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Abstract
We propose an automata-theoretic framework for modularly expressing computations on streams
of data. With weighted automata as a starting point, we identify three key features that are
useful for an automaton model for stream processing: expressing the regular decomposition of
streams whose data items are elements of a complex type (e.g., tuple of values), allowing the hi-
erarchical nesting of several different kinds of aggregations, and specifying modularly the parallel
execution and combination of various subcomputations. The combination of these features leads
to subtle efficiency considerations that concern the interaction between nondeterminism, hierar-
chical nesting, and parallelism. We identify a syntactic restriction where the nondeterminism is
unambiguous and parallel subcomputations synchronize their outputs. For automata satisfying
these restrictions, we show that there is a space- and time-efficient streaming evaluation algo-
rithm. We also prove that when these restrictions are relaxed, the evaluation problem becomes
inherently computationally expensive.
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1 Introduction

Finite-state automata have been used very successfully to solve the problem of pattern
matching in strings [1]. For simple patterns that are given as regular expressions, there
have been proposed several pattern-matching algorithms based on Nondeterministic Finite
Automata (NFAs) [31] or Deterministic Finite Automata (DFAs) [7] with strong efficiency
guarantees. A particularly desirable feature of such automata-based algorithms is that they
process the input text in one pass, i.e. by reading each letter of the input text consecutively
from left to right, thus adhering to the so-called streaming model of computation [28].

Pattern-matching is one basic computational problem that arises in the context of data
stream processing [14], i.e. the processing of data that arrives in real time at a high rate (e.g.,
for analyzing stock market data and web click-streams, or for monitoring sensor measurements
and network traffic). To process data streams, the core computational problem that typically
needs to be solved is the aggregation of parts of the stream into numerical values. For
example, calculating the average price of a stock, monitoring the amount of network traffic
an IP address has generated so far, or maintaining for a sensor the minimum and maximum
measurements it has recorded over the last 10 minutes. Given the usefulness of automata for
finding patterns in streams of symbols, the question arises whether similar automata-based
techniques can be employed for computing quantitative summaries of data streams.

We are thus led to consider weighted automata [19], which extend classical nondeterminis-
tic automata by annotating transitions with weights and can be used for the computation of
simple quantitative properties on finite or infinite strings of symbols [10]. Weighted automata
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have found applications in speech and language processing [26], and they are also used for
modeling systems and verifying quantitative properties of these systems [12]. However, the
computational problems that are relevant for quantitative verification are analysis questions
such as universality and equivalence. These questions are decidable only when the weights
and the operations used on them are very simple [24, 2], so the studied models are usually
equipped with a very limited set of primitive operations that are insufficient for expressing
realistic streaming computations.

Since weighted automata are not expressive enough for typical streaming computations,
our goal is to extend them for this purpose while maintaining the efficiency of their evaluation.
First, we notice that the elements of data streams are typically not symbols from a finite
alphabet but rather structured objects such as tuples of values. It is therefore necessary
to work in the symbolic setting [33, 34]: the input elements belong to a potentially infinite
alphabet D, and we consider a collection of primitive predicates on D for describing subclasses
of elements using Boolean formulas over the primitive predicates. Additionally, realistic
computations often involve the parsing of an input stream and aggregation of subcomputations;
for example, we may want to subsample a sequence of sensor measurements by averaging them
in groups of three consecutive measurements, and then compute the maximum measurement
of every minute. Naturally describing such calculations requires that we allow hierarchical
nesting of operations. In general, the required subcomputations may be disjoint from one
another, and need to be executed in parallel. For example, suppose the automaton A1
describes a long-term average (e.g., over the last month) of a sensor measurement, A2
calculates a short-term average (e.g., over the last minute), and op is the “absolute difference”
binary operation. Then, the construct op(A1,A2) describes the parallel execution of A1 and
A2 and the combination of their results using the op operation. Thus, the overall computation
outputs the distance between the short-term and long-term average. This construct for
parallelism facilitates the modular description of computations.

Our contribution. Putting these desired features together in a model that supports nonde-
terministic parsing, hierarchical nesting of quantitative operations and modular parallelism
is challenging. The core computational problem is the incremental evaluation of automata
on unbounded data streams, and the goal is to provide an algorithm with strong space-
and time-efficiency guarantees. We will establish formally that the naive combination of
the desired features makes efficient evaluation impossible. Moreover, we will show that by
restricting to unambiguous nondeterminism [9] and by constraining the parallel execution
of op(A1, . . . ,Ak) so that the automata Ai synchronize their outputs, we can achieve very
efficient evaluation. More specifically, our main results are the following:
(1) The evaluation problem for automata that allow ambiguous nondeterminism and nesting

of quantitative operations requires space that is linear in the size of the input stream.
(2) The evaluation problem for automata with unambiguous nondeterminism and unsynchro-

nized parallel execution requires space that is exponential in the size of the automaton.
(3) For automata that are unambiguous and allow only synchronized parallel execution, the

evaluation problem requires space and time-per-element that is quadratic in the size of
the automaton and independent of the size of the stream.

Related work. The features of our Streaming Automata (SAs) were inspired by the Quanti-
tative Regular Expressions (QREs) of [5], which have constructs for parallelism and nesting of
sequential aggregators. QREs were extended in [25] with streaming relational operations [22],
and an efficient implementation was given for processing realistic workloads (Yahoo streaming
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benchmark [13] and NEXMark benchmark [32]). However, the evaluation algorithm of [5] and
the implementation of [25] were not based on automata-theoretic techniques. A simplified
version of the QREs of [5] without parameters allows a straightforward translation into our
SAs that is very similar to the translation of unambiguous regexes into unambiguous NFAs.
This translation is desirable not only because it gives rise to a cleaner evaluation algorithm,
but also because it opens the door for systematic query optimization using automata-theoretic
techniques, which could be explored in future research.

