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Abstract— This paper describes the modeling language
CHARON for modular design of interacting hybrid systems.
The language allows specification of architectural as well as
behavioral hierarchy, and discrete as well as continuous ac-
tivities. The modular structure of the language is not merely
syntactic, but is exploited by analysis tools, and is supported
by a formal semantics with an accompanying compositional
theory of refinement. We illustrate the benefits of CHARON
in design of embedded control software using examples from
automated highways concerning vehicle coordination.
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I. INTRODUCTION

N embedded system typically consists of a collection
of digital programs that interact with each other and
with an analog environment. Examples of embedded sys-
tems include manufacturing controllers, automotive con-
trollers, engine controllers, avionic systems, medical de-
vices, micro-electromechanical systems, and robots. As
computing tasks performed by embedded devices become
more sophisticated, the need for a sound discipline for writ-
ing embedded software becomes more apparent (c.f [1]). An
embedded system consisting of sensors, actuators, plant,
and control software is best viewed as a hybrid system.
The relevance of hybrid modeling has been demonstrated
in various applications such as coordinating robot systems
[2], automobiles [3], aircrafts [4], and chemical process con-
trol systems [5]. Model-based design paradigm is partic-
ularly attractive because of its promise for greater design
automation and formal guarantees of reliability.
Traditionally, control theory and related engineering dis-
ciplines have addressed the problem of designing robust
control laws to ensure optimal performance of processes
with continuous dynamics. This approach to system design
largely ignores the problem of implementing control laws
as a piece of software and issues related to concurrency and
communication. Computer science and software engineer-
ing, on the other hand, have an entirely discrete view of the
world, which abstracts from the physical characteristics of
the environment to which the software is reacting to, and
is typically unable to guarantee safety and/or performance
of the embedded device as a whole. Hybrid modeling com-
bines these two approaches and is natural for specification
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of embedded systems.

We have been developing a modeling language, CHARON,
that is suitable for specification of interacting embedded
systems as communicating agents. CHARON has been used
in the modeling and analysis of a wide range of hybrid
systems, such as automotive powertrain, vehicle-to-vehicle
control systems [6], biological cells [7] multi-agent systems
[8], [9], infusion pump and inverted pendulum systems [10].
The two salient aspects of CHARON are that it supports
modular specifications and that it has a well-defined formal
semantics.

Hierarchical, modular modeling. Modern software
design paradigms promote hierarchy as one of the key con-
structs for structuring complex specifications. They are
concerned with two distinct notions of hierarchy. In archi-
tectural hierarchy, a system with a collection of commu-
nicating agents is constructed by parallel composition of
atomic agents, and in behavioral hierarchy, the behavior of
an individual agent is described by hierarchical sequential
composition. The former hierarchy is present in almost all
concurrency formalisms, and the latter, while present in all
block-structured programming languages, was introduced
for state-machine-based modeling in STATECHARTS [11].
CHARON supports both architectural and behavioral hier-
archies.

Early formal models for hybrid systems include phase
transition systems [12] and hybrid automata [13]. While
modularity in hybrid specifications has been addressed in
languages such as hybrid I/O automata [14], CHARON al-
lows richer specifications. Discrete updates in CHARON are
specified by guarded actions labeling transitions connect-
ing the modes. Some of the variables in CHARON can be
declared analog, and they flow continuously during contin-
uous updates that model passage of time. The evolution of
analog variables can be constrained in three ways: differen-
tial constraints (e.g. by equations such as & = f(z,u)), al-
gebraic constraints (e.g. by equations such as y = g(z,u)),
and invariants (e.g. |z — y| < &) which limit the allowed
durations of flows.

Compositional semantics. Formal semantics leads to
definitions of semantic equivalence (or refinement) of spec-
ifications based on their observable behaviors, and compo-
sitional means that semantics of a component can be con-
structed from the semantics of its subcomponents. Such
formal compositional semantics is a cornerstone of concur-
rency frameworks such as CSP [15] and CCS [16], and is
a prerequisite for developing modular reasoning principles
such as compositional model checking and systematic de-



sign principles such as stepwise refinement.

There are two aspects of CHARON that make it diffi-
cult to adopt existing techniques. First, the global na-
ture of time makes it challenging to define semantics of
hybrid components in a modular fashion. Second, features
such as group transitions, exceptions, and history retention
supporting rich hierarchical specifications cause additional
difficulties. The compositional semantics of CHARON sup-
ports observational trace semantics for both modes and
agents [17]. The key result is that the set of traces of a
mode can be constructed from the traces of its submodes.
This result leads to a compositional notion of refinement
for modes.

The remaining paper is organized as follows. Section IT
gives a short overview of related work. In Section III, we
present the features of the language CHARON, and in Sec-
tion IV we describe the formal semantics and accompany-
ing compositional refinement calculus. We use examples
from the automotive experimental platform of DARPA’s
MoBIES project for illustrative purposes. Section V gives
an overview of ongoing research on formal analysis, and we
conclude in Section VI with a summary of the CHARON
design toolkit.

II. BACKGROUND

Software design notations. Modern object-oriented
design paradigms such as Unified Modeling Language
(UML) allow specification of the architecture and control
at high levels of abstraction in a modular fashion, and bear
great promise as a solution to managing the complexity at
all stages of the software design cycle [18]. There are emerg-
ing tools such as RationalRose (see www.rational.com)
that support modeling, simulation, and code generation,
and are increasingly becoming popular in domains such as
automotive software and avionics.

Tool support for control system design. Tra-
ditionally control engineers have used tools for con-
tinuous differential equations such as MATLAB (see
www.mathworks.com) for modeling of the plant behavior,
for deriving and optimizing control laws, and for validating
functionality and performance of the model through anal-
ysis and simulation. Tools such as SIMULINK recently aug-
mented the continuous modeling with state-machine-based
modeling of discrete control.

Modeling languages for hybrid systems. To bene-
fit from object-oriented design, several languages that sup-
port object-oriented modeling of complex dynamical sys-
tems have been proposed. Omola [19], Dymola [20], and
Modelica [21] provide non-causal models; that is, there is
no notion of causality in the equations in the models. Those
three have been used mostly for describing physical objects,
whereas SHIFT [22] is more like a programming language
and has been used extensively to specify automated vehicle
highway systems. PTOLEMY II [23] supports the model-
ing, simulation, and design of concurrent systems. It incor-
porates a number of models of computation (such as syn-
chronous/reactive systems, communicating sequential pro-
cesses (CSP), finite state machines, continuous time, etc)

with semantics that allow domains to interoperate.

All the above languages were proposed for modeling and
simulation purposes and have not been used for formal ver-
ification of systems. CHARON has compositional formal
semantics required to reason about systems in a modular
way while incorporating many features of the aforemen-
tioned languages. Two features that are not supported by
CHARON are model inheritance and dynamic creation of
model instances.

