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Inference of Message Sequence Charts
Rajeev Alur, Kousha Etessami, Mihalis Yannakakis

Abstract— Software designers draw Message Sequence
Charts for early modeling of the individual behaviors they
expect from the concurrent system under design. Can they
be sure that precisely the behaviors they have described are
realizable by some implementation of the components of the
concurrent system? If so, can we automatically synthesize
concurrent state machines realizing the given MSCs? If, on
the other hand, other unspecified and possibly unwanted
scenarios are “implied” by their MSCs, can the software de-
signer be automatically warned and provided the implied
MSCs? In this paper we provide a framework in which all
these questions are answered positively. We first describe
the formal framework within which one can derive implied
MSCs, and then provide polynomial-time algorithms for im-
plication, realizability, and synthesis.

Keywords— Message sequence charts, requirements anal-
ysis, formal verification, scenarios, concurrent state ma-
chines, deadlock freedom, realizability, synthesis.

I. Introduction

Message Sequence Charts (MSCs) are a commonly used
visual description of design requirements for concurrent
systems such as telecommunications software [1], [2], and
have been incorporated into software design notations such
as UML [3]. Requirements expressed using MSCs have
been given formal semantics, and hence, can be subjected
to analysis. Since MSCs are used at a very early stage of de-
sign, any errors revealed during their analysis yield a high
pay-off. This has already motivated the development of al-
gorithms for a variety of analyses including detecting race
conditions and timing conflicts [4], pattern matching [5],
detecting non-local choice [6], and model checking [7], and
tools such as uBET [8], MESA [9], and SCED [10]. An
individual MSC depicts a potential exchange of messages
among communicating entities in a distributed software
system, and corresponds to a single (partial-order) execu-
tion of the system. The requirements specification is given
as a set of MSCs depicting different possible executions.
We show that such a specification can be subjected to an
algorithm for checking completeness and detecting unspec-
ified MSCs that are implied, in that they must exist in
every implementation of the input set.

Such implied MSCs arise because the intended behav-
iors in different specified MSCs can combine in unexpected
ways when each process has only its own local view of the
scenarios. Our notion of implied MSCs is thus intimately
connected with the underlying model of concurrent state
machines that produce these behaviors. We define a set of
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MSCs to be realizable if there exist concurrent automata
which implement precisely the MSCs it contains.

We study two distinct notions of MSC implication, based
on whether the underlying concurrent automata are re-
quired to be deadlock-free or not. Deadlocks in distributed
systems can occur, e.g., when each process is waiting to re-
ceive something that has yet to be sent. We give a precise
formalization of deadlocks in our concurrency framework.

Using our formalization, we show that MSCs can be stud-
ied via their linearizations. We then establish realizability
to be related to certain closure conditions on languages.
It turns out that, while arbitrary realizability is a global
requirement that is computationally expensive to check
(coNP-complete), safe (deadlock-free) realizability corre-
sponds to a closure condition that can be formulated locally
and admits a polynomial-time solution. We show that with
a judicious choice of preprocessing and data structures, safe
realizability can be checked in time O(k2n + rn), where
n is the number of processes, k is the number of MSCs,
and r is the number of events in the input MSCs. If the
given MSCs are not safely realizable, our algorithm pro-
duces missing implied (partial) scenarios to help guide the
designer in refining and extending the specification.

We first describe our results in the setting of asyn-
chronous communication with non-FIFO message buffers
between each pair of processes. In Section 8, we point out
how our results can be generalized to a variety of commu-
nication architectures in a generic manner.

Related Work

The formalization of MSCs using labeled partially-
ordered structures, or as Mazurckiewicz traces, has been
advocated by many researchers [4], [6], [17], and we follow
the same approach. Many researchers have argued that in
order to use MSCs in the automated analysis of software,
the information MSCs provide needs to be reconciled with
and incorporated into the state-based models of systems
used later in the software life-cycle, and consequently, have
proposed mechanical translations from MSC specifications
to state machines [11], [12], [13], [14], [15], [16], [17]. The
question of implication is closely related to this synthesis
question. In fact, we give a synthesis algorithm which is
in the same spirit as others proposed in the literature: to
generate the state-machine corresponding to a process P ,
consider the projections of the given scenarios onto pro-
cess P , and introduce a control point after every event of
process P . However, our focus differs substantially from
the earlier work on translating MSCs to state machines.
First, we are interested in detecting implied scenarios, and
in avoiding deadlocks in our implementations. Second, we
emphasize efficient analysis algorithms, and in particular,
present an efficient polynomial-time algorithm to detect
safely implied MSCs and solve safe realizability, avoiding
the state-explosion which typically arises in such analysis
of concurrent system behavior. Finally, we present a clean
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Fig. 1. Two seemingly “correct” scenarios, updating fuel amounts

language-theoretic framework to formalize these problems
via closure conditions. A rigorous mathematical treatment
of the synthesis problem has been developed independently
in [17]. Their formalization differs from ours in two im-
portant ways. First, in [17], the MSCs specify only the
communication pattern, but not the message content, and
the automata implementing the MSCs can choose the mes-
sage vocabulary. Second, the accepting conditions for the
communicating automata are specified globally, while in
our framework each automaton has its own local accepting
states. The main result of [17] shows how to construct a set
of communicating automata that generates the behaviors
specified by a regular collection of MSCs, and thus, in their
formalization, every finite set of MSCs would be realizable.
We believe that our definition, particularly, the accepting
states being local, is more suitable for distributed systems.

It is worth noting that inferring sequential state ma-
chines from example executions is a well-studied topic in
automata theory [18], [19]. In our setting, only “positive”
examples are given, but the executions are partially ordered
and we infer “distributed” implementations.

II. Sample MSC Inference

We motivate inference of missing scenarios using an ex-
ample related to serializability in database transactions
(see, e.g., [20]). Consider the following standard example,
described in the setting of a nuclear power plant. Two
clients, P1 and P2, seek to perform remote updates on
data used in the control of a nuclear power plant. In this
database the variable UR controls the amount of Uranium
fuel in the daily supply at the plant, and the variable NA
controls the amount of Nitric Acid. It is necessary that
these amounts be equal in order to avoid a nuclear acci-
dent. Consider the two MSCs in Figure 1 which describe
how distinct transactions may be performed by each of the
clients, P1 and P2. The “inc” message denotes a request
to increment the fuel amount by one unit, while the “dou-
ble” message denotes a request to double the fuel amount.
In the MSCs, we interpret the point where a message ar-
row leaves the time line of a process to be the instance
when the requested operation labeling the transition is is-
sued, and we interpret the point where a message arrives
at the time line of its destination process to be the instance
when the requested operation is acted on and executed.1 In
the first scenario, P1 first increments the amounts of both
ingredients, and then, P2 doubles the amounts of both in-
gredients. In the second scenario, first P2 doubles the two

1This interpretation is consistent with our concurrent state machine
interpretation of MSCs in the rest of this paper.
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Fig. 2. Implied MSCbad: Incorrect fuel mix

amounts, and then, P1 increments both the amounts. In
both scenarios, after both transactions have finished, the
desired property, equal amounts of uranium and nitric acid,
is maintained. However, these MSCs imply the possibility
of MSCbad in Figure 2. This is because, as far as each pro-
cess can locally tell, the scenario is proceeding according
to one of the two given scenarios. However, the scenario
results in different amounts of uranium and nitric acid be-
ing mixed into the daily supply, and in the potential for a
nuclear accident. Note that either of the MSCs in Figure 1
alone will not necessarily imply MSCbad, because in each
case the protocol could specify that client P1 updates the
fuel levels first, followed by P2, or vice versa.

III. Message Sequence Charts

In this section, we define message sequence charts, and
study the properties of executions definable using them.
Our definition captures the essence of the basic MSCs of
the ITU standard MSC’96 [1], and is analogous to the def-
initions of labeled MSCs given in [4], [7].

Let P = {P1, . . . , Pn} be a set of processes, and Σ be a
message alphabet. We write [n] for {1, . . . , n}. We use the
label send(i,j,a) to denote the event “process Pi sends the
message a to process Pj .” Similarly, receive(i,j,a) denotes
the event “process Pj receives the message a from process
Pi.” Define the set Σ̂S = {send(i, j, a) | i, j ∈ [n] & a ∈
Σ} of send labels, the set Σ̂R = {receive(i, j, a) | i, j ∈
[n] & a ∈ Σ} of receive labels, and Σ̂ = Σ̂S ∪ Σ̂R as the
set of event labels. A Σ-labeled MSC M over processes P
is given by:
1. a set E of events which is partitioned into a set S of
“send” events and a set R of “receive” events;
2. a mapping p : E 7→ [n] that maps each event to a process
on which it occurs;
3. a bijective mapping f : S 7→ R between send and receive
events, matching each send with its corresponding receive;
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Fig. 4. Degeneracy in MSCs

4. a mapping l : E 7→ Σ̂ which labels each event such that
l(S) ⊆ Σ̂S and l(R) ⊆ Σ̂R, and furthermore for consistency
of labels, for all s ∈ S, if l(s) = send(i, j, a) then p(s) = i
and l(f(s)) = receive(i, j, a) and p(f(s)) = j;
5. for each i ∈ [n], a total order ≤i on the events of pro-
cess Pi, that is, on the elements of p−1(i), such that the
transitive closure of the relation

≤ .= ∪i∈[n] ≤i ∪ {(s, f(s)) | s ∈ S}
is a partial order on E.

