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ABSTRACT. A hybrid system is a dynamical system with both discrete and continuous state changes.
For analysis purposes, it is often useful to abstract a system in a way that preserves the properties
being analyzed while hiding the details that are of no interest. We show that interesting classes of
hybrid systems can be abstracted to purely discrete systems while preserving all properties that are
definable in temporal logic. The classes that permit discrete abstractions fall into two categories.
Either the continuous dynamics must be restricted, as is the case for timed and rectangular hybrid
systems, or the discrete dynamics must be restricted, as is the case for o-minimal hybrid systems. In

this paper, we survey and unify results from both areas.

1. INTRODUCTION

Hybrid systems combine both digital and analog components, in a way that is useful for the analysis
and design of distributed, embedded control systems. Hybrid systems have been used as mathemat-
ical models for many important applications, such as automated highway systems [40, 50, 79], air
traffic management systems [49, 51, 74], embedded automotive controllers [12, 59], manufacturing
systems [64], chemical processes [28], robotics [6, 71], real-time communication networks, and real-
time circuits [53]. Their wide applicability has inspired a great deal of research from both control
theory and theoretical computer science [1, 2, 7, 9, 10, 29, 31, 52, 75].

Many of the above motivating applications are safety critical, and require guarantees of safe operation.
Consequently, much research focuses on formal analysis and design of hybrid systems. Formal analysis
of hybrid systems is concerned with verifying whether a hybrid system satisfies a desired specification,
like avoiding an unsafe region of the state space. The process of formal design consists of synthesizing
controllers for hybrid systems in order to meet a given specification. Both directions have received
large attention in the hybrid systems community, and the reader is referred to [3, 11, 23, 25, 33, 42,

55, 73] for expositions to much of the research in the field.

In this paper, we are interested in the formal analysis of hybrid systems. The formal analysis of
large scale, hybrid systems is typically a very difficult process due to the complexity and scale of the
system. This makes the use of computational or algorithmic approaches to the verification of hybrid
systems very desirable, whenever possible. We are therefore interested in developing computational

procedures which, given a hybrid system and a desired property, will verify in a finite number of
1
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steps whether the system satisfies the specification or not. Given a class of hybrid systems 7, and
a class of desired properties P, a class of verification problems is called decidable, if there exists a
computational procedure which, given any system H € H, and any property P € P, will decide in
a finite number of steps whether H satisfies P. Decidability is not an issue in the verification of
purely discrete systems modeled by finite state machines, since in the worst case verification can be
performed by exhaustively searching the whole state space. However, in the case of hybrid systems,
decidability is a central issue in algorithmic analysis, because of the uncountability of the state space.

The main focus of this paper is on identifying decidable verification problems for hybrid systems.

A natural way to show that a class of analysis problems is decidable, is the process of abstraction.
Given a hybrid system and some desired property, one extracts a finite, discrete system while pre-
serving all properties of interest. This is achieved by constructing suitable, finite and computable
partitions of the state space of the hybrid system. By obtaining discrete abstractions which are fi-
nite, and preserve properties of interest, analysis can be equivalently performed on the finite system,
which requires only a finite number of steps. Checking the desired property on the abstracted system
should be either equivalent to or sufficient for checking the property on the original system. Only
if no equivalent abstraction can be found, one may be content with a sufficient abstraction, where
checking the desired property on the abstracted system is sufficient for checking the property on the
original system [20].

In this paper, we focus on equivalent discrete abstractions of hybrid systems along with the classes
of properties they preserve. We show that there are many interesting classes of hybrid systems
which can be abstracted by finite systems for analysis purposes. Properties about the behavior of a
system over time are naturally expressible in temporal logics, such as Linear Temporal Logic (LTL)
and Computation Tree Logic (CTL) [26]. Preserving LTL properties leads to special partitions of
the state space given by language equivalence relations, whereas CTL properties are abstracted by
bisimulations. A detailed exposition to the use of various logics in hybrid systems can be found
in [23]. Similar concepts and constructions, but from a hierarchical control perspective, can be found
in [16, 61, 62, 63]. There is also a body of work on sufficient abstractions of hybrid systems, for
which the reader is referred to [18, 21, 34, 30, 60, 67, 70].

There are immediate obstacles due to undecidability. For example, in [37] it was shown that checking
reachability (whether a certain region of the state space can be reached) is undecidable for a very
simple class of hybrid systems, where the continuous dynamics involves only variables that proceed
at two constant slopes. These results immediately imply that more general classes of hybrid systems
cannot have finite bisimulation or language equivalence quotients. Therefore, our search for discrete
abstractions of hybrid systems is limited by this result. Given this limit, we show that hybrid systems

that can be abstracted fall into two classes. In the first class, the continuous behavior of the hybrid
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system must be restricted, as in the case of timed automata [5], multirate automata [4, 58], and
rectangular automata [37, 68]. In the second class, the discrete behavior of the hybrid system must

be restricted, as in the case of order-minimal hybrid systems [44, 45, 46].

In this paper, we present in a unified way all these results which collectively define a very tight
boundary between decidable and undecidable questions about hybrid systems. We do not focus on
complexity issues or the implementation of these algorithms by verification tools like KRONOS [24],
CosPAN [8], UrPAAL [48], and HYTECH [35]. It should be noted that, in practice, the algorithms
implemented by the above tools work directly on the original system, and do not construct an
equivalent finite abstraction first. However, the decidability results presented in this paper for finite
abstractions provide correctness and termination arguments for the algorithms implemented by the
tools [37, 38, 39]. Therefore, the approach described in this paper should be understood as theoretical

background underlying the implementations.