The model of Cost Register Automata (CRAs) was proposed in [4] and was shown in
[5] to be expressively equivalent to QREs. However, CRAs cannot be used for the efficient
evaluation of QREs, because the translation of QREs into CRAs incurs a doubly exponential
blowup. The model of Streaming Automata that is proposed here is an appropriate setting
for the efficient evaluation of QREs.

A two-level variant of weighted automata for infinite strings has recently been proposed
[11] that can express long-run quantitative properties of a stream, for example, the average
response time of a system. By restricting both the nesting depth (to 1) and the allowed
aggregation operations, the model of [11] is shown to have decidable emptiness and universality
problems. With the goal of modeling realistic streaming computations, we focus on arbitrary
nesting and a general set of operations. We are therefore concerned primarily with evaluation
complexity rather than decidability of these problems.

Symbolic automata and transducers [33, 34, 15, 16] have been introduced for matching
and transforming strings over large or infinite alphabets. Our work builds on symbolic
automata but instead addresses the problem of quantitative aggregation.

There is also related work on data words and data/register automata and their associated
logics [23, 29, 18, 8]. These models operate on words over an infinite alphabet, which is
typically of the form Σ× N, where Σ is a finite set of tags. They allow the comparison of
infinite values using only the equality predicate. In contrast, our SAs do not allow binary
predicates on stream elements, but instead allow a rich set of operations on the values.

More broadly, there is a vast line of research on efficient algorithms for the streaming
model of computation. See the survey [28] and some illustrative works [27, 20, 3, 17, 6]
that have been influential. The algorithms studied in this line of research are designed for
specific problems (for example, finding the number of distinct elements in a stream) and
typically use approximation and randomization. Our considerations here are orthogonal, and
complementary, to the literature on streaming algorithms. We study the hierarchical nesting
of several different kinds of aggregations, and we study the computational resources that are
needed for parsing the stream and combining all intermediate results.

2 Streaming Automata

Symbolic input. Figure 1 shows two symbolic weighted automata over different inputs.
M1 implements MaxBlockSum: on an input stream of natural numbers separated into
(possibly empty) blocks by the separator 0, it returns the maximum sum of a block. As we
may viewM1 as a weighted automaton over the semiring (N ∪ {−∞},max,+), it does not
yet introduce anything new to our model except the symbolic input. All transitions use
the formal variable x to denote the current input data item, a natural number; the syntax
ϕ(x) 7→ α(x) means that if x matches predicate ϕ, then the transition can be taken, and has
weight α(x). We write simply x 7→ α(x) if ϕ is True, i.e. if any x is allowed. A transition
labeled with ε 7→ r matches the empty string and has weight r.
M1 starts at q0 for some time, mapping each input x to weight 0 (effectively ignoring it).

CVIT 2016
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M1 computing MaxBlockSum
input data type N, weights N, output N
fold + : N× N→ N, collect max : N× N→ N

q0 q1 q2
0

0

(x = 0) 7→ 0 (x = 0) 7→ 0

x 7→ 0 (x > 0) 7→ x x 7→ 0

M2 computing MaxSuffixSum
input data type Z, weights Z, output Z
fold + : Z× Z→ Z, collect max : Z× Z→ Z

q0 q1
0 ε 7→ 0

x 7→ 0 x 7→ x

Figure 1 Weighted automata with symbolic input.

M3 computing MaxBlockSum
input data type N, weights N, output N
fold max : N× N→ N

q0 q1
0 S

(x = 0) 7→ 0

(x = 0) 7→ 0

S computing Sum
input data type N, weights N, output N
fold + : N× N→ N

q0 q1
0 (x > 0) 7→ x

(x > 0) 7→ x

Figure 2 A streaming automaton employing hierarchy.

Then, it nondeterministically picks a block by transitioning to q1 on input the separator x = 0.
(q1 is also a start state, which corresponds to the first block, before any 0 has occurred.) At
q1, all inputs matching the predicate x > 0 are assigned weight x. Finally, on input x = 0,
the end of the block, it transitions to q2, where future x are again assigned weight 0. M1
adds up (folds) all the assigned weights to obtain the total weight of the path, which is by
construction the sum of the particular block chosen. The output of the automaton is the
maximum weight (collect) over all paths.
M2 implements MaxSuffixSum: on an input stream of integers, it returns the maximum

sum of a suffix of those integers. The input data type is now Z rather than N. M2 (likeM1)
starts at q0 and assigns inputs x to weight 0 for some time. Then, it nondeterministically
guesses the start of the suffix by switching to q1, where each future input x is assigned weight
x. The fold operation is again +, so that the weight of the path is the sum of that particular
suffix. The collect operation returns the max over all paths, i.e. over all suffixes.

Hierarchy. The nondeterminism ofM2 is very natural: exactly where the best suffix starts
cannot be known ahead of time, so we choose it nondeterministically. In contrast, since the
input toM1 is parsable into a sequence of blocks, using nondeterminism to choose a block
seems artificial. Instead, we would like to deterministically parse the stream into blocks,
then call a subroutine (sum) on each block. Figure 2 shows how to do this in our model.
First, the weighted automaton S is built to compute the sum of a nonempty input stream by
straightforwardly folding with +. M3 parses the stream into blocks separated by 0 and calls
S as a subautomaton on each block, where the weight of that transition is the return value
of S. All the block sums returned by S are now weights along a single path, and they are
folded with the operation max.