Model checking. Inspired by the success of model
checking in hardware verification and protocol analysis [24],
[25], there has been increasing research on developing tech-
niques for automated verification of hybrid (mixed discrete-
continuous) models of embedded controllers [13], [26], [27],
[28], [29]. The state-of-the-art computational tools for
model checking of hybrid systems are of two kinds. Tools
such as KRONOS [30], UPPAAL [31], and HYTECH [32] limit
the continuous dynamics to simple abstractions such as
rectangular inclusions (e.g. # € [1,2]), and compute the
set of reachable states exactly and effectively by symbolic
manipulation of linear inequalities. On the other hand,
emerging tools such as CHECKMATE [33], d/dt [34], and
level-sets method [35], [36], approximate the set of reach-
able states by polyhedra or ellipsoids [37] by optimization
techniques. Even though these tools have been applied to
interesting real-world examples after appropriate abstrac-
tions, scalability remains a challenge.

III. MODELING LANGUAGE

In CHARON, the building block for describing the sys-
tem architecture is an agent that communicates with its
environment via shared variables. The language supports
the operations of composition of agents to model concur-
rency, hiding of variables to restrict sharing of information,
and instantiation of agents to support reuse. The building
block for describing flow of control inside an atomic agent
is a mode. A mode is basically a hierarchical state ma-
chine, that is, a mode can have submodes and transitions
connecting them. Variables can be declared locally inside
any mode with standard scoping rules for visibility. Modes
can be connected to each other only via well-defined entry
and exit points. We allow sharing of modes so that the
same mode definition can be instantiated in multiple con-
texts. To support ezceptions, the language allows group
transitions from default exit points that are applicable to
all enclosing modes, and to support history retention, the
language allows default entry transitions that restore the
local state within a mode from the most recent exit.

Case study. Throughout the paper we will use a recent
case study to illustrate the modeling and analysis concepts
within the proposed framework. The case study is based
on the longitudinal control system for vehicles moving in
an Intelligent Vehicle Highway System (IVHS) [38]. A de-
tailed description of the system can be found in [39]. Before
proceeding with the modeling of the problem, we present
a brief informal description of the control system.

In the context of IVHS, vehicles travel in platoons and
inside a platoon all the vehicles follow the leader. We con-
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Fig. 1. The architectural hierarchy of the platoon controller
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sider a platoon ¢ and its preceding platoon (¢ — 1). Let v;
and a; denote the velocity and acceleration of the platoon
i, respectively, and d; be its distance to the platoon (i —1).
The most important task of a longitudinal controller for the
leader car of each platoon i is to maintain the distance d;
equal to a safety distance D; = Aqa;+A,v;+Ap; in the nom-
inal operation, A, = 0s?, A, = 1s, and A\, = 10m. Other
tasks the controller should perform are to track an optimal
velocity and trajectories for certain maneuvers. Without
going into details, the controller for the leader car of pla-
toon ¢ proposed in [39] consists of four control laws u, which
are used in different regions of the state space. These re-
gions are defined based on the values of the relative veloc-
ity vf = 100(v;—1 —v;)/v; and the error between the actual
and the safe inter-platoon distances e; = d; — D;. When
v§{ and e; change from one region to another, the control
law should change accordingly. One important property we
want to verify is that a collision between platoons never
happens, that is, d; > Om. To this end, we consider a sys-
tem with four continuous variables (d;,v;—1,v;,a;). The
dynamics of these variables are as follows:

di = vii1—v;

7:12'—1 = Qi1 (1)
V; = a;

di = U

where u is the control. One can see that the dynamics of
each platoon depends on the state of its preceding platoon.
We consider a pair of platoons (i — 1) and ¢ and prove that
the controller of the leader car of platoon i can guarantee
that no collision happens regardless of the behavior of pla-
toon (7 — 1). More precisely, the acceleration a;—; of the
platoon in front is treated as uncertain input with values
in the interval [amin, @maz] Where i, and @pg, are the
maximal possible deceleration and acceleration.

A. Agents and Architectural Hierarchy

The architectural hierarchy of the above platoon control
system is shown in Figure 1. The agent PLATO0N-¢ consists
of two sub-agents, namely VELOCITY and CONTROLLER. The
sub-agent CONTROLLER models the control laws and out-
puts the acceleration a; of the platoon i. The sub-agent
VELOCITY takes as input the variable acc and updates the
variable vel of the platoon i. The agent PLATOON-(i — 1),
whose role is to model all possible behaviors of the pla-
toon in front, outputs its own velocity (variable vel) to
the agent PLATOON-i. In other words, the velocity (or ac-
celeration) of the platoon (i — 1) can be seen as uncertain

input (or external disturbance) to the agent PLATOON-3.

Each agent has a well-defined interface which consists of
its typed input and output variables, represented visually
as blank and filled squares, respectively. The two variables
vel of the agents PLATOON- (i — 1) and PLATOON—-; are inputs
to the agent DISTANCE which outputs the distance between
the two platoons. The sub-agent CONTROLLER of PLATOON-¢
computes the desired acceleration a; based on the inter-
platoon distance and the velocity of the platoon in front.

Formally, an agent, A = (T M,V, I), consists of a set V of
variables, a set I of initial states, and a set T'M of modes.
The set V is partitioned into local variables V; and global
variables V;; global variables are further partitioned into
input and output variables. Type correct assignments of
values to variables are called valuations and denoted Qv .
The set of initial states I C Qv specifies possible initializa-
tions of the variables of the agent. The modes, described
in more detail below, collectively define the behavior of
the agent. An atomic agent has a single top-level mode.
Composite agents are constructed from other agents and
have many top-level modes. For example, the behavior of
the agent PLATOON-{ is given by the top-level modes of its
atomic sub-agents, VELOCITY and CONTROLLER.

Figure 1 illustrates the three operations defined on
agents. Agents can be composed in parallel with each
other. The parallel agents execute concurrently and com-
municate through shared variables. To enable communica-
tion between the two vehicles, global variables are renamed.
For example, variables vel of agents PLATOON-(¢ — 1) and
PLATOON-¢ are renamed into velFirst and velOther, re-
spectively, so that the agent DISTANCE can read them with-
out confusion. Finally, the communication between the ve-
hicles can be hidden from the outside world. In our exam-
ple, only the variable vel is the output of a platoon agent.
The variable acc, used internally by the agent PLATOON-3,
cannot be accessed from the outside.

B. Modes and Behavioral Hierarchy

Modes represent behavioral hierarchy in the system de-
sign. The behavior of each atomic agent is described by a
mode, which corresponds to a single thread of discrete con-
trol. Each mode has a well-defined data interface consisting
of typed global variables used for sharing state information,
and also a well-defined control interface consisting of entry
and exit points, through which discrete control enters and
exits the mode. Entry and exit points are denoted as blank
and filled circles, respectively. A top-level mode, which is
activated when the corresponding agent comes into exis-
tence and is never deactivated, has a special entry point
init.