Note that the total order ≤i denotes the (visual) tem-
poral order of execution of the events of process Pi. The
requirement that ≤ is a partial order enforces the notion
that “messages cannot travel back in time”. Thus, an MSC
can be viewed as a set E of Σ̂-labeled events partially or-
dered by ≤. The partial order corresponding to the first
MSC of Figure 1 is shown in Figure 3.

Besides the above, we require our MSCs to satisfy an
additional non-degeneracy condition. We will say an MSC
is degenerate if it reverses the order in which two identical
messages sent by some process Pi are received by another
process Pj . More formally, an MSC M is degenerate if there
exist two send-events e1 and e2 such that l(e1) = l(e2) and
e1 < e2 and f(e2) < f(e1). To understand this notion,
consider the four MSCs in Figure 4. In both MSCI and
MSCII , P1 sends two a’s and P2 receives two a’s. The
receiving process has no way to tell which of the messages is
which, since the messages themselves are indistinguishable.
If one wants to distinguish the two MSCs, then one needs to
associate, e.g., time-stamps to the two messages. But then
we are really dealing with distinct messages, as in MSCIII

and MSCIV . In these scenarios, process P2 can clearly tell
the distinct messages apart, and we in general accept such
reorderings.2 Note that, the partial order on the events
induced by MSCI is more general than that induced by

2When dealing specifically with FIFO architectures, via the general
framework in section VIII, we will explicitly forbid crossing of the kind
in MSCIV as well.

MSCII , in that it allows strictly more possible interleaved
executions. Henceforth, throughout the rest of this paper,
MSCs refer to non-degenerate MSCs.

Given an MSC M , a linearization of M is a string over
Σ̂ obtained by considering a total ordering of the events
E that is consistent with the partial order ≤, and then
replacing each event by its label. More precisely, a word
w = w1 · · ·w|E| over the alphabet Σ̂ is a linearization of
an MSC M iff there exists a total order e1 · · · e|E| of the
events in E such that (1) whenever ei ≤ ej , we have i ≤ j,
and (2) for 1 ≤ i ≤ |E|, wi = l(ei).

Not all sequences of send’s and receive’s can arise as
legitimate linearizations of MSCs. For example, a message
received must already have been sent. What characterizes
the words that can arise as linearizations of MSCs? Let
#(w, x) denote the number of times the symbol x occurs
in w. Let w|i denote the projection of the word w that
retains only those events that occur on process Pi (that
is, events of type send(i,j,a) or receive(j,i,a)). The two
conditions necessary for a word to be in an MSC language
are the following:
Well-formedness. A word w over Σ̂ is well-formed if all
receive events have matching sends. Formally, a sym-
bol x ∈ Σ̂ is possible after a word v over Σ̂, if, either
x ∈ Σ̂S or x = receive(i, j, a) with #(v, send(i, j, a)) −
#(v, receive(i, j, a)) > 0. A word w is well-formed if for
every prefix vx of w, x is possible after v.
Completeness. A word w over Σ̂ is complete if all send
events have matching receives. More precisely, a well-
formed word w over Σ̂ is called complete iff for all pro-
cesses i, j ∈ [n] and messages a ∈ Σ, #(w, send(i, j, a)) −
#(w, receive(i, j, a)) = 0.
It is easy to check that every linearization of an MSC is
well-formed and complete. The converse also holds:

Proposition 1: A word w over the alphabet Σ̂ is a lin-
earization of an MSC iff it is well-formed and complete.

Proof: It is easy to verify that any linearization of an
MSC is well-formed and complete. For the other direction,
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given a well-formed and complete word w, we build from it
a canonical MSC, msc(w). msc(w) is build progressively
from prefixes of w, starting with the empty prefix. For a
prefix w′receive(i, j, a), we match the last receive in the
prefix with the first occurrence of send(i, j, a) in w′ which
is yet to be matched. By the fact that w is well-formed,
we know this can always be done. By the fact that w is
complete, we know that all sends will be matched with
corresponding receives. msc(w) will automatically be non-
degenerate, because we always match receive messages with
the first possible send message, so crossings on the same
message cannot occur. In fact, this is necessary because of
non-degeneracy, hence msc(w) is the unique nondegenerate
MSC with linearization w.

Given an MSC M , define the projection of M on the ith
process, denoted M |i, to be the ordered sequence of labels
of events occurring at process i in the MSC M . Define sim-
ilarly the projection w|i of a word w on the ith process to
be the subsequence of w that involves the send and receive
events of process Pi. Note that in the proof of Proposi-
tion 1, the canonical MSC msc(w) only depends on the
sequences w|i, and not on the their actual interleaving in
the linearization w. Since msc(w) is the only nondegener-
ate MSC with linearization w, it follows that:

Proposition 2: An MSC M over {P1, . . . , Pn} is uniquely
determined by the sequences M |i, i ∈ [n]. Thus, we may
equate M ∼= 〈M |i | i ∈ [n]〉.3 Likewise, a well-formed and
complete word w over Σ̂ uniquely characterizes an MSC
Mw given by 〈w|i | i ∈ [n]〉.
For an MSC M , define L(M) to be the set of all lineariza-
tions of M . Note that, by the proposition, any two differ-
ent MSCs have disjoint linearization sets. For a set M of
MSCs, the language L(M) is the union of languages of all
MSCs in M . We say that a language L over the alphabet Σ̂
is an MSC-language if there is a set M of MSCs such that
L equals L(M). What are the necessary and sufficient con-
ditions for a language to be an MSC-language? First, all
the words must be well-formed and complete. Second, in
the MSC corresponding to a word, the events are only par-
tially ordered, so once we include a word, we must include
all equivalent words that correspond to other linearizations
of the same MSC. This notion of equivalence corresponds to
permuting the symbols in the word while respecting the or-
dering of the events on individual processes and the match-
ing of send-receive events. This notion is formalized below.
Closure Condition CC1. Given a well-formed word w
over the alphabet Σ̂, its interleaving closure, denoted 〈w〉,
contains all well-formed words v over Σ̂ such that for all
i in [n], w|i = v|i. A language L over Σ̂ satisfies closure
condition CC1 if for every w ∈ L, 〈w〉 ⊆ L.
Note that CC1 considers only well-formed words, so match-
ing of receive events is implicitly ensured. Also, if a word is
complete, then so are all the equivalent ones. Now, the fol-
lowing theorem characterizes the calss of MSC-languages:

Theorem 3: A language L over the alphabet Σ̂ is an
MSC-language iff L contains only well-formed and com-
plete words and satisfies closure condition CC1.

Proof: The proof follows immediately from the fact
that one can recover uniquely an MSC M from its projec-

3Note that the MSC M is non-degenerate by assumption, and this
assumption is required.

tions M |i, as well as from w|i’s, where w is a linearization
of M (Proposition 2).

It is worth noting that CC1 can alternatively be formal-
ized using semi-traces over an appropriately defined inde-
pendence relation over the alphabet Σ̂ (see, for instance,
[21]).

We will find useful the notion of a partial MSC. A partial
MSC is given by a well-formed, not necessarily complete,
word v, or, equivalently, by the projections v|i of such a
sequence. We call an MSC M a completion of a partial
MSC v ∼= 〈v|i | i ∈ [n]〉, if v|i is a prefix of M |i for all i.

IV. Concurrent Automata

Our concurrency model is based on the standard buffered
message-passing model of communication. There are sev-
eral choices to be made with regard to the particular com-
munication architecture of concurrent processes, such as
synchrony/asynchrony and the queuing disciplines on the
buffers. We will show in section VIII that our results apply
in a general framework which captures a variety of alter-
native architectures. However, for clarity of presentation
in the main body of the paper, we fix our architecture to
a standard asynchronous setting, with arbitrary (i.e., un-
bounded and not necessarily FIFO) message buffers be-
tween all pairs of processes. We now formally define our
automata Ai, and their (asynchronous) product Πn

i=1Ai,
which captures their joint behavior.

As in the previous section, let Σ be the message alpha-
bet. Let Σ̂i be the set of labels of events belonging to pro-
cess Pi, namely, the messages of the form send(i, j, a) and
receive(j, i, a). The behavior of process Pi is specified by
an automaton Ai over the alphabet Σ̂i with the following
components: (1) a set Qi of states, (2) a transition relation
δi ⊆ Qi × Σ̂i × Qi, (3) an initial state q0

i ∈ Qi, and (4) a
set Fi ⊆ Qi of accepting states.

To define the joint behavior of the set of automata Ai,
we need to describe the message buffers. For each ordered
pair (i, j) of process indices, we have two message buffers
Bs

i,j and Br
i,j . The first buffer, Bs

i,j , is a “pending” buffer
which stores the messages that have been sent by Pi but
are still “in transit” and not yet accessible by Pj . The
second buffer Br

i,j contains those messages that have al-
ready reached Pj , but are not yet accessed and removed
from the buffer by Pj . Define QΣ to be the set of multi-
sets over the message alphabet Σ. We define the buffers as
elements of QΣ (FIFO queues, on the other hand, can be
viewed as sequences over Σ). Thus, for i, j ∈ [n], we have
Bs

i,j , B
r
i,j ∈ QΣ. The operations on buffers are defined in

the natural way: e.g., adding a message a to a buffer B
corresponds to incrementing the count of a-messages by 1.