The example of MaxBlockSum is a typical case where the two operations of a nonde-
terministic weighted automaton (fold ⊗ and collect ⊕) can be replaced by a hierarchy of two
streaming automata, each of which is unambiguous: there is at most one accepting path on
any given input string. The fold operation ofM1 (+) becomes the fold operation of S, and
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M4 computing LastBlockAverage
input data type N, weights Q, output Q
fold + : Q×Q→ Q

q0 q1 q2
0

0
(x = 0) 7→ 0 div(S, C)

x 7→ 0

C computing Count
input data type N, weights N, output N
fold + : N× N→ N

q0 q1
0 (x > 0) 7→ 1

(x > 0) 7→ 1

Figure 3 A streaming automaton employing parallelism.

the collect operation ofM1 (max) becomes the fold operation ofM3. Unambiguity implies
that the collect operations inM3 and S are never used, and need not be specified.

Parallelism. After parsing a stream into blocks, multiple computations may be required on
each block. For this purpose, in our model a transition may be labeled not just with a single
subautomaton (as inM3), but with a call op(A1, . . . ,Am) where each Ai is a subautomaton.
In a simple example, the stream is separated by 0 into blocks, and we want to report the
average of the last block. Figure 3 gives an automatonM4 implementing this. On every 0
characterM4 may nondeterministically guess that we are now going to the last block, and
move from q0 to q1. It subsequently makes an invocation div(S, C) to two subautomata. S
(from Figure 2) returns the sum of the elements in the block if there is at least one, and C
returns the count if there is at least one. div : N×N→ Q then divides the two results to get
average. The parallelism arises because the stream is read into both S and C in parallel.

LikeM3,M4 is unambiguous, with at most one accepting path on each input. M4 also
satisfies parallel-consistency: in the call to div(S, C), S and C were defined on the same
input strings. Our definition of a streaming automaton requires both unambiguity and
parallel-consistency; the necessity of these restrictions is justified by Section 4.

Formal definition
The general definition is parameterized by a signature (D,O, D,P), where D is a collection
of (possibly infinite) types, and O is a collection of operations D1 ×D2 × · · · ×Dk → Dk+1
with each Di a type in D. We write O[D1×D2× · · · ×Dk → Dk+1] for the set of operations
in O which are functions of the specific indicated function type. D ∈ D is a specific set
for the input stream, and P is a set of predicates, which are identified with subsets of D.
We require that P is closed under Boolean operations, and that satisfiability for ϕ ∈ P is
decidable as in [34]. From this point, we assume the fixed signature (D,O, D,P).

The class of nondeterministic streaming automata is defined hierarchically as NSA :=⋃∞
k=0 NSAk. For k ≥ 0, an element of NSAk is a tuple (Q,X, Y,∆, I, F,⊗,⊕), semantically

representing a partial function from D∗ to Y . Q is a finite set of states, X ∈ D is the weight
type, Y ∈ D is the output type, and ∆ is a set of transitions. Each transition goes from a
state q ∈ Q to a state q′ ∈ Q, and has a label, which is one of three kinds: (i) A satisfiable
predicate ϕ ∈ P and a weight assignment α ∈ O[D → X]. (ii) An epsilon (ε) and a weight
x ∈ X. (iii) A call to op(A1,A2, . . . ,Am), where op ∈ O[Y1 × Y2 × · · · × Ym → X] and each
Ai ∈ NSAk−1, such that the output type of Ai is Yi. The weight of the transition in this
case will be op applied to the outputs of the Ai.

I : Q ⇀ Y is the initialization function, a partial function assigning an initial value to the
computation. Its domain is the set of initial states, denoted QI ⊆ Q. Conversely, F : Q ⇀ X

is the final function; it allows for slightly more flexibility than in our examples by appending
a final weight to accepting paths. Its domain is the set of final states or accepting states,

CVIT 2016
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denoted QF ⊆ Q. The fold operation ⊗ ∈ O[Y ×X → Y ] folds together the weights along a
path, and the collect operation ⊕ ∈ O[Y ×Y → Y ] combines the results of all accepting paths
to arrive at a final output value. The operation ⊕ must be commutative and associative,
and ⊗ must be left-distributive over ⊕.

The class NSA0, in which there are no transitions of kind (iii), consists of symbolic
weighted automata. A subautomaton of A is an automaton Ai ∈ NSAk−1 appearing in a
transition of kind (iii) in A. The size of A is the sum of the number of states |Q|, the number
of transitions |∆|, and the sizes of all the subautomata, counted with multiplicity. Effectively,
an automaton must be written down once for every time it is used.

As in the examples, the automaton A is semantically interpreted as a function JAK :
L(A) → Y , where L(A) ⊆ D∗ is the regular language of A. L(A) and JAK are defined
recursively by also defining L(τ) and JτK for each transition τ of the automaton. (i) For a
transition τ labeled with predicate ϕ ⊆ D and weight assignment α : D → X, L(τ) = {d ∈
D | ϕ(d)}, and JτK(d) = α(d). (ii) For an epsilon transition τ with weight x ∈ X, L(τ) = {ε}
and JτK(ε) = x. (iii) Finally, for a transition τ labeled with op(A1, . . . ,Am), the language
L(τ) = L(A1)∩ · · · ∩L(Am), and for any string s ∈ L(τ), JτK(s) = op(JA1K(s), . . . , JAmK(s)).

