequence that the second state in the sequence satisfies the proposition

p. The until formula p &q asserts about a timed state sequence that there is a

state satisfying the proposition q, and all states before this q-state satisfy the

proposition p.

Additional temporal operators are defined as usual. In particular, the ez,entu-

ally operator O@ stands for true YO, and the always operator ❑ @ stands for

7074.

2.2.3. The Freeze Quantifier. A variable x can be bound by a freeze quanti-

fier “x,”, which “freezes” x to the time of the local temporal context. Let ~(x)

be a formula in which the variable x occurs freely. Then x. ~(x) asserts about

the timed state sequence p = (CT, ~) that @(~O) is satisfied by p, where the
formula @(~O) is obtained from ~(x) by replacing all free occurrences of the

variable x with the constant To. For example, in the formula

Ox.(p AX < 10),

the variable x is bound to the time of a state in which the proposition p is

“eventually” satisfied; it asserts that p is satisfied in some state before time 10.
Similarly, the formula

❑x.(p +x < 10)

asserts that whenever the proposition p is satisfied in a state, then the time is

at most 10 (i.e., p is not satisfied after time 10).

This intuition is captured formally by the following definition.

Definition 3 (Semantics of TPTL). Let p = (o, r) be a timed state sequence

and let %: V - T be an interpretation (environment) for the variables. The
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pair (p, %) satisfies the TPTL-formula @ iff p ~% ~, where the satisfaction
relation R is inductively defined as follows:

Here %(x + c) = %(x) + c and %(c) = c. Moreover, %[x := t] denotes the

environment that agrees with the environment % on all variables except x, and

maps .x to t G T.

A TPTL-formula is closed if every occurrence of a variable x is within the

5cope of a freeze quantifier “x.”. We shall henceforth consider only closed
formulas of TPTL.

The truth value of a closed formula is completely determined by a timed

state sequence alone. The timed state sequence p is a model of the (closed)

TPTL-formula @, denoted by p I= ~, if the pair (p, 8) satisfies @ for any

environment %. The formula ~ is satisfiable ( ualid) if p K ~ for some (every)

timed state sequence p. Two formulas are equit)alerzt if they have the same

models.

2.3. TPTL AS A SPECIFICATION LANGUAGE. We compare TPTL to alterna-

tive extensions of PTL with explicit time references. In particular, we show that

freeze quantification can be viewed as a constrained form of classical (i.e.,

universal and existential) quantification.

2.3.1. TPTL versus First-Order Temporal Logic. The freeze quantifier allows

us to relate the times of different states. A typical real-time requirement for a

reactive system is that a multi-valued switch must be turned from position p to

position q within 10 time units. In TPTL, this condition can be expressed by

the formula

❑x.(p -+pZy.(q Ay <x + 10)). (1)

Using standard first-order temporal logic with a state variable now that

assumes the value of the current time in every state, we may attempt to write

the condition (1) as

El((p Arzow ‘X) -+p%(q ArZOW <X + 10))

or, in closer resemblance to the TPTL-formula (l),

❑((p Anow=x)~pZ(q Anow=y Ay<x+lO)). (2)

The meaning of these formulas (i.e., their truth values over timed state

sequences) depends on the interpretation of the variables .x and y. The explicit
quantification of variables, however, is typically omitted from first-order tem-

poral specifications [Ostroff, 1990; Pnueli and Harel, 1988]. Moreover, specifi-

cation languages are often restricted to formulas with implicit or explicit

quantifier prefwes [Harel, 1988; Harel et al., 1990].
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The condition (2) is an example that the choice of quantifiers that provides

the intended meaning may not be obvious and, indeed, may not correspond to

any prefix. In particular, the following quantification of (2) yields a formula

that is equivalent to (1):

Elvx.((p A now =x) +p$?l~y. (q A now =y Ay s~ + 10)) (3)

(to be precise, a timed state sequence p and an environment Z satisfy the

formula 3x. @ iff p *%,X .,] ~ for some t e T).

On the other hand, no quantifier prefix makes the formula (2) equivalent to

(l). For example, (1) does not imply the stronger condition

~x.~y.El((p A now ‘X) +~%(~ A I1OW ‘Y AY <X + 10)). (4)

The difference is subtle: while the formula (1) asserts that every p-state of time

x is followed by p-states and, eventually, a q-state of time y s x + 10, the

formula (4) demands more; that if there is a p-state of time x, then there is a

time y s x + 10 such that every p-state of time x is followed by p-states and,

eventually, a q-state of time y. For instance, the timed state sequence

({p}, o) + ({q}, o) + ({p}>o) + ({q},l) + ({},2) + ({},3) + ““”

(presented as a sequence of state-time pairs) satisfies (1) but not (4).
In general, TPTL identifies a fragment of the first-order temporal logic with

the state variable now. TPTL includes precisely those first-order temporal

formulas in which each variable in V is, immediately upon introduction, frozen

to the time of the local temporal context (i.e., the value of now): the

TPTL-formula x.@ is equivalent to the first-order temporal formula

Vx.(x = now + ())

or, equivalently, to the formula

=x.(x = now A +).

In other words, TPTL restricts all time references to times of states, rather

than permitting quantification over the entire time domain. It is precisely this

restriction that allows (and limits) us to express timing constraints between

states by concise and readable specifications (compare (1) with (3)). It is also

this restriction that leads to a generalization of the PTL-based tableau algo-

rithms for verification: the tableau method for TPTL will be developed in

Section 3; the validity problem for TPTL with unconstrained classical quantifi-

cation was recently shown to be nonelementary [Alur and Henzinger, 19aO].

2.3.2. TPTL uersus Bounded Tenlporal Operators. Several researchers have

proposed to add an infinite supply of real-time modalities such as 0< ~

(“eventually within 8 time units”) to PTL [Koymans, 1990; Pnueli and EIarel,
1988], or branching-time logics [Emerson et al., 1990]. These bounded temporal

operators are definable in TPTL. For instance, the bounded-eventu~lity opera-

tor O. ~ @ can be expressed by the TPTL-formula

I.oy. (y <x + 8/7 (b).

Although bounded temporal operators always relate the times of adjacent

temporal contexts, TPTL admits constraints between distant contexts. For
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example, the formula

❑ x.(p ~ O(q A Oy.(r A y <x + 10)))

asserts that every p-state is followed by a q-state and, later, by an r-state, and

the time difference between the p-state and the corresponding r-state is at

most 10.