More specifically, in Section 2, we introduce the reader to the notion of transition systems which
should be thought of as graphs with a possibly infinite number of nodes (representing states) and
edges (representing transitions). Desired properties of transition systems will be expressed as for-
mulas in various temporal logics. We will review the important notions of language equivalences
and bisimulations of transition systems, along with temporal logic properties they preserve, namely,
Linear Temporal Logic and Computation Tree Logic. In Section 3, after a general definition of hybrid
systems, we describe the transition systems generated by our hybrid system model. This allows us
to apply the framework of Section 2 to the various classes of hybrid systems we consider in this
paper. We then immediately present some undecidability results, which provide a clear boundary
for applying the framework of Section 2. As a result, our search for decidable classes of hybrid
systems is limited by this boundary. This forces us to consider hybrid systems with either simple
continuous dynamics (Section 4), or simple discrete dynamics (Section 5). The latter are based on

various first-order logical theories. A brief introduction to first order logic is given in Appendix A.

2. TRANSITION SYSTEMS

Transition systems are graph models, possibly with an infinite number of states or transitions.

Definition 2.1 (Transition Systems). A transition system T = (Q,II, —, =, Qo) consists of:

A (possibly infinite) set Q of states,
A finite alphabet II of propositions,

A transition relation - C Q X @, and
A satisfaction relation |=C Q x II, and
A set Qg C Q of initial states.
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A state ¢ is predecessor of a state ¢o, and ¢o is a successor of ¢, written ¢ — ¢o, if the transition
relation — contains the pair (g1,92). A state ¢ satisfies a proposition m, written ¢ = =, if the
satisfaction relation |= contains the pair (g, 7). The transition system T is finite if the cardinality of
Q is finite, and it is infinite otherwise. We assume that every transition system is deadlock free, that

is, for every state g € ), there exists a state ¢’ € @ such that ¢ — ¢'.
A region is a subset P C () of the states. The sets of predecessor and successor states of P are
(2.1) Pre(P) = {¢q€@ | I3pe P.q— p}
(2.2) Post(P) = {qe€@ | IpeP.p—q}

The set of states that are accessible from P in two transitions is Post(Post(P)), and is denoted
Post?(P). In general, Post'(P) consists of the states that are accessible from P in i transitions.
Pre!(P) is defined similarly. Then

(2.3) Pre*(P) = UPrei(P)
1€EN

(2.4) Post*(P) = | ] Post'(P)
1€EN

are the set of states that are backward and forward reachable from P, that is, accessible in any number
of transitions. In particular, Post*(Qy) is the set of reachable states of the transition system 7', and
is denoted by Reach(T).

A problem that is of great interest for transition systems is the reachability problem. Given a

proposition w € II, we write [7] = {q € Q | ¢ | 7} for the set of states that satisfy .

Problem 2.2 (Reachability Problem). Given a transition system T = (Q,II, —, =, Qo) and a propo-
sition m € 11, is Reach(T)N[x] #0 ¢

If the proposition 7 encodes an undesirable or unsafe region of the state space, then solving reacha-
bility corresponds to checking if the system is safe. In this paper, we are interested in computational
approaches to the solution of the reachability problem. The following algorithm computes the reach-

able space until either a state satisfying 7 is reached, or no more reachable states can be added.

Algorithm 1 (Forward Reachability Algorithm)

initially R := Qo;

while true do
if RN [x] # 0 then return “unsafe” end if;
if Post(R) C R then return “safe” end if;
R := RU Post(R)
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end while

A backward reachability algorithm which starts with [7] and checks whether Pre*([#]) N Qo # 0
can be similarly constructed. Such iterative algorithmic approaches to checking system properties
are guaranteed to terminate if the state space of the transition system is finite, since in the worst
case they can only visit a finite number of states. If the state space is infinite, then there is, in
general, no guarantee that the forward reachability algorithm will terminate within a finite number
of iterations of the loop. It could continue adding states forever without ever reaching the target
region [7] or a fixed point R such that Post(R) C R. In this paper, our goal is to find classes
of infinite transition systems whose analysis can be performed on equivalent but finite transition
systems. This is accomplished by constructing suitable finite quotients or discrete abstractions of the

original system in the sense that they preserve the properties of interest while omitting detail.

In addition to reachability, the desired system specification may require more detailed system prop-
erties. For example, one may wish to encode the requirement that a system failure is eventually
followed by a return to the normal mode of operation. More abstractly, if the transition system
visits a region Pj, encoding a failure, then eventually it will reach a region Ps, encoding normal
operation. Such properties can be encoded as formulas in temporal logic [65]. Formulas of tem-
poral logic are thus used to formally specify properties of systems, such as reachability, invariance,
or response properties. In the sequel, after defining the notion of quotient transition systems, two
kinds of equivalence relations, language equivalences and bisimulations, are considered along with
two popular temporal logics, Linear Temporal Logic (LTL) and Computation Tree Logic (CTL),

whose properties they preserve.

An equivalence relation ~ C ) X Q on the state space is proposition preserving if for all states p,q € Q
and all propositions © € II, if p ~ ¢ and p |= =, then ¢ = m; that is, the region [r] is a union of
equivalence classes. Given a proposition-preserving equivalence relation ~, the definition of quotient
transition system T/. is natural. Let @ /. denote the quotient space, that is, the set of equivalence
classes. For a region P, we denote by P/. the collection of all equivalence classes which intersect P.
The transition relation —. on the quotient space is defined as follows: for P;, P, € Q/., we have
P, —. P, iff there exist two states ¢ € P; and g9 € P, such that g; — go. The satisfaction relation
=~ on the quotient space is defined as follows: for P € Q/., we have P |=. = iff there exists a state
q € P such that ¢ = 7. The quotient transition system is then 7'/, = (Q/~,II, =, F~, Qo/~)-

2.1. Language equivalences preserve linear temporal properties. Let ¢ € @ be a state of
the transition system 7" = (Q,II, =, =, Qo). Given a state ¢ € Q, let II, = {w € I1 | ¢ |= 7} be
the set of propositions that are satisfied by g. A trajectory generated from ¢ is an infinite sequence

G0q192 - - - such that qo = ¢ and for all ¢+ € N, we have ¢; — ¢;41. This trajectory defines the word
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T4 g, g, . .. The set of words that are defined by trajectories generated from ¢ is denoted by L(g),
and called the language of the state g. The set |J 4€Q0 L(q) of words that are defined by trajectories

generated from initial states is denoted by L(T'), and called the language of the transition system 7.