For an automaton A ∈ NSAk, a path on input s ∈ D∗ consists of a sequence of states
q0, q1, q2, . . . , qn ∈ Q, a sequence of strings s1, s2, . . . , sn ∈ D∗, and a sequence of transitions
τ1, τ2, . . . , τn ∈ ∆, such that q0 ∈ QI , s = s1s2 . . . sn, and for each i, τi is a transition from
qi−1 to qi such that si ∈ L(τi). A path is accepting if qn ∈ QF . The language L(A) is the set of
strings s for which there exists an accepting path on input s. The weight of an accepting path
is, with left-to-right evaluation order, I(q0)⊗ Jτ1K(s1)⊗ Jτ2K(s2)⊗· · ·⊗ JτnK(sn)⊗F (qn) ∈ Y .

An implicit ε-transition is a transition τ with ε ∈ L(τ). A is well-formed if it has no
implicit ε-transition cycles, and all of its subautomata are well-formed. Finally, the evaluation
of A on input s ∈ L(A) is given by JAK(s) := y1 ⊕ · · · ⊕ yN ∈ Y , where y1, . . . , yN are the
weights of all (finitely many) distinct accepting paths on input s. As ⊕ is commutative and
associative, this is well-defined.

Streaming automata. We recursively say that an NSA A is unambiguous if there is at
most one accepting path on every input string, and each subautomaton of A is unambiguous.
An NSA A is called parallel-consistent if, at every transition of kind (iii) labeled with
op(A1,A2, . . . ,Am), L(A1) = L(A2) = · · · = L(Am), and every subautomaton is parallel-
consistent. A streaming automaton (SA) is an NSA A that is unambiguous and parallel-
consistent. The collect operation ⊕ of an SA may be left off, as it is never invoked. We
additionally assume that every SA is trim: every state has an accepting path which goes
through it, and all subautomata are trim.

Checking if an NSA is an SA. Both of the two restrictions (unambiguity and parallel-
consistency) can be checked efficiently. The main idea is to assign to each subautomaton A
an underlying NFA NFA(A), such that L(A) = L(NFA(A)), from the bottom up. Given an
NSA A, the algorithm recursively verifies that A is unambiguous and parallel-consistent, and
also returns the NFA NFA(A) such that L(A) = L(NFA(A)). Assume this has been done for
all subautomata of A. Checking parallel-consistency of a transition labeled op(A1, . . . ,Am)
is then the equivalence problem for the unambiguous NFAs NFA(A1), . . . ,NFA(Am); ex-
actly this problem is solved in polynomial time by a nontrivial algorithm of [30]. Once
parallel-consistency is established, we form NFA(A) by replacing each transition labeled with
op(A1, . . . ,Am) with ε-transitions to and from a copy of NFA(A1). Crucially, we assume
parallel-consistency in only using A1. This guarantees that the NFA is linear in the size of A,
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and avoids the alternative of constructing an NFA for L(A1)∩ · · ·∩L(Am). The construction
preserves accepting paths, so L(A) = L(NFA(A)), and if one is unambiguous, both are.
Finally, checking that NFA(A) is unambiguous is a reachability check in NFA(A)×NFA(A).

The necessary operations for the algorithm to work lift to the symbolic setting given the
decidability restrictions on the predicates. See e.g. Corollary 1 of [34].

3 Evaluation Algorithm

In this section we present a space- and time-efficient evaluation algorithm for streaming
automata, i.e. NSAs that are unambiguous and parallel-consistent. We will show that for
such automata the space footprint of the evaluation algorithm and the time required to
process each element are independent of the size of the stream and quadratic in the size of
the automaton. As we will see in Section 4, both these syntactic restrictions on automata
are necessary for the efficiency guarantees that we present.

Given an SA A and a sequence w of data items, the computation of JAK(w) amounts to
discovering a global hierarchical path for w that may span several levels of subautomata
and performing incrementally the aggregations that are prescribed by the top level and all
subautomata. The crucial challenge is that the unambiguous nondeterminism of A requires
the exploration of all possible paths in parallel. It is not obvious how this can be accomplished
using a small amount of space, and indeed Theorem 5 in the next section shows that this
is impossible in the presence of ambiguous nondeterminism. For plain NFAs or weighted
automata, ambiguous nondeterminism is not an issue, because when two tokens end up at
the same state during evaluation they can be merged. For streaming automata, however,
such merging is not possible. The main insight is that unambiguity guarantees that no two
tokens will ever end up at the same state, even at the lowest level of the automaton. As the
evaluation algorithm explores each tentative path, it maintains a stack of values for that
path, which holds the partial aggregates for the subpaths that have been discovered so far.
We can think of these stacks as “execution tokens” that are updated whenever a simple
transition occurs (upon consumption of a data item), and which are passed to subautomata
as a way to implement the recursive definition of global accepting paths.

Before presenting the technical details, let us give a very high-level description of the
evaluation algorithm and its correctness proof. First, we will introduce the notion of a
configuration, which describes the assignment of stack tokens to the active states of the
automaton. This is a generalization of configurations for NFAs, which only indicate the
active states. We will define a semantics for configurations, which summarizes the accepting
paths from active states as well as the computations that are performed along these paths.
Then, the correctness proof of the algorithm can be reduced to establishing a simple semantic
property for configurations: if C is the current configuration and C ′ is the configuration
that the evaluation algorithm computes from C after consuming the data item d, then
JC ′K(w) = JCK(dw) for every possible suffix w. The presence of several nested levels of
subautomata presents a major challenge for proving this property, since a subautomaton
potentially has to compute simultaneously on several subsequences of the stream seen so far
(we call these subsequences “parallel input threads”).