At the lowest level of the behavioral hierarchy are atomic
modes. They describe continuous behaviors. For example,
Figure 2 illustrates the behavior of the mode Track, which
specifies a control law by means of a differential constraint
that asserts the relationship between desired acceleration
acc, and input variables of the mode, representing the ve-
locities of the platoon, the platoon in front of it, and the
distance between platoons. CHARON also supports alge-
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Fig. 3. Behavior of the agent Controller

braic constraints on variable values. In addition, an in-
variant may be used to specify how long the mode can
remain active. Once an invariant is violated, the mode has
to be exited by taking one of the transitions leaving the
mode.

The values of k1, k2, k3, lambdaP, and lambdaV are
parameters of the mode. The mode can be instantiated
with different values for the parameters several times in
the same model, yielding different control laws. This will
be illustrated below.

Composite modes contain a number of submodes. Dur-
ing execution, a composite mode performs discrete tran-
sitions that connect its control points and control points
of its submodes. For example, the behavior of the agent
Controller is captured by the mode shown in Figure 3.
To avoid cluttering the figure, we omit the guards on mode
transitions.

Formally, a mode M = (SM,V,E, X, T,Cons) consists
of a set of submodes SM, a set of variables V, a set of
entry control points E, a set of exit control points X, a
set of transitions 7', and a set of constraints Cons. As
in agents, variables are partitioned into global and local
variables. For the submodes of M, we require that each
global variable of a submode is a variable (either global
or local) of M. This induces a natural scoping rule for
variables in a hierarchy of modes: a variable introduced as
local in a mode is accessible in all its submodes but not in
any other mode. Every mode has two distinguished control
points, called default entry (de) and exit (dz) points. They
are used to represent such high-level behavioral notions as

interrupts and exceptions, which will be discussed in more
detail in the following section.

Constraints of a mode define continuous behavior of a
mode in three ways. Continuous trajectories of a variable
x can be given by either an algebraic constraint A,, which
defines the set of admissible values for z in terms of values
of other variables, or by a differential constraint D, which
defines the admissible values for the first derivative of z
with respect to time. Additionally, only those trajectories
are allowed that satisfy the invariant of the mode, which is
a boolean predicate over the mode variables.

Transitions of a mode M can be classified into entry tran-
sitions, which connect an entry point of M with an entry
point of one of its submodes, ezit transitions, connecting
exit points of submodes to exit points of M, and internal
transitions that lead from an exit point of a submode to an
entry point of another submode. In the example, the entry
transition of Controller specifies that the mode starts in
the TrackOptimal submode, which will be used to “catch
up” with the platoon in front. There are no exit tran-
sitions since it is a top-level mode and it has to execute
forever. Every transition has a guard, which is a predicate
over the valuations of mode variables that specifies when
the transition can be executed. When a transition occurs,
it executes a sequence of assignments, changing values of
the mode variables. A transition that originates at a de-
fault exit point of a submode is called a group transition
of that submode. A group transition can be executed to
interrupt the execution of the submode.

In CHARON, transitions and constraints can refer to ex-
ternally defined Java classes, thus allowing richer discrete
and continuous specifications.

IV. FORMAL SEMANTICS AND COMPOSITIONAL
REFINEMENT

In this section, we first define the operational semantics
of modes and agents that makes the notion of executing a
CHARON model precise, and can be used, say, by a simula-
tor. Second, we define observational semantics for modes
and agents. The observational semantics hides the details
about internal structure, and retains only the information
about inputs and outputs. Informally, the observational se-
mantics consists of the static interface (such as the global
variables and entry/exit points) and dynamic interface con-
sisting of the traces, that is, sequences of updates to global
variables. Third, for modularity, we show that our seman-
tics is compositional. This means that the set of traces of a
component can be defined from the set of traces of its sub-
components. Intuitively, this means that the observational
semantics captures all the information that is needed to de-
termine how a component interacts with its environment.
Finally, we define a notion of refinement (or equivalence)
for modes/agents. This allows us to relate different models
of the same system. We can establish, for instance, that an
abstract (simplified) version of a platoon refines a detailed
version, and then to analyze control of platoons using the
abstract version instead of the detailed one, significantly
simplifying analysis. The compositional rules about refine-



ment form the basis for analysis in a system with multiple
components, each with a simplified and a detailed model.

A. Formal Semantics of Modes

Intuitive semantics. Before presenting the semantics
formally, we give the intuition for mode executions. A
mode can engage in discrete or continuous behavior. Dur-
ing an execution, the mode and its environment either take
turns making discrete steps or take a continuous step to-
gether. Discrete and continuous steps of the mode alter-
nate. During a continuous step, the mode follows a continu-
ous trajectory that satisfies the constraints of the mode. In
addition, the set of possible trajectories may be restricted
by the environment of the mode. In particular, when the
mode invariant is violated, the mode must terminate its
continuous step and take one of its outgoing transitions.
A discrete step of the mode is a finite sequence of discrete
steps of the submodes and enabled transitions of the mode
itself. A discrete step begins in the current state of the
mode and ends when it reaches an exit point or when the
mode decides to yield control to the environment and lets
it make the choice of the next step. Technically, when the
mode ends its discrete step in one of its submodes, it re-
turns control to the environment via its default exit point.
The closure construction, described below, ensures that the
mode can yield control at appropriate moments, and that
the discrete control state of the mode is restored when the
environment schedules the next discrete step.

Preemption. An execution of a mode can be pre-
empted by a group transition. A group transition of a
mode originates at the default exit of the mode. During
any discrete step of the mode, control can be transferred
to the default exit and an enabled group transition can
be selected. There is no priority between the transitions
of a mode and its group transitions. When an execution
of a mode is preempted, the control state of the mode is
recorded in a special history variable, a new local variable
that we introduce into every mode. Then, when the mode
is entered through the default entry point next time, the
control state of the mode is restored according to the his-
tory variable.

The history variable and active submodes. In
order to record the location of discrete control during exe-
cutions, we introduce a new local variable h into each mode
that has submodes. The history variable h of a mode M
has the names of the submodes of M as values, or a special
value € that is used to denote that the mode is not active. A
submode N of M is called active when the history variable
of M has the value N.

Flows. To precisely define continuous trajectories of a
mode, we introduce the notion of a flow. A flow for a set
V of variables is a differentiable function f from a closed
interval of non-negative reals [0, ] to Qv . We refer to ¢ as
the duration of the flow. We denote a set of flows for V as
Fv.

Syntactic restrictions on modes. In order to ensure
that the semantics of a mode is well-defined, we impose
several restrictions on mode structure. First, we assume

that the set of differential and algebraic constraints in a
mode always has a non-empty set of flows that satisfy them.
This is needed to ensure that the set of behaviors of a
mode is non-empty. Furthermore, we require that the mode
cannot be blocked at any of its non-default control points.
This means that the disjunction of all guards originating
from a control point evaluates to true.