For reasoning about synchronous real-time systems, “next state” can be

identified with “next time,” and timing constraints may be expressed in PTL

using the next operator. In this case, bounded temporal operators are abbrevia-

tions for nested next formulas [Emerson et al., 1990]. We can restrict TPTL to

the synchronous case by postulating

Elx. oy.y =x+ 1.

3. Timed Tableaux

We present a tableau-based decision procedure for TPTL. We then justify the

doubly-exponential-time cost of the decision procedure by showing that the

validity problem for TPTL is EXPSPACE-complete. Finally, we demonstrate

how the tableau techniques can be applied to verify TPTL-properties of

real-time systems.

3.1. DECISION PROCEDURE FOR TPTL. First, we observe that to solve the

validity problem for a formula, it suffices to check if its negation is satisfiable.

Throughout this subsection, we are given a formula @ of TPTL and wish to

determine if @ is satisfiable. The tableau method searches systematically for a

model of +. It originated with the propositional calculus [Smullyan, 1968], and

was first applied to obtain a decision procedure for a modal logic of computa-

tion in the case of dynamic logic [Pratt, 1980].

We follow the standard presentation of the tableau-based decision procedure

for PTL [Ben-Ari et al., 1981, Manna and Wolper, 1984] and begin by

constructing the initial tableau for @ Checking the satisfiability of @ can then

be reduced to checking if the finite initial tableau for @ contains certain

infinite paths. The tableau method for PTL is, in fact, subsumed by our

procedure as the special case in which @ contains no timing constraints.

3.1.1. Preliminary Assumptions. For the moment, we assume that

(1) @ contains no absolute time references; that is, every time in ~ contains a
variable. Thus, we may perform simple arithmetic manipulations so that all

timing constraints in ~ are of the form x s y + c or x + c s y or

x -~ y + c, for nonnegative integers d > c > 0.

(2) ~ contains only the temporal operators O and ❑ ; that is, the first

argument of every occurrence of the until operator % in @ is true.

Although neither of the two restrictions is essential, they simplify the

exposition of the decision procedure. Later, we accommodate both absolute

time references and until operators. We also assume that @ is of the form
z. @‘; this can be easily achieved, if necessary, by prefming @ with any variable

z that does not occur freely in @

A timed state sequence p = (CT, t-) is A-bounded, for a constant A G N, if

~1 s ~,_ ~ + A for all i > O; that is, the time of the initial state of a A-bounded



188 R. ALUR AND T. A. HENZINGER

timed state sequence is at most A and the time increases from a state to its

successor state by no more than A.

To begin with, we restrict ourselves to A-bounded models for checking

satisfiability. This case has finite-state character: the times that are associated

with states can be modeled by finitely many (new) time-difference propositions

PreL18, O <8< A, that represent in the initial state, the initial time 8, and in all

other states, the time increase 8 from the predecessor state. Formally, we can

capture the (state and) time information in a timed state sequence p = (u, ~)

by a state sequence & with

for all i >0. This reduction of timed state sequences to state sequences allows

us to adopt the tableau techniques for PTL. At the conclusion of this section,

we show how we can find an appropriate constant A for the given formula ~.

3.1.2. Updating Timing Constraints. The key observation underlying the

tableau method for PTL is that any formula can be split into two conditions: a

nontemporal (“present”) requirement on the initial state and a temporal

(“future”) requirement on the rest of a model (i.e., the successor state). For
example, the eventuality V+ can be satisfied by either * or O O* being true in

the initial state of a state sequence. Since the number of conditions generated

in this way is finite, checking for satisfiability is reducible to checking for

satisfiability in a finite structure, the initial tableau.

The splitting of TPTL-formulas into a present and a future (next-state)

condition demands more care; to obtain the requirement on the successor

state, all timing constraints need to be updated appropriately to account for the

time increase 8 from the initial state to its successor. Consider, for example,

the formula x.Oy. @(x, y), and recall that the free occurrences of x in + are

references to the initial time. This eventuality can be satisfied either by having

the initial state satisfy y. @( y, y), with all free occurrences of x in @ replaced

by y, or by having the next state satisfy the updated eventuality “x.Oy. ~(.x –

8, y).” For 8>0, a naive replacement of x by x – 8 would, however, succes-

sively generate infinitely many new conditions. Fortunately, the monotonicity

of time can be exploited to keep the tableau finite; the observation that y is

always instantiated, in the “future,” to a value greater than or equal to the

initial time x, allows us to simplify timing assertions of the form x s y + c and

y + (c + 1) < x to true and false, respectively.

We define, therefore, the formula x. ~(x)a that results from updating all

references in @ on the initial time x by the time difference 8. For instance, if
x.@ is the formula

X.uy.(p +y.y <x + 5),

then X.41, X.*5, and x.* G are the following formulas:

X.ny.(p +y.y <x + 4),
x. ❑ y.(p + y.y < x),

x. ❑ y.(p ~ false).
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In general, given a TPTL-formula x. ~ and 8 c N, the TPTL-formula x. ~ 8

is defined inductively as follows:

—x. +” equals x. ~.

—X.$6+1 results from x. ~ a by replacing every term of the form x + (c + 1)

with x + c, and every subformula of the form x s y + c, y + (c + 1) s x,

and x -~ y + c with true, false, and x =~ y + ((c -t 1) mod d), respectively,

provided that the occurrence of x in the specified terms and formulas is free

in @a.

The following lemma confirms that this transformation has the intended

effect and updates all time references correctly; that is, the formula x.+(x)8

expresses the condition “x. +(x – 8).”

LEMMA 1 (TIME STEP). Let p = (u, r) be a timed state sequence, let & be an
environment, and let 6 = N such that 6< To. Then p R= X. *s iff p ~z[. .,,]. 81 +

for et’ery TPTL-formula x. ~.

PROOF OF LEMMA 1. The proof proceeds by a straightforward induction on

the structure of +. ❑

3.1.3. Closure of a TPTL-Formula. We collect all conditions that may arise

by recursively splitting the formula @ into its present and future parts in the

closure of ~. It suffices to define the closure for formulas whose outermost

symbol is a freeze quantifier. The closure set Closure( z. +‘) of the TPTL-for-

mula z. @‘ is the smallest set of formulas containing z. ~‘ that is closed under

the following operation Sub:

Sub(z. cllj) = {Z.*, Z.00 @},

Sub(z.x. +) = {Z. *[X = z]},

where the formula @[x := z] results from Y by replacing all free occurrences

of x with z. Note that all formulas in a closure set are of the form z. ~.