I Example 1. The automaton of Figure 4 computes on a stream of integers and outputs
the sum of all strictly positive numbers that have occurred after the last occurrence of a 0
(or from the start if no 0 has occurred yet). We start the execution by supplying a context
stack, which holds the partial aggregations of upper levels (if there are any), and then we
supply the sequence of data items. The context stack [9] of this example is initialized by

CVIT 2016
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input data type Z
weights N, output N
fold + : N× N→ N

q0 q1
0 0(x = 0) 7→ 0

x 7→ 0

(x > 0) 7→ x

(x < 0) 7→ 0

start/next configuration input threads
[9] q0 : [9, 0] {[9] ε}

q1 : [9, 0]
2 q0 : [9, 0] {[9] 2}

q1 : [9, 2]
−1 q0 : [9, 0] {[9] 2 −1}

q1 : [9, 2]
3 q0 : [9, 0] {[9] 2 −1 3}

q1 : [9, 5]
0 q0 : [9, 0] {[9] 2 −1 3 0}

q1 : [9, 0]
6 q0 : [9, 0] {[9] 2 −1 3 0 6}

q1 : [9, 6]

Figure 4 Example evaluation of an SA on one input thread.

pushing the aggregate 0 onto it, and then every time an element is consumed the aggregate
at the top of the stack is appropriately updated.

I Example 2. The automaton of Figure 5 computes on a stream of integers and outputs
the sum of all strictly positive numbers that have occurred as long as there are exactly two
occurrences of a 0. We can compute on several parallel input threads by supplying a new
context stack every time we want to spawn a new thread of execution. Figure 5 shows an
example execution with three different input threads. By starting a new input thread after
the occurrence of a 0 we guarantee that there is at most one stack token on each state.

Epsilon transitions can be eliminated in a bottom-up fashion with a variant of the standard
ε-elimination construction for weighted automata [19]. We consider in this section automata
that are free of both explicit and implicit ε-transitions, and we assume w.l.o.g. that every
invocation op(A1, . . . ,Ak) has its own call state p, from which no other transition emanates.

Suppose that V is the type of all values. Let St be the type of all finite stacks of values,
and [] be the empty stack. We consider the total operation push : St × V → St, and the
partial operations pop : St ⇀ St and top : St ⇀ V . The operations pop and top are undefined
on the empty stack. We write s.push(x) to denote the application of push on the stack s
and the value x. Similarly, we write s.pop and s.top for the other operations. For example,
we have [].push(x).push(y) = [x].push(y) = [x, y] and [x, y].pop.top = [x].top = x. We write
St[X1, . . . , Xn−1, Xn] for the type of stacks of size n whose top element is of type Xn, the
next-to-top element is of type Xn−1 and so on. We call all types of this form bounded
stack types. If T = St[X1, . . . , Xn] then we write T@[Xn+1, . . . , Xn+m] to denote the type
St[X1, . . . , Xn, Xn+1, . . . , Xn+m]. We also abbreviate T@[Xn+1] by T@Xn+1.

The rank of an SA A is the smallest k such that A ∈ NSAk, or in other words the
nesting depth of the automaton. We define the notion of a configuration for an automaton by
induction on its rank. For an automaton A = (Q,X, Y,∆, I, F,⊗) of rank 0 and a bounded
stack type T , an (A, T )-configuration is a partial map C : Q ⇀ T@Y ; we denote the domain
dom(C). Intuitively, the configuration describes the placement of stack tokens on some of
the states of A. For an automaton A = (Q,X, Y,∆, I, F,⊗) of rank strictly greater than 0,
an (A, T )-configuration C is a vector consisting of a partial function C0 : Q ⇀ T@Y and a
subconfiguration for every subautomaton occurrence. More specifically, for every transition
(p, opi(Ai1,Ai2, . . . ,Ain), q) of A, the configuration C specifies an (Ai1, T@Y )-configuration
Ci1 and a (Aij ,St[])-configuration Cij for j = 2, . . . , n. That is, the configuration describes
the placement of stack tokens on the top-level states and specifies subconfigurations for the
subautomata occurrences. We write Cfg〈A, T 〉 for the set of all (A, T )-configurations.
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input data type Z
weights N, output N
fold + : N× N→ N

q0

q1

q2

0

(x = 0) 7→ 0

(x = 0) 7→ 0

(x > 0) 7→ x

(x < 0) 7→ 0

(x > 0) 7→ x

(x < 0) 7→ 0

(x > 0) 7→ x

(x < 0) 7→ 0

start/next configuration input threads
[90] q0 : [90, 0] {[90] ε}

3 q0 : [90, 3] {[90] 3}
−2 q0 : [90, 3] {[90] 3 −2}

0 q1 : [90, 3] {[90] 3 −2 0}
[70] q0 : [70, 0] {[90] 3 −2 0,

q1 : [90, 3] [70] ε}
2 q0 : [70, 2] {[90] 3 −2 0 2,

q1 : [90, 5] [70] 2}
−1 q0 : [70, 2] {[90] 3 −2 0 2 −1,

q1 : [90, 5] [70] 2 −1}
6 q0 : [70, 8] {[90] 3 −2 0 2 −1 6,

q1 : [90, 11] [70] 2 −1 6}
0 q1 : [70, 8] {[90] 3 −2 0 2 −1 6 0,

q2 : [90, 11] [70] 2 −1 6 0}
[30] q0 : [30, 0] {[90] 3 −2 0 2 −1 6 0,

q1 : [70, 8] [70] 2 −1 6 0,
q2 : [90, 11] [30] ε}

−4 q0 : [30, 0] {[90] 3 −2 0 2 −1 6 0 −4,
q1 : [70, 8] [70] 2 −1 6 0 −4,
q2 : [90, 11] [30] −4}

−5 q0 : [30, 0] {[90] 3 −2 0 2 −1 6 0 −4 −5,
q1 : [70, 8] [70] 2 −1 6 0 −4 −5,
q2 : [90, 11] [30] −4 −5}

4 q0 : [30, 4] {[90] 3 −2 0 2 −1 6 0 −4 −5 4,
q1 : [70, 12] [70] 2 −1 6 0 −4 −5 4,
q2 : [90, 15] [30] −4 −5 4}

Figure 5 Example evaluation of an SA on several input threads.