Definition 2.3 (Language Equivalences). Let T be a transition system with state space Q. An equiv-

alence relation ~r on Q is a language equivalence of T if for all states p,q € Q, if p ~1 q, then
L(p) = L(q)-

Note that every language equivalence is proposition preserving. Every language equivalence ~p,
partitions the state space and gives rise to the quotient transition system 7'/.,, which is called a
language equivalence quotient of T. The formulas of Linear Temporal Logic (LTL) are interpreted over

words, and hence the properties expressed in LTL are preserved by language equivalence quotients.

Definition 2.4 (Linear Temporal Logic [66, 54]). The formulas of Linear Temporal Logic (LTL) are
defined inductively as follows:

e Propositions FEvery proposition w is a formula.

e Formulas If ¢1 and ¢o are formulas, then the following are also formulas:

P11V P2 —¢1 Odh Pl

The formulas of LTL are interpreted over infinite sequences of sets of propositions. Consider a
word w = TIgIl{II5..., where each II; is a set of propositions. The satisfaction of a proposition
7 at position ¢ € N of word w is denoted by (w,) = m (which should not be confused with the
satisfaction relation = which tells us whether a state satisfies a proposition), and holds iff = € II;.

We can then recursively define the semantics for any LTL formula as follows:

e (w,i) L ¢1 V ¢ if either (w,i) =L ¢1 or (w,i) L do

) L g1 if (w,4) ErL ¢

1) Fr Odr if (w,i +1) | ¢

,1) L ¢1de if there is a j > i such that (w,j) Er ¢2 and for all i < k < j, we have

7k) IZL ¢1

A word w satisfies an LTL formula ¢ if (w,0) =1 ¢. From — and V, which stand for negation and

L ] 51

(
(
*
(
(

~

g & &8 & €

disjunction, respectively, we can also define conjunction A, implication =, and equivalence <. The
temporal operators () and U are called the next and until operators. The ()¢ formula holds for a
word IIgII{I1; ... iff the subformula ¢; is true for the suffix ITI;1l5... The formula ¢1U ¢y intuitively
expresses the property that ¢; is true until ¢ becomes true. Using the next and until operators, we

can also define the following temporal operators in LTL:

e Eventually: O¢ = true Ug
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e Always: O¢ = =g

Therefore, ¢¢ indicates that ¢ becomes eventually true, whereas O¢ indicates that ¢ is true at all
positions of a word. The LTL formula OC¢ is true for words that satisfy ¢ infinitely often, whereas

a word satisfies CO¢ if ¢ becomes eventually true and then stays true forever.

A transition system T satisfies an LTL formula ¢ if all words in the language L(T') satisfy ¢. For
example, if 7 is a proposition encoding an unsafe region, then safety can be simply expressed as O—,
or equivalently, as =<On. The more elaborate requirement that visiting region [7;] will eventually be

followed by visiting region [m2], is expressed by the formula O(m; = Om).

Problem 2.5 (LTL Model Checking Problem). Given a transition system T and an LTL formula ¢,
determine if T satisfies ¢.

Since reachability can be expressed by an LTL formula of the form <, it is immediate that Problem
2.2 is contained in Problem 2.5. Given the definition of language equivalence, the following theorem

should come as no surprise.

Theorem 2.6 (Language equivalences preserves LTL properties). Let T be a transition system and
let ~1, be a language equivalence of T'. Then T satisfies the LTL formula ¢ if and only if the language

equivalence quotient T/, satisfies ¢.

Therefore, given a transition system 7" and an LTL formula ¢, we can equivalently perform the model
checking problem on 7'/..,. In general, language equivalence quotients are not finite. If, however,
we are given a finite language equivalence quotient of a transition system 7', then using the above
theorem, LTL model checking can be decided for T

2.2. Bisimulations preserve branching temporal properties. We now define a different way

of partitioning the state space along with a class of properties it preserves.

Definition 2.7 (Bisimulations [57]). LetT = (Q,II,—, =, Qo) be a transition system. A proposition
preserving equivalence relation ~p on Q is a bisimulation of T if for all states p,q € Q, if p ~B q,

then for all states p' € Q, if p — p', then there exists a state ¢’ € Q such that ¢ — ¢’ and p' ~p ¢'.

If ~p is a bisimulation, then the quotient transition system T'/.., are called a bisimulation quotient of
T. The crucial property of bisimulations is that for every equivalence class P € @/, the predecessor
region Pre(P) is a union of equivalence classes. Therefore, if Pi, P, € Q/~,, then Pre(P;) N P, is
either the empty set or all of P». It is not difficult to check that every bisimulation is a language

equivalence, but a language equivalence is not necessarily a bisimulation.
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Computation Tree Logic (CTL) is a temporal logic, which contrary to LTL, contains existential

quantifiers that range over trajectories.

Definition 2.8 (Computation Tree Logic [19, 69]). The formulas of Computation Tree Logic (CTL)

are defined inductively as follows:

e Propositions Fuvery proposition 7 is a formula.

e Formulas If ¢1 and ¢2 are formulas, then the following are also formulas:
P1Ve2 g IO¢ T0¢  ¢1TUP

The difference between the semantics of LTL and CTL is that LTL formulas are interpreted over
words, whereas CTL formulas are interpreted over the tree of trajectories generated from a given
state of a transition system. More precisely, the state gy of the transition system 7T satisfies the
proposition 7 if gy = 7, as usual, and the semantics of any CTL formula is then recursively defined

as follows:

* qo = ¢1V ¢g if either go = 1 or qo = b2
qo = —¢1 if qo [~ ¢
qo = 3 O ¢1 if there exists a state ¢; € @ such that go — ¢1 and ¢1 | ¢4

qo = 30¢; if there exists a trajectory goqiqs ... generated from g such that for all i > 0, we

have g; = ¢1
qo = $1U P9 if there exists a trajectory gogigs - - . generated from g such that g; = ¢2 for some

i >0, and for all 0 < j <4, we have ¢; = ¢1

As in LTL, we can define A, =, and < from — and V. The temporal operators 3(), 30, and I are
called possibly-next, possibly-always, and possibly-until, as they refer to the existence of a trajectory
from a given state. The possibly-eventually operator 3C¢ is defined as true AU ¢. Additional temporal

operators, which refer to all trajectories from a given state, can be defined as follows:

e Inevitably-next: VO ¢ =-30 —¢

e Inevitably-always: VO¢@ = -3O—¢

e Inevitably-eventually: VO¢ = —30-¢

e Inevitably-until: ¢;1VUpa = d1YWeha AV Pe

A transition system T satisfies an CTL formula ¢ if all initial states of T satisfy ¢. For example,
reachability can be captured in CTL by the formula 37, The CTL formula VO3IO7 encodes the
requirement that from every reachable state there must exist a trajectory leading to a state where 7

is satisfied.
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Problem 2.9 (CTL Model Checking Problem). Given a transition system T and a CTL formula
¢, determine if T satisfies ¢.

As in LTL model checking, Problem 2.2 is contained in Problem 2.9. However, Problem 2.5 is
incomparable to Problem 2.9, as there are requirements which can be expressed in LTL but not in
CTL (such as the requirement OO7), and there are requirements which can be expressed in CTL but
not in LTL (such as the requirement YO3<Om) [26]. The following theorem shows that bisimulations
preserve CTL properties.

Theorem 2.10 (Bisimulation preserves CTL properties [15]). Let T be a transition system and let
~p be a bisimulation of T. Then T satisfies the CTL formula ¢ if and only if the bisimulation
quotient T/, satisfies ¢.

Therefore, CTL model checking for 7' can be performed equivalently on 7'/, ,. Bisimulations can
be computed using the following algorithm. If the algorithm terminates within a finite number of
iterations of the loop, then there is a finite bisimulation quotient, and the algorithm returns a finite
partition of the state space which is the coarsest bisimulation (i.e., the bisimulation with the fewest

equivalence classes).

Algorithm 2 (Bisimulation Algorithm [14, 41])

initially Q/., = {[r] | = € II};

while there exist P, P’ € /., such that § C PN Pre(P') C P do
Py := PN Pre(P'); P, = P\ Pre(P');
Qleay = (Qfy \ {P}) U{P1, P2}

end while;

return Q/.,

Therefore, in order to show that CTL model checking can be decided for a transition system T, it
suffices to show that the bisimulation algorithm terminates on 7', and that each step of the algorithm
is computable or effective. This means that we must be able to represent (possibly infinite) state sets
symbolically, perform boolean operations, check emptiness, and compute the predecessor operation

Pre on the symbolic representation of state sets [33].

Even though LTL and CTL are incomparable, they are both sublogics of CTL*, a more expressive
temporal logic, and of a fixed point logic called the p-calculus [23, 26]. Bisimulations preserve not

only CTL properties according to Theorem 2.10, but also all CTL* and p-calculus properties [15].
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3. HYBRID SYSTEMS

In this section, we apply the framework presented in Section 2 to transition systems generated by
hybrid systems. We then immediately present various barriers for obtaining finite discrete abstrac-
tions for general hybrid systems, by showing classes of hybrid systems whose reachability problems

are undecidable. We start with a definition of hybrid systems.

Definition 3.1 (Hybrid Systems [3]). A hybrid system is a tuple H = (V,n, Xy, F, Inv, R) with the

following components:

e V is a finite set of locations, and n > 0 is a nonnegative integer called the dimension of H.
The state space of H is X =V x R". Each state thus has the form (£,x), where £ € V is the
discrete part of the state, and x € R" is the continuous part.

o Xy C X is the set of initial states.

o F: X — 2% assigns to each state (¢,z) € X a set F(¢,2) C R® which constrains the time
derivative of the continuous part of the state. Thus in discrete location £, the continuous part
of the state satisfies the differential inclusion & € F(£, x).

o Inv: V — 28" assigns to each location £ € V an invariant set Inv(£) C R® which constrains
the value of the continuous part of the state while the discrete part is £.

e RC X x X is a relation capturing discontinuous state changes.

We refer to the n individual coordinates of the continuous part R" of the state space as real-valued
variables, and we view the continuous part z = (z1,... ,2,) of a state as an assignment of values to

the variables.
Hybrid systems are typically represented as finite graphs with vertices V', and edges F defined by
E={0) eV xV|(tz),l ")) €R for some z € Inv(f) and z’' € Inv(¢')}.
With each vertex £ € V we associate an initial set defined as
Init(l) = {z € Inv(¢) | (¢,z) € Xo}-
With each edge e = (¢,¢') € E we associate a guard set defined as
Guard(e) = {z € Inv(¢) | ((4,z),(¢,z')) € R for some z' € Inv(¢')}
and a set-valued reset map
Reset(e,z) = {z' € Inv(l') | ((¢,z),(¢,2")) € R}.

Trajectories of the hybrid system H originate at any initial state (¢,z) € X and consist of con-
catenations of continuous flows and discrete jumps. Continuous flows keep the discrete part £ of

the state constant, and the continuous part evolves over time according to the differential inclusions
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z € F(4,z), as long as x remains inside the invariant set Inv(£). If during the continuous flow, it
happens that z € Guard(e) for some e = (£,£') € E, then the edge e becomes enabled. The state of
the hybrid system may then instantaneously jump from (¢, z) to any (¢,z') with ' € Reset(e, z).
Then the process repeats, and the continuous part of the state evolves according to the differential
inclusions & € F(¢',z). Even though Definition 3.1 places no well-posedness conditions on the class
of hybrid systems we consider, the results presented in this paper will assume strong restrictions

regarding the types of Xy, F', Inv, and R which are permitted.

