
Real-Time Decision Policies
With Predictable Performance
This paper introduces the usage of declarative streaming languages, in particular
StreamQRE, for modeling and analyzing real-time streaming applications. The
approach is based on the formalism of quantitative regular expressions. It can
guarantee constant memory, runtime, and energy cost per data item, and can calculate
the upper bounds on the per-item cost.

By HOUSSAM ABBAS , Member IEEE, RAJEEV ALUR, Fellow IEEE,
KONSTANTINOS MAMOURAS, Member IEEE, RAHUL MANGHARAM, Member IEEE,
AND ALENA RODIONOVA, Member IEEE

ABSTRACT | As methods and tools for cyber–physical systems

(CPS) grow in capabilities and use, one-size-fits-all solutions

start to show their limitations. In particular, tools and lan-

guages for programming an algorithm or modeling a CPS

that are specific to the application domain are typically more

usable, and yield better performance, than general-purpose

languages and tools. In the domain of cardiac arrhythmia

monitoring, a small, implantable medical device continuously

monitors the patient’s cardiac rhythm and delivers electrical

therapy when needed. The algorithms executed by these

devices are streaming algorithms, so they are best pro-

grammed in a streaming language that allows the programmer

to reason about the incoming data stream as the basic object,

rather than force her to think about lower-level details like

state maintenance and minimization. Because these devices

are resource-constrained, it is useful if the programming lan-

guage allowed predictable performance in terms of process-

ing runtime and energy consumption, or more general costs.

StreamQRE is a declarative streaming programming language,

with an efficient and portable implementation and strong

theoretical guarantees. In particular, its evaluation algorithm

guarantees constant cost (runtime, memory, energy) per data

item and also calculates upper bounds on the per-item cost.

Such an estimate of the cost allows early exploration of the

algorithmic possibilities, while maintaining a handle on worst

Manuscript received July 4, 2017; revised January 31, 2018 and June 4, 2018;
accepted June 25, 2018. Date of publication August 7, 2018; date of current
version September 14, 2018. (Corresponding author: Houssam Abbas.)

H. Abbas, R. Mangharam, and A. Rodionova are with the Department of
Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA
19104 USA (e-mail: houssamyma@gmail.com).

R. Alur and K. Mamouras are with the Department of Computer and
Information Science, University of Pennsylvania, Philadelphia, PA 19104 USA.

Digital Object Identifier 10.1109/JPROC.2018.2853608

case performance, on the basis of which hardware can be

designed and algorithms can be tuned.

KEYWORDS | Arrhythmia monitoring; quantitative regular

expressions; real time; streaming languages; Tachycardia

I. I N T R O D U C T I O N

The last few years have witnessed an explosion of Internet
of Things (IoT) systems in applications such as smart build-
ings, wearable devices, and healthcare. A key component
of an effective IoT system is the ability to make decisions
in real time in response to data it receives. For instance, a
gateway router in a smart home should detect and respond
in a timely manner to security threats based on monitored
network traffic, and a healthcare system should issue alerts
in real time based on measurements collected from all the
devices for all the monitored patients. Programming the
desired logic as a deployable implementation is challeng-
ing due to the volume of data and hard constraints on
available memory, power usage, and response time.

In current practice, a general-purpose imperative lan-
guage such as C is used to program real-time decision mak-
ing policies. Due to the challenges in analyzing such code,
this approach does not lead to predictable performance and
does not facilitate exploration of design options at early
stages. A specialized language for specifying these policies
in a declarative manner, with programming abstractions
suitable for processing data streams with performance
guarantees, can be a potential solution to both these
challenges. It can play the same role as model-based design
does for safety-critical embedded control software [1]–[4].

To specify the decision logic based on computing quanti-
tative summaries of data streams we advocate quantitative

0018-9219 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Vol. 106, No. 9, September 2018 | PROCEEDINGS OF THE IEEE 1593

https://orcid.org/0000-0002-8096-2618

Abbas et al.: Real-Time Decision Policies With Predictable Performance

regular expressions (QREs) [5], [6]. The language allows
the computation to be expressed as a streaming compo-
sition of stages. The core QRE combinators, which are
quantitative extensions of operations in classical regular
expressions, can be used to impart to the input data stream
a logical hierarchical structure facilitating modular specifi-
cations (for instance, to view patient data as a sequence of
episodes and to view network traffic as a sequence of voice-
over-IP sessions). The QRE compiler translates a high-level
query into a streaming algorithm with precise complexity
bounds on per-item processing time and total memory
footprint. The StreamQRE library, an implementation in
Java, has been shown experimentally to have superior
performance compared to other existing high-performance
engines for processing streaming data [6]. This experimen-
tal evaluation involved workloads that are representative
of clickstream analysis (Yahoo streaming benchmark [7])
and real-time analytics for business event streams (NEX-
Mark benchmark [8]). A variant of StreamQRE (called
NetQRE) has been shown to be useful for network
monitoring [9].

Medical devices offer an ideal testbed for exploring
the applications of formal methods in system design due
to their safety-critical nature that demands predictable
operation [10]. Recently, the implantable pacemaker has
been used to illustrate the benefits of model-based design
[11]–[13]. This involves specifying the algorithms for
detecting slower-than-normal rhythms used by pacemak-
ers using formal modeling languages, such as timed
automata [14] and hybrid automata [15], and verifying
correctness requirements using a model checker such as
UPPAAL [16].

While this previous work dealt with pacemak-
ers, implantable cardioverter defibrillators (ICDs) and
insertable loop recorders (ILRs) are a more sophisticated
class of implantable cardiac devices that must do multibeat
rhythm classification, not only detect whether a beat was
missing, like pacemakers do. The goal of such an arrhyth-
mia monitoring algorithm (AMA) is to detect undesirable
patterns in the (discretized) input signal being monitored.
We argue that such a classification task is best viewed as a
matching algorithm over streaming data, and the desired
decision logic can be naturally expressed using QREs.

In particular, we program a representative AMA, used in
an ICD by Boston Scientific [17], using the QRE language.
The QRE compiler then generates the low-level implemen-
tation whose space complexity and per-item processing
time complexity are constant — that is, independent of
the number of samples processed so far (see [6, Sec. 4]).
Furthermore, we show how the QRE compiler can statically
compute an upper bound on the cost of processing each
item, where the cost can be, for example, the energy con-
sumption on a specific platform. This assures predictable
real-time performance. Such estimates, provided early in
the design cycle, allow one to compare design alternatives
(that is, different variants of the monitoring algorithm)
statically in terms of their achievable worst case costs.

Such analysis complements average-case analysis (i.e.,
measured performance when running the algorithm on a
typical load). We demonstrate the latter type of analysis by
profiling the energy consumption of the QRE on a signals
database on a given hardware platform.