We define the asynchronous product automaton A =
Πn

i=1Ai over the alphabet Σ̂, given by:
States. A state q of A consists of the (local) states qi

of component processes Ai, along with the contents of the
buffers Bs

i,j and Br
i,j . More formally, the state set Q is

×n
i=1Qi ×Qn2

Σ ×Qn2

Σ .
Initial state. The initial state q0 of A is given by having

the component for each process i be in the start state q0
i ,

and by having every buffer be empty.
Transitions. In the transition relation δ ⊆ Q × (Σ̂ ∪
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{τ})×Q, the τ -transitions model the transfer of messages
from the sender to the receiver. The transitions are defined
as follows:
1. For an event x ∈ Σ̂i, (q, x, q′) ∈ δ iff (a) the local states
of processes k 6= i are identical in q and q′, (b) the local
state of process i is qi in q and q′i in q′ such that (qi, x, q′i) ∈
δi, (c) if x = receive(j, i, a) then the buffer Br

j,i in state q
contains the message a, and the corresponding buffer in
state q′ is obtained by deleting a, (d) if x = send(i, j, a),
the buffer Bs

i,j in state q′ is obtained by adding the message
a to the corresponding buffer in state q, and (e) all other
buffers are identical in states q and q′.
2. There is a τ -labeled transition from state q to q′, iff
states q and q′ are identical except that for one pair (i, j),
the buffer Bs

i,j in state q′ is obtained from the correspond-
ing buffer in state q by deleting one message a, and the
buffer Br

i,j in state q′ is obtained from that in q by adding
that message a.
Accepting states. A state q of A is accepting if for all
processes i, the local state qi of process i in q is accepting,
and all the buffers in q are empty.

We associate with A = ΠiAi the language of possible
executions of A, denoted L(A), which consists of all those
words in Σ̂∗ leading A from start state q0 to an accepting
state, where τ -transitions are viewed as ε-transitions in the
usual automata-theoretic sense. The following property of
L(A) is easily verified from definitions:

Proposition 4: Given any sequence of automata 〈Ai | i ∈
[n]〉, L(ΠiAi) is an MSC-language.

Note that for any MSC language L and MSC M , either
L(M)∩L = ∅ or L(M) ⊆ L; this follows from the fact that
distinct MSCs have disjoint linearization sets. Hence, for
any set of concurrent automata Ai, the language L(ΠiAi)
of the product of the automata either contains all lineariza-
tions of an MSC M or it contains none.

V. Weak Realizability

When can we, given MSCs M, actually realize L(M)
as the language of concurrent automata? In other words,
when are no other MSCs implied:

Definition 1: Given a set M of MSCs, and another MSC
M ′, we say that M weakly implies M ′, and denote this by

M
W

` M ′

if for any sequence of automata 〈Ai | i ∈ [n]〉, if L(M) ⊆
L(ΠiAi) then L(M ′) ⊆ L(ΠiAi).
We want to characterize this implication notion, and fur-
thermore detect when a set M is realizable:

Definition 2: A language L over the alphabet Σ̂ is weakly
realizable iff L = L(ΠiAi) for some 〈Ai | i ∈ [n]〉. A set of
MSCs M is said to be weakly realizable if L(M) is weakly
realizable.
The reason for the term “weak” is because we have not
ruled out the possibility that the product automaton ΠiAi

might necessarily contain the potential for deadlock. In
general we wish to avoid this. We will take up the issue
of deadlock in the next section. We now describe a closure
condition on languages which captures weak implication
and thus weak realizability.

Closure Condition CC2. A language L over the alpha-
bet Σ̂ satisfies closure condition CC2 iff for all well-formed
and complete words w over Σ̂: if for every process Pi there
exists a word vi in L such that w|i = vi|i, then w is in L.
Condition CC2 says that if, for every process Pi, the events
occurring on Pi in word w are consistent with the events
occurring on Pi in some word known to be in the language
L, and w is well-formed, then w must be in L, i.e., w is
implied. Intuitively, this notion says that L can be con-
structed from the projections of the words in L onto indi-
vidual processes. Note that CC2 immediately implies CC1.
The other direction does not hold.

Going back to our example from Section 2, the language
L({MSC1, MSC2}) generated by the two given MSCs is not
closed under CC2 but is under CC1. In particular, consider
the word w, a linearization of MSCbad, given by

send(P1, UR, inc)
receive(P1, UR, inc)
send(P2, UR, double)
receive(P2, UR, double)
send(P2, NA, double)
receive(P2, NA, double)
send(P1, NA, inc)
receive(P1, NA, inc).

The word w is not in L({MSC1, MSC2}), but the projec-
tions w|P1 and w|P2 are consistent with both the MSCs,
while the projection w|UR is consistent with MSC1 and
w|NA is consistent with MSC2. Thus, any language satisfy-
ing CC2 and containing linearizations of MSC1 and MSC2

must also contain w. Thus

{MSC1,MSC2}
W

` MSCbad.

The next theorem says that condition CC2 captures the
essence of weakly realizable languages.

Theorem 5: A language L over the alphabet Σ̂ is weakly
realizable iff L contains only well-formed and complete
words and satisfies CC2.

Proof: Suppose L is weakly realizable. There exist
automata Ai such that L = L(A) for A = ΠAi. A can
accept only well-formed and complete words. We show
L satisfies CC2. Consider a well-formed, complete word
w, and for each i, let vi ∈ L be a word such that w|i =
vi|i. Consider the accepting run of A on vi, retain only
the transitions corresponding to events in Σ̂i, and retain
only the local state of process i. This gives a sequence ri of
states of Ai, which is an accepting run of Ai over w|i. Now,
the local runs ri can be combined to obtain an accepting
run of the product A over w. During this construction, we
give priority to the τ -transitions: every transition labeled
with send(i,j,a) is immediately followed by a τ -transition
that moves the message a from the buffer Bs

i,j to Br
i,j .

Conversely, consider a language L with the CC2 prop-
erty and containing only well-formed and complete words.
Define the languages Li over Σ̂i to contain the projections
w|i of the words w ∈ L. Let Ai be an automaton over Σ̂i

that accepts Li (note that if L is regular, then so is Li,
ensuring that the automata Ai will be finite state). Let A
be the product ΠAi. We must show that L(A) equals L. It
follows from definitions that if w ∈ L, then w is accepted



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. Y, YEAR 105

by A. On the other hand, if w is accepted by A, then for
each process i, w|i is accepted by Ai, and hence, w|i ∈ Li,
and by CC2 closure of L, w is in L.

We thus have characterizations of weak implication and
realizability of MSCs:

Corollary 6: Given MSC setM, and MSC M ′: M
W

` M ′
if and only if for each process i ∈ [n], there is an MSC
M i ∈ M such that M ′|i = M i|i. An MSC family M is
weakly realizable iff L(M) satisfies CC2.

VI. Safe Realizability

The weakness of weak realizability stems from the fact
that we are not guaranteed a well behaved product ΠiAi.
In particular, in order to realize the MSCs, or the language,
there may be no way to avoid a deadlock state in the prod-
uct.

To describe this formally, consider a set Ai of concurrent
automata and the product A = ΠiAi. A state q of the prod-
uct A is said to be a deadlock state if no accepting state of
A is reachable from q. For instance, a non-accepting state
in which all processes are waiting to receive messages which
do not exist in the buffers will be a deadlock state. The
product A is said to be deadlock-free if no state reachable
from its initial state is a deadlock state.

Definition 3: A language L over Σ̂ is said to be safely
realizable if L = L(ΠAi) for some 〈Ai|i ∈ [n]〉 such that
ΠAi is deadlock-free. A set of MSCs M is said to be safely
realizable if L(M) is safely realizable.

Definition 4: Given an MSC set M, and a partial MSC,
M ′, we say that M safely implies M ′, and denote this by

M
S

` M ′

if for any deadlock-free product ΠiAi such that L(M) ⊆
L(ΠiAi) there is some completion M ′′ of M ′ such that
L(M ′′) ⊆ L(ΠiAi).

To see that weak realizability does not guarantee safe
realizability, consider the MSCs in Figure 5. They depict
communication among two processes, P1 and P2, who at-
tempt to agree on a value (a or b) by sending each other
messages with their preferences. In MSC3, both processes
send each other the value a, while in MSC4, both processes
send each other the value b, and thus, they agree in both
cases. From these two, we should be able to infer a par-
tial scenario, depicted in MSC5, in which the two processes
start by sending each other conflicting values, and the sce-
nario is then completed in some way. However, the lan-
guage L({MSC3 , MSC4}) generated by MSC3 and MSC4,
contains no such scenarios although it is closed under weak
implication, and thus, is weakly realizable. Concurrent au-
tomata capturing these two MSCs are shown in Figure 6.
Each automaton has a choice to send either a or b. In the
product, what happens if the two automata make conflict-
ing choices? Then, the global state would have A1 in, say,
state u1, and A2 in state v2, and this global state has no
outgoing transitions, resulting in deadlock. We would like
to rule out such deadlocks in our implementations. We
need a stronger version of implication closure.