State of a mode. We define the state of a mode
in terms of all variables of the mode and its submodes,
including the local variables on all levels. We use V, for
the set of all variables. The set of local variables of a mode
together with the local variables of the submodes are called
the private variables and is denoted as V.

The state of a mode M is a pair (c,s), where ¢ is the
location of discrete control in the mode and s € Qur.v,.
Whenever the mode has control, it resides in one of its
control points, that is, ¢ € M.C. Given a state (c,s) of M,
we refer to ¢ as the control state of M and to s as the data
state of M.

Closure of a mode. Closure construction is a technical
device to allow the mode to interrupt its execution and to
maintain its history variable. Transitions of the mode are
modified to update the history variable h after a transition
is executed. Each entry or internal transition assigns the
name of the destination mode to h, and exit transitions
assign € to h. In addition, default entry and exit transitions
are added to the set of transitions of the mode. These
default transitions do not affect the history variable and
allow us to interrupt an execution and then resume it later
from the same point.

The default entry and exit transitions are added in the
following way. For each submode N of M, the closure adds
a default exit transition from N.dx to M.dz. This transi-
tion does not change any variables of the mode and is al-
ways enabled. Default entry transitions are used to restore
the local control state of M. A default entry transition that
leads from a default entry of M to the default entry of a
submode N is enabled if h = N. Furthermore, we make
sure that the default entry transitions do not interfere with
regular entry transitions originating from de. The closure
changes each such transition so that it is enabled only if
h = €. The closure construction for the mode Controller
introduced in Section ITI-B is illustrated in Figure 4.

Operational semantics. An operational view of a
closed mode M with the set of variables V' consists of a
continuous relation R and, for each pair ¢; € E, ¢y € X,
a discrete relation Rg’ q-

The relation R® C Qy x Fy gives, for every data state
of the mode, the set of flows from this state. By definition,
if the control state of the mode is not at dz, the set of flows
for the state is empty. R is obtained from the constraints
of a mode and relations SM.RC of its submodes. Given
a data state s of a mode M, (s, f) € RC iff f satisfies
the constraints of M and, if N is the active submode at
s, (s, f), restricted to the global variables of N, belongs to
N.RC.

The relation Rgm, for each entry point e and exit point
z of a mode, comprises of macro-steps of a mode start-
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ing at e and ending at . A macro step consists of a se-
quence of micro-steps. Each micro-step is either a tran-
sition of the mode or a macro-step of one of its sub-
modes. Given the relations RY, of the submodes of M,
a micro-ezecution of a mode M is a sequence of the form
(eo,50), (€1,51),---,(en,sn) such that every (e; s;) is a
state of M and for even i, ((e;, s;), (€i+1,Si+1)) is a tran-
sition of M, while for odd 4, (s;,8;+1) is a macro-step of
one of the submodes of M. Given such a micro execu-
tion of M with e = e € E and e, = x € X, we have
(s0,sn) € RP,. To illustrate the notion of macro-steps,
consider the closed mode Controller from Figure 4. Let
s be such that h = € and ¢; is false. Then, there is a
micro-execution for Controller: init, TrackOptimal.de,
TrackOptimal.dz, dz (we show only the control points
of the micro-execution for clarity). This means that
(s,s[h := TrackOptimal]) € RD;, q,- If g1 is true in a
state s', then (s',s'[h := TrackPrevious]) € R};, 4, COI-
responding to the micro-execution init, TrackOptimal.de,
TrackOptimal.dz, TrackOptimal.de, TrackOptimal.dz,
dz.

The operational semantics of the mode M consists of
its control points E U X, its variables V' and relations R®
and RY,. The operational semantics of a mode defines a
transition system R over the states of the mode. We write

(e1,81)>(ea, 82) if (s1,82) € RL ., and (dx,sl)i(d:v,sz)
if (s1, f) € R®, where f is defined on the interval [0, ¢] and
f(t) = s2. We extend R to include environment steps. An
environment step begins at an exit point of the mode and
ends at an entry point. It represents changes to the global
variables of the mode by other components while the mode
is inactive. Private variables of the mode are unaffected
by environment steps. Thus there is an environment step
(z,8)>(e,t) whenever z € X, e € E, and s[V,] = t[V,].
We let A range over Fy U {o,e}. An ezecution of a mode
is now a path through the graph of R:

(e0,50) 23 (e1,51) 23 ... 23(en, 5n). (2)

Trace semantics. To be able to define a refinement
relation between modes, we consider trace semantics for
modes. A trace of the mode is a projection of its executions

onto the global variables of the mode. The trace semantics
for M is given by its control points £ and X, its global
variables V;, and its set of its traces L.

In defining compositional and hierarchical semantics, one
has to decide, what details of the behavior of lower-level
components are observable at higher levels. In our ap-
proach, the effect of a discrete step that updates only local
variables of a mode is not observable by its environment,
but stoppage of time introduced by such a step is observ-
able. For example, consider two systems, one of which is
always idle, while the other updates a local variable every
second. These two systems are different, since the second
one does not have flows more than one second long. Defin-
ing modular semantics in a way that such distinction is not
made seems much more difficult.

B. Trace Semantics for Agents

An execution of an agent, A = (T'M,V,I) follows a tra-
jectory, which starts in one of the initial states and is a
sequence of flows interleaved with discrete updates to the
variables of the agent. An execution of A is constructed
from the relations R¢ and RP of its top-level mode. For
a fixed initial state sg, each mode M € T'M starts out in
the state (initar, sapr), where init s is the non-default entry
point of M and so[M.V] = spy. Note that as long as there
is a mode M whose control state is at inity;, no continu-
ous steps are possible. However, any discrete step of such a
mode will come from Rgm-tM’ 4z and bring the control state
of M to dz. Therefore, any execution of the agent A with
|TM| = k will start with exactly k discrete initialization
steps. At that point, every top-level mode of A will be at
its default exit point, allowing an alternation of continuous
steps from RY and discrete steps from R}, 4, The choice
of a continuous step involving all modes or a discrete step
in one of the modes is left to the environment. Before each
discrete step, there is an environment step, which takes the
control point of the chosen mode from dz to de and leaves
all the private variables of all top-level modes intact. After
that, a discrete step of the chosen mode happens, bringing
control back to dz. Thus, an execution of A with |[TM| =k

is a sequence sg — §1 — ...Sk 2y Sk+1 22 such that
o The first k steps are discrete and initialize the top-level
modes of A.
o for every i > k, one of the following holds:
— the 4" step is a continuous step, in which every mode
takes part, or
— the i** step is a discrete environment step, or
— the i*" step is a discrete step by one of the modes and
the private variables of all other modes are unchanged.
Note that environment steps in agents and in modes are
different. In an agent, an environment step may contain
only discrete steps, since all agents participate in every
continuous step. The environment of a mode can engage
in a number of continuous steps while the mode is inactive.
A trace of an agent A is an execution of A, projected onto
the set of its global variables. The denotational semantics
of an agent consists of its set of global variables V;; and its
set of traces L4.
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Fig. 5. Compositionality rules for modes

Trace semantics for modes and agents can be related to
each other in an obvious way. Given an atomic agent A
whose behavior is given by a mode M, we can obtain a trace
of A by taking a trace of M and erasing the information
about the control points from it.