A constant c >0 occurs in the TPTL-formula @ if @ contains a subformula

of the form x s y + (c – 1) or x + (c – 1) s y, or @ contains the predicate

symbol =C. Let C be the largest constant that occurs in the formula & The

closure set of @ is finite, because for all 6> C and for all formulas z.+ in

Closure(o), 2.+ a is Z.*C.

The size of the closure set of @ depends on both the structure of @ and the

constants that occur in @. We define k., the product of all constants that occur

in the TPTL-formula ~, inductively as follows:

where kx+. = c+landkc=c+l.

LEMMA 2 (SIZE OF CLOSURE). Let n – 1 be the number of boolean, temporal,

and freeze operators in the TPTL-fonruda ~, and let k be the product of all

constants that occur in & Then lClosure( +)1 < 2nk.
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PROOF OF LEMMA 2. Given a formula z. @‘, we define, by induction on the

structure of @‘, the set D ~ of formulas that contains ~’ and is closed under

updating of timing constraints; the set Cd is, in addition, closed under

subformulas:

C’P=DP= {p},

c ,<L+C =D, <V+C ={x<y+c, x<y+(c– 1),..., xsy},

C,=,,~C=D,=~jh,= {x-~y+(d -l), x-,y+(d -2),..., x=,y},

c *I + *2 ==C@,UCJ, UD@, +O,, Dt, +t, =Di, +D$,,

Cob = C* u DO*, D .$= OD$,

Here x.E = {x.1171* e E} for any set E of formulas; the other operators are

applied to sets in an analogous fashion. The case of formulas of the form

x + c s -Y is treated similarly to the timing constraints x s y + c. Furthermore,

let E+= E U {true, false].

Observe that Dv s Ct. It is straightforward to show by induction on the

structure of @‘ that

(1) ~’ = Do and, hence, ~’ = C@.

(2) For all 8>0, z. @’$ = z.D$ and, therefore, z. @‘8 G z.C~.

(3) z.C~i is closed under Sub.

From (1) and (3) it follows that Ckmwe( z. @‘) c z.CJ. Thus, it suffices to show

that ID+ I s k and lC@ I <2 ~zk, which may again be done by induction on the

structure of @‘. ❑

3.1.4. Initial Tableau of a TPTL-Fomwda. Tableaux for TPTL are finite,

directed state graphs (Kripke structures). Unlike the states of a timed state

sequence, which determine the truth values of all propositions, the vertices of a

tableau are labeled with arbitrary formulas of TPTL. The formulas that label a

vertex of a tableau express conditions on the annotated state and its successor

states. In addition, every vertex is labeled with a time-difference proposition

PreLa, O < 8< A, that denotes the time increase from the predecessor states.

Formally, the vertices of a tableau for @ are the maximally consistent subsets

of the finite universe

Closure’(+) = Closure(d) u {PreZ’81 O <8< A]

of TPTL-formulas. A subset @ of Closzu-e*( +) is (maximally) consistent if it
satisfies the following conditions, where all formulas range only over the finite

set Closure*(~):

—PreLla is in @ for precisely one O s 8 s A; this 8 = N is referred to as 80.

—z.(z w z + c) is in @ iff O = c holds in N (for - being one of s , > , and

=,).
—z.false is not in 0.

—Z.(y!Jl ~ *Z) is in @ iff either z.~l is not in @ or z. jbz is in 0.

—z. ❑ ql is in @ iff both z.* and z.O R ~ are in 0.

—z. x.* is in @ iff z.*[x := z] is in 0.
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The initial tableau T(+) for the TPTL-formula @ is a directed graph WhOSe

vertices are the consistent subsets of Closure*(+), and which contains an edge

from @ to T iff, for all formulas z. Otj in Closure*(0),

This definition ensures the global consistency of all temporal and real-time

constraints in the initial tableau. The significance of the (finite) initial tableau

T(~) for the formula @ is that every model of # corresponds to an infinite

path through T(~) along which all eventualities are satisfied in time, and vice
versa. This implies a finite-model property for TPTL, in the sense that every

satisfiable TPTL-formula @ is satisfied by a model whose state part, extended

by the time-difference propositions Preva, is eventually periodic.

To be precise, an infinite path

through a tableau is a +-path if it satisfies the following three conditions:

(1) Initiality. ~ = ~,.

(2) Fairness. All eventualities are satisfied along @ in time or, equivalently,

all missing invariance are violated along @ in time; that is, for all

z. ❑ ~ = Closure*(~) and i >0, z. ❑ $ 6Z 0, implies Z.+6 @ @j for some

j> i with i3=Z,<~~~i3@K.

(3) Progress. t5@,>0 for infinitely many i >0.

Every ~-path in the initial tableau for @ can be reduced to a +-path that is

eventually periodic. Moreover, the length of the period is bounded by the

following lemma. This will prove to be important for obtaining an upper bound

on the complexity of TPTL.

LEMMA 3 (LENGTH OF @PATHS). Suppose that the initial tableau T(~) for the

TPTL-formula ~ consists of m vertices. If T(~) contains a @path, then it

contains a ~-path of the form

for 1 s (2nk + l)m, where n is the number of temporal operators in + and k is the

product of all constants that occur in ~.

PROOF OF LEMMA 3. Consider the infinite +-path @ = @o@ ~ “”. , and

choose i to be the smallest j such that 0, occurs infinitely often in cD. There

are no more than nk invariance in Closure *( ~); hence O, lacks at most nk

invariance z. R *I, each one of which is violated by some vertex ~~ of the

infinite suffix 0,0,+1 ““. of @. Let @o = @O .“” ~,, @z~-l = @, ‘“” ~~~ and
~zl = lpl . . . 0,, for all 1 s 1< nk, be finite segments of @ that contain no

other (i.e., inner) occurrences o! 0,. Delete all loops in every segment @J, thus

obtaining the finite sequences O], O s j s 2nk, each of length at most m + 1.

It is not hard to see that the result of deleting duplicated vertices (i.e., @,) from

is a @-path of the desired form. ❑
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3.1.5. Tableau Decision Procedure. The following main lemma suggests a

decision procedure for TPTL: to determine if the TPTL-formula ~ is satisfi-

able, construct the initial tableau T(@) and check if it contains any @paths.