We will give two closure conditions which, taken to-
gether, will characterize safe realizability in the same way
that condition CC2 characterized weak realizability.

For a language L, let pref (L) denote the set of all prefixes
of the words in L.
Closure Condition CC3. A language L over the alpha-
bet Σ̂ is said to satisfy closure condition CC3 iff for all
well-formed words w: if for each process i there is a word
vi ∈ pref (L) such that w|i = vi|i, then w is in pref (L).4

An equivalent definition, which turns out to be easier to
check algorithmically, is the following:
Closure Condition CC3’. A language L over the alpha-
bet Σ̂ is said to satisfy closure condition CC3’ iff for all
w, v ∈ pref (L) and all processes i: if w|i = v|i, and
wx ∈ pref (L) and vx is well-formed for some x ∈ Σ̂i, then
vx is also in pref (L).

Proposition 7: L satisfies CC3 iff it satisfies CC3’.
Proof: Suppose L satisfies CC3, and suppose v, w ∈

pref (L) such that v|i = w|i, and such that wx ∈ pref (L).
Now, vx has the property that vx|j = v|j for j 6= i, and
vx|i = wx|i. Thus, if vx is well-formed, then by CC3,
vx ∈ pref (L), establishing this direction of the claim.

Suppose L satisfies CC3′. Consider a w which is well-
formed and such that for all i, w|i = vi|i, where vi ∈
pref (L). We will, by induction on the length of w show that
w ∈ pref (L). If |w| = 1, then from CC3′ we trivially get,
using the fact that the empty string is always in pref (L),
that w ∈ pref (L).

Suppose w = w′x, where x occurs on some process i.
Thus vi|i = (w′|i)x. By induction, it is clear that w′ ∈
pref (L). Now, w′ and vi satisfy the condition of CC3′,
thus w′x = w is also in pref (L).

The basic intuition behind the above is the following.
Consider two possible (partial) scenarios w and v such that
w|i = v|i. Then, from the point of view of process i, there
is no way to distinguish between the two scenarios. Now,
if the next event executed by process i in the continuation
of the global scenario w is x, then x must be a possible
continuation in the context v also (unless x is a receive
event which has no matching send in v).

As our example shows, CC2 does not guarantee CC3.
Going back to Figure 5, the event send(1,2,a) is a possi-
ble partial scenario (according to MSC3), and the event
send(2,1,b) is a possible partial scenario (according to
MSC4). Now, CC3 requires that the sequence send(1,2,a),
send(2,1,b) be a possible partial scenario (since its indi-
vidual projections are consistent with the input scenarios).
However, neither MSC3 nor MSC4 corresponds to this case,
implying the existence of an additional scenario which com-
pletes these two events. Hence, although {MSC3 , MSC4}
has the weak CC2 closure property, it does not have the
safe CC3 closure property. Notice that there is no unique
minimal safe realization which completes MSC5. The im-
plied partial scenarios can be completed in many incom-
patible ways, each of which would eliminate the possibility
of deadlock.

Safe realizability is not entirely captured by closure con-
dition CC3 [22]. This is illustrated by the example scenar-
ios in Figure 7. If we just consider the two MSCs MSC1
and MSC2, the set satisfies CC3. This is because the pre-
fixes of the two MSCs are all prefixes of MSC1. However,
the two MSCs safely imply the scenario MSC3 (and also a

4Note that this corresponds to the CC2 closure condition on
pref (L), without the requirement of completeness on w.
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symmetric scenario which contains only the message from
P3 to P4). The second closure condition we will need to
capture safe realizability is in fact a restriction of condition
CC2, which is easier to check, and which allows one only to
imply new well-formed complete words that are themselves
prefixes of words already in L:
Closure Condition CC2’. A language L over the alpha-
bet Σ̂ satisfies closure condition CC2’ iff for all well-formed
and complete words w over Σ̂ such that w ∈ pref (L): if
for all processes i there exists a word vi in L such that
w|i = vi|i, then w is in L.

The correspondence between safe realizability and con-
ditions CC3 and CC2’ is established by the next theorem.

Theorem 8: A language L over the alphabet Σ̂ is safely
realizable iff L contains only well-formed and complete
words and satisfies both CC3 and CC2’.

Proof: Suppose we have a deadlock-free product
ΠiAi, with L = L(ΠiAi). Using the fact that every par-
tial execution of the automata can be extended to a com-
plete execution, we can show, in a way similar to the proof
of Theorem 5, that every well-formed word w which has
its projections in pref (L) is itself in pref (L), thus con-
dition CC3 is satisfied. The fact that condition CC2’ is
also satisfied follows directly from Theorem 5, because safe
realizability implies weak realizability, and condition CC2
certainly implies CC2’, which is just a restriction of it.

Suppose L satisfies CC3 and CC2’, and contains only
well-formed and complete words. Consider deterministic
automata Ai which accept the sets Li of projections of L

onto process i, and assume all states in Ai reach an accept-
ing state (other states can be removed without changing
the language accepted by Ai). We will show that ΠiAi is
deadlock-free, and that L = L(ΠiAi). During the execu-
tion of ΠiAi, at all times the word w seen so far has the
property that its projection on each process i belongs to
pref (Li). By CC3, w is in pref (L). Since the Ai’s are de-
terministic, the product automaton must be able to reach
an accepting state after processing w, simply by process-
ing the word w′ ∈ L such that w is a prefix of w′. Hence
ΠiAi is deadlock free. We need only show that w ∈ L iff
w ∈ L(ΠiAi). The forward direction follows easily from the
construction of the Ai’s. Suppose w ∈ L(ΠiAi), then for
each process i, w|i ∈ Li. Since we have already established
that w ∈ pref (L), we conclude, by CC2’, that w ∈ L.

Corollary 9: An MSC family M is safely realizable iff
L(M) satisfies CC3 and CC2’.

VII. Algorithms for Inference, Realizability,
and Synthesis

Now that we have the necessary and sufficient conditions,
we are ready to tackle the algorithmic questions raised in
the introduction. Namely, given a finite set M of MSCs,
we want to determine automatically if M is realizable as
the set of possible executions of concurrent state machines,
and if so we would like to synthesize such a realization.
If not, we want to find counterexamples, namely missing
implied (partial) MSCs. Of course, we want any realization
to be deadlock-free, and thus we prefer safe realizations.
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A. An Algorithm for Safe Realizability

Given MSCs M = {M1 . . . ,Mk}, where each MSC is a
scenario over n processes P1, . . . , Pn, we now describe an
algorithm which, if M is safely realizable returns “YES”,
and if not it returns a counterexample, namely, an implied
(possibly partial) MSC, M ′, which must exist as a (possi-
bly partial) execution of some MSC, but does not in M.
By Corollary 9, it suffices to check that L(M) satisfies CC3
and CC2’. We first describe how to check closure condition
CC3, followed by an algorithm for checking closure condi-
tion CC2’. Combining these two algorithms, we obtain our
algorithm for checking safe-realizability, and if not inferring
implied but unspecified (partial) MSCs:
1. Check CC3, and if the answer is no, then output an
implied MSC and halt.
2. Otherwise, check CC2’. If the answer is no, output an
implied but unspecified MSC. If yes, then halt and output
“Yes, M is safely realizable.”

These results are summarized by the following theorem:
Theorem 10: Given a set M of MSCs, safe realizability

of M can be checked in time O(k2n + rn), where n is the
number of processes, k is the number of MSCs, and r is the
number of events in the input MSCs.

A.1 Checking closure condition CC3

By Proposition 2, MSCs are determined by any of their
linearizations, and thus by their projections onto individual
processes. We can therefore assume that M is presented
to us as a two dimensional table of strings, with M [l, i]
giving the projection Ml|i of the MSC Ml of M on process
i, including an end delimiter. We use ‖M [l, i]‖ denote the
length of the string, and M [l, i, d] to denote the dth letter
of the string.

A straightforward algorithm to check CC3 would have
exponential complexity. We show how to check CC3 in
polynomial time, via its equivalence to CC3’. Figure 8
gives a simple version of our polynomial time algorithm for
checking CC3.