C. Compositionality Results

As shown in [17], our semantics is compositional for both
modes and agents as follows. First, the set of traces of a
mode can be computed from the definition of the mode
itself and the semantics of its submodes. Second, the set
of traces of a composite agent can be computed from the
semantics of its sub-agents.

Mode Refinement. The trace semantics leads to a
natural notion of refinement between modes. A mode M
and a mode N are said to be compatible if M.V, = N.V,,
M.E=N.FE and M.X=N.X, i.e., they have the same global
variables and control points. For two compatible modes
M and N, we say that M refines N, denoted M <N, if
Ly CLy, i.e., every trace of M is a trace of V.

The refinement operator is compositional with respect to
the encapsulation. If, for each submode N; of M there is a
mode N such that N; < N/, then we have that M < M’,
where M’ is obtained from M by replacing every N; with
N/. The refinement rule is explained visually in Figure 5,
left.

A second refinement rule is defined for contexts of modes.
Informally, if we consider a submode N within a mode M,
the remaining submodes of M and the transitions of M can
be viewed as an environment or mode context for N.

As with modes, refinement of contexts is also defined
by language inclusion and is also compositional. If a con-
text C7 refines another context Ca, then inserting modes
My, ..., My into the two contexts preserves the refinement
property. A visual representation of this rule is shown in
Figure 5, right. Precise statements of the results can be
found in [17].

Compositionality of agents. An agent is, in essence,
a set of top level modes that interleave their discrete tran-
sitions and synchronize their flows. The compositional-
ity results for modes lift in a natural way to agents too.
The operations on agents are compositional with respect
to refinement. An agent A and an agent B are said to
be compatible if AV, = B.V,. Agent A refines a com-
patible agent B, denoted A<B, if LyCLg. Given com-
patible agents such that A<B,A;<B; and A2=Bs, let
Vi = {z1,...,zn}, V2 = {y1,...,yn} be indexed sets of
variables with Vi C AV and let V, C A.V. Then

A\{Va} 2 B\{Va}, AW1 =
Ai||A2 < Bi||B>

V2] X B[V := V3] and

V. ANALYSIS

Since CHARON models have a precise semantics, they can
be subjected to a variety of analyses. In this section, we
give a brief overview of our ongoing research efforts in for-
mal analysis methods for hybrid systems. These include
new techniques in accurate event detection for simulation,
efficient simulation, reachability analysis to detect viola-
tions of safety requirements, and abstraction methods for
enhancing the applicability of analysis techniques.

A. Simulation Techniques

Numerical simulation is an important tool for designing
and analyzing many types of control systems, including
hybrid systems. In addition to pure simulation, numerical
approximation techniques are increasingly being used in
reachability computations, verification and other forms of
automated analysis [33], [36], [40].

All numerical simulators operate based on some assump-
tions about the nature of the systems being simulated. The
degree to which the system adheres to these assumptions
determines how accurate the results are and what compu-
tational effort is required to generate them. Traditional
numerical integration techniques typically make assump-
tions that tend to be violated by hybrid system models.

In addition, the hierarchical structure of the models
yields the following two observations. Often, high level
modes have very slow changing dynamics while low-level
detailed models may possess fast changing dynamics. Mul-
tiple agents in a model may be decoupled in the continuous
sense, yet interact through discrete messaging. Both obser-
vations may be used to increase efficiency of simulators.

Therefore, novel simulation techniques, specific to hierar-
chical hybrid systems are warranted. The need for special-
ized simulation tools has been recognized to some degree in
the literature [41], [42]. Several hybrid system simulators
have been introduced (see for example Modelica [43], ABA-
CUSS [44], 20-sim [45], SHIFT [22] and x [46] as well as
others reviewed in [42]). Most of the previous research has
focused on properly detecting and locating discrete transi-
tions, while largely ignoring the remaining issues. In this
section, we describe three techniques that exploit the hier-
archical structure of hybrid system models to provide in-
creased accuracy and efficiency during simulation.

A.1 Accurate Event Detection

The problem of accurately detecting and localizing the
occurrence of transitions when simulating hybrid systems
has received an increased amount of attention in recent
years. Formally, the event detection problem is posed as
follows. Given a system

. [Mi(s), ifg(s) <O
T { fM2(s), if g(s) >0, (3)

where the mode M € {M;,M2} and s € Qp.y, is the
continuous (or data) state, one would like to simulate the
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Fig. 6. Cases 1 and 2 illustrate situations in which naive simulators
can fail to detect transitions by selecting integration points which
completely “miss” the guard set; Case 3 depicts a situation in which
even sophisticated methods fail, when the event occurs near a region
where the differential equation has a singularity at which the right
hand side cannot be evaluated.

flow of s according to fM* until the first time, ¢/, that
the event g(s(t')) = 0 occurs. We assume that initially
M = M; meaning that f™ is the active flow. Additionally
we assume that the guard g(s) < 0 is true initially.

It is generally agreed that any algorithm which addresses
this problem should possess the following attributes:

1. the algorithm should be guaranteed to detect an event
if one occurs, and guaranteed to not return false positives;
2. if more than one event occurs in a given time interval,
the algorithm ought to be capable of determining and re-
porting the first event;

3. once it is determined that an event has occured, the
algorithm should be able to localize precisely the time, ',
at which it occured; and

4. provided all of the above criteria are fulfilled, the algo-
rithm should be as efficient as possible.

Early event detection methods, such as [47], [48], [49],
[50], lack rigor, and are not guaranteed to correctly de-
tect an event in many situations. More recent approaches,
see [51], [52] for example, satisfy the first three objectives in
most situations while being reasonably efficient. However,
a situation in which nearly all current simulators fall short
is when switches occur near model singularities. Since the
step-size selection scheme for the integration is typically
independent of the event detection algorithm, it is entirely
possible that the integrator will take a step into the region
where fMi(z) is undefined. If the particular integration
method has an intermediate step which requires evaluat-
ing the derivative at this state inside the singular region,
a floating point exception is generated and the simulation
fails abruptly. Some of these problematic situations are
illustrated in Fig. 6.