LEMMA 4 (INITIAL TABLEAU FOR TPTL)

(1) [Correctness]. If the initial tableau T(~) for the TPTL-formula @ contains a

+-path, then ~ is satisfiable.

(2) [Completeness]. If 4 has a A-bounded model, then T(~) contcuns a ~-path.

PROOF OF LEMMA 4. The proof makes essential use of both directions of

Lemma 1. Let % be any environment.

(1) Given a ~-path @ = @O@, ““ through the initial tableau T( ~), define

the timed state sequence p = (o-, ~) such that, for all i ~ O, p = o, iff

z.p e 0,, and ~, = ~,_l + 8.,. Note that the time sequence ~ satisfies the

progress condition because @ does. We show, by induction on the structure of

~, that for all i >0 and 4 ● Closure*, (~)~ G @l iff p’ + *. Since @ = @O, it

follows that p is a model of ~.

For a proposition z.p = Closure*( ~), we have z.p 60, iff p c m, iff

p’ % z.p. Let *be one of<,>,

0,, Z.(z

- ~, or its negation. By the consistency of

- z + c) E @, iff O * c iff p’ R Z.(Z N z + c). This completes the base

cases.

By the consistency of 0,, z.( +1 ~ #z) G @, iff either z. VI E @l or z.~z G @t.

By the induction hypothesis, this is the case iff either p’ k Z. 41 or P’ * Z. h;

that is, iff p’ != Z.(l/J1 - ~z).

Now assume that z. O+ e Closure*(~) and let 8 = tire,,; that is, ~,+ ~ =

-r, -t- 8. Then z. O ~ ● 0, iff z. +s = 0,+ ~. By the induction hypothesis, this is

the case iff p’+ 1 & Z.+a. By Lemma 1, this is the case iff p’+ 1 %&[Z = ,,1 r; that

is, iff p’ 1= z.0~.

For the case that z. ❑ @ G Closure”( q5), we first prove that z. ❑ ~ = @, iff

Z.@ ’j–’I = 0, for all ]“ > i. Let 8, = ~, — ~1 and note that 8, = ~l<~~,~o~ by

our choice of ~,

We use induction on j to show that z. ❑ * = 0, implies z. ❑ @‘ = 0, for all
j z i. Suppose that Z. ❑ # a E cD, for an arbitrary j > i. By the consistency of

0,, also z. O ❑ ~ a e 0, and therefore z. ❑ ~ a+’ G 0,+ ~. Invoking again the

consistency of @,, we conclude that z. # $ E 0, for all j > i.

On the other hand, suppose that z. ❑ ~ @ 0,. Since @ is a +-path, there is

some j > i such that z.* $ @ ~,.

By the induction hypothesis, It follows that z. ❑ ~ G @, iff p~ 1= z. ~‘ for all
j > i. By Lemma 1, this is the case iff p] R&[z = ,,1 v for all j > i; that is, iff

p’i==z. n~.
Finally, consider the case that z.-x. ~ = Closure*(~). In this case, Z.X. ~ G @l

iff z. ~[.x := z] G 0,. By the induction hypothesis, this is the case iff p’ R

z.~[x := z]; that is, iff p’ R Z.X. V.

(2) Let P = (o, ~) be a A-bounded model of ~. The subsets 0,, for i >0, of
Closure*(~) are defined as follows: Preu,, _,, _, = ~,, and ~ = 0,, for all

@ ● Closure”( ~), iff p’ i= (j. We show that @ = O.O, . . . is a +-path through

the initial tableau T( ~).

By inspecting the consistency rules, it is evident that every @, is consistent.

To prove that @ is an infinite path through T(~), we also have to show that,

for all i >0, there is an edge from 0, to 0,. ~. Suppose that z. 0+ =

Closure*(~) and let 8 = r,+, – ~l. Then z.0+ c 0, iff p’ + z.0* iff p’+l
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+ ~[z = ,,] ~. By Lemma 1, this is the case iff p’+’ I= z.~a; that is, iff z.~’ ●

@1+1. Since also PreL]8 E Q,. ~, the initial tableau for @ contains an edge from

m, to @t+l.

We now show that the infinite path @ is indeed a ~-path. It satisfies the

progress condition because the time sequence ~ does. To see that @ c @O,

observe that p is a model of @. It remains to be established that all

eventualities in @ are satisfied in time. Suppose that z. ❑ Y = Closure*(~) and

z. ❑ * @ 0,; that is, p’ ~ z.O 1 * and therefore p] >%[Z .7,1 m + for some

j >i. Let 8= ~~ – ~,; thus 8= z,<~<jd~,. Then p] kz.~a by Lemma 1,

which implies that z.+ a @ @,. ❑ -

After constructing the initial tableau T(+) for the formula @, we delete all

vertices that are not on a @-path. This can be achieved by a straightforward

modification of the standard techniques for marking all vertices of a graph that

lie on an infinite path along which all eventualities are satisfied [Manna and

Wolper, 1984]. The remaining state graph is called the final tableau for ~. It

follows that a TPTL-formula @ has a A-bounded model iff its final tableau is

not empty.

The procedure for finding the final tableau is polynomial in the size of the

initial tableau, which contains O(A . 2nh ) vertices, each of size O(nk), where

n – 1 is the number of operators in @ and k is the product of all constants

that occur in ~. Thus, provided that A is dominated by 2nk, the initial tableau

T(~) can be constructed and checked for +-paths in deterministic time

exponential in nk. We show next that A can indeed be bounded by k.

3.1.6. Bounding the Size of Time Steps. Given a formula ~, we finally

determine the bound A on the time increase between two successive states

such that the satisfiability of @ is not affected; that is, we choose the constant

A = N such that @ is satisfiable iff it has a A-bounded model.

Let c be the largest constant in ~ that occurs in a subformula of the form

x<y+(c–l)orx+(c–1) <y, and let =C, ,.. .,=C be all the congru-

ence predicates that occur in ~. If the time increase 8 ~etween two states is

greater than or equal to c, it obviously suffices to know the residues of 8

modulo cl, ..., cm in order to update, in a tableau, all timing constraints

correctly. Indeed, for checking the satisfiability of ~, the arbitrary step-width 8

can be bounded by taking the smallest representative for each of the finitely

many congruence classes.