For an automaton A = (Q,X, Y,∆, I, F,⊗) and an (A, T )-configuration C, we will
define simultaneously C-paths, unambiguity of C, and the denotation JCK : D∗ ⇀ T@Y by
induction on the rank of A. A C-path is a path starting from the configuration C.

Automaton A of rank 0 : A C-path (labeled with d1d2 . . . dn ∈ D∗) is a sequence
of the following form: q0 →φ1/σ1

d1/x1
q1 →φ2/σ2

d2/x2
· · · →φn/σn

dn/xn
qn, such that q0 ∈ dom(C) and

(qi−1, φi, σi, qi) ∈ ∆ with φi(di) = true and xi = σi(di) for every i = 1, . . . , n. A C-path is
said to be accepting if it ends with an accepting state. The weight of an accepting C-path is
defined to be the value fold(y,⊗, x1x2 . . . xnxn+1) where y = C(q0).top and xn+1 = F (qn).
The configuration C is unambiguous if for every label w ∈ D∗ there is at most one accepting C-
path labeled with w. For an unambiguous configuration C, the denotation JCK : D∗ ⇀ T@Y
is defined as follows: if there is an accepting C-path π labeled with w starting with the state
q, then JCK w = s.pop.push(y) where s = C(q) is the initial stack and y is the weight of π.

Automaton A of rank greater than 0 : A top-level C-path is a sequence of top-level
transitions that can be of the following two forms:

p→φ/σ
d/x q where (p, φ, σ, q) ∈ ∆ with φ(d) = true and x = σ(d)

p→op(A1,...,An)
w/x q where w 6= ε and (p, op(A1, . . . ,An), q) ∈ ∆ with

x = op(JA1K w, . . . , JAnK w)

that starts with a state in the domain of C0. Now, a cross-level C-path is a sequence of
top-level transitions with an additional prefix called a cross-level transition:

→op(Ai1,...,Ain)
w/t q where w 6= ε and (p, op(Ai1, . . . ,Ain), q) ∈ ∆ for some state p

s1 = JCi1K(w) : T@[Y, Z1] and sj = JCijK(w) : [Zj ] for j = 2, . . . , n
t = s1.pop.pop.push(s1.pop.top⊗ op(z1, . . . , zn)) where zj = sj .top

CVIT 2016



23:10 Automata-based Stream Processing

Streaming automaton A = (Q,X, Y,∆, I, F,⊗) of rank 0 & bounded stack type T .
state: unambiguous (A, T )-configuration C : Cfg〈A, T 〉, that is, C : Q ⇀ T@Y
initialize(Cfg〈A, T 〉 this) :

this.C := ⊥ // empty configuration
T@Y output(Cfg〈A, T 〉 this) :

foreach q ∈ QF do // iterate over final states
if (this.C(q) is defined) then return this.C(q)

return nil
start(Cfg〈A, T 〉 this, T s) : // precondition: Jthis.CK and 〈〈A〉〉T (s) are disjoint

foreach q ∈ QI do // place token on each initial state
// this.C(q) must be undefined
this.C(q) := s.push(I(q))

next(Cfg〈A, T 〉 this, D d) :
Map〈Q,T@Y 〉Cnext := ⊥
foreach transition (p, φ, σ, q) in ∆ do

if φ(d) = true then
T@Y s := this.C(p) // current stack
Y y := s.top⊗ σ(d) // new value
Cnext(q) := s.pop.push(y) // new stack

this.C := Cnext

Figure 6 General evaluation algorithm for an SA of rank 0.

Such a prefix summarizes a path in the lower levels, and its annotation w/t specifies both
a label w 6= ε and a stack t : T@Y for continuing at the top level. The label of a path is
the concatenation from left to right of the strings over D that annotate the transitions. The
weight of a top-level C-path is defined as in the 0-rank case, and the weight of a cross-level
C-path is similar but the initial stack is specified by the first (cross-level) transition. The
configuration C is unambiguous if it satisfies the following two conditions:
1. For every label w ∈ D∗ there is at most one accepting C-path (top-level or cross-level)

labeled with w.
2. For every transition (p, op(Ai1, . . . ,Ain), q), the denotations JCi1K, . . . , JCinK have equal

domains.
For an unambiguous configuration C, the denotation JCK : D∗ ⇀ T@Y is defined as
follows: if there is an accepting C-path π (top-level or cross-level) labeled with w, then
JCK w = s.pop.push(y) where s is the initial stack (specified by C0 for top-level C-paths, and
by the initial transition for the cross-level C-paths) and y is the weight of π.

For an SA A = (Q,X, Y,∆, I, F,⊗) and a bounded stack type T , we define the denotation
〈〈A〉〉T : T → (D∗ ⇀ T@Y ) as 〈〈A〉〉T s w = s.push(JAK w).

Figure 6 describes the evaluation algorithm for the base case of a streaming automaton of
rank 0. Observe that the algorithm specifies a procedure next(d) for consuming the element
d, and a procedure start(s) for starting a new input thread given the context stack s. This
generalization of being able to start several parallel input threads is necessary when the
automaton is nested beneath other upper-level automata.

Figure 7 describes the evaluation algorithm for the case of a streaming automaton of rank
strictly greater than 0. The interface is the same as for the base case: there are procedures
start(s) and next(d). The main difference is that the algorithm in this case has to deal
with the invocation transitions: every time a token is at a call state the corresponding
subautomata are restarted, and every time the subautomata have output the corresponding
return state is updated with the output stack.