Correctness

The correctness of the algorithm is based on Proposition
7. Condition CC3’ is violated if and only if the set M
contains two MSCs Ms and Mt, the MSC Ms has a (well-
formed) prefix Ns, and for some process Pi the following
property holds. The prefix Ns of Ms agrees with Mt on
process Pi (i.e. Ns|i is a prefix of Mt|i), the next event on
process Pi of Ms (respectively Mt) after the prefix is x (re-
spectively, x′), the event x′ is eligible to be appended to Ns

(in place of x) in the sense that it would yield a well-formed
partial MSC N ′

s - that is, x′ is either a send event or it is
a receive event that can be matched to an unmatched send
event of the prefix Ns - but the resulting partial MSC N ′

s
is not a prefix of any MSC Mp in the given set M. Stated
in the above form, the main source of complexity is that
after fixing MSCs Ms and Mt of M, and the process Pi,
the number of prefixes of Ms can in general be exponential
in the number of processes. The choice of Ms, Mt and pro-
cess Pi fixes the prefix Ns in process Pi: it must include
all events until the first disagreement between Ms and Mt,
i.e. the first step in which Ms performs an event x and
Mt performs a different event x′. Obviously, in the other

proc Condition CC3(M) ≡
foreach (s, t, i) ∈ [k]× [k]× [n] do

T[s, t, i] := min {c | (M [s, i, c] 6= M [t, i, c])}
od;
/* T[s, t, i] gives the first position on */
/* process i where Ms and Mt differ */
/* If Ms |i = Mt |i then T[s, t, i] = ⊥ */
Let ≤s be the partial order of events in Ms.
foreach s ∈ [k] and event x in Ms do

foreach process j ∈ [n] do
U [s, x, j] :=


‖M [s, j]‖+ 1 if ∀c x 6≤s M [s, j, c]

min {c | (x ≤s M [s, j, c])} otherwise

od;
od;
/* U[s, x, ∗] gives the events of Ms dependent on x */
foreach (s, t, j) ∈ [k]× [k]× [n]such thatT [s, t, j] 6= ⊥ do

c := T [s, t, j];
x := M [s, j, c]; x′ := M [t, j, c];
/* Determine if x′ is eligible to replace x. */
/* If x′ is a send event, it is always eligible. */
/* If x′ = receive(i, j, a) then x′ is eligible */
/* iff M [s, i][1 . . . U [s, x, i]− 1] contains more */
/* send(i, j, a)’s than M [s, j][1 . . . U [s, x, j]− 1] */
/* contains receive(i, j, a)’s. */
if x′ is eligible to replace x then

/* Find if some Mp realizes this replacement */
if ∃ p ∈ [k] such that

M [p, j, c] = x′ and
∀j′ ∈ [n] U [s, x, j′] ≤ T [s, p, j′]
then() /* This eligible replacement exists */
else
“M DOES NOT Satisfy CC3”
Missing Implied partial MSC given by ∀j′
M [s, j′][1 . . . U [s, x, j′]− 1] and M [s, j][c] := x′
return;

fi;
fi;

od;
“YES. M DOES Satisfy CC3”

Fig. 8. Algorithm for Checking condition CC3

processes we can not include in the prefix Ns any events
that depend on x (otherwise it will not be well-formed),
but this still leaves much freedom. The key observation
underlying the algorithm is that we only need to check the
condition for the largest possible prefix of Ms, namely, the
prefix that includes in the other processes all events that do
not depend on the event x of Pi. This situation is depicted
in Figure 9, where the shaded regions in Ms and Mt denote
those events that do not depend on x and x′, respectively.
The reason it suffices to check against the largest prefixes
on each process is that “possibility” of an event on process
i can only become true and cannot become false as the pre-
fix on process j 6= i increases, while the prefix on i stays
fixed. Thus, by considering only maximal prefixes, we are
considering the maximal set of events x′ eligible to take the
place of x.
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Time Complexity

The algorithm to check condition CC3 can be imple-
mented with suitable data structures to run in time O(k2 ·
n+ r ·n), where k is the number of MSCs, n is the number
of processes, and r is the total number of events in all the
MSCs. The algorithm computes first the table T . The ta-
ble has size O(k2 ·n), and can be computed with essentially
the same time complexity, as follows. For each process Pi,
i ∈ [n], we can construct a trie Si for the projections on i of
all the MSCs of M. That is, Si is a rooted tree whose edges
are labeled with the event symbols and such that the root-
to-leaf paths spell the strings M [l, i]. For each node v of the
trie we record the depth and we attach a list list(v) of the
indexes of all the MSCs Ml which go through that node,
i.e., l ∈ list(v) iff the string that labels the path from the
root to the node is a prefix of M [l, i]. The trie and the node
lists can be constructed in a standard way incrementally,
processing the strings one by one, in time proportional to
the sum of the lengths of the strings.5 Thus, the time to
construct all the tries Si is O(r). As usual, we can com-
press nodes that have only one child (i.e. form compressed
tries). The table T can be constructed now easily from the
tries and the associated node lists: for each pair of siblings
v, w of Si, for every s ∈ list(v) and t ∈ list(w), set T [s, t, i]
equal to 1 plus the depth of the (common) parent of v and
w. Likewise, for each parent node v of Si, with children
w1, . . . , wd, for each s ∈ list(v) \ ∪d

j=1list(wj): for each
t ∈ ∪j list(wj), set T [s, t, i] equal to 1 plus the depth of
the parent v, and for each t′ ∈ list(v) \ ∪d

j=1list(wj), set
T [s, t′, i] = ⊥. For a leaf node v, and for all s, t ∈ list(v)
set T [s, t, i] = ⊥.

The algorithm computes next U [s, x, j] for all MSCs Ms,
events x of Ms, and processes j ∈ [n]. There are rn such
U entries and they can be computed in time linear in their
number: For each MSC Ms, order topologically the nodes
(events) and process them bottom up. An event x has at
most two immediate successors: the next event (if there
is one) on the same process, and if x is a send event, the
matching receive event. If the process of event x is i, i.e.,
x = M [s, i, c] for some c, then U [s, x, i] = c. For any other
process j 6= i, the entry U [s, x, j] is equal to the minimum
of the U entries corresponding to the immediate successors
of x.

The algorithm then considers every pair of MSCs Ms,
Mt and every process j on which the two MSCs differ, and

5Provided we can index on the letters of the alphabet Σ, otherwise
we have to multiply by a logarithmic factor.

determines if they yield a counterexample to the condition
CC3’. Namely, if the first disagreement between the j-
projections of the MSCs is in the cth step, where Ms has
x whereas Mt has x′, the algorithm determines (i) if x′ is
eligible to be appended to the maximal prefix Ns(x) of Ms

that does not contain x, and (ii) if the resulting partial
MSC is a prefix of some other MSC Mp of the given set.
Note that the maximal prefix Ns(x) is defined by the entries
U [s, x, j]. We describe now how to implement (i) and (ii)
within the stated bounds.

For each MSC Ms and process i, we find the events that
are eligible to replace the events of Ms on process i, us-
ing a pass over the MSC from the top down as follows.
We process the events of Ms on process i one by one. As
we process the events x on i, we form the corresponding
prefixes Ns(x), by incrementally extending the other pro-
cesses j adding new steps up to U [s, x, j]. Every step of
Ms is considered at most once, when it is added for the
first time in a prefix. We maintain an array A indexed by
the pairs (j, a), j ∈ [n], a ∈ Σ, for which process j sends
message a to i. The array is initialized to all 0. After
processing event x of process i, the entry A[j, a] gives the
number of unmatched send(j, i, a) messages in the maxi-
mal prefix Ns(x) corresponding to x; that is, A[j, a] is the
difference between the number of send(j, i, a) events in the
first U [s, x, j] − 1 steps of process j and the number of
receive(j, i, a) events in process i before x. Clearly, the
array A can be updated from one step of process i to the
next step in time proportional to the number of nodes of
the other processes that are added to the prefix. Thus, the
total time spent in updating A over all events of process i
is O(|Ms|). When processing event x on process i, after the
update of A, we first determine which other events x′ need
to be considered as potential replacements of x, and then
determine which of them are eligible. Note that x′ needs
to be considered if there is another MSC Mt which agrees
with Ms on process i up to this step, and which has x′ at
this step. The set of possible x′ is given by the trie Si: if
the event x corresponds to the edge (u, v) of Si, then the
set of the x′ is precisely the set of labels of the other edges
connecting u to its other children. For each such event x′,
if x′ is a send event then it is of course eligible, and if it
is a receive event, say receive(j, i, a), then it is eligible if
A[j, a] > 0. The time spent to find the eligible replacement
events x′ for all events x of Ms on process i is certainly
no more than O(k + |Ms|), and thus the total time over
all processes and all MSCs is no more than O(k2n + rn).
It remains to determine for each eligible x′ whether there
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is an MSC Mp that contains the partial MSC formed by
appending x′ to Ns(x). A straightforward test takes too
much time. We’ll describe below how to perform this check
within our time bound.

Let Ms, Mt be two MSCs and consider for each pro-
cess i the first event of Ms which differs from Mt, i.e., the
T [s, t, i]-th event. If one of these n events, say the one
on process i, precedes all the other events in the partial
order of Ms, then we say that Mt covers Ms on process
i. Note that there can be at most one such process for
which one MSC covers another. Note furthermore that Mt

covers Ms on process i if the prefix Ns(x) of Ms is also
a prefix of Mt, where x is the earliest step of Ms on pro-
cess i on which it disagrees with Mt. We determine for
each pair of MSCs whether one covers the other, and if
so, we record the corresponding process. This can be done
in time O(k2n + r) as follows. For each MSC Ms, fix an
arbitrary linearization and label each node of Ms with its
order in the linearization. This takes linear time. Consider
another MSC Mt. The entries T [s, t, i], i ∈ [n] give the ear-
liest steps on each process in which Ms disagrees with Mt.
Look up their labels in Ms and determine the one that has
the smallest label, say the step on process i. Note that if
one of these disagreement steps precedes all the others in
Ms (i.e., if Mt covers Ms), then it must be the step with
smallest label, thus the step on process i. Let x be that
step. By the definition of U , step x precedes the steps on
the other processes iff U [s, x, j] < T [s, t, j] for all processes
j. Thus, we can determine if Mt covers Ms and record the
corresponding process i in time O(n).