We have developed a method [53] which is guaranteed to
detect enabling of all transitions, including those occuring
near singular regions. We attempt to overcome this prob-
lem by treating the event detection problem as a control
system design problem. We consider the continuous dy-
namics of the system and the numerical integration method
(we use Linear Multistep Methods - see [54] for further de-
tails):

m
ski1 = sk + () Bjfr—ji1} (4)
7j=1
as our collective dynamic system, where ty, is the time of the

kth simulation step, sj is the value of the state at t;, h =
tk+1 — ty, is the simulation step size, and 377", fB; fr—j41 is
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Fig. 7. The simulation takes successively smaller steps to properly
locate the point at which the vehicle clips the corner.

some weighted combination of past values of the derivative
which approximates the flow on [tg, tg+1]-

Returning to our control system analogy, the integra-
tion step size h is treated as an input and the value of the
transition guard, gr = g(sx), or switching function is the
output. The task at hand is to integrate the ordinary differ-
ential equation (ODE) until the boundary of the guard set
is reached, taking care to never evaluate the right hand side
of the ODE inside the guard set. In terms of our control
system analogy the problem can be rephrased as: design
a feedback law that zeros the output with no overshoot.
The resulting solution is essentially an Input/Output Lin-
earization in discrete time. For a linear guard the output
dynamics would be

6 m
Grt1 = gk + ha—i{z Bjfe—j+1} ()
7j=1

selecting the step size, h, as

(v = Dgk
h =
(T Bifi i} (6)

results in equation (5) appearing as gx+1 = Ygr. By se-
lecting the constant 0 < v < 1 we are ensured g — 0
while maintaining g < 0. Thus the simulation settles to
the transition surface without overshooting it and crossing
into the singular region. This technique is illustrated in
Fig. 7 where a vehicle is trying to go around a corner and
the simulation must detect if it clears the corner. One can
see how the simulation converges onto the exact point at
which the collision occured.

A.2 Multi-Rate Simulation

Many systems, especially hierarchical ones, naturally
evolve on different time scales. For example the center
of mass of an automobile may be accelerating relatively
slowly compared to the rate at which the crank shaft an-
gle changes; yet, the evolution of the two are intimately
coupled. Despite this disparity, traditional numerical inte-
gration methods force all coupled differential equations to
be integrated using the same step size. The idea behind
multi-rate integration methods [55], [56] is to use larger



step sizes for the slow changing sets of differential equa-
tions and smaller step sizes for the differential equations
evolving on the fast time scale. Such a strategy increases
efficiency without compromising accuracy. Areas of appli-
cation include simulating integrated circuits and molecular
and stellar dynamics [57], [58], [59]. Despite the seemingly
natural connection, they have never previously been used
in hierarchical hybrid systems simulation. In [60] we in-
troduce a multi-rate algorithm for simulating hierarchical
hybrid systems.

A.3 Multiagent Simulation

Multiagent hybrid systems are sets of interacting hybrid
systems. In the case of the automated highway example,
each vehicle may be modeled as an individual agent, how-
ever one may like to consider the dynamics of an entire
group of vehicles collectively to see how they interact. The
continuous dynamics of each vehicle is physically decoupled
from that of the other agents and typically they operate
independently. However certain important discrete events
may depend on the state of two or more agents. Examples
of this would be when two cars come dangerously close,
one car informs a group of vehicles that it is merging into
the platoon, etc. Most multi-agent systems of this form,
when modeled in CHARON, have the following mathemati-
cal structure

y = fyy) (8)
g(z,y) < 0 (9)

where z and y are the continuous states of agent 1 and
agent 2, their dynamics are given by the flows f, : R* — R”
and fy, : R™ — R™, and the predicate g(z,y) < 0
guards a transition for one or both agents. Note that each
agent’s ODE’s are decoupled; however, coupling is intro-
duced through the guards.

From the point of view of simulating the continuous dy-
namics, it is not necessary to synchronize the integration
rates of the two cars since they are decoupled. Each set
of ODE’s should maximize the trade-off between accuracy
and efficiency by selecting the largest possible integration
step size which is able to recreate that agents’ dynamics
within some acceptable user-specified error tolerance. Un-
fortunately, properly detecting the occurrence of events,
g(z,y) = 0, requires that the value of the state be reported
in a synchronized fashion. Traditionally simulators com-
pute the best step size for each agent, and then take the
minimum as a global step size. This can result in significant
inefficiencies.

Our goal is to simulate each agent with a different step
size while still ensuring proper event handling. The idea
is to allow the simulation for each agent to proceed inde-
pendently when no events are about to occur. Only when
events seem likely do we adaptively select the step sizes
to bring all of the agents into synchronization to properly
detect the event.

In the case of N-agents our approach to this problem,
reported in [61], is to define N local clocks, t1,...tn and
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Fig. 8. The trajectories of the two cars in the plane.

N step sizes hq, ..., hy, one for each agent. The step sizes
are selected based on the system dynamics in such a way as
to simultaneously synchronize the local clocks and detect
the event using the control theoretic technique of Input-
Output Linearization.

Step Sizes

Time

Fig. 9. Step sizes used for the two cars depicted in Figure 8. The step
sizes h1 and hy are selected independently away from the constraint
but are brought into synchronization when an event is impending.

Figures 8 and 9 illustrate how the simulation for two
agents might proceed. Figure 8 shows the trajectories of
the two cars. The simulation tries to detect when the cars
collide. Figure 9 displays how the step sizes are selected in-
dependently throughout most of the simulation.When the
system approaches an event, the local clocks automatically
synchronize.

A.4 Distributed Simulation

The main idea behind distributed simulation is to get
speedup by utilizing multiple computing resources since
simulations of complex systems are normally very slow.
Distributed simulation techniques are categorized as con-
servative or optimistic based on how local clocks are syn-
chronized. If the local clock of the agent always advances
and does not go backward, it is called conservative simu-
lation; otherwise, it is called optimistic simulation. Con-
servative simulation techniques ensure that the local clock
l. of the agent either advances or stops, but does not roll-
back. In optimistic simulation, the focus is to exploit pos-
sible parallelism as much as possible by allowing each agent
to run at a different speed without the guarantee that no
event occurs between t; and ¢ty when its local clock [, is
advanced from ¢; to t2. If an event e that occurred at time
t. gets recognized by the agent at t,, where ¢, > t., the
simulator provides a rollback operation by restoring the lo-
cal clock /. to an earlier time such that the event e can be



handled if and when it occurs. Note that the event e may
not occur at all if rollbacks are propagated to other agents
in such a way that the event e becomes no longer possible.

Our approach to simulate hybrid systems in a distributed
fashion is to utilize more computing resources by exploiting
inherent modularity of systems described in CHARON. By
modularity, we mean two things. One is behavioral mod-
ularity captured by mode and the other is architectural
modularity by agent. One way to exploit mode-level mod-
ularity within a single agent is to use multiple rates for the
simulation of the same agent as described in V-A.2. An-
other way is to distribute atomic agents to exploit agent-
level modularity. When the agents are distributed, they
need to synchronize to update their states as the agents
share information. Here, the challenge is how to reduce
synchronization overheads among distributed agents. We
briefly describe our conservative algorithm and optimistic
algorithms.