I Lemma 3. Let A = (Q,X, Y,∆, I, F,⊗) be an SA and T be a bounded stack type. Then:
1. Let C be an unambiguous (A, T )-configuration and s a stack of type T so that JCK and
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Streaming automaton A = (Q,X, Y,∆, I, F,⊗) of rank > 0 & bounded stack type T .
state: unambiguous (A, T )-configuration C : Cfg〈A, T 〉
initialize(Cfg〈A, T 〉 this) :

this.C0 := ⊥ // no top-level tokens
foreach occurrence Aij in ∆ do initialize(this.Cij)

T@Y output(Cfg〈A, T 〉 this) :
foreach q ∈ QF do // iterate over final states

if (this.C0(q) is defined) then return this.C0(q)
return nil

start(Cfg〈A, T 〉 this, T s) : // precondition: Jthis.CK and 〈〈A〉〉T (s) are disjoint
Map〈Q,T@Y 〉 Cnew

0 := ⊥
foreach q ∈ QI do Cnew

0 (q) := s.push(I(q)) // place token on each initial state
foreach transition (p, op(Ai1, . . . ,Ain), q) in ∆ do // restart subautomata

if (Cnew
0 (p) 6= nil) then // check if there is token on invocation state
start(this.Ci1, C

new
0 (p)); start(this.Cij , []) for all j = 2, . . . , n

Cnew
0 (p) := nil

this.C0 := this.C0 t Cnew
0

next(Cfg〈A, T 〉 this, D d) :
Map〈Q,T@Y 〉Cnext

0 := ⊥
foreach transition (p, φ, σ, q) in ∆ do

if φ(d) = true then
T@Y s := this.C(p) // current stack
Y y := s.top⊗ σ(d) // new value
Cnext

0 (q) := s.pop.push(y) // new stack
foreach transition (p, op(Ai1, . . . ,Ain), q) in ∆ do // propagate d to subautomata, collect outputs

next(this.Cij , d) for all j = 1, 2, . . . , n
T@[Y,Z1] s1 := output(this.Ci1)
if (s1 6= nil) then

z1 := s1.top; s′
1 := s1.pop; y := s′

1.top
zj := output(this.Cij).top for all j = 2, . . . , n
Cnext

0 (q) := s′
1.pop.push(y ⊗ op(z1, z2, . . . , zn))

foreach transition (p, op(Ai1, . . . ,Ain), q) in ∆ do // restart subautomata
if (Cnext

0 (p) 6= nil) then // check if there is token on invocation state
start(this.Ci1, C

next
0 (p)); start(this.Cij , []) for j = 2, . . . , n

Cnext
0 (p) := nil

this.C0 := Cnext
0

Figure 7 General evaluation algorithm for an SA of rank strictly greater than 0.

〈〈A〉〉T (s) are disjoint. Then, the configuration start(C, s), as described operationally in
Figure 6 and Figure 7, is unambiguous and satisfies Jstart(C, s)K = JCK t 〈〈A〉〉T (s).
Notation: If f and g are partial functions with disjoint domains, the partial function
f t g has domain dom(f) ∪ dom(g) and agrees with both f and g.

2. Let C be an unambiguous (A, T )-configuration and d ∈ D. Then, the configuration
next(C, d), as described operationally in Figure 6 and Figure 7, is unambiguous and
satisfies Jnext(C, d)K w = JCK dw for all sequences w ∈ D∗.

Lemma 3 establishes the main semantic property for configurations that is needed for
proving the correctness of the evaluation algorithm.

I Theorem 4. The streaming algorithm of Figure 6 and Figure 7 solves the evaluation
problem for streaming automata. The space footprint of the algorithm and the processing
time per element are independent of the length of the stream and quadratic in the size of the
automaton (assuming that the data types require unit space and the operations unit time).

The guarantees of Theorem 4 apply unconditionally to the case of constant-size types
and operations (e.g., integers and floating-point numbers specified by machine architectures).
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In the case of infinite data types, one may need to account for the additional complexity
of computing on their unbounded values to obtain a more precise analysis. In any case,
however, Theorem 4 can be understood as saying that the computational overhead of parsing
the input stream and combining the intermediate results is not significant.

4 Lower Bounds

The efficient evaluation algorithm of the previous section depends crucially on the unambiguity
and parallel-consistency of the automata. In fact, both these syntactic restrictions are essential
for efficient evaluation. More specifically, ambiguous nondeterminism can make the streaming
space complexity of evaluation linear in the size of stream. Moreover, the absence of parallel-
consistency allows the encoding of unambiguous regular expressions with intersection. The
streaming matching problem for such expressions requires space that is exponential in the
size of the expression. These lower bounds highlight the difficulty of efficiently evaluating
quantitative automata that allow for the interaction between nondeterminism and parallelism.

Consider a stream of natural numbers and the problem MinAvgSuffix for the stream-
ing computation of the function f(x1x2 . . . xn) = minni=1 average(xi, xi+1, . . . , xn), where
x1x2 . . . xn is the stream seen so far. An NSA similar to M2 of Figure 1 may be constructed
which computes from each suffix a pair (sum, count), and that is nested inside an automaton
dividing the components of the pair to obtain the average. Since this automaton computes
MinAvgSuffix, the following theorem asserts a lower bound for the evaluation problem of
NSAs with two-level nesting but without parallelism.

I Theorem 5. Any streaming algorithm for MinAvgSuffix requires Ω(n) bits of memory,
where n is the size of the stream seen so far.