LEMMA 5 (BOUNDED TIME INCREASE). If the TPTL-formula ~ is satisfiable

and k is the product of all constants that occur in ~, then ~ has a k-bounded

model.

PROOF OF LEMMA 5. We can, in fact, derive the tighter bound c + k‘ s k,

for the least common multiple k‘ of all cl, 1< i < rn. Given a model p = (o, r)

of @, let the time sequence ~‘ be such that, for all i >0, ~, = ~~_~ + (t-, – 7,-~)

if 7-, – 71_l <c; otherwise, choose ~~ to be the smallest 8> t-~ + c with

8 -k, I-l. It is easy to see that p’ = (u, ~’) is also a model of ~. ❑

Combining this result with the tableau method developed above, we arrive at

the conclusion that the satisfiability of the TPTL-formula @ is decidable in

deterministic time exponential in nk. Moreover, Lemma 3 implies that every

satisfiable formula @ is satisfiable in a model whose size is, in the sense

mentioned above, exponential in nk.
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Remember that we have restricted ~ to contain no until operators and no

absolute time references. We now show that both assumptions can be relaxed.

3.1.7. Until Operators. First, let us address formulas that include until

operators. We take the closure of a formula ~ with until operators to be closed

under the operation

and add the following condition on the consistency of a set @ c Closure”(~) of

formulas: z.( ~l??~z) is in @ iff either z. ~z is in @, or both z. ~1 and

z. O(*l?Z@z) are in @.

Finally, the fairness requirement on a @-path @O@l@z . . . is generalized to

the condition that z.( *I 7Z4Z) = O, implies that, for all i >0, z. $: G @, for

some j> i with S= Z,<L ~ ~8.,. It is not hard to check that the Lemmas 2, 3,

4, and 5 allow the addition of until operators in this way.

3.1.8. Absolute Time References. Secondly, let us accommodate absolute

time references. Instead of generalizing the tableau method to constant terms,

which contain no variable, we can use a simple observation. Suppose that we

test the formula ~ for satisfiability. Let x be a variable that does not occur in

@ and replace every variable-free term c in @ with the term x + c, thus

obtaining the new formula @R (which may contain free occurrences of x). The

following lemma allows us to reduce the satisfiability problem for @ to the

satisfiability problem for the formula x. O ~‘, which contains no absolute time

references.

LEMMA 6 (ABSOLUTE TIME REFERENCES). A TPTL-formula ~ is satisfiable

iff the formula x. O+ R is satisfiable, where x does not occur in ~.

PROOF OF LEMMA 6

(1) Let p = (m, ~) be a timed state sequence. We define the timed state
sequence p‘ = (m’, ~’) such that ~~ = O, and o-,~l = o-l and ~~+1 = ~, for

all i >0. Clearly, if p > ~, then p’ != x.0+.

(2) Let p = (m, ~) be a timed state sequence. We define the timed state
sequence p‘ = (u’, T’) such that o,’ = 0,+1 and ~~ = ~,+1 – To for all
i >0. Clearly, if p i= x. O@, then p’ + ~. ❑

Note that the transformation from @ to @R does not increase the number of

operators in ~ nor the product of all constants that occur in ~. The following

theorem summarizes our results about the tableau method.

THEOREM 1 (DECIDING TPTL). The [wlidip problem for a (closed) TPTL-for-

mula ~ can be decided in detemtinistic time exponential in nk, where n – 1 is the

number of boolean, temporal, and freeze operators in ~, and k is the product of all

constants that occur in ~.

Note that the length 1 of any formula ~ whose constants are presented in a

logarithmic (e.g., binary) encoding, is within a constant factor of n + log k.

Thus, we have a decision procedure for TPTL that is doubly exponential in 1

(although only singly exponential in n, the “untimed” part and, therefore,

singly exponential for PTL). The algorithm we have outlined can, of course, be

improved in many ways. In particular, we may avoid the construction of the
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entire initial tableau by starting with the initial state, which contains ~, and

successively adding new states only when needed [Manna and Wolper, 1984].

This stepwise procedure, however, does not lower the doubly exponential

deterministic-time bound; as we show in the following subsection, the decision

problem for TPTL is EXPSPACE-hard.

We also point out that while the morzotoni.city condition on timed state

sequences is essential for the tableau method to work, the progress condition

on timed state sequences (and ~-paths) can be omitted.

3.2. COMPLEXIm OF TPTL. The following theorem establishes TPTL as

being exponentially harder to decide than its untimed base PTL, which has a

PSPACE-complete decision problem [Sistla and Clarke, 1985]. The extra expo-

nential is caused by the succinct representation of time constants in TPTL and

is typical for many real-time specification languages [Alur and Henzinger,

1990].

THEOREM 2 (COMPLEXITY OF TPTL). The ualidi~ problem for TPTL is

EXPSPACE-complete (with respect to polynomial-time reduction).

PROOF OF THEOREM 2. The proof proceeds in two parts; we first show that

TPTL is in EXPSPACE, and then that it is EXPSPACE-hard. The first part

follows the argument that PTL is in PSPACE, which builds on a nondetermin-

istic version of the tableau-based decision procedure [Manna and Wolper,

1984]; the hardness part is patterned after a proof that the universality problem

for regular expressions with exponentiation is EXPSPACE-hard [Hopcroft and

Unman, 1979].

[EXPSPACE]. It suffices to show that the complementary problem of

checking the satisfiability of a TPTL-formula is in nondeterministic EX-

PSPACE and, hence, by Savitch’s theorem, in (deterministic) EXPSPACE.

In particular, it can be checked in nondeterministic singly exponential space

if the initial tableau T(+) contains a @path of the form stated in Lemma 3. In

trying to construct such a @-path nondeterminstically, at each stage, only the

current vertex, the “loop-back” vertex, and a vertex counter have to be

retained in order to construct a successor vertex, loop back, or, if the vertex

counter exceeds the maximal length of the loop, fail. Since both the size of

each vertex and the length of the loop have, by Lemma 2 and Lemma 3,

respectively, (singly) exponential representations in the length of ~, it follows

that this nondeterministic procedure requires only exponential space.

[EXPSPACE-hardness]. Consider a deterministic 2“-space-bounded Turing

machine M. For each input X of length n, we construct a TPTL-formula Ox

of length O(n . log n) that is valid iff M accepts X. By a standard complexity-

theoretic argument, using the hierarchy theorem for space, it follows that there

is a constant c >0 such that every Turing machine that solves the validity

problem for formulas @ of length 1 takes space S(l) z 2c~110g1 infinitely often.