The paper is organized as follows. Section II gives a
background on cardiac function, necessary for understand-
ing the complexity of arrhythmia monitoring. Section III
motivates the programming of AMAs in QREs, and Section
IV introduces the QRE formalism and the Java library
that implements it. This library is available online at [18].
Section V describes one representative AMA and Section VI
details its QRE implementation. The Java library is used
in Section VII to illustrate the implemented AMA on a
database of arrhythmia episodes. Section VIII describes
how to compute upper bounds on QRE cost, like per-item
energy consumption. Section IX summarizes related work
and Section X concludes the paper.

II. B A C K G R O U N D O N C A R D I A C
F U N C T I O N

To understand the arrhythmia monitoring algorithm pre-
sented in this paper and appreciate its complexities, it
is necessary to first understand some basics of cardiac
electrophysiology: how the heart beats normally, why it
could go into arrhythmia, and what measurements are
available to an implantable device to detect this.

Fig. 1. ICD and its connection to the heart.

1594 PROCEEDINGS OF THE IEEE | Vol. 106, No. 9, September 2018

Abbas et al.: Real-Time Decision Policies With Predictable Performance

Fig. 2. Electrical activity during normal sinus rhythm (NSR) and Ventricular Fibrillation (VF). The color scale runs from blue = rest state to

red = excited (aka depolarized) state. In the top left, the ventricles are shown from two different angles, during a phase of NSR. The

ventricles are fully excited. The bottom left panel shows a later phase of the same beat, where the ventricles are progressively relaxing,

starting with the apex (the pointed tip of the heart). This orderly propagation ensures adequate muscle contraction and blood flow. Three

surface ECGs are shown beneath the left column, with red bars indicating the timing of the two snapshots. Note the periodic pattern. The

right column shows two snapshots during VF (earlier snapshot on top). Note the disorganized nature of the electrical activity, wavefront

breakup, and the multiple regions of depolarization. Note also the change in the surface ECG from periodic and regular (early on) to

disorganized. The AMA reads two such signals (obtained, however, intracardially and not from the surface) and tries to detect fibrillation.

(Snapshots obtained from video of a simulation of the ventricles at UCLA, courtesy of Luigi Perotti [19].)

A. Cardiac Electrophysiology
The heart has two upper chambers called the atria and

two lower chambers called the ventricles (see Fig. 1). The
synchronized contractions of atria and ventricles assure an
adequate supply of oxygenated blood to the rest of the
body. This contraction is driven by electrical activity in the
heart, which originates in the right atrium, floods the atria
first, then conducts down to the ventricles and floods those
in turn. The cardiac muscle contracts as it is being tra-
versed by the electrical wavefront, i.e., as it depolarizes. In
a first approximation which is sufficient for understanding
AMAs, we may consider that this contraction is an instan-
taneous event, and refer to it as an (atrial or ventricular)
beat. This normal pattern of electrical activity is referred
to as normal sinus rhythm (NSR), after the sino-atrial node
where the electricity normally originates. Disturbances of
NSR are referred to as arrhythmias. They can arise because
of structural defects in the cardiac muscle, like a re-entrant
circuit around which the electrical waveform circulates
very fast, or because of irritable tissue that starts to depo-
larize faster than the sino-atrial node. Ventricular tachy-
cardia (VT) is an example of an arrhythmia originating in
the ventricles, in which the ventricles depolarize at a very
high rate and effectively drive the rhythm. This high rate of
depolarization does not give enough time for the muscle to

contract and relax properly, which can result in insufficient
blood supply. If the VT is sustained, or degenerates into
Ventricular Fibrillation (VF) (Fig. 2), it is fatal within a
minute. An abnormally fast heart rate that originates in the
atria and/or the conduction system above the ventricles is
referred to as a supra-ventricular tachycardia (SVT). An
SVT causes patient discomfort but is not fatal in the short-
term and does not require device treatment. Most fast
arrhythmias fall under these two categories: VT or SVT.

B. Implantable Devices
Two types of implantable devices monitor a heart’s

rhythm continuously to detect abnormally fast arrhyth-
mias, aka tachycardias. The first is implantable cardioverter
defibrillators (ICDs). An ICD is inserted under the pec-
toral muscles, and has one or two leads that are directly
implanted in the cardiac chambers, through which it mea-
sures local electrical activity; see Fig. 1. The measured
signals are known as electrograms, or EGMs, and are
termed “atrial” or “ventricular” depending on the chamber
where they are measured.1 See Fig. 3. An ICD uses EGMs
to distinguish a wide range of tachycardias. If it detects a
potentially fatal tachycardia, then it delivers therapy to the

1In this paper, we will ignore the so-called ‘shock EGM’ as it will
not be used in describing arrhythmia monitoring algorithms.

Vol. 106, No. 9, September 2018 | PROCEEDINGS OF THE IEEE 1595

Abbas et al.: Real-Time Decision Policies With Predictable Performance

Fig. 3. Electrograms (EGMs) (top and bottom panels) and

corresponding Boolean beat signals (middle) during atrial

tachycardia. Beats correspond to peaks in the EGMs.

heart in the form of either low-energy pacing sequences or
(possibly more than one) very high-energy shock. Either
way, the goal of the therapy is to stop the current rhythm
and allow a normal rhythm to start. VTs and SVTs can share
similar heart rates and other characteristics, so an SVT
can be misdiagnosed as a VT. This is problematic because
shock therapy used to stop a VT can deliver between 30–60
Joules of energy at around 700 Volts in under 15ms [20],
directly to the heart, which is very painful to the patient,2

and has been shown to increase morbidity [21]. Therefore,
one of the biggest challenges for ICDs is to discriminate
between VF and sustained VT that typically requires a
shock, and SVT that typically should not be shocked [22].
This paper will present one particular ICD AMA in detail in
Section V.

The second type of device that monitors tachycardias
is the insertable loop recorder (ILR) (also known as
implantable cardiac monitor). An ILR is a small device
(the smallest ILR on the market is smaller than a key)
that is inserted subcutaneously, and monitors surface ECG
signals. It uses these signals to compute a number of long-
and short-term statistics of the rhythm, and in particular
to detect atrial fibrillation (AF) episodes. AF is an abnor-
mally fast and disorganized atrial rhythm that can lead to
fainting spells, and which, in the long term, contributes
to blood clot formation. These clots can cause a stroke
upon reaching the brain. The ILR does not have any
therapeutic functions, but only monitors the heart rhythm.
As an example, Biotronik’s BioMonitor [23] calculates and
stores the following daily quantities, in a sliding window
of 240 days where the oldest day drops out of the win-
dow. The quantities include: 1) the average daily heart
rate; 2) the daily minimum average heart rate, where the
averages are calculated over consecutive blocks of 10 min
in the day; 3) daily heart rate variability, defined as the
standard deviation of the sliding 5-min averages; and 4)
the rate histogram, where each heartbeat is binned into
bins of width 10 beats per-minute (bpm). In addition, the
BioMonitor will take consecutive windows of n beats and

2Patients compare the shock to a “horse kicking you in the chest”.

count the number of cycle lengths that fall below a fixed
value in each window.