Example 3.2. Figure 1 is a graphical illustration of a special kind of hybrid system, called a timed
automaton, which is a finite state machine coupled with real-valued clock variables. This timed
automaton consists of two locations #; and /43, and two variables x and y which always evolve in R
under the differential equations £ = 1 and y = 1. Therefore z and y simply measure time. The
initial state of the system is (/1,2 = 0,y = 0) and the invariant sets associated with the locations
£1 and 49 are z < 5 and y < 10, respectively. There are two edges, e; = (£1,%2) and ey = (£2,41).
The guard of e; is the set z > 4 and the reset map is R(e1,z,y) = {(10,3)}, whereas the guard and
reset of e are y > 9 and R(eq,z,y) = {(z,0)}, respectively. Notice that the identity map on the z
variable on the ey edge is suppressed from Figure 1. A simple reachability specification may require

that the timed automaton never enters the region {(¢2,z,y) | z > 7 and y < 6}.

x=0

\y:O

x>4 — x=10 y=3

A

FIGURE 1. A timed automaton

3.1. Rectangular, multirate, and timed automata. Consider the space R" with the variables
Z1,... ,Zn. A rectangular set is defined by a conjunction of linear (in)equalities of the form z; = c,
where = is one of <,<,=,>,>, and ¢ € Q. For a rectangular set B, let B; be its projection onto
the 4-th coordinate. Thus a rectangular set B C R" is of the form B = By X --- X B,,, where each

B; is a bounded or unbounded interval.

Definition 3.3 (Rectangular Automata [37]). A rectangular automaton is a hybrid system that sat-

isfies the following constraints.
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e For every location £ € V, the sets Init(€) and Inv(£) are rectangular sets.

e For every location £ € V, there is a rectangular set B¢ such that F(£,z) = B* for all z € R".

e For every edge e € E, the set Guard(e) is a rectangular set, and there is a rectangular set B®
and a subset J¢ C {1,... ,n} such that for all z € R",

Reset(e,z) = {(z},... ,z)) € R" | for all 1 <i <, if i € J® then z} € B else x, = x;}.

Therefore, in a rectangular automaton, the derivative of each variable stays between two fixed bounds,
which may be different in different locations. This is because in each location ¢, the differential
inclusions are constant and coordinate-wise decoupled, that is, z; € Bf for all 1 <7 < n. With each
discrete jump across an edge e, the value of a variable z; is either left unchanged (if i ¢ J¢), or reset
nondeterministically to a new value within some fixed, constant interval B (if ¢ € J¢). An example

of a rectangular automaton is shown in Figure 2.

A rectangular automaton is initialized if for every edge e = (£,¢') € E and all 1 < 7 < n, if
Reset(e, z); = z;, then F(¢',z); = F(£,z);. In other words, if after a discrete jump the bounds on
the derivative of a variable change, then its value must be nondeterministically reset (“reinitialized”)

within a fixed interval. The rectangular automaton of Figure 2 is initialized.

Definition 3.4 (Multirate Automata [3]). A multirate automaton is a rectangular automaton that

satisfies the following constraints:

e For each location £ € V, the set Init(£) is either empty or a singleton set.
e For each edge e € E, the set B® is a singleton set.

e For each location £ € V, the set Bt is a singleton set.

Therefore, in a multirate automaton, each variable follows constant, rational slope, which may be

different in different locations. Multirate automata may or may not be initialized.

Definition 3.5 (Timed Automata [5]). A timed automaton is a multirate automaton such that B¢ =
{(1,1,...,1)} for each location £ € V.

Therefore, in a timed automaton, in every location each variable follows the constant slope 1, that is,
o; = 1 for all 1 <3 <n. BEach z; is thus referred to as a clock variable. Notice that timed automata

are initialized by definition, because the differential inclusion never changes.

3.2. Transition systems of hybrid systems. Let H = (V,n, Xy, F, Inv, R) be a hybrid system,
and let 3 be a finite set of subsets of R". The hybrid system H generates a transition system
Ty = (Q,1I,—, =, Qo) with respect to . Set Q = X =V xR" and Qp = Xp. Set I =V UZE,
that is, the propositions are the locations and the given sets in 3. For n € V, define (4, z) |= = iff
¢ =7, and for 7 € %, define (¢, z) |= 7 iff z € 7. Finally, define = = (Ueep —) U = as follows.
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FIGURE 2. A rectangular automaton

Discrete transitions: (£,z) > (¢',2') for e = (£,¢') € E iff € Guard(e) and z' € Reset(e, ).

Continuous transitions: (¢1,z1) N (b2, x9) iff £4 = £y and there exists a real § > 0 and a
differentiable curve z: [0,6] — R" with z(0) = z1, z(6) = =9, for all ¢ € [0,5] we have
z(t) € Inv(¢y), and for all ¢t € (0,6) we have £(t) € F(41,z(t)).

The continuous 7 transitions are time-abstract transitions in the sense that the time it takes to reach

one state from another is ignored.

Having defined the transition system of a hybrid system allows us to proceed with the conceptual
framework presented in Section 2, and determine language equivalence and bisimulation quotients
of hybrid systems. The next subsection presents some immediate barriers in obtaining such discrete

abstractions which are finite.

3.3. Undecidability barriers. A variable z; is a two slope variable if there exist k1,ko € Q such
that for all locations £ € V, either F(¢,z); = {k1} or F(¢,z); = {ko}. The rationals k; and ko are
the slopes of x;. The variable z; is a one slope variable if k; = ko. Note that a clock variable is a
one slope variable with slope k1 = k9 = 1. The following theorem presents an immediate obstacle in

obtaining finite discrete abstractions of hybrid systems.

Theorem 3.6 (Undecidability of uninitialized multirate automata [37]). Consider the class of mul-
tirate automata with n — 1 clock variables and one two slope variable with slopes k1 # ko. The

reachability problem (Problem 2.2) is undecidable for this class.

In other words, there is no computational procedure that takes as input any multirate automaton
H from the given class, and a proposition 7w, and determines if any trajectory visits a state that
satisfies w. The proof of the undecidability result proceeds by a reduction from the halting problem
for two counter machines, and can be found in [37]. Theorem 3.6 shows that initialization is a

necessary condition for decidability. An additional necessary condition is provided by the following
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theorem, which shows that any violation of rectangularity, namely the coupling variables, also leads

to undecidability.