Consider now an MSC Ms, event x of Ms on process i,
and an eligible replacement x′ for x. Consider the set of
MSCs that agree with Ms up to this step at which point
they perform x′ instead of x; the set is available in the
information recorded at the trie Si: if x corresponds to the
edge (u, v) of Si and x′ to the edge (u,w), then the set of
MSCs is given by the list attached to the node w. It follows
from the definitions that there is an MSC Mp that contains
the partial MSC formed by appending x′ to Ns(x) if and
only if the list of node w contains an MSC Mp that covers
Ms on process i. Thus, we can determine if the eligible
replacement x′ leads to a violation of safe realizability in
time proportional to the number of MSCs in the list of w.
Summing over all events of Ms on process i, this amounts
to time O(k), and hence, summing over all the processes
and all the MSCs, the contribution of this part is O(k2n).

Therefore, the algorithm to check CC3 can be imple-
mented as explained above to run in time O(k2 · n + r · n).

As given, the algorithm stops as soon as it finds a single
missing partial MSC. One can easily modify the algorithm
in several ways to find more missing scenarios if present.
One such modification would derive not only one implied
partial MSC, but a complete set of implied partial MSCs,
in that for every MSC M implied by the given set, there
would be a partial MSC M ′ present in the derived set such
that M is a completion of M ′. This set contains at most
k2 · n partial MSCs. This upper bound holds because, in
the main loop, we need only check for each pair of MSCs,
and for each process, whether the first event where the two
MSCs differ on that process introduces a new implied MSC.

A second way in which the algorithm can be modified
is to substitute not just the first eligible event, x′ of Mt

for x in Ms, but to use the longest eligible subsequence
w′ beginning at x′ on process j in Mt. That is, we can
extend the prefix Ns(x) of Ms by appending on process
j the event x′ and all subsequent events of Mt which are
either send events or receive events that can be matched
with unmatched send events, thus yielding a well-formed
partial MSC that is also safely implied by the given set.
This will fill out the partial MSCs, completing them as
much as possible.

Finally, one can repeatedly apply the algorithm, infer-
ring more and more partial MSCs, until the set of implied
partial MSCs closes, i.e., no more partial MSCs can be im-
plied. Of course, doing so could entail an exponentially
large set of implied MSCs.

Example

Consider the two MSCs of Figure 1 as input to the al-
gorithm, where we assume the implication algorithm is
modified according to the second suggestion above. To see
how MSCbad is derived by the algorithm, consider the first
events on UR where MSC1 and MSC2 differ. In MSC1 the
first event is x = receive(P1, UR, inc), whereas in MSC2

the first event is x′ = receive(P2, UR, double). Since in
MSC1 no events, other than those on UR, depend on the
first event x, the corresponding prefix N1(x) consists of all
events of MSC1 on the other processes, and no events on
UR. The event x′ = receive(P2, UR, double) of MSC2 on
UR is eligible to replace x (since the corresponding send is
included in the prefix N1(x)), and so is the second event
receive(P1, UR, inc) of MSC2. The result of this replace-
ment is precisely MSCbad, the inferred MSC in Figure 2.

A.2 Checking closure condition CC2’

We now outline an efficient algorithm for checking that
the set of MSCs M satisfies CC2’. Each piece of the al-
gorithm makes straightforward use of standard graph algo-
rithms. We will describe these only at a high level and not
specify them in detailed pseudo-code.
1. For each MSC Ms in M, and for each process Pi, com-
pute vi = Ms|i. Compute the set V i

s = pref (vi) ∩ {M |i |
M ∈M}, i.e., prefixes of vi that also constitute the entire
projection of some other MSC in M on process Pi. We
can totally order the set V i

s as {v1
i , . . . , vki

i }, such that for
all j, vj

i is a prefix of vj+1
i . Define the (ordered) multi-set

of strings W i
s = {w1

i , . . . , wki
i } to be the “segments” of vi

such that w1
i w2

i ...wj
i = vj

i .
2. Build a directed graph Gs = (Vs, Es), with nodes Vs =
∪n

i=1{t1i , . . . , tki
i }, such that there is a node tji associated

with each segment wj
i , and the set Es of edges contains

(tji , t
j+1
i ) for i ∈ [n], j ∈ {1, . . . , ki − 1} and (tji , t

j′
i′ ) if there

exists a message sent from segment wj
i to wj′

i′ or from wj′
i′

to wj
i .

3. Compute the strongly connected components of Gs and
also compute the underlying DAG G′

s = (V ′
s , E′

s), whose
nodes V ′

s are the SCCs, and whose edges (C,C ′) ∈ E′
s

exist from one SCC to another iff there is an edge in Gs

from a node in C to a node in C ′.
4. For each sink SCC C of G′

s, remove from MSC Ms all
messages in all segments associated with nodes in C. Call
this new MSC MC

s . (Note that by construction MC
s is
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indeed a valid, non-partial, MSC). Check that MC
s is in M.

If not, halt, output “No, does not satisfy condition CC2”’,
and output MC

s as an implied but unspecified MSC.
5. If for all Ms in M all such MSCs MC

s are found to be
in M, output “Yes, Condition CC2’ is satisfied.”

Correctness

Recall that we say MSC M is a prefix of another MSC
M ′ iff for all processes Pi, the projection M |i of M onto Pi

is a prefix of the projection M ′|i of M ′ onto Pi.
According to CC2’, any MSC, M , which satisfies the

following two conditions must be in M:
1. M is a prefix of some MSC M ′ ∈M.
2. For every process Pi, there exists an MSC Mi ∈ M,
such that M |i = Mi|i.
Let us call an MSC that satisfies conditions (1) and (2) a
candidate MSC.

Thus, in order to check CC2’, we need to check that for
each Ms ∈ M, and for all candidate MSCs M that are
prefixes of Ms, M is itself in M.

Note that since M must satisfy condition (2), it must
be the case that for each process Pi, M |i = vj

i , for some
j ∈ {1, . . . , ki}, were vj

i ’s were defined in step 1 of our
algorithm. Thus, we have no loss of generality by restrict-
ing our search for candidates M to those prefixes of Ms

where each projection Ms|i constitutes some sequence of
“segments” w1

i . . . wj
i = vj

i .
On the other hand, if a send or receive event x occur-

ring in segment wd
i is included in candidate MSC M , and

the message being sent/received has a corresponding re-
ceive/send event x′ occurring in some segment wd′

i′ , then
segment wd′

i′ must also occur in M . Also observe that, ob-
viously, if a segment wd

i is in some candidate MSC M , then
so is its immediate predecessor segment wd−1

i .
Accordingly, in our graph Gs, there are edges (td−1

i , tdi )
between nodes associated with successive segments on the
same process, as well as two edges in both directions
{(tdi , td

′
i′ ), (t

d′
i′ , t

d
i )} between the nodes associated with wd

i

and wd′
i′ when there is any communication between those

two segments. We can think of these directed edges (u, v)
as indicating that the presence of the segment (associated
with) v in any candidate MSC which is a prefix of Ms ne-
cessitates the presence of the segment (associated with) u.

Thus, all segments associated with any SCC, C, of Gs

must either be present or absent from a candidate MSC
which is a prefix of Ms.

Let an ideal, I, of the DAG, G = (V,E) be a subset
of the nodes closed under predecessors, i.e., if v ∈ I and
(u, v) ∈ E, then u ∈ I.

By the arguments just given, there is a one-to-one corre-
spondence between ideals I of the DAG of SCCs, G′

s, and
candidate MSCs MI which are prefixes of Ms. Given I, we
construct MI from all segments associated with all nodes
t that are contained in all SCCs C ∈ I.

We need to check, for each MSC Ms, that all such can-
didates MI are in our set M. Note, however, that it suf-
fices if we check that MI′ ∈ M for every maximal ideal
I ′ which is a proper subset of the vertices of G′

s. This is
so, by induction on the size of I ′, because since we check
for candidate prefixes for every MSC Ms ∈ M, once we

check that MI′ ∈ M, we know that (inductively) we will
for every I ′′ ⊂ I ′, also check that MI′′ ∈M.

Note that the maximal ideals I ′ of G′
s are precisely the

sets that eliminate exactly one sink node (SCC) C from
the nodes V ′

s of G′
s. These are precisely the ideals that, in

our correspondence, give rise to the candidate MSCs MC
s .

Thus, since step (4) of the algorithm checks for the exis-
tence of all such candidates inM, our algorithm determines
precisely whether M satisfies condition CC2’.

Time Complexity

We now show that the algorithm for checking CC2’ can
be implemented to run in O(k2 · n + r) time where, again,
k is the number of MSCs in our set, n is the number of
processes, and r is the total number of events in all MSCs
in M.