In a conservative approach, we decompose functions into
sub-functional blocks and the simulator allows the agent
to execute the next block only when all the agents com-
plete the current block. Although our conservative ap-
proach allows to simulate hybrid systems, the disadvantage
is that overhead resulting from communications degrades
the possible performance gain from distributing computa-
tions. Thus, we can get speedup only in simulating very
computation-oriented hybrid systems. Qur optimistic sim-
ulation algorithms are to address the overhead problems.
The main features of the algorithms are as follows. First, to
reduce communication overhead, we let agents synchronize
just before the new value of a shared variable is necessary
instead of communicating every update round. Second, to
reduce computation overhead due to numerical integration,
we simulate the agent with its approximated polynomial
dynamics and resolve the possible misses of events with a
rollback operation. This allows each agent to execute its
computation without integrating the shared variables con-
trolled by other agents. Our approach is optimistic in the
sense that each agent goes forward even when there is no
guarantee that their clocks do not have to go backward.

A.5 Case Study

We now consider simulation of the platoon controller un-
der normal conditions. Figures 10-12 are snapshots of the
CHARON plotter and show the simulation results for the
following scenario. Initially, the distance between the two
platoons is large, and the platoon i is moving faster than
the platoon in front (i — 1) and is therefore closing the gap.
We let the velocity of the platoon in front be a sinusoidal
function of time starting at an initial value 20. One can
see from the figures that the controller of platoon i, ini-
tially in the mode “track optimal velocity”, first decreases
the gap between the two platoons by accelerating. When
its distance to the preceding platoon becomes small, the
controller slowly decelerates and switches to mode “track
velocity of previous car” approximately at time 8.2. The
controller then tries to follow the platoon in front at some
constant distance. More simulation trace plots of this ex-
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ample can be found in [6].
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Fig. 10. The distance d; between the two platoons.
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Fig. 11. The acceleration a; of the platoon 3.
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Fig. 12. The velocity of the platoon ¢ and the preceding platoon
(¢ — 1) (the platoon ¢ moves faster).

B. State-Space Ezploration Techniques
B.1 Exact Reachability using Requiem

Formal verification of safety requirements of hybrid sys-
tems requires the computation of reachable states of contin-
uous systems. Requiem is a Mathematica package which,
given a nilpotent linear differential equation and a set of
initial conditions, symbolically computes the exact set of
reachable states. Given various classes of linear differen-
tial equations and semi-algebraic sets of initial conditions,
the computation of reachable sets can be posed as a quan-
tifier elimination problem in the decidable theory of reals
as an ordered field [62]. Given a nilpotent system and a
set defined by polynomials inequalities, Requiem auto-
matically generates the quantifier elimination problem and
invokes the quantifier elimination package in Mathematica



4.0. If the computation terminates, it returns the quanti-
fier free formula describing the reachable set. More details
can be found in [62]. The entire package is available at
www.seas.upenn.edu/hybrid/requiem.html.

Parametric analysis using Requiem. We demon-
strate the use of Requiem on the platoon controller de-
scribed earlier. The experimental nature of the current
quantifier elimination package makes it impossible to apply
it to the system described by Equation (1). We thus sim-
plify the controller with equivalent dynamics, which con-
trols the acceleration of the platoon i instead of its deriva-
tive. This approximation results in the three dimensional
system described by

i =

Vi—1 — V4
Vi—1 = Gj—1 (10)
’l')i = u

We treat the acceleration of the preceding platoon a; 1
as a parametric disturbance and control the acceleration
v; of the following platoon. The problem is to find the
set of conditions on the parameter set {a;_1,b,c} and the
state variables, which would lead to a collision (d; < 0)
when we apply a control u of the form bt + ¢ where b
and c¢ are integer constants. We use Requiem’s para-
metric backward reachability function to obtain the quan-
tifier free formula. By giving specific values to the pa-
rameters and initial conditions, we can see whether the
formula reduces to true or false. For example, we can
prove the expected result that when the vehicles are
started close to each other (d = 1) and the control pa-
rameters b and ¢ are positive, collision is unavoidable,
whereas if b and ¢ are negative, collision does not oc-
cur. The entire example and the output is available at
www.seas.upenn.edu/hybrid/requiem/ReqIEEE.html.

B.2 Predicate Abstraction

In the world of program analysis, predicate abstraction
has emerged to be a powerful and popular technique for
extracting finite-state models from complex, potentially in-
finite state, discrete systems (see [63], [64], [65], [66] for a
sampling of this active research area). A verifier based on
this scheme requires three inputs, the (concrete) system to
be analyzed, the property to be verified, and a finite set of
boolean predicates over system variables to be used for ab-
straction. An abstract state is a valid combination of truth
values to the boolean predicates, and thus, corresponds to
a set of concrete states. There is an abstract transition
from an abstract state A to an abstract state B, if there is
a concrete transition from some state corresponding to A
to some state corresponding to B. The job of the verifier
is to compute the abstract transitions, and to search in the
abstract graph looking for a violation of the property. If
the abstract system satisfies the property, then so does the
concrete system. If a violation is found in the abstract sys-
tem, then the resulting counter-example can be analyzed to
test if it is a viable execution of the concrete system. This
approach, of course, does not solve the verification problem
by itself. The success crucially depends on the ability to
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identify the “interesting” predicates, either manually or by
some automated scheme, and on the ability of the verifier
to compute abstract transitions efficiently. Nevertheless, it
has led to opportunities to bridge the gap between code
and models and to combine automated search with user’s
intuition about interesting predicates. Tools such as Ban-
dera [67], SLAM [68], and Feaver [69] have successfully
applied predicate abstraction for analysis of C or Java pro-
grams.

Inspired by this trend, we develop algorithms for invari-
ant verification of hybrid systems using discrete approxima-
tions based on predicate abstractions. Consider a hybrid
automaton with n continuous variables and a set L of lo-
cations. Then the continuous state-space is L x R™®. For
the sake of efficiency, we restrict our attention where all
invariants, switching guards, and discrete updates of the
hybrid automaton are specified by linear expressions, and
the continuous dynamics is linear, possibly with uncertain,
bounded input. For the purpose of abstraction, the user
supplies initial predicates p; ... pr, where each predicate is
a polyhedral subset of R”. In the abstract program, the
n continuous variables are replaced by k discrete boolean
variables, one boolean variable b; for each predicate p;. A
combination of values to these k boolean variables repre-
sents an abstract state corresponding to a set of continuous
states, and the abstract state space is L x B¥. Our veri-
fier performs an on-the-fly search of the abstract system by
symbolic manipulation of polyhedra.