Remote continuous monitoring has recently been
shown to improve treatment outcomes [24] and to reduce
time-to-treatment for patients with atrial tachycardia
burden [25], so it is important to develop algorithms
that can monitor over longer periods of time and/or
compute more advanced statistics that can better detect
the arrhythmia burden.

C. Device Measurement: From Real-Valued
to Boolean Signal

Formally, an EGM is a uniformly sampled, discrete-
time real-valued bounded signal. An EGM signal can be
characterized by the timing of beats that produced it, and
the morphology of the signal itself. To detect the beat timing
(i.e., when the chamber is contracting), the peaks of the
EGM are detected [26]. The output of peak detection
is a discrete-time Boolean signal, where a 1 indicates a
beat. See Fig. 3. Beat timing is crucial to an arrhythmia’s
detection, since it is used in all discriminators.

The “morphology” refers to the shape of the EGM. The
so-called “shock” EGMs during an atrially driven rhythm
look different from the shock EGMs during a ventricularly
driven rhythm. The ICD uses this to help it determine
whether the current arrhythmia is an SVT or VT. In this
paper, and in order to keep the exposition simple, we
will only work with the beat signal, i.e., the Boolean
signal produced by peak detection on the local atrial and
ventricular channels, as shown in Fig. 3.

III. S T R E A M I N G A L G O R I T H M S F O R
A R R H Y T H M I A D E T E C T I O N

An AMA is naturally viewed as a pipeline of streaming
algorithms, where each node of the pipeline performs a
streaming calculation on its input signal, and passes its
output signal to the next node. So what is a streaming
algorithm? And why view arrhythmia monitors as stream-
ing algorithms? The main characteristics of a streaming
algorithm are that it views its input as a sequence, or
stream, of items from some data domain, arriving one at
a time. It gets to process each item only once, after which
it discards it and moves on to the next item in the input
stream. After processing each item, the algorithm produces
an output value (which might also be null). A streaming
algorithm has limited memory available (much smaller
than the length of the stream which, for practical pur-
poses, may be regarded as infinite), and limited process-
ing time. Section IV gives several examples of streaming
calculations.

The following considerations, which govern the design
and execution of an AMA, establish the suitability of the
streaming model of calculation for AMA. First, an AMA’s
input is a uniformly sampled discrete-time electrical signal
that arrives in real time, one sample at a time, and thus
can be viewed as a stream. Second, when running on an

1596 PROCEEDINGS OF THE IEEE | Vol. 106, No. 9, September 2018

Abbas et al.: Real-Time Decision Policies With Predictable Performance

ICD, the AMA has a delay constraint. Namely, not much
time must elapse between the onset of a fatal VT and the
moment that the AMA detects it, because this delays the
delivery of therapy. This requirement translates directly
into a requirement of small processing time per item of the
input signal, which is a key constraint on streaming algo-
rithms. Third, ICDs and ILRs share a power consumption
concern. Indeed, power is the main nonfunctional design
factor for these devices. Even for today’s ICDs, which can
have a battery life between 7 and 11 years, an additional 3
months of battery life are still worth pursuing [27], since
they can mean the difference between having to surgically
replace the ICD or not. Because most ICD and ILR recipi-
ents are older patients with health complications [28], it is
desirable to prolong battery life and reduce the likelihood
of a replacement [27]. The power in an ICD is consumed
by the monitoring algorithms, the shock therapy, and the
pacing therapy. Although shocks are the single most power-
hungry event, over an average device’s lifetime, they will
only consume 3% of the battery, and it is exceedingly rare
that they consume more than 36% [29]. The rest is shared
between pacing and monitoring. Thus, it is important to
reduce the power cost of monitoring. For ILRs, because
they do not have any therapeutic functions, most of the
power is consumed by monitoring. Thus an AMA has a
more general small cost-per-item constraint.

If AMAs are viewed as streaming algorithms, then it
follows that they are best programmed using a streaming
programming language. That is, a language that is expressly
designed and optimized for describing streaming algo-
rithms and automatically generating efficient code from
the program description. Indeed, it is important to note the
productivity gains achievable by using a domain specific
language (DSL). It is generally agreed that programming in
a DSL results in greater productivity for the development
teams producing the software; see, e.g., [30] and [31],
where development time reductions of 5–7x are routinely
reported. During the design exploration stage when AMAs
are developed, tweaked and compared, it is helpful to
program in a language that allows high-level reasoning
about the stream as the basic object of manipulation and
easy capture of patterns in the stream.

The StreamQRE language [6], [18] permits such a
declarative way of programming. StreamQRE (pronounced
“stream query”) allows the developer to create quantita-
tive regular expressions (QREs), which are a quantitative
extension of regular expressions. A QRE declares how
the stream should be divided up (by matching against a
regular expression) and which arbitrary operations should
be executed on the matching pieces. Similarly to regular
expressions, QREs can be combined using quantitative
extensions of regular combinators to form more complex
computations. QREs are described in detail in the next
section. QREs also provide theoretical guarantees on the
memory, time and energy consumed to process a data
item by the resulting algorithm. Specifically, a QRE has
per-item memory and time complexities and energy con-

sumption that are independent of the length of the stream,
and depend only on the size of the query. Thus, a QRE
program automatically gives a baseline implementation
with constant cost per data item. One also automatically
gets a static upper bound on the per-item cost of a QRE.
This allows a cost comparison to choose between similarly
performing algorithms. Such early feedback on cost allows
early design exploration, at a point in the design cycle
where algorithmic changes are easy and can be correlated
to cost decrease, and where it is well-established that the
most gains are possible.

Of course, during design exploration, AMAs can also
be programmed in a general purpose language like C++,
and in a nonstreaming fashion, e.g., by keeping a sliding
window big enough to store the entire signal segment of
interest and repeating all computations with every new
sample that enters the window. However, this requires the
programmer to explicitly think of keeping state informa-
tion and minimizing it, and to think of various sources of
delay in her code and minimize those. Moreover, it is much
harder to obtain upper bounds on cost (whether power,
memory or processing time) of free-form code than the
cost of QREs, which have sufficient structure to enable the
above analysis. Finally, when it is possible, analysis of cost
at code-level enables late-stage implementation changes
whose effect on cost will typically be small compared to
early-stage algorithmic changes.