Theorem 3.7 (Undecidability of coupling variables in multirate automata [37]). Suppose we gener-
alize the definition of multirate automata so to permit either (1) the intersection of rectangular guard
sets Guard(e) with inequalities of the form z; < x;, or (2) the intersection of rectangular invariant
sets Inv(e) with inequalities of the form x; < x;, or (3) reset maps of the form Reset(e,x); = x;, for
7 # 1. Consider a class of multirate automata which are generalized in one of these three ways, and
which have n — 1 clock variables and one slope variable with slope k # 1. The reachability problem

(Problem 2.2) is undecidable for this class.

Since the reachability problem is a special case of LTL and CTL model checking, it is clear from
Theorems 3.6 and 3.7 that Problems 2.5 and 2.9 are also undecidable for very restrictive classes
of hybrid systems. Consequently, it must be impossible to construct finite language equivalence or
bisimulation quotients for transition systems Ty, where H is a hybrid system of Theorem 3.6 or
3.7, and X = (.

The above negative results force us to consider hybrid systems with either simpler discrete dynamics
or simpler continuous dynamics, in order for the framework of Section 2 to be successful. In the next
two sections, we survey such results, which, in conjunction with Theorems 3.6 and 3.7, define a tight

boundary between decidability and undecidability for model checking of hybrid systems.

4. RESTRICTING THE FLOWS

In this section, we obtain discrete abstraction of hybrid systems with restricted continuous dynam-
ics. We first consider timed automata, which have finite bisimulation quotients of a very intuitive

structure.

4.1. Timed and multirate automata. A timed automaton H is defined by a finite graph (V, E),
a dimension n, and linear inequalities of the form z; ~ ¢, where ¢ € QQ, which define initial, invariant,
and guard sets, as well as reset maps. Even though the timed automata defined in Section 3.1 allow
rational constants in their definition, in this section we consider timed automata with only integer
constants. There is no loss of generality in this assumption, because a finite number of rationals
can always be rescaled to integers. Furthermore, we restrict the clock variables to range over the
nonnegative reals. There is also no loss of generality in this assumption, because every clock variable
of a timed automaton is bounded from below by initial sets and reset maps. Let C; be the largest
integer that z; is compared to in the definition of H. For example, in Figure 1, the largest integer
that z is compared to is 10 (in the reset map of e;), which is also the largest integer to which y is

compared (in the invariant set of £3).
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T24 6 corner points: e.g., {(0,1)}
1 14 open line segments: e.g., {(z1,z2) |0 < z1 =29 < 1}
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0 1 Z I

F1GURE 3. Equivalence classes of planar region equivalence

Given a nonnegative real € R>, let |z] stand for the floor function, let [z] stand for the ceiling
function, and let (x) stand for the fractional part of z; that is () = x — |z]. We define the following

equivalence relations on ]Rgﬂ and on X =V x ]Rgo, the state space of H.

Definition 4.1 (Region Equivalence [5]). Two vectors z = (z1,...,2n) andy = (y1,...,yn) in RE,

are region equivalent, written x ~® vy, if the following two conditions are satisfied:

e For all 1 < i <mn, we have either both |z;| = |yi| and [z;] = [yi] < Cy, or both [z;] > C; and
e For all 1 <i,j <n, if [z;] < Cj and [z;] < Cj, then (z:) < (z;) iff (yi) < (y;)-

Two states (£1,71) and (¢1,z2 in X are region equivalent, (f1,71) ~% (fa,x2), if both ¢4 = £y and
R

1~ 29,
Therefore two states of H are region equivalent if they agree on the discrete parts, on the integral
parts of all clock values, and on the ordering of the fractional parts of all clock values. The integral
parts of the clock values determine whether or not a particular clock constraint is met, whereas
the ordering of the fractional parts determines which clock will change its integral part first. For
example, if two clocks z and y are between 0 and 1 in a state, then an edge whose guard set is defined
by the clock constraint z = 1 can be followed by an edge which is guarded by the clock constraint
y = 1, depending on whether or not the current clock values satisfy z < y. Furthermore, since each
clock variable z; is never compared with constants greater than Cj, then the actual value of z;, once

it exceeds Cj, is of no consequence in determining the validity of any clock constraints.

Example 4.2. The nature of the equivalence classes defined by ~% can be best understood using
a planar example. Consider (z1,z2) € ]R2>0 with C7 = 2 and Cy = 1. The equivalence classes are
shown in Figure 3. Note that there are onfy a finite number of classes, at most n!-2"-II7_, (2C; + 2),
where n is the number of clock variables. Thus, the number of classes is exponential in the dimension
and in the size of clock constraints (each constant C; requires log C; bits for representation in a clock

constraint).
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If we are given a finite set 3. of rectangular sets, then we define the region equivalence relation Ng,z
on the states of the timed automaton H just like Ng, except that the constants C; are taken to
be maximal also with respect to the constants that define the sets in . The following is the main

theorem about timed automata.

Theorem 4.3 (Bisimulations of timed automata [5]). Let H be a timed automaton, and let ¥ be a
finite set of rectangular sets. Then the region equivalence relation ~§’E is a bisimulation of the

transition system Ty x.

Since the region equivalence relation N% s» has a finite number of equivalence classes, and the corre-
bl

sponding quotient transition system can be constructed effectively, we obtain the following corollary.

Corollary 4.4. The LTL and CTL model checking problems (Problems 2.5 and 2.9) can be decided
for timed automata, provided every proposition occurring in temporal formulas is either an automaton

location or a rectangular set.

The above result was the first successful extraction of a finite discrete abstraction from a hybrid
system, and has inspired much research in this direction along with the development of verification
tools.Consider as an immediate consequence of Theorem 4.3 the following extension to multirate

automata.