Thus, it suffices to construct, given the initial tape contents X,

(1) a sufficiently succinct formula +x that describes the (unique) computation
of M on X as an infinite sequence of propositions, and

(2) a sufficiently succinct formula @*ccEP~ that characterizes the computation

of M on X as accepting.
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Then the implication

is valid iff the machine M accepts the input X.

We use a proposition p, and a proposition q, for every tape symbol i and

machine state j of M, respectively. In particular, p. and qO correspond to the

special tape symbol “blank” and the initial state of Lf. We use the following

abbreviations for formulas:

We represent configurations of ~ by @state sequences of length 2“ that are

separated by s-states; the position of the read–write head is marked by an

r-state. The computation of M on X is completely determined by the following

two conditions:

(1) it starts with the initial configuration, and

(2) every configuration follows from the previous one by a move of M.

Both conditions can be expressed in TPTL. Take @Y to consist of ❑ x. Oy. y

= x + 1, forcing time to resemble a state counter, and the following two

conjuncts, which correspond to the requirements (1) and (2), respectively:

I#INITIAL: s A Or,y,, ” Ax.~1<,5,1 ❑y.(y=x+~+~Y,)A

x. Dy. (x+n<y <x+2”+ ~o),

4hf0vE: ❑x.(s~Oy.(y =x+2” +1 As)) A

AP, Q, RUX. (PA OQA 00R

-+ Oy.(y =x + 2“ + 2 A~~(P, Q, R))).

Here P, Q, and R each range over the proposition ~1, r, ,, and s, and

&( P, Q, R) refers to the transition function of M. For instance, if M writes, in

state j on input i‘, the symbol k onto the tape, moves to the right, and enters
state j’, then &,(~,, r,,,j,~l) =~~ and ~.(r,,,.,,~l,, ~,) = r,,,,.

The computation of M on X is accepting lff it contains the accepting state

F, which is expressible in TPTL by the formula

The lengths of @INITI~~, @MOVE, and @Acc~pT are ~(n “ log n), O(n), and
0(1), respectively (recall that constants are represented in binary), thus imply-

ing the desired 0( n . log n )-bound for +x. EI

3.3. REAL-TIME VERIFICATION. Researchers have proposed a variety of
different languages for defining real-time systems [Alur and Henzinger, 1992].

Instead of siding with a particular syntax, we represent finite-state real-time

systems by abstract state graphs with timing information. Typically, it is not

difficult to compile a given concrete syntax into timed state graphs (consult,
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e.g., [Henzinger, 1991] for the translation of timed transition systems into timed

state graphs).

Model checking is an algorithmic verification technique that compares the

temporal-logic specification of a system against a state-graph description of the

system. Suppose that a system S is represented as a finite state graph Ty; that

is, all possible runs of S correspond to infinite paths through T~ that meet

certain fairness conditions. Furthermore, suppose that the specification of S is

given as a formula @ of a linear temporal logic. The verification problem asks

if all possible runs of the system S satisfy the specification @

In the case of PTL, the tableau construction can be used to solve the

verification problem [Liechtenstein and Pnueli, 1984]. The initial tableau T( ~ ~)

for the negated specification ~ ~ captures precisely the models of the formula

= ~. Hence, the system S meets the specification @ iff there is no infinite path

that is common to both finite state graphs, T$ and T( - ~), and that corre-

sponds both to a possible run of S and a model of 7 ~. This question is

answered by constructing the product of the two state graphs T~ and T( - ~)

and checking if it contains an infinite path that meets certain fairness condi-

tions.

We generalize the PTL-algorithm to check if a timed state graph meets a

TPTL-specification. We then show that the problem of checking if a TPTL-for-

mula c) is satisfied by all paths in a given structure is EXPSPACE-complete,

and thus, in general, equally hard as deciding if c) is satisfied by all timed state

sequences. The practitioner will note that the complexity of the model check-

ing problem is doubly exponential only in the size of the formula, which is

typically much smaller than the size of the structure.

3.3.1. Timed State Graphs. We represent finite-state real-time systems by

finite, directed state graphs (Kripke structures) whose vertices (locations) are

labeled with sets of propositions. Each location is labeled with a state and a

time-difference proposition Prev8 or Prev > ~, which indicates that the time

difference from the predecessor location is either exactly 8 time units or

unspecified, respectively.

Definition 4 (Timed state graph). A timed state graph T = (L, p, v, LO, Z)

consists of

—a finite set L of locations;

—a state labeling function V: L - 2p that labels every location 1 ● L with a

state pl Q P;

—a time labeling function v that labels every location 1 G L with a time-dif-

ference proposition Vl, which is either Preua for some ?3E N, or Preu ~ ~;

—a set LO c L of initial locations;

—a set Y g L2 of transitions.

A timed state sequence p = (U, ~) is a computation of the timed state graph

T if there is an infinite path 10IIIZ .”” through T such that for all i >0,

U, = pl and if vl = Preua, then I-t = ~,_ ~ + 8.

A TPTL-formula @ is satisfied ( ~~alid) in the timed state graph T if some

(all) computations of T are models of +. The problem of model checking is to
determine if a formula is valid in a timed state graph.

3.3.2. Model Checking. We are given a timed state graph T~ and a TPTL-

formula +. Let k be the product of all constants in ~, and recall that k is the
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largest constant 8 for which the initial tableau T(~) for @ contains a

time-difference proposition PreL18.

We define the Product T = T~ x T(~) of the two structures Ts and T(~) to

be a finite, directed graph whose vertices are pairs of T~-vertices and T( O)-

vertices. Each vertex (1, @) of T consists of a location 1 of T~ and a vertex @

of T(~) such that

—The state information in 1 and @ is compatible; that is, p G W[ iff z.p = @

for all propositions p ● P.

—The time information in 1 and @ is compatible; that is, either vl = Prel’ .,],

or vl = 60, or 80 = Preuk and vl = Preuk, for some k‘ > k.

The product T contains an edge from the vertex (1,, @,) to the vertex (lZ, Oz )

iff T~ contains an edge from 11 to lZ and T(~) contains an edge from @ ~ to

02.

The size of the product Ts x T(~) is clearly linear in the product of the sizes

of T~ and T(~).