The following theorem states that the parallel-consistency requirement is essential for
evaluation that is quadratic in the size of the automaton. The idea is based on [21].

I Theorem 6. The evaluation problem for unambiguous streaming automata without the
parallel-consistency restriction requires space exponential in the size of the automaton.

5 Conclusion

We have considered symbolic weighted automata extended with two crucial features for
expressing streaming computations: hierarchical nesting of several aggregators, and parallel
execution. The following table summarizes the space complexity of the evaluation problem,
where m is the size of the automaton and n the length of the data stream:

no nesting nesting without
parallelism consistent parallelism general parallelism

unambiguous
nondeterminism O(m) O(m2) O(m2) [Thm 4] O(exp(m)) [Thm 6]

general
nondeterminism O(m) Ω(n) [Thm 5] Ω(n) Ω(n)

In nesting without parallelism, a transition may call a single subautomaton. General paral-
lelism allows transitions with the construct op(A1, . . . ,Am), which matches only those strings
accepted by every Ai. Consistent parallelism restricts this to require L(A1) = · · · = L(Am).
These complexities assume that the types of the signature require unit space, and that the
operations and predicates require unit time.



R. Alur and K. Mamouras and C. Stanford 23:13

References
1 Alfred V. Aho. Algorithms for finding patterns in strings. In Jan van Leeuwen, editor,

Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity, chap-
ter 5, pages 255–300. MIT Press/Elsevier, 1990.

2 Shaull Almagor, Udi Boker, and Orna Kupferman. What’s decidable about weighted au-
tomata? In Tevfik Bultan and Pao-Ann Hsiung, editors, Proceedings of the 9th Inter-
national Symposium on Automated Technology for Verification and Analysis (ATVA ’11),
pages 482–491. Springer Berlin Heidelberg, 2011.

3 Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the
frequency moments. Journal of Computer and System Sciences, 58(1):137–147, 1999.

4 Rajeev Alur, Loris D’Antoni, Jyotirmoy Deshmukh, Mukund Raghothaman, and Yifei
Yuan. Regular functions and cost register automata. In Proceedings of the 28th Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS ’13), pages 13–22, 2013.

5 Rajeev Alur, Dana Fisman, and Mukund Raghothaman. Regular programming for quan-
titative properties of data streams. In Proceedings of the 25th European Symposium on
Programming (ESOP ’16), pages 15–40, 2016.

6 Arvind Arasu and Gurmeet Singh Manku. Approximate counts and quantiles over sliding
windows. In Proceedings of the 23rd ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems (PODS ’04), pages 286–296, 2004.

7 Gerard Berry and Ravi Sethi. From regular expressions to deterministic automata. Theo-
retical Computer Science, 48:117–126, 1986.

8 Mikołaj Bojańczyk, Claire David, Anca Muscholl, Thomas Schwentick, and Luc Segoufin.
Two-variable logic on data words. ACM Transactions on Computational Logic (TOCL),
12(4):27:1–27:26, 2011.

9 Ronald Book, Shimon Even, Sheila Greibach, and Gene Ott. Ambiguity in graphs and
expressions. IEEE Transactions on Computers, C-20(2):149–153, 1971.

10 Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. Quantitative languages.
ACM Transactions on Computational Logic (TOCL), 11(4):23, 2010.

11 Krishnendu Chatterjee, Thomas A. Henzinger, and Jan Otop. Nested weighted automata.
In Proceedings of the 30th Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS ’15), pages 725–737, 2015.

12 Krishnendu Chatterjee, Thomas A. Henzinger, and Jan Otop. Quantitative monitor au-
tomata. In Xavier Rival, editor, Proceedings of the 23rd International Symposium on Static
Analysis (SAS ’16), pages 23–38. Springer Berlin Heidelberg, 2016.

13 S. Chintapalli, D. Dagit, B. Evans, R. Farivar, T. Graves, M. Holderbaugh, Z. Liu, K. Nus-
baum, K. Patil, B. J. Peng, and P. Poulosky. Benchmarking streaming computation engines:
Storm, Flink and Spark Streaming. In 2016 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), pages 1789–1792, 2016.

14 Gianpaolo Cugola and Alessandro Margara. Processing flows of information: From data
stream to complex event processing. ACM Computing Surveys (CSUR), 44(3):15:1–15:62,
2012.

15 Loris D’Antoni and Margus Veanes. Equivalence of extended symbolic finite transducers.
In Proceedings of the 25th International Conference on Computer Aided Verification (CAV
’13), pages 624–639, 2013.

16 Loris D’Antoni and Margus Veanes. Minimization of symbolic automata. In Proceedings
of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL ’14), pages 541–553, 2014.

17 Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Maintaining stream
statistics over sliding windows. SIAM Journal on Computing, 31(6):1794–1813, 2002.

CVIT 2016



23:14 Automata-based Stream Processing

18 Stéphane Demri and Ranko Lazić. LTL with the freeze quantifier and register automata.
ACM Transactions on Computational Logic (TOCL), 10(3):16:1–16:30, 2009.

19 Manfred Droste, Werner Kuich, and Heiko Vogler, editors. Handbook of Weighted Automata.
Springer, 2009.

20 Philippe Flajolet and G. Nigel Martin. Probabilistic counting algorithms for data base
applications. Journal of Computer and System Sciences, 31(2):182–209, 1985.

21 Martin Fürer. The complexity of the inequivalence problem for regular expressions with
intersection. In Proceedings of the 7th International Colloquium on Automata, Languages
and Programming (ICALP ’80), pages 234–245, 1980.

22 Namit Jain, Shailendra Mishra, Anand Srinivasan, Johannes Gehrke, Jennifer Widom,
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