Theorem 4.5 (Bisimulations of initialized multirate automata [3]). Let H be an initialized multi-
rate automaton, and let X be a finite set of rectangular sets. Then the transition system Ty has a

finite bisimulation quotient, which can be constructed effectively.

The proof of Theorem 4.5 is based on rescaling the slope of each variable to 1, by appropriately
adjusting all initial, invariant, and guard sets, as well as rest maps. From the region equivalence of

the resulting timed automaton we obtain a bisimulation of the initialized multirate automaton.

Corollary 4.6. The LTL and CTL model checking problems (Problems 2.5 and 2.9) can be decided
for initialized multirate automata, provided every proposition occurring in temporal formulas is either

an automaton location or a rectangular set.

Notice that restricting ourselves to initialized multirate automata in Theorem 4.5 does not violate
the conditions of Theorems 3.6, by which multirate automata which are not initialized cannot, in
general, have a finite bisimulation quotient. Similarly, restricting ourselves to propositions which are

rectangular sets in Corollary 4.6 does not violate the spirit of Theorems 3.7.

4.2. Rectangular automata. Up to this point, the restricted classes of hybrid systems that we

have presented admit finite bisimulation quotients. In this section, we show that more general hybrid
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automata do not admit finite bisimulation quotients, but may admit finite language-equivalence

quotients, which are coarser quotients.

Theorem 4.7 (Language equivalences of initialized rectangular automata [37]). Let H be an ini-
tialized rectangular automaton, and let 32 be a finite set of rectangular sets. Then the transition

system Ty x has a finite language-equivalence quotient, which can be constructed effectively.

The main idea of the proof is to convert an initialized rectangular automaton to an initialized
multirate automaton, by replacing each variable x;, which satisfies a differential inclusion of the form
Z; € [ai, b;], by two variables named xi and z', which satisfy :1:5 = a; and £ = b;, respectively. The
variables mﬁ and z} keep track of the lower and upper bounds of z;. The initial, invariant, and guard
sets, as well as the reset maps must be adjusted accordingly. For example, if the guard set is defined
by z; < 3, then it is replaced by :z;ﬁ <3, and if 2} > 3 then z? is reset to 3. This conversion from the
rectangular to a multirate automaton is language preserving. Hence, from the finite bisimulation of
the initialized multirate automaton (Theorem 4.5) we can construct a finite language equivalence of

the original initialized rectangular automaton.

Corollary 4.8. The LTL model checking problem (Problem 2.5) can be decided for initialized rect-
angular automata, provided every proposition occurring in temporal formulas is either an automaton

location or a rectangular set.

The conversion from initialized rectangular automata to initialized multirate automata may not
preserve branching properties, such as those expressible in CTL. In general, initialized rectangular

automata do not admit finite bisimulation quotients.

Theorem 4.9 (Lack of finite bisimulation quotients for initialized rectangular automata [32]). There
exist an initialized rectangular automaton H and a finite set 32 of rectangular sets such that every

bisimulation of the transition system Tq s, has infinitely many equivalence classes.

In order to simplify the proof of the above theorem, we consider a slight extension of Definition 3.3

and allow more than one edge between a pair of locations.

Example 4.10. Consider the simple rectangular automaton H shown in Figure 4. The automaton
has only one location, £, is trivially initialized, and has two variables, z and y, which are allowed to
live on the unit square; that is, Inv(f) = {(z,y) € R2 |0 <z < 1and 0 < y < 1}. Furthermore,
Init(¢) = Inv(¢). Both z and y satisfy the differential inclusion & € [1,2] and y € [1,2]. There
are two edges from £ to itself, e; and e2, with Guard(e;) = Guard(e2) = Inv(£). Furthermore,
Reset(er, (z,y)) = {(z,0)} and Reset(ez, (z,y)) = {(0,y)}; that is, e; and e reset y or z to 0,
respectively. Let ¥ consist of the two rectangular sets defined by x = 1 and y = 1. Then the

bisimulation algorithm (Algorithm 2.2) does not terminate on the transition system Tq 5.
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Inv(l)— y=0

Inv(l) = x=0

FIGURE 4. An initialized rectangular automaton without finite bisimulation quotient

The classes of hybrid systems presented in this section are expressive enough to model many systems
arising in real-time communication networks, real-time circuits, as well as real-time software. Timed
automata allow us to model accurate clocks, and rectangular automata allow us to model clocks with
bounded drift. However, the continuous dynamics (flows) that can captured directly by rectangular
automata is rather limited for control applications, and generally involves approximations [36, 67]. In
order to capture more complicated continuous dynamics directly without violating the undecidability

results of Section 3.3, one needs to restrict the discrete dynamics (jumps) of a hybrid system.

5. RESTRICTING THE JUMPS

Our goal in this section is to apply the framework of Section 2 to hybrid systems with more com-
plicated continuous behavior. However, the following example shows that, even in the absence of

discrete dynamics, the bisimulation algorithm does not terminate.

Example 5.1. Consider the trivial hybrid system with only one discrete location ¢, no discrete

jumps, and let F be the linear vector field on R?
1 = 0.2 21+ x9
Lo = —x1+0.2:-29
Assume the partition of R? consists of the following three sets (see Figure 5):
P = {(z,0):0<z<4}
P, = {(z,0): -4 <z <0}
Py = R\ (PLUP)
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The trajectories of F' are spirals moving away from the origin. The first iteration of the algorithm
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FI1GURE 5. Bisimulation algorithm does not terminate

partitions P into Py = P, N Pre(P1) = {(z,0) : 21 <z < 0} and P, \ Pre(P;), where z; < 0 is the
z1-coordinate of the first intersection point of the spiral through (4,0) with P,. The second iteration
subdivides P; into P; = Py N Pre(Py) = {(z,0) : 0 < z < 29} and P; \ Pre(P;) where zo > 0
is the x1-coordinate of the next point of intersection of the spiral with P;. This process continues
indefinitely since the spiral intersects P; in infinitely many points, and therefore the algorithm does

not terminate. In fact, the bisimilarity quotient is not finite.