An infinite path through the product Ts X T(~) is a @path if its second

projection is a +-path through T( +); it is an initialized ~-path if, in addition, it

starts at a vertex whose first projection is an initial vertex of Ts. The following

lemma, which follows immediately from Lemma 4 and the proof of Theorem 1,

confirms that our product construction has the intended effect.

LEMMA 7 (TABLEAU PRODUCT). The timed state graph T~ satisfies the TPTL -

forrnula ~ iff the product Ts X T(~) contains an initialized @path.

This lemma suggests a model-checking algorithm. To see if all runs of a

finite-state real-time system S satisfy a TPTL-formula ~:

(1) Construct the timed state graph Ts for S.
(2) Construct the initial tableau T( T ~) for the negated formula ~ ~.

(3) Construct the tableau product T = T~ x T( ~ ~).

(4) Check if T cont~ins an initialized ~ ~-path. The system S meets the
specification @ ifi this is not the case.

According to different notions of system fairness, various variants of compu-

tations through timed state graphs can be defined, and checked for, as in the

untimed case [Liechtenstein and Pnueli, 1985].

Since a structure can be checked for +-paths in polynomial time, the running

time of the model checking algorithm is determined by the size of the tableau

product T, which contains O(lT~ 1. IT( ~)1) vertices. The size of Ts typically is

exponentially larger than the description of S itself [Henzinger, 1991], we have

seen that the size of T(~) can be two exponential larger than o.

THEOREM 3 (MODEL CHECKING). The problem if a TPTL-fomuda ~ is ualid

in a timed state grapil T can be decided in deterministic time linear in the size of the

T and doubly exponential in the length of+.

3.3.3. Complexip of Model Checking

THEOREM 4 (COMPLEXITY OF MODEL CHECKING). T)ie problem of decidi~lg f

a TPTL-formula is valid in a timed state graph is EXPSPACE-complete.

PROOF OF THEOREM 4. [EXPSPACE]. The given timed state graph T

satisfies the TPTL-formula @ iff the product T x T( T ~) contains an initial-
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ized n @-path. It is easy to see that nondeterministic singly exponential space

suffices to check for the desired 1 ~ path. The EXPSPACE bound follows.

[EXPSPACE-hardness]. To reduce the validity problem for TPTL to model

checking, it suffices to give a timed state graph T of constant size such that

formula @ is valid iff @ is valid in T. Simply choose T = (2P, K, v, 2P, 2P X 2P)

to be the complete graph over all subsets of P, and label all locations with the

time-difference proposition Prel) > ~. El—

4. Undecidable Real-Time Properties

At last, let us justify our decisions to restrict the semantics of TPTL to the

discrete time domain N and to restrict the syntax of the timing constraints to

successor, ordering, and congruence operations. Indeed, both decisions seem

overly limiting for real-time specification languages. For example, without

addition of time values the property that “the time difference between subse-

quent p-states increases forever” cannot be defined. We show, however, that

both restrictions are necessa~ to obtain verification algorithms.

We consider two natural extensions of TPTL, a syntactic one (allowing

addition over time) and a semantic one (interpreting TPTL-formulas over a

dense time domain). Both extensions are shown to be 11~-complete, by reduc-

ing a S ~-hard problem of 2-counter machines to the respective satisfiability

problems. It follows that they cannot even be (recursively) axiomatized (for an

exposition of the analytical hierarchy consult [Rogers, 1967]).

4.1. A z ~-COMPLETE PROBLEM. A nondetemtinistic 2-counter machine M

consists of two counters C and D, and a sequence of n instructions, each of

which may increment or decrement one of the counters, or jump, conditionally

upon one of the counters being zero. After the execution of a nonjump

instruction, M proceeds nondeterministically to one of two specified instruc-

tions. We represent the configurations of M by triples (i, c, d), where O s i <

n, c > 0, and d > 0 are the current values of the location counter and the two

counters C and D, respectively. The consecution relation on configurations is

defined in the obvious way. A computation of M is an infinite sequence of

related configurations, starting with the initial configuration (O, O, O). The

computation is recum”rzg if it contains infinitely many configurations with the

value of the location counter being O.

The problem of deciding if a nondeterministic Turing machine has, over the

empty tape, a computation in which the starting state is visited infinitely often,

has been shown ~~-complete [Harel et al., 1983]. Along the same lines, we

obtain the following result.

LEMMA 8 (COMPLEXIm OF 2-COUNTER MACHINES). The problem of deciding

if a giuen nondeterministic 2-counter machine has a recurring computation, is

Z;-hard.

PROOF OF LEMMA 8. Every ~~-formula is equivalent to a ~~-formula x of

the form

=~.(~(0) = 1 A Vx.g(~(x), ~(x + l))),

for a recursive predicate g [Harel et al., 1983]. For any such X, we can

construct a nondeterministic 2-counter machine A4 that has a recurring com-

putation iff x is true.
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Let M start by computing ~(0) = 1, and proceed, indefinitely, by nondeter-

ministically guessing the next value of ~. At each stage, M checks whether jlx)

and ~(x + 1) satisfy g, and if (and only if) so, it jumps to instruction O. Such an

M exists, because 2-counter machines can, being universal, compute the

recursive predicate g. It executes the instruction O infinitely often iff a function

~ with the desired properties exists. ❑

4.2. ENCODING COMPUTATIONS OF 2-COUNTER MACHINES. We show that

the satisfiability problem for several extensions of TPTL is ~~-complete. First,

we observe that the satisfiability of a formula @ can, in all cases, be phrased as

a Zi-sentence, asserting the existence of a model for @. Any timed state

sequence p for @ can be encoded, in first-order arithmetic, by finitely many

infinite sets of natural numbers; say, one for each proposition p in ~,

characterizing the states in which p holds, and one to encode pairs of state

numbers and associated times. It is a routine matter to express, as a first-order

predicate, that @ holds in p. We conclude that satisfiability is in Z}.

To show that the satisfiability problem of a logic is X ~-hard, it suffices, given

a nondeterministic 2-counter machine M, to construct a formula ~fif such that

0,, is satisfiable iff M has a recurring computation. We demonstrate the
technique of encoding recurring computations of M by showing that the

monotonici~ constraint on time is necessary for the decidability of TPTL.