On adopting a domain-specific language. In general,
learning a new language incurs overhead for the engineers.
This is true for any programming language, not only a
DSL like StreamQRE, and the above-cited studies indicate
the overall productivity gains that can be achieved after
the initial learning curve. For instance, regular expressions
are familiar to database developers who favor them over
writing C code for querying databases. In our project, we
had two teams: Team M, consisting of the first author and
two other engineers, coded the AMA in Matlab. Matlab was
chosen because Team M members are very familiar with
it, it is an easy language to work in, and has a very rich
development environment and IDE. After understanding
the algorithm, it took Team M approximately three weeks
to code it and check its operation (amount of time
estimated from github commits). Team Q, consisting of
the second and third author, took one week to code the
same AMA in StreamQRE. Thus our experience validates
the general point that using a DSL can unlock productivity
gains.

In summary, the advantages of describing AMAs in a
streaming language, and more specifically in StreamQRE,
over describing them in a general purpose language, are as
follows.

• A more natural way to reason about the algorithm’s
streaming operation, which highlights opportunities
to reuse computation results.

• A declarative way to program the algorithm,
which enables reasoning at the stream level and
how it needs to be divided hierarchically and

Vol. 106, No. 9, September 2018 | PROCEEDINGS OF THE IEEE 1597

Abbas et al.: Real-Time Decision Policies With Predictable Performance

processed, rather than get bogged down in item-level
computations.

• An automatic implementation of the algorithm that
guarantees bounded memory, runtime, and energy
consumption per data item that is independent of the
input signal length. The algorithm designer is relieved
from having to explicitly maintain state.

• An automatic way to obtain an upper bound on the
cost of a QRE as a function of the costs of the basic
operations. This cost can model power consumption,
for example.

IV. I N T R O D U C T I O N T O Q R E s

This section is an introduction to the language of QREs.
First, we present the semantic model of streaming func-
tions for describing stateful streaming transformations.
Then, we introduce the language of QREs and define
some derived constructs that will be used later to specify
the arrhythmia detection algorithm. Finally, we discuss an
efficient implementation of QREs as a Java library.

A. Streaming Functions
We introduce here the basic semantic objects for our

language, called streaming functions, which are partial
functions from sequences of input data items to an output
value. Each streaming function has an associated rate that
captures its domain; that is, as the function reads the
input data stream, the rate characterizes the prefixes that
trigger the production of the output. In our language,
the rates are required to be regular, captured by symbolic
regular expressions, which lead to decision procedures for
constructing well-typed expressions.

As a motivating example, consider a stream that consists
of integers and special separator symbols #

3 −5 4 1 −3 # 7 −2 9 # 1 −4.

Given such an input data stream, suppose we want to spec-
ify the transformation, illustrated as follows, that outputs
at every occurrence of the # symbol the sum of all integers
from the start of the stream

input : 3 −5 4 1 −3 # 7 −2 9 # 1 −4

output : 0 14.

This transformation can be modeled by a streaming func-
tion, i.e., a partial function f : D∗ ⇀ Z, where D =

Z ∪ {#} is the set of input data items. For example,
f(3−5 4 1−3 #) = 0 and f(3−5 4 1−3 # 7−2 9 #) = 14.
The rate of f is the set of all finite sequences over D that
end with #, which is denoted by the regular expression
D∗ ·#. This rate is also captured by the equivalent expres-
sion (Z∗ · #)+, where Z

∗ · # matches a block of integers
terminated by a # symbol.

Suppose now that we want to process further the output
stream produced by f in order to emit at every occurrence

of a negative output of f the count of all negative outputs
of f so far. This second processing state is described by
a streaming function g : Z

∗ ⇀ N, whose rate is denoted
by the regular expression Z

∗ · Z
<0, that counts the num-

ber of negative input elements and emits the count at
every occurrence of a negative input item. We write Z

<0

for the set of negative integers. The overall computation
is described by the streaming composition f � g, which
supplies the stream of outputs produced by f as the input
stream to g.

B. Quantitative Regular Expressions

We will introduce now the language of QREs for rep-
resenting stream transformations. For brevity, we also call
these expressions queries. A query represents a streaming
transformation whose domain is a regular set over the
input data type.

To define queries, we first choose a typed signature
which describes the basic data types and operations for
manipulating them. We fix a collection of basic types, and
we write A,B, . . . to range over them. This collection
contains the type B of Boolean values, and the unit type U

whose unique inhabitant is denoted by def. It is also closed
under the Cartesian product operation × for forming pairs
of values. Typical examples of basic types are the natural
numbers N, the integers Z, the rationals Q, and the real
numbers R. We write a : A to mean that a is of type A. For
example, we have def : U.

We also fix a collection of basic operations on
the basic types, for example the k-ary operation
op : A1 × · · · × Ak → B. The identity function on D is
written as idD : D → D, and the operations π1 : A ×
B → A and π2 : A × B → B are the left and right
projection, respectively. We assume that the collection of
operations contains all identities and projections and is
closed under pairing and function composition. To describe
derived operations we use a variant of lambda notation
that is similar to Java’s lambda expressions [32]. That is,
we write (Ax) − >t(x) to mean λx:A.t(x), which is an
(anonymous) function that takes an argument x of type
A and returns the value t(x). We write (Ax,By,Cz) −
>t(x, y, z) to mean λx:A, y:B, z:C.t(x, y, z). For example,
the identity function on D is (Dx)−>x, the left projection
on A×B is (Ax,By) −>x, the right projection on A×B

is (Ax,By) −>y, and (Dx) −>def is the unique function
from D to U. We will typically use lambda expressions in
the context of queries from which the types of the input
variables can be inferred, so we will omit the types as in
(x, y) −>x.

For every basic type D, assume that we have fixed a
collection of atomic predicates, so that the satisfiability of
their Boolean combinations (built up using the Boolean
operations: and, or, not) is decidable. We write ϕ : D → B

to indicate that ϕ is a predicate on D, and we denote by
trueD : D → B the predicate that is always true. The
predicate ((Zx) − >x > 0) : Z → B is true of the strictly
positive integers.

1598 PROCEEDINGS OF THE IEEE | Vol. 106, No. 9, September 2018

Abbas et al.: Real-Time Decision Policies With Predictable Performance

Example 4.1: We consider a Boolean ventricular heart
signal, where the data items are values of type B = {0, 1}.
A value 1 indicates a ventricular contraction of the heart,
and a value 0 indicates the absence of a contraction. The
signal is sampled uniformly with a sampling rate of f Hz.
The predicates ¬isV and isV test if a Boolean value is zero
or one, respectively.

For a type D, we define the set of symbolic regular
expressions overD [33], denoted RE〈D〉, with the grammar:

r :: = ϕ | [predicate on D]
ε | [empty sequence]
r � r | [nondeterministic choice]
r · r | [concatenation]
r∗ [iteration].