Recall the tries Si, described in our complexity analysis
for checking CC3 efficiently. In our computation of the
Si’s, we will additionally mark each node of the trie Si as
accepting if the projection of some MSC in M terminates
at that node. Recall, we can compute all Si’s in total
time O(r), and this additional marking won’t alter that
analysis. Using the Si’s, for each MSC Ms ∈ M, we find
all the “segments” wj

i on each process Pi as follows. Take
Ms|i and walk down Si, noting the accepting nodes that
are traversed along the way. These nodes determine the
segments wj

i in an obvious fashion. The time required for
this walk down Si is linear in the size of Ms|i, thus the
total time required to compute all segments for all MSCs
in M is linear: O(r).

Once we have found all segments wj
i for Ms, we can

build the graph Gs in time linear in |Ms|, the size of Ms.
Gs itself obviously has size O(|Ms|). We can then, using
the standard DFS algorithm, compute the SCCs of Gs, and
compute the DAG G′

s in time O(|Ms|).
Next, for Steps 4 and 5 of the algorithm, we need to

enumerate for each MSC Ms, the candidate MSCs MC
s ,

for each sink SCC C of G′
s, and check that MC

s is in M.
Let Ds = {C1, . . . , Cl} be the sink SCCs of G′

s. Let PC

denote the set of processes that have a segment in SCC C.
Note that PC1 , . . . , PCl form disjoint sets, and in particular
l ≤ n. We will maintain a boolean array Bs of size l to
mark which MSCs MCi

s have been encountered in the set
M. Initially Bs[c] := false for all c ∈ [l]. Assume we
have already computed the table T [s, t, i] described in the
algorithm for CC3. Our analysis showed that T can be
computed in time O(k2n). For each Mt ∈M, we will check
in O(n) if Mt is a prefix of Ms, and if so, if Mt = M

Cj
s

for some Cj ∈ Ds, as follows. First, to check that Mt is
a prefix of Ms, we check that for each process i, either
T [s, t, i] = ⊥ (i.e., the two projections are identical), or
that T [s, t, i] = ‖M [t, i]‖ + 1 (i.e., the projection of Mt|i
is a prefix of Ms|i. This can be done in time O(n). Next,
if this is so, we check if Mt = M

Cj
s for some j as follows.

For any process i such that T [s, t, i] 6= ⊥, i.e., Mt|i is a
proper prefix of Ms|i, let Cj be the unique SCC in Ds that
contains a segment from process i. Since we already know
Mt is a prefix of Ms, we can check whether Mt = M

Cj
s by

simply checking that for each process i, the length ‖MCj
s |i‖

is the same as T [s, t, i] − 1. This can again be done in
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O(n) time. If Mt = M
Cj
s , then we mark Bs[j] := true.

Once we have checked Ms against all other MSCs Mt, the
array elements Bs[c] should be set to true for all c. If not,
i.e., Bs[j] = false for some j, then we know that M

Cj
s

is a candidate MSC that is a prefix of Ms but not in M,
so we say ”Not safely realizable”, and output the implied
candidate MSC, M

Cj
s . Since there are k MSCs in M, and

we have to compare each of them to all k − 1 other MSCs
in M, and each comparison and check against Ds takes
only O(n) time (using the precomputed array T), the total
running time for steps 4 and 5 is O(k2n). Thus, the total
running time of the entire algorithm for checking CC2′ is
O(k2n + r). Consequently, the overall time complexity of
checking safe realizability is O(k2n + rn).

B. coNP-completeness of Weak Realizability

The less desirable realizability notion was weak realiz-
ability. There deadlocks may occur. It turns out that this
weaker notion is in fact more difficult to check. CC2 gives
a straightforward exponential time algorithm (in fact, a
violation can be detected in NP) for checking weak realiz-
ability. The following theorem shows that we cannot expect
a polynomial time solution:

Theorem 11: Given a set of MSCs M, determining
whether M is weakly realizable is coNP-complete.

Proof: To check that a set M is not weakly realizable
in NP is easy using CC2. We guess for each process i ∈ [n]
an MSC M i ∈M and project it on process i, we check that
the projections M i|i are consistent, i.e., their combination
is a well-formed, complete MSC, and check that this MSC
is not in the given set of MSCs M.

The proof of coNP-hardness is established by a reduction
from the problem of checking whether a relational database
satisfies a given join dependency condition.

For a natural number r, let [r] = {1, . . . , r}. For a k-tuple
a = (a1, . . . ,ak), and a set S = {s1, . . . , sl} ⊆ [k], where
we have ordered si’s so that si < si+1, the projection of a
on S, denoted a|S is the tuple (as1 , . . . , asl

). For a relation
R ⊆ Uk, and a subset S ⊆ [k], the projections of R on S
denoted R|S is the set of projections of the tuples of R, i.e.,

R|S = {b ∈ U|S| | ∃ a ∈ R such that a|S = b}

The join dependency problem (JDP) is the following:
Given a structure of the form 〈U,R,S〉 where U is a finite
universe, R ⊆ Uk is a k-ary relation over U , and S =
{S∞, . . . ,S‖}, a multi-set of subsets of [k] where for each
i ∈ [k] there is some j such that i ∈ Sj (here k is not fixed,
but varies with the input), determine whether it holds that,
for all a ∈ Uk, if for all S ∈ S, a|S ∈ R|S, then a ∈ R.
We use the following fact:

Theorem 12: [23] JDP is coNP-complete.
Let WRP be the weak realizability problem for a set M

of MSCs. The proof is by a P-time reduction from JDP to
WRP.

Assume we are given Γ = 〈U,R,S〉, an instance of the
JDP, with R ∈ Uk. Also assume that for each i ∈ [k], i
belongs to at least two sets Si ∈ S. This can easily be
assured by repeating the sets in S (remember that S is a
multiset). Clearly, such repetition does not affect whether
Γ ∈ JDP . Order the sets S = {S∞, . . . ,Sm} in some fixed

1

1x

3P

1

4x

1

x
3

3x

2x

2P1P

Fig. 10. The example MSC template M ′

total order. Likewise, order the elements in each set Si =
{si

1, . . . , s
i
li
} according to the ordinary ordering of natural

numbers; thus si
j < si

j+1.
We will build a set of MSCs, M−, over m processes,

P1, . . . , Pm, one for each set Si. M− will consist of one
MSC for every tuple in the relation R. All MSCs will con-
tain exactly the same pattern of communication. The only
thing that will differentiate the MSCs will be the actual
messages exchanged; these will correspond to the entries of
the tuples. Moreover, there will only be one linearization
for each given MSCs.

All MSCs are defined based on one template
M(x1, . . . , xk), where the xi’s correspond to the entries of a
tuple. In Figure 10, we give a small example M ′ of the tem-
plate M(x1, . . . , xk) in the case when S = {S∞,S∈,S3},
with S1 = {1, 2, 3}, S2 = {2, 3, 4}, and S3 = {1, 3, 4}. Note
that the projection of M ′ onto process i contains a message
xj , either sent or received, if and only if j ∈ Si, and that
the messages xj that each process sees are totally ordered
based on the natural number ordering on the indices j.

We now describe the general template M(x1, . . . , xk).
For each i ∈ [k], the total ordering S1, . . . , Sm of the sets
in S determines a total order on the sets that contain the
index i. Let this subsequence be Si1 , . . . , Sili

. Then the se-
quence of message exchanges in the template M(x1, . . . , xk)
is as follows: P11 begins the MSC, sending x1 to P12 , which
after receiving x1 sends x1 to P13 (if it exists), and so on
until P1li

, which after receiving x1, sends a special symbol
“1” that does not occur in relation R to process P21 . Then
P21 sends x2 to P22 , and the entire process gets repeated,
for each index i.

It is easy to see that in M(x1, . . . , xk) process Pi sends
or receives (or both) xj precisely when j ∈ Si, and that Pi

sees the xj ’s in an order consistent with their total order
x1, . . . , xk.

Now we are ready to define M−. For a k-tuple
(a1, . . . , ak) ∈ Uk, let M(a1, . . . , ak) be the MSC obtained
by substituting xi’s by ai’s in M(x1, . . . , xk). Define

M− = {M(a∞, . . . ,a‖) | (a∞, . . . ,a‖) ∈ R}
The following claim states the correctness of the reduction:

Claim 1: Γ ∈ JDP if and only if M− ∈ WRP.
First the “if” direction. If Γ 6∈ JDP , then there is some
tuple a = (a1, . . . ,ak) ∈ Uk such that a|Si

∈ R|Si
for

all i ∈ [m], but a itself is not in R. Since a|Si
∈ R|Si

,
there is a tuple bi of R that has the same projection on Si,
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i.e., such that a|Si
= bi|Si

. Consider the MSC M(a). By
the construction, the projection of this MSC on process i
depends only on a|Si

, hence it is equal to the projection of
the MSC M(bi) on process i. The MSCs M(bi), i ∈ [m],
are all in M−, however the MSC M(a) itself is not in M−
because a is not in R. Thus M− is not weakly realizable.

The “only if” direction follows similarly, because for any
M 6∈ M−, but such that M− ` M, we can “read off” from
M tuples bi ∈ R|Si

, for each i, such that there is a k-tuple
a ∈ Uk such that a|Si

= bi for each i, but a 6∈ R.
That completes the proof.