THEOREM 5 (NONMONOTONIC TIME). Relaxing the monotonicity condition for

time sequences renders the satisfiability problem for TPTL Z ~-complete.

PROOF OF THEOREM 5. We encode a computation r of M by the “time”
sequence ~ such that, fOr all k > 0, r~k = i, ~~k+ 1 = n + c, 74A+? =n+d, and

74L+3 = n + k for the k th configuration (i, c, d) of r. The sequence ~ satis-

fies the progress condition, but not the nlonotonicity condition.
It is not difficult to express, by a TPTL-formula ~~, that ~ encodes a

recurring computation of M. First, specify the initial configuration, by

@INIT: x.x = O A Ox. x = n A Ozx. x = n A 03 X.X = n

(we abbreviate a sequence of m next operators by 0’”). Then, ensure proper
consecution by adding a ❑ -conjunct ~, for every instruction i of M. For

instance, the instruction 1 that increments the counter C and proceeds,

nondeterministically, to either instruction 2 or 3, contributes the conjunct

c),: ❑ x.

Oqy.(y = 2 Vy = 3)

A 0y.04z. z ‘y + 1

A02y.04z.z ‘y i
\ A03y.04z.z=y + 11

The recurrence condition can be expressed by a ❑ O-formula:

4RECLJR: ❑ lox.x = o.

Clearly, the conjunction ~~ of these n + 2 formulas is satisfiable iff M has a

recurring computation. ❑
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Note that this proof does not require any propositions. It follows that the

first-order temporal logic with a single state variable ranging over the natural

numbers is II ~-complete, provided the underlying assertion language has at

least successor (in addition to equality) as a primitive.

4.3. PRESBURGER TPTL. We show that a certain extremely modest relax-

ation of the syntax of timing constraints leads to a highly undecidable logic.

Consequently, TPTL with addition over time is undecidable.

THEOREM 6 (PRESBURGER TPTL). If the syntax of TPTL is extended to allow

multiplication by 2, the satisjiability problem becomes X ~-complete.

PROOF OF THEOREM 6. To encode computations of ~, we use the proposi-

tionspl, ..., P., rl, and rz ~Precisely one of which is true in any state; hence we
may identify states with propositions. The configuration (i, c, d) of M is

represented by the finite sequence p, r~r~ of states.

The initial configuration (pO) as well as the recurrence condition ( ❑ OpO)

can be easily expressed in PTL. The crucial property that allows a temporal

logic to specify the consecution relation of configurations, and thus the set of

computations of M, is the ability to copy an arbitrary number of r-states. In

real-time temporal logics, the times that are associated with a state sequence

can be used for copying. With the availability of multiplication by 2, we are

able to have the kth configuration of a computation correspond, for all k >0,

to the finite sequence of states that is mapped to the time interval [2~, 2~ + l).

First, we force the time to increase by a strictly positive amount between

successive states ( ❑ x. O y. y > x), to ensure that every state is uniquely identifi-

able by its time. Then, we can copy groups of r-states by establishing a

one-to-one correspondence of r~-states (j = 1,2) at time t and time 2t; clearly,

there are enough time gaps to accommodate an additional r~-state when

required by an increment instruction.

For instance, the instruction 1 that increments the counter C and proceeds,

nondeterministically, to either instruction 2 or 3, can be expressed as follows:

+1: Oz.(z = 2X A (Pz VPS)),

+2: ❑yl.0y2.(y2 < 2x ~ Ozl.(zl = 2yl A Ozz.zz = 2yQ)),

+3(r): tly.(y < 2x A r - Oz.(z = 2y A r)),

+4: ❑yl.0y2.(y2 = 2X -+ Ozl.(zl = 2y1 A Orl A 00z2.zZ = 2Y2)).

The first conjunct #1 ensures the proper progression to one of the two

specified instructions, 2 or 3; the second one *Z establishes a one-to-one

correspondence between states in successive intervals representing configura-

tions, while the formula ~~(r) copies r-states. The last conjunct *4 adds,

finally, an rl-state at the end of the successor configuration, as required by the
increment operation. ❑

We can modify this proof by reducing time to a state counter ( ❑ x. O y. y =

x + 1), and letting all propositions be false in the resulting additional (padding)

states. Thus, the satisfiability problem for TPTL with multiplication by 2 is
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Z;-hard even if time is replaced by a state counter. As a corollary, we infer that

the first-order theory of the natural numbers with < , multiplication by 2, and

monadic predicates is H ~-complete. A similar result has has been obtained

independently in [Halpern, 1991], where it is shown that Presburger arithmetic

becomes II ~-complete with the addition of a single unary predicate.

The proof technique we used to show Presburger TPTL undecidable can be

applied to many real-time specification languages, including the logics RTL

[Jahanian and Md, 19861, GCTL [Harel, 19881, RTTL [Ostroff, 1990], and
MTL [Koymans, 1990]. All of these formalisms admit addition over time as a

primitive, which renders them undecidable [Alur and Henzinger, 1990]).

4.4. DENSE TPTL. An alternative way of extending the expressive power of

TPTL is to relax the semantics by adopting a dense time domain; that is,

between any two given points in time there is another time point. We show that

the resulting logic is, again, highly undecidable.

THEOREM 7 (DENSE TPTL). [f TPTL is inte~reted oiler the ratiotlal tlurnbers

(i.e., T = Q), the satisfiability problem becomes z~-complete.

PROOF OF THEOREM 7. The proof depends, once more, on the ability to

copy groups of r-states. This time, we are able to have the k th configuration of

a computation of M correspond, for all k > 0, to the finite sequence of states

that is mapped to the time interval [k, k + 1), because dense time allows us to

squeeze arbitrarily many states into every interval of length 1. Again, we

identify every state with a unique time, and can then establish a one-to-one

correspondence of r,-states (j = 1, 2) at time t and time t + 1.In fact, we may

simply replace all occurrences of multiplication by 2 in the Presburger-TPTL

formula encoding the recurring computations of M, by a successor operation,

in order to obtain the desired dense-TPTL formula +~. ❑

This proof goes through for any time domain (T, <, S) such that (T, + ) is a

dense linear order, and S is a unary function over T that satisfies the following

two first-order axioms:

V.x..x < s(x),

Vx, y.(x <y + s(x) + s(y)).

To show that, for arbitrary dense time domains, the satisfiability problem is

in Z;, a standard Lowenheim–Skolem argument is necessary to infer the

existence of countable models.
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