The concatenation symbol · is sometimes omitted, that is,
we write rs instead of r · s. The expression r+ (iteration at
least once) abbreviates r ·r∗. We write r : RE〈D〉 to indicate
the r is a regular expression over D. Every expression r :

RE〈D〉 is interpreted as a set [[r]] ⊆ D∗ of finite sequences
over D

[[ϕ]] � {d ∈ D | ϕ(d) is true}

and the rest of the regular construct have their usual
interpretations. Two expressions are said to be equivalent
if they denote the same language.

Example 4.2: The symbolic regular expression (¬isV)∗ ·
isV denotes sequences of samples that contain a single
ventricular beat (contraction) at the end.

A string can be matched efficiently against a regular
expression if there is only one way in which it could match
the expression. Intuitively, this reduces the number of
possible matches that have to be kept track of. The notion
of unambiguity for regular expressions [34] is a way of
formalizing the requirement of uniqueness of parsing. The
languages L1, L2 are said to be unambiguously concaten-
able if for every word w ∈ L1 ·L2 there are unique w1 ∈ L1

and w2 ∈ L2 with w = w1w2. The language L is said to
be unambiguously iterable if for every word w ∈ L∗ there
is a unique integer n ≥ 0 and unique wi ∈ L with w =

w1 · · ·wn. The definitions of unambiguous concatenability
and unambiguous iterability extend to regular expressions
in the obvious way. Now, a regular expression is said to be
unambiguous if it satisfies the following.

1) For every subexpression e1 � e2, e1 and e2 are
disjoint.

2) For every subexpression e1 · e2, e1 and e2 are unam-
biguously concatenable.

3) For every subexpression e∗, e is unambiguously
iterable.

Example 4.3: Consider the finite alphabet Σ = {a, b}. The
regular expression r = (a � b)∗b(a � b)∗ denotes the set of
sequences with at least one occurrence of b. It is ambigu-
ous, because the subexpressions (a � b)∗b and (a � b)∗ are

not unambiguously concatenable: the word w = ababa

matches r, but there are two different splits w = ab · aba
and w = abab ·a that witness the ambiguity of parsing. The
regular expressions a∗b(a � b)∗ and (a � b)∗ba∗ are both
equivalent to r, and they are unambiguous.

Checking whether a regular expression is unambiguous
can be done in polynomial time. For the case of sym-
bolic regular expressions this results still holds, under
the assumption that satisfiability of the predicates can be
decided in unit time [35].

After these preliminaries, we now define quantitative
regular expressions, or queries, recursively. Informally,
a query f is a symbolic regular expression, called the
rate of f and written R(f), with a way to compute quan-
tities over the strings that match the expression. The
rate denotes the domain of the transformation that f
represents. The definition of the query language has to
be given simultaneously with the definition of rates (by
mutual induction), since the query constructs have typing
restrictions that involve the rates. We annotate a query f
with a type QRE〈D,C〉 to denote that the input stream has
elements of type D and the outputs are values of type C.

1) Atomic Queries: The basic building blocks of queries
are expressions that describe the processing of a single data
item. Suppose ϕ : D → B is a predicate over the data
item type D and op : D → C is an operation from D to
the output type C. Then, the atomic query atom(ϕ, op) :

QRE〈D,C〉, with rate ϕ, is defined on single-item streams
that satisfy the predicate ϕ. The output is the value of op
on the input element.

Notation: It is very common for op to be the identity
function, and ϕ to be the always-true predicate. So, we
abbreviate the query atom(ϕ, idD) by atom(ϕ), and the
query atom(trueD) by atom().

Example 4.4: For the Boolean ventricular heart signal, the
query that matches a single item that is a heartbeat and
returns nothing is f = 0, 0, 0.65atom(isV, x−>def). The
type of f is QRE〈B,U〉 and its rate is isV.

2) Empty Sequence: The query eps(c) : QRE〈D,C〉,
where c is a value of type C, is only defined on the empty
sequence ε and it returns the output c.

3) Iteration: Suppose that we want to iterate a com-
putation f : QRE〈D,A〉 over consecutive subsequences of
the input stream and aggregate all these output values
sequentially using an initial value c : B and an aggregation
operation op : B × A→ B. The iteration query

iter(f, c, op) : QRE〈D,B〉

describes this computation. More specifically, we split the
input stream w into subsequences w = w1 w2 . . . wn,
where each wi matches f. The output values a1 a2 · · · an

with ai = f(wi) are combined using the list iterator left
fold with start value c : B and aggregation operation op :

Vol. 106, No. 9, September 2018 | PROCEEDINGS OF THE IEEE 1599

Abbas et al.: Real-Time Decision Policies With Predictable Performance

B × A→ B. This can be formalized with the combinator

fold : B × (B × A→ B) ×A∗ → B

which takes an initial value b : B and a stepping map op :

B×A→ B, and iterates through a sequence of values of A

fold(b, op, ε) = b

fold(b, op, γa) = op(fold(b, op, γ), a)

for all sequences γ ∈ A∗ and all values a ∈ A. For example,
fold(b, op, a1a2) = op(op(b, a1), a2).

In order for iter(f, c, op) to be well-defined as a func-
tion, every input stream w that matches iter(f, c, op) must
be uniquely decomposable into w = w1w2 . . . wn with
each wi matching f. This requirement can be expressed
equivalently as: the rate R(f) is unambiguously iterable.

Example 4.5: For the Boolean heart signal, the query
g below matches a sequence of data items that are not
heartbeats and returns their count:

f : QRE〈B,B〉 = atom(¬isV)
g : QRE〈B,N〉 = iter(f, 0, (x, y)−>x+ 1).

The rate of f is ¬isV, and the rate of g is (¬isV)∗.

4) Combination and Application: Assume the queries f
and g describe stream transformations with outputs of
type A and B respectively that process the same set of
input sequences, and op is a function of type A × B → C.
Then

combine(f, g, op) : QRE〈D,C〉

describes the computation where the input is processed
according to both f and g in parallel and their results are
combined using op. This computation is meaningful only
when both f and g are defined on the input sequence. So,
we demand w.l.o.g. that the rates of f and g are equivalent.

This binary combination construct generalizes to an
arbitrary number of queries. For example, we write

combine(f, g, h, (x, y, z) −> op(x, y, z))

for the ternary variant. In particular, we write apply(f, op)
for the case of one argument.

Example 4.6: For the Boolean heart signal, suppose g
counts all heartbeats seen so far and h counts all data
items. Then, the query k below computes the ratio of these
values.

f : QRE〈B,N〉 = atom(trueB, x−>if x then 1 else 0),

g : QRE〈B,N〉 = iter(f, 0, (x, y) −>x+ y)

h : QRE〈B,N〉 = iter(atom(), 0, (x, y) −>x+ 1)

k : QRE〈B,Q〉 = combine(g, h, (x, y) −>x/y)

The rate of f is true and the rates of the queries g, h and k
are all equal to true∗.