The core of the verifier is the computation of the tran-
sitions between abstract states that capture both discrete
and continuous dynamics of the original system. Comput-
ing discrete successors is relatively straightforward, and
involves computing weakest preconditions, and checking
non-emptiness of an intersection of polyhedral sets. The
implementation attempts to reduce the number of abstract
states examined by exploiting the fact that each abstract
state is an intersection of k linear inequalities. For com-
puting continuous successors of an abstract state A, we
use a strategy inspired by the techniques used in CHECK-
MATE [33] and d/dt[34]. The basic strategy computes the
polyhedral slices of states reachable from A at fixed times
r,2r,3r,... for a suitably chosen r, and then, takes the
convex-hull of all these polyhedra to over-approximate the
set of all states reachable from A. However, while tools
such as CHECKMATE and d/dt are designed to compute a
“sood” approximation of the continuous successors of A,
we are interested in testing if this set intersects with a new
abstract state. Consequently, our implementation differs
in many ways. For instance, it checks for nonempty inter-
section with other abstract states of each of the polyhedral
slices, and omits steps involving approximations using or-
thogonal polyhedra and termination tests (see [34]).

Postulating the verification problem for hybrid systems
as a search problem in the abstract system has many ben-
efits compared to the traditional approach of computing
approximations of reachable sets of hybrid systems. First,
the expensive operation of computing continuous succes-
sors is applied only to abstract states, and not to inter-



mediate polyhedra of unpredictable shapes and complexi-
ties. Second, we can prematurely terminate the computa-
tion of continuous successors whenever new abstract transi-
tions are discovered. Finally, we can explore with different
search strategies aimed at making progress in the abstract
graph. For instance, our implementation always prefers
computing discrete transitions over continuous ones. Our
early experiments indicate that improvements in time and
space requirements are significant compared to a tool such
as d/dt. A more detailed description of our predicate ab-
straction technique for hybrid systems can be found in [70].

Verification of the platoon controller using pred-
icate abstraction. To formally prove the safety prop-
erty of this longitudinal controller, we make use of the
reachability method using predicate abstraction. Here,
we focus only on two regions which are critical from a
safety point of view: “track optimal velocity” (vf < —10
and e; > —1m — €) and “track velocity of previous car”
(v§ < —10 and e; < —1m). We include a thickening param-
eter € > Om into the model to add non-determinism to it.
The two regions under consideration overlap allowing the
controller to either use the “track optimal velocity” con-
troller or the “track velocity of previous car” controller in
this e-thick region. Besides adding some non-determinism
to the model, it also provides improved numerical stabil-
ity to the simulation and reachability computation, as it is
numerically hard to determine the exact time at which a
switch occurs.

The respective control laws u; and us are as follows:

1 3 3 1 3 1
(50 = gdl + Z’Ui_l - (Z + g)\v)vi - 5ai - g)\p (11)
uy = dj +3v;1— (3 + )\v)v,- —3a; — )\p. (12)

Note that these regions correspond to situations where the
platoon in front moves considerably slower and, moreover,
the second region is particularly safety critical because the
inter-platoon distance is smaller than desired.

To construct the discrete abstract system, in addition
to the predicates of the invariants and guards we in-
clude some predicates over the distance variable to be
able to separate the bad region from the reachable set:
d; < 0,d; > 2,d; > 10,d; > 20. The total number
of initial predicates is 11. For the initial set specified as
20<d; <100 A 15 < w1 <18 A 20 < v; < 25, the tool
found 14 reachable abstract states and reported that the
system is safe. Note this property has been proven in [71]
using optimal control techniques for individual continuous
modes without mode switches. Here, we prove the property
for all possible behaviors of the controller.

VI. THE CHARON TOOLKIT

In this section we describe the CHARON toolkit. Writ-
ten in Java, the toolkit features an easy-to use graphical
user interface, with support for syntax-directed text edit-
ing, a visual input language, a powerful type-checker, sim-
ulation and a plotter to display simulation traces. The
CHARON GUI uses some components from the model
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Fig. 13. The visual input tool of CHARON. The arrows depict variable
renamings.

checker IMOCHA [72], and the plotter uses a package from
the modeling tool PTOLEMY [23].

The editor windows highlight the CHARON language key-
words and comments. Parsing on the fly can be enabled
or disabled. In case of an error while typing, the first erro-
neous token will be highlighted in red. Further, a pop up
window can be enabled that tells the user what the editor
expects next. Clicking one of the pop up options, the asso-
ciated text is automatically inserted at the current cursor
position. This allows the user not only to correct almost
all syntactic errors at typing but also to learn the CHARON
language.

The CHARON toolkit also includes a visual input lan-
guage capability. It allows the user to draw agent and
mode definitions at a given level of hierarchy. The visual
input tool is depicted in Figure 13, showing one level of
the platoon controller from Figure 1. By clicking on the
sub-agents, the user can explore the lower levels of hier-
archy. The interpreter of the visual input translates the
specification into text-based CHARON source code using an
intermediate XML-based representation.

Once a set of edited and saved CHARON language files
exists, the user can simulate the hybrid system. In this case
the CHARON toolkit calls the parser and the type checker.
If there are no syntactic errors, it generates a project context
that is displayed in a separate project window that appears
on the left hand side of the desktop, as shown in Figure 14,
which displays the same model as Figure 13.

The project window displays the internal representation
of CHARON in a convenient tree format. Each node in
the tree may be expanded or collapsed by clicking it. The
internal representation tree consists of two nodes: agents
and modes. They are initially collected from the associated
CHARON files.

A CHARON specification describes how a hybrid system
behaves over the course of time. CHARON’s simulator pro-
vides a means to visualize a possible behavior of the system.
This information can be used for debugging or simply for
understanding in detail the behavior of the given hybrid
system description.

The simulation methodology used in the CHARON
toolkit, which is depicted in Figure 15, resembles concepts
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Fig. 14. The editor frame on the right hand side of the CHARON
desktop and the corresponding project frame on the left.
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Fig. 15. The simulation methodology of CHARON

Simulator Plotter

in code generation from a specification. As CHARON al-
lows to write external Java source code the simulator needs
to be an executable Java program. CHARON has a set of
Java files that represent a core simulator. Given a set of
CHARON files, Java files are automatically generated which
represent a Java interpretation of the CHARON specifica-
tion of a hybrid system. They are used in conjunction with
the predefined simulator core files and the external Java
source code to produce a simulation trace.

The CHARON plotter allows the visualization of a simu-
lation trace generated by the simulator. It draws the value
of all selected variables using various colors with respect to
time. It also highlights the time that selected transitions
have been taken. The simulation results obtained in Fig-
ures 10-12 have been produced using the CHARON plotter.

In addition, the simulator checks assertions that are
placed in the CHARON model by the user. Assertions can
be added to any mode or agent in the model. They are
state predicates over the variables of the mode or agent
and are supposed to be true whenever the mode is active
or, for agents, always. If an assertion is violated during a
simulation, the simulator stops and the trace produced by
the simulator can be used to find the source of the violation.

More information on the CHARON toolkit, along
with a preliminary release, is available for free at
www.cis.upenn.edu/mobies/charon/.
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