From the above example it is clear that the critical problem one must investigate is how the trajec-
tories of F'(¢,-) interact with the sets inside a single location £. This requires that the trajectories
of the vector field F(4,-) have nice intersection properties with such sets. Since the goal is to obtain
finite partitions, it will become important that we restrict the study to classes of sets with global
finiteness properties, for example, sets with finitely many connected components. Even though these
desirable properties are geometric in nature, they are captured by the notion of order-minimality

(o-minimality) from model theory.

5.1. O-Minimal Structures. In this section we provide a brief introduction to o-minimal structures
[77], and then use it to construct finite bisimulations of certain classes of hybrid systems. A brief
introduction to first-order logic can be found in Appendix A. More introductory material on first-
order logic can be found in [27, 76], and the use of various logics for hybrid systems is detailed

in [23].
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Definition 5.2 (O-Minimal Structure). A (model-theoretic) structure over the reals is called o-minimal
(order minimal) if every definable subset (with parameters) of R is a finite union of points and open

intervals (possibly unbounded).

For structures which extend (R, <,+,—,0,1), this is equivalent to checking the above property for
sets definable without parameters [56]. For example, consider the subset of the reals defined by
{z € R | p(x) > 0}, where p(z) is some polynomial. Then, since every polynomial has a finite
number of roots, the set where it is not negative is a finite union of points and intervals. This
finiteness property must hold for any definable set in the structure, {z € R | ¢(z)}, even if the

formula ¢(x) contains quantifiers.

The class of o-minimal structures over the reals is quite rich. In [72] it was shown that the structure
(R, <,+,—,-,0,1), admits elimination of quantifiers, by proposing an algorithm which given any
formula in (R, <, +, —,-,0,1) converts it to an equivalent formula without quantifiers. This, together
with an analysis of the sets definable by quantifier-free formulas shows that the structure is o-
minimal. Tarski was also interested in extending this result to (R, <,+,—,-,€%,0,1), where there
is an additional symbol in the language for the exponential function. While this structure does
not admit elimination of quantifiers, it was shown in [80] that this structure is o-minimal. Another
important extension is obtained as follows. Assume f is a real-analytic function in a neighborhood
of the cube [—1,1]" C R". Let f: R" — R be the function defined by

: n
Fa) = f(z) ifze[-1,1]
0 otherwise
We call such functions restricted analytic functions. These functions are useful to describe the behav-
ior of some periodic trajectories. For example, the functions sin and cos restricted to a period are suf-
ficient to define closed orbits of some linear systems. In [78], the structure (R, <, +, —, -, €%, {f},0,1),
which is an extension of (R, <,+,—,-,{f},0,1), was shown to be o-minimal. The following table
summarizes o-minimal structures over the reals along with some examples of sets and vector field

trajectories that are definable in these theories.

Table 1 : O-Minimal Structures
Structure ‘ Sample Definable Sets | Sample Definable Trajectories

R, <,4,—,0,1) Polyhedral sets Linear trajectories

R <,+,—,-0,1) Semialgebraic sets Polynomial trajectories

R, <,+,—,-€%,0,1) Semialgebraic sets Exponential trajectories

(

( ~

(R <,4+,—,{f},0,1) Subanalytic sets Polynomial trajectories
(

(

R, <,+,—,- €%, {f},0,1) | Subanalytic sets Exponential trajectories




DISCRETE ABSTRACTIONS OF HYBRID SYSTEMS 21

Based on the notion of o-minimality, the following class of hybrid systems is defined.
Definition 5.3 (O-Minimal Hybrid Systems). A hybrid system H is called o-minimal if

e for each £ €V, F(L,-) is a differential equation whose flow is complete (defined for all time)

e for each e € E, the reset map Reset(e,x) is a piecewise constant (with finite number of pieces)
but set valued map.

e for each £ € V and all edges e € E, the sets Inv(£), Init(£), and Guard(e), and the flow of

F(¢,-) are definable in the same o-minimal structure over the reals.

Note that o-minimal hybrid systems place a restriction on the discrete jumps, namely that every
time a discrete jump is taken, all states must be reinitialized, possibly nondeterministically. Notice,
however, that we do allow piecewise constant set valued maps, which can be used to overapproximate,
arbitrarily closely, useful reset maps like the identity map. A more detailed analysis of set valued
maps can be found in [22]. This restriction on the discrete dynamics along with the powerful structure
of o-minimal structures, allows us to prove the following theorem without violating the results of
Section 3.3. Even though the following theorem is proved in [44] for constant, set valued reset maps,

the proof can be easily adapted to handle piecewise constant, set valued resets.

Theorem 5.4 (Bisimulations of O-Minimal Hybrid Systems [44]). Let H be an o-minimal hybrid
system, and let X be a finite collection of sets definable in the same o-minimal structure. Then

the transition system Th s, has a finite bisimulation quotient.

Theorem 5.4 is appealing since it can capture hybrid systems with more complicated continuous
dynamics. To illustrate the continuous behavior that can be captured, we apply Theorem 5.4 for

each o-minimal structure of Table 1, and we provide examples of definable, o-minimal hybrid systems.

(R, <,+,—,0,1). The definable sets in this structure capture polyhedral sets whereas the definable
flows capture linear flows. In particular, it captures timed and multirate automata in the special
case where all reset maps are constant. Timed and multirate automata, in general, allow more

complicated reset maps, like the identity map, in their discrete jumps.

(R, <,+,—,-,0,1). In [72], it was shown that (R, <,+,—,-,0,1) is decidable. In fact, the deci-
sion procedure consisted of two parts: first an algorithm for eliminating quantifiers, and second an
algorithm for deciding quantifier free formulas. Because of these results, the definable sets with
parameters in this structure are the semialgebraic sets, which are defined as boolean combinations
of sets of the form {z : p(z) < 0} and {z : p(z) = 0} where p(z) is a polynomial. The definable flows
in this structure are semialgebraic. Therefore, the o-minimal hybrid systems corresponding to this

structure are hybrid systems H where all sets and flows are semialgebraic.
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