5) Quantitative Concatenation: Suppose that we want
to perform two streaming computations in sequence: first
execute the query f : QRE〈D,A〉, then the query g :

QRE〈D,B〉, and finally combine the two results using the
operation op : A×B → C. The query

split(f, g, op) : QRE〈D,C〉

describes this computation. More specifically, we split the
input into two parts w = w1w2, process the first part w1

according to f with output f(w1), process the second part
w2 according to g with output g(w2), and produce the final
result op(f(w1), g(w2)) by applying op to the intermediate
results.

In order for this construction to be well-defined as a
function, every input w that matches split(f, g, op) must
be uniquely decomposable into w = w1w2 with w1 match-
ing f and w2 matching g. In other words, the rates of f and
g must be unambiguously concatenable.

The binary split construct extends naturally to more
than two arguments. For example, the ternary version
would be split(f, g, h, (x, y, z) −> op(x, y, z)).

Example 4.7: For the Boolean heart signal, suppose that g
matches sequences that end with a heartbeat and h counts
the size of sequences without any heartbeat. Then, the
query k outputs the time that has elapsed since the last
heartbeat.

f : QRE〈B, Ut〉 = iter(atom(), def, (x, y) −>def)
g : QRE〈B, Ut〉 = split(f, atom(isV), (x, y) −>def)
h : QRE〈B,N〉 = iter(atom(¬isV), 0, (x, y) −>x+ 1)

k : QRE〈B,N〉 = split(g, h, (x, y) −>y)

The rate of f is true∗, that of g is true∗ · isV, the rate of h
is (¬isV)∗, and the rate of k is true∗ · isV · (¬isV)∗.

6) Streaming Composition: A natural operation for query
languages over streaming data is streaming composition:
given two streaming queries f and g, f� g represents the
computation in which the stream of outputs produced by
f is supplied as the input stream to g. Such a composition
is useful in setting up the query as a pipeline of several
stages. We allow the operation � to appear only at the
top-level of a query. So, a general query is a pipeline of
�-free queries. At the top level, no type checking needs to
be done for the rates, so we do not define the function R()

for queries f� g.
Example 4.8: For the Boolean heart signal, suppose we
want to emit at every heartbeat the average heart rate over
the entire stream. We will describe this computation as
a two-stage pipeline. The first stage (query h as follows)

1600 PROCEEDINGS OF THE IEEE | Vol. 106, No. 9, September 2018

Abbas et al.: Real-Time Decision Policies With Predictable Performance

produces a sequence of natural numbers which corre-
spond to the number of 0’s between two consecutive 1’s
(heartbeats).

f : QRE〈B,N〉 = iter(atom(¬isV), 0, (x, y) −>x+ 1)

g : QRE〈B,N〉 = split(f, atom(isV), (x, y) −>x)
h : QRE〈B,N〉 = split(iter(g, def, (x, y) −>def),

g, (x, y) −>y).

The rate of f is (¬isV)∗, the rate of g is (¬isV)∗ · isV,
and the rate of h is ((¬isV)∗ · isV)+. The second stage
(query n as follows) processes a stream of these numbers
to compute the average heart rate in beats per minute.

k : QRE〈N,N〉 = iter(atom(), 0, (x, y) −>x+ y)

l : QRE〈N,N〉 = iter(atom(), 0, (x, y) −>x+ 1)

m : QRE〈N,Q〉 = combine(k, l, (x, y) −>x/y))
n : QRE〈Q,Q〉 = apply(m, x−> (60 · f)/x)

where f is the sampling rate in Hertz. The query m com-
putes the average number of samples between two consec-
utive heartbeats. The top-level query is the pipeline h� n.

7) Global Choice: Given queries f and g of the same
type with disjoint rates r and s, the query or(f, g) applies
either f or g to the input stream depending on which one
is defined. The rate of or(f, g) is the union r � s. This
choice construction allows a case analysis based on a global
regular property of the input stream.

Example 4.9: In our Boolean heart example, suppose we
want to compute a statistic across days, where the contri-
bution of each day is computed differently depending on
whether or not an abnormally short interval between con-
secutive heartbeats occurred or not. Then, we can write a
query summarizing the daily activity with a rate capturing
normal days (the ones without any short interval) and a
different query with a rate capturing abnormal days, and
iterate over their disjoint union.

Consider the stream of interval lengths between consec-
utive heartbeats, i.e., the output stream of query h defined
in Example 4.8. We assume that T is the threshold for an
abnormally short interval between two consecutive heart-
beats. Query h as follows computes the smallest interval
length for sequences with at least one abnormally short
interval:

f : QRE〈N,Q〉 = iter(atom(x−>x > T),∞,min)

g : QRE〈N,Q〉 = iter(atom(),∞,min)

h : QRE〈N,Q〉 = split(f, atom(x−>x ≤ T), g,min).

The rate of f is (x > T)∗, the rate of g is true∗, and the
rate of h is (x > T)∗ · (x ≤ T) · true∗. Query m as follows

computes the average interval length for sequences with
no abnormally short interval:

k : QRE〈N,N〉=iter(atom(x−>x>T),0, (x, y)−>x+ y)

l : QRE〈N,N〉=iter(atom(x−>x>T),0, (x, y)−>x+ 1)

m : QRE〈N,Q〉 = combine(k, l, (x, y) −>x/y).

The rates of k, l and m are all equal to (x > T)∗. The top-
level query is then or(h, m).

C. Derived Constructs

The core language of Section IV-B is expressive enough
to describe many common stream transformations. We
present several derived constructs.

1) Matching Without Output: Suppose r is an unambigu-
ous symbolic regular expression over the data item typeD.
The query match(r), whose rate is equal to r, does not
produce any output when it matches. This is essentially the
same as producing def as output for a match. The match
construct can be encoded as follows:

match(ϕ) � atom(ϕ, x−>def)
match(r1 � r2) � or(match(r1), match(r2))
match(r1 · r2) � split(match(r1), match(r2), (x, y)−>def)
match(r∗) � iter(match(r), def, (x, y) −>def).

An easy induction establishes that R(match(r)) = r.

2) “Until” Iteration: Suppose that φ and ψ are disjoint
predicates on the input data type D, the function op : C ×
D → C is an aggregation operation, and c : C is the initial
aggregate. The query iterUntil(φ, ψ, c, op) aggregates a
sequence of data items that satisfy φ and stops when an
item that satisfies ψ is found. It is encoded as

iterUntil(φ,ψ, c, op) � split(iter(atom(φ), c, op),

atom(ψ), (x, y) −>x).

The query has type QRE〈D,C〉 and rate φ∗ · ψ.

3) Stream Annotation: Suppose that the input stream
has items of type D, f is a query of type QRE〈D,C〉, and
we want to produce an output stream with items of type
E in the following way: when the query f produces an
output (upon consumption of the input stream) apply op2 :

D × C → E to the last input element and its output to get
the final result, and when the query f is undefined apply
op1 : D → E to the last input element. This computation
is described by the query annt(f, op1, op2) : QRE〈D,E〉
with rate D+. This annotation query can be encoded using
the regular constructs of Section IV-B, but the encoding is
complex and inefficient, so we provide a custom efficient
implementation.

a) Tumbling windows: The term tumbling windows is
used to describe the splitting of the stream into contiguous

Vol. 106, No. 9, September 2018 | PROCEEDINGS OF THE IEEE 1601

Abbas et al.: Real-Time Decision Policies With Predictable Performance

nonoverlapping subsequences [36]. Suppose we want to
describe the streaming function that iterates f at least
once and reports the result given by f at every match. The
following query expresses this behavior:

iterLast(f) � split(match(R(f)∗), f, (x, y) −>y).

The rate of iterLast(f) is equal to R(f)+.

4) Efficient Sliding Windows: Suppose we want to apply
the query f : QRE〈D,A〉 to consecutive nonoverlapping
parts of the input, and efficiently aggregate the interme-
diate results over a sliding window of size W . That is,
the W most recent output values of f are aggregated to
produce the final output. The aggregation is described by
an initial aggregate c : B and three functions: an insertion
operation ins : B × A → B describes how to add a new
value of type A to the aggregate (of type B), the removal
operation rmv : B × A → B describes how to remove a
value from the aggregate, and the finalization operation
op : B → C computes the final result from the aggregate.
This computation is described by the query

wnd(f,W, c, ins, rmv, op) : QRE〈D,C〉

whose rate is equal to R(f)+. This query can be encoded
using the regular constructs of Section IV-B and an addi-
tional data type for FIFO queues (in order to maintain the
buffer of values of type A that are currently in the active
window).

D. Java Library of QREs

StreamQRE has been implemented as a Java library [18]
in order to facilitate the easy integration with user-defined
types and operations. The implementation covers all the
core constructs of Section IV-B, and also provides optimiza-
tions for the derived constructs of Section IV-C (matching
without output, “until” iteration, stream annotation, etc.).

Fig. 4 gives a simple example that illustrates how to
program with the StreamQRE Java library. The query avg
describes the computation of the average of a sequence
of values of type Double. The method getEval, which
stands for “get evaluator”, is used to obtain an object that
encapsulates the evaluation algorithm for the query. On
this evaluator object, the methods start and next are
used to initialize the algorithm and consume data items
respectively.

V. I C D A R R H Y T H M I A M O N I T O R I N G
A L G O R I T H M

We now describe in detail an Arrhythmia Monitoring Algo-
rithm (AMA) found in one of the ICDs on the market
today [17]. All ICD AMAs on the market today take the
form of a decision tree, such as the one in Fig. 5. Each node
in the tree is a discriminator, which computes one feature

Fig. 4. StreamQRE Library in Java: Computing the average of a

sequence of values.

of the input signal and decides, on its basis, how to branch.
Thus, each discriminator returns a decision, Yes or No. We
chose to present this particular AMA because variants on
its discriminators can be found in the AMAs of all devices
on the market. For example, all devices measure average
heart rate, compare atrial and ventricular rates, measure
rate variability, onset of arrhythmia, etc. The differences
are in how variability is defined (variance or sum of
absolute differences, for example), the size of windows for
computing quantities, the way they are combined in the
decision tree, etc.

A. Discriminators

Recall that the input to the AMA is a discrete-time
Boolean signal, which is obtained by running a peak detec-
tor on the discrete-time real-valued EGM signal. The peak
detector outputs a 1 at peaks, and 0 otherwise. The signals
we work with in this paper have a sampling period of 1
ms. Formally, let B = {0, 1}. At every time t ∈ N, the AMA
receives a data item s of the following form:

s = (V,A, t) ∈ D := B × B × N (1)

where V = 1 indicates there is a ventricular beat at time t
(and V = 0 indicates that there is not), similarly for A. We
will find the need to refer to the ventricular Boolean signal
separately, and we write V ∈ B

∗ to denote it. It will also
be called the ventricular channel. Similarly, A ∈ B

∗ is the

1602 PROCEEDINGS OF THE IEEE | Vol. 106, No. 9, September 2018

Abbas et al.: Real-Time Decision Policies With Predictable Performance

Fig. 5. Boston Scientific discrimination algorithm.

atrial channel. See Fig. 6. Given an item s, the function call
s.V returns its first element, similarly for s.A and s.t.

An (atrial or ventricular) interval in a given channel is
the interval of time between two consecutive beats. Its
length is denoted by I and is always an integer measured

in milliseconds (ms). The average (atrial or ventricular)
rate is the inverse of the average interval length.

The decision tree of the AMA we describe is shown in
Fig. 5. It is made up of the following discriminators.

1) Three Consecutive Short Intervals: Three consecutive
short intervals are required to initiate rhythm analysis, as
they indicate a potentially accelerating rhythm. Therefore,
this discriminator checks if three consecutive intervals are
shorter than some prespecified threshold Tcsi. Referring to
Fig. 6

CSI := (I5 < Tcsi) ∧ (I6 < Tcsi) ∧ (I7 < Tcsi). (2)

2) 8/10 Short Intervals: A rhythm that becomes fast
for a few beats then slows down again is not fatal and
so should not cause therapy to be delivered. To estimate
whether the current rhythm is sustained, this discriminator
checks whether 8 out of 10 intervals are shorter than some
threshold T8/10. Referring to Fig. 6

Short8outof10 := |{Ik : 5 ≤ k ≤ 14, Ik < T8/10}| ≥ 8.

(3)

3) Sudden Onset: VF, which is fatal, usually occurs sud-
denly, whereas a tachycardia that accelerates gradually is
usually nonfatal. The onset discriminator quantifies the
suddenness of tachycardia onset as follows. It operates in
two steps, which process a window of 2m intervals. To
help explain this discriminator using Fig. 6, we will assume
m = 4. In the first step, it detects the ventricular beat in
the first four intervals (I1, . . . , I4) at which the interval
length decreased the most. This is the pivot beat. If the
amount of decrease is greater than some threshold, Step I
declares Onset. In the second step, the algorithm computes
the differences between the average of four prepivot beats
((I1 + · · · + I4)/4 := μ) and each of four post-pivot beats

Fig. 6. Input stream from one channel. Measured electrogram (top figure) and corresponding Boolean stream (bottom figure). In the

Boolean stream, spikes represent beats, and Ik is an interval of time between beats. Duration is a fixed time period, here set to 5 s.

Vol. 106, No. 9, September 2018 | PROCEEDINGS OF THE IEEE 1603

Abbas et al.: Real-Time Decision Policies With Predictable Performance

(I5, . . . , I8), i.e., it computes d5 = μ−I5, . . . , d8 = μ−I8. If
at least three of these four differences d5, . . . , d8 is greater
than a threshold, Step II declares Onset. If both stages
declare Onset, the discriminator declares Sudden Onset. In
our implementation, we simplify things by taking the pivot
to be the middle beat in the window of 2m = 8 intervals.
So Sudden Onset is computed as

SO-StepI : = Ipost−pivot < α · Ipre−pivot (4)

SO-StepII : = |{dk : dk > To2}| ≥ 3 (5)

SuddenOnset : = SO-StepI ∧ SO-StepII.

When both Three Consecutive Short Intervals and 8/10
Short Intervals match, then a Duration is started. A Dura-
tion is a fixed-length time period (e.g., 5 s) during which
the algorithm will continue to monitor the rhythm to see
whether the arrhythmia is sustained, or it slows down and
dies out. In the latter case, no therapy is delivered. See
Fig. 6. During Duration, the following four discriminators
are evaluated.

4) A/V Rate Comparison: If the ventricles have more
beats than the atria, this is an almost sure sign that the
arrhythmia is ventricular in origin (i.e., the ventricles are
driving the atria and not the other way around). This
discriminator compares the average ventricular heart rate
rV with the average atrial heart rate rA, where the average
is computed over the last ten intervals in the duration
window

AVRate := rV > rA + 10bpm

5) Sliding 6/10: Sometimes an arrhythmia terminates
on its own, which is preferable to having the device
terminate it with a shock. This discriminator continuously
checks whether six out of every ten intervals are short; if
any 10 intervals fails this check, the discriminator declares
No Therapy

Sliding6outof10 : = For every 10 intervals I1, . . . , I10

|{Ik : Ik < T6/10}| ≥ 6.

6) Stability: VF is an unstable rhythm, meaning that
the interval lengths during fibrillation vary greatly. The
Stability discriminator defines rhythm stability as being the
variance in ventricular intervals’ lengths during Duration.
If variance is below a threshold Tstab, then the rhythm is
deemed stable. With Ī denoting the average interval length

Stability :=
1

n

n�

k=1

(Ik − Ī)2 ≤ Tstab.

7) AFib Rate: AF is an atrially driven rhythm with a high
rate, and is one possible source of misclassification for the
AMA. To circumvent this issue, this discriminator measures
the atrial rate throughout the Duration. As long as at least

4/10 intervals are shorter than the AF threshold Taf , this
discriminator decides that the current rhythm is in fact AF
and therapy should be withheld

SlidingAFib : = For every 10 interval lengths I1, . . . , I10

|{Ik : Ik < Taf}| ≥ 4.

VI. Q R E I M P L E M E N TAT I O N O F T H E
A R R H Y T M I A M O N I T O R I N G A L G O R I T H M

The QRE implementation of the BSC algorithm of Section V
is divided into four main stages. The first two stages
annotate the input signal with additional information: the
lengths of the intervals between heartbeats, and some
sliding-window statistics over them. The annotated stream
is passed to the later stages in order to compute the
discriminators for deciding whether therapy should be
delivered or not. We give a high-level overview of each
stage in Section VI-A, as well as more detailed descriptions
and QREs implementations in Sections VI-B–VI-E.

A. Overview of Implementation Stages

All discriminators described in Section V use the inter-
val lengths between consecutive heartbeats. In order to
simplify the later computations, it is useful to annotate
the stream with this extra information so that it is readily
available in the next processing steps. Similarly, there
are some sliding-window statistics that are required for
the discriminators “A/V Rate Comparison,” “Sliding 6/10”
and “AFib Rate.” These quantities require looking at the
ten previous intervals to be computed. The specification of
the algorithm is much easier if this information is already
present in the stream, which obviates the need to look back
ten intervals into the past. This motivates our design choice
to always annotate the stream with these useful sliding-
window statistics.

The ICD’s AMA receives beats from the atrium and the
ventricle. The input stream consists of data items that are
of the form shown in 1). The implementation is a multi-
stage pipeline, where each stage is a QRE. Each stage
feeds its output stream to the following stage for further
annotation and processing. They are as follows

• Stage 0: preprocessing stage which annotates the
input stream s with the lengths of the ventricular and
atrial intervals. See Fig. 8. The output from this stage
will be used in all subsequent stages. Call the output
stream of this stage s0.

• Stage 1: augments its input stream s0 with two pieces
of information. The first is the total duration of every
window of 10 consecutive intervals, in both chan-
nels. This will be used for the A/V Rate Compari-
son discriminator. The second piece of information
is the number of short3 intervals in every window of
ten consecutive intervals, in both channels. This will

3For example, those that are shorter than a predefined threshold
T6/10 .

1604 PROCEEDINGS OF THE IEEE | Vol. 106, No. 9, September 2018

Abbas et al.: Real-Time Decision Policies With Predictable Performance

Fig. 7. The overall detection algorithm is shown for the ventricular

channel and with the timestamp sequence omitted. The top stream

gives the input Boolean signal. Streams below it are annotated with

the information in bold font. I = Interval Length, w10fast = number

of last ten intervals that are short, w10sum = sum of last ten

interval lengths, SO = Sudden Onset flag, BD = Begin Duration flag.

be used for the Sliding 6/10 and AFib Rate Compar-
ison discriminators. See Fig. 9 for the computation
of both quantities on the V channel. Call the output
stream of this stage s1.

• Stage 2: detects the beginning of Duration, the period
of time during which the rhythm is monitored for a
fixed amount of time to confirm whether a suspected
arrhythmia is indeed sustained and ventricular in ori-
gin. For Duration to be declared and monitored, both
the Three Consecutive Short Intervals and 8/10 Short
Intervals discriminators must return Yes. If Duration is
initiated as a result, the input stream s1 is annotated
with a BD marker to indicate the start of Duration.
See Fig. 10. This stage also computes the Onset dis-
criminator and annotates the stream with flag SO = 1

if it is met. Call the output stream of this stage s2.
• Stage 3: final stage, has input stream s2. It computes

all discriminators in Duration: Stability, Sliding 6/10,
AV Rate Comparison, and AFib Rate. Based on all

Fig. 8. Stage 0 annotates both channels V and A with interval

lengths, i.e., the number of 0s between 1s. Here it is shown

operating on the ventricular channel.

Fig. 9. Stage 1, shown acting on the V channel, augments V0 with

the total duration counter w10sum and the short intervals counter

w10short, computed over the last ten intervals. Here, the threshold

T6/10=255.

these and the value of Onset, the stage makes a final
decision of Therapy or No Therapy. See Fig. 10.

Fig. 10. Stages 2 and 3. The rectangles show the computed

discriminators, and