C. Synthesis of State Machines

Given a set M of MSCs we would like to synthesize
automata Ai, such that L(ΠAi) contains L(M), and as
little else as possible. In particular, if M is weakly re-
alizable we would like to synthesize automata such that
L(ΠiAi) = L(M) (and, when safely realizable, such that
ΠiAi is deadlock-free).

Given the proof of Theorem 5, it is straightforward to
synthesize the Ai’s. The algorithm we provide is not new,
and follows an approach similar to other synthesis algo-
rithms in the literature. What is new are the properties
these synthesized automata have in our concurrent context.
Let the string language of M corresponding to process i be
given by Li = {M |i | M ∈ M}. We let Ai denote an au-
tomaton whose states Qi are given by the set of prefixes,
pref (Li), in Li, and whose transitions are δ(qw, x, qwx),
where x ∈ Σ̂, and w,wx ∈ pref (Li). Letting the accepting
states be qw for w ∈ Li, Ai describes a tree whose accepting
paths give precisely Li. We can minimize the Ai’s, which
collapses leaves and possibly other states, to obtain smaller
automata. Note that the Ai’s can be constructed in time
linear in M. Letting AM = ΠAi, we claim the following:

Theorem 13: L(AM) is the smallest product language
containing L(M). If L(M) is weakly realizable, then
L(M) = L(AM), and, if moreover L(M) is safely real-
izable, then AM = ΠiAi is deadlock-free.

VIII. Alternative Architectures

Much of what we have discussed can be rephrased based
on different concurrent architectures, but rather than delve
into the peculiarities of each architecture, we can abstract
away from these considerations and assume we are given a
very general “enabled” relation

enabled : (Σ̂∗ × Σ̂) 7→ {true, false}

which tells us, for a given prefix of an execution, what
the possible next events in the alphabet are. Architec-
tural considerations like the queuing discipline and the
synchrony of the processes clearly influence the enabled
function. Besides architectural considerations, there are
other constraints on enabled(w, x). For example, for
enabled(w, receive(i, j, a)) to hold, it must be that there
are more send(i, j, a)’s in w than receive(i, j, a)’s. We
state the following axioms which are assumed to hold for
enabled(w, x), regardless of the architecture.
1. If enabled(w, receive(i, j, a)) then

#(w, send(i, j, a))−#(w, receive(i, j, a)) > 0

2. If enabled(w, x) and enabled(w, y) and x and y occur on
different processes, then enabled(wx, y).
3. If enabled(w, x) and w′|i = w|i for all i, then
enabled(w′, x).
Justification for these axioms is as follows: the first axiom is
obvious. The second axiom says that an event occurring on
one process cannot disable an event from occurring on an-
other process, intuitively because unless the two processes
communicate they cannot effect each others behavior. The
third axiom is another version of the second. It says that
the ability of an event to occur on a given process depends
only on the sequence of events that have occurred on each
process so far, and not their particular interleaving with
events of other processes.

These three basic axioms can be augmented with other
axioms to reflect the properties of specific architectures.
Consider the following two specific instances:
FIFO queues. When queues are required to be FIFO, for
every pair i, j of processes, the sequence in which pro-
cess i sends messages to process j must coincide with
the sequence in which j receives messages from pro-
cess i. Then, in addition to the basic axioms, we re-
quire that enabled(w, receive(i, j, a)) only holds if the
first send(i, j, ?) in w for which there is no matching
receive(i, j, ?) is indeed send(i, j, a).
Synchronous communication. When the message ex-
changes are synchronous, a sending process cannot con-
tinue until the message is received (and implicitly acknowl-
edged). To model this, for any event x on process i, we
require that enabled(w, x) holds only when all sends from
process i have a matching receive in w.
We reformulate well-formedness, completeness, and the dif-
ferent closures conditions, in this more general setting:
• Well-Formedness: for every prefix w′x of w ∈ L,
enabled(w′, x) holds.
• Completeness: The definition of completeness remains
exactly the same.
• Conditions CC2, CC2’, and CC3, also remain the same.

For each architecture, Theorems 5 and 8 remain true
under these modified conditions. Rather than prove the
general theorems, we examine the specific architecture with
FIFO queues, to hopefully provide better intuition.

Suppose we are given a set of FIFO MSCs M which
are weakly realizable in the modified sense above. By
FIFO MSCs we mean MSCs where the message arrows
between a pair of processes do not cross: there does not
exist two send events e1 and e2 between identical processes
(i.e., with l(e1) = send(i, j, x) and l(e2) = send(i, j, y))
such that e1 < e2 and f(e2) < f(e1). All linearizations of
such MSCs will be well-formed and complete in the above
sense. We wish to show that M is weakly realizable (via a
FIFO architecture) iff L(M) satisfies CC2. Suppose there
are 〈Ai | i ∈ [n]〉 which give a realization A of M, i.e.,
L(A) = L(M). Let w be a well-formed and complete word
such that w|i = vi|i, with vi ∈ L(M) = L(A). Then, as in
the proof of Theorem 5, we can extract from an accepting
run of A on vi, a run ri of Ai on vi|i = w|i. Thus, since
w fulfills the FIFO requirement (which is entailed in the
requirement that w be well-formed), we can combine the
runs ri to a run of A on w. In the same way, one can modify
the argument for Theorem 5 to prove the other direction
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of the claim. Theorem 8 can be modified similarly to this
setting.

To modify the inference and safe realizability algorithm
of Figure 8 for the setting with a FIFO architecture, we
need simply to revise the interpretation of when an event
x′ is eligible to replace an event x to appropriately cap-
ture the FIFO settings. Recall that the key property that
allows us to test safe realizability in polynomial time, is
that for every choice of MSCs Ms, Mt and process i, where
x, x′ are the earliest events of process i in which Ms and
Mt disagree, we need to consider only one prefix Ns(x) (the
maximal one) in examining whether replacing x by x′ yield
a violation of the closure condition CC3. The fundamental
reason is that the following monotonicity properties holds:
if x′ can be ‘legally’ appended to a smaller prefix of Ms

(that of course does not include x and its descendants) in
the sense that it yields a well-formed partial MSC, then x′
can be also legally appended to the maximal prefix Ns(x).
This property combined with the obvious fact that if there
is an MSC Mp of the given set that contains the larger pre-
fix then there is clearly one that contain also the smaller
prefix, permits us to consider only the maximal prefix. The
three basic axioms of the predicate enabled imply that the
relevant monotonicity property holds in general: If a string
wx′ is well-formed, where x is an event on process i, and
if the string ww′ is also well-formed where w′ consists of
steps on other processes j 6= i, then the string ww′x′ is also
well-formed. The reason is that, by the axioms, execution
of an event on one process cannot disable events on another
process. Therefore, the basic structure of the safe realiz-
ability algorithm is sound in general. The only difference is
that the specific enabled predicate in each case determines
whether event x′ is eligible to replace x. The efficiency of
the algorithm will depend on how efficiently eligibility can
be determined. For FIFO architectures or for synchronous
communication, eligibility can be detected easily, but for
arbitrary architectures it depends on the complexity of the
enabled predicate.

IX. Conclusions

We have presented schemes for detecting scenarios that
are implied but unspecified. The scenarios inferred by our
algorithms can provide potentially useful feedback to the
designer, as unexpected interactions may be discovered.

We have given a precise formulation of the notion of
deadlock-free implementation and have provided an algo-
rithm to detect safe realizability or else infer missing sce-
narios. We have shown that our state machines synthesized
from MSCs are deadlock-free if the MSCs are safely real-
izable. Our algorithm for safe realizability is efficient, and
thus, the conventional “state-space explosion” bottleneck
for the algorithmic analysis of communicating state ma-
chines is avoided. Since scenario-based specifications are
typically meant to be only a partial description of the sys-
tem, the inferred MSCs may or may not be indicative of a
bug, but the implied partial scenarios need to be resolved
by the designer one way or the other, and they serve to
provide more information to the engineer about their de-
sign.

A way in which we envision our framework can be used
is depicted in Figure 11. A user specifying MSCs in a
requirements model can feed the MSCs to the inference
algorithm. If implied partial MSCs are discovered, the user
will be prompted to complete the MSCs. New complete
MSCs are added to the requirements model. Meanwhile,
complete MSCs in the requirements model can be fed to
to other analysis algorithms, such as a model checker ([7]),
and finally, once the requirements model is in satisfactory
shape, the state machine models for the communicating
processes can be synthesized from the MSCs.

The algorithms of this paper can also be used for abstrac-
tion and/or verification of programs. A single execution of
a distributed program can be viewed as an MSC. Thus, in-
stead of obtaining the input set of MSCs as requirements
from the designer, it can be derived by executing the im-
plemented program a certain number of times. The au-
tomata synthesized by our algorithms can be considered
as an (under-)approximation of the source program, and
can be subjected to analyses such as model checking. This
approach can be useful when the source program is too
complex to be analyzed, or is available only as a black-box
(e.g. as an executable).

We have introduced a framework for addressing implica-
tion and realizability questions for the most basic form of
MSCs. It would be desirable to build on this work, extend-
ing it to address these questions for more expressive MSC
notations, such as MSCs annotated with state information
(e.g., [11]), and high-level MSCs (as in, e.g., uBET [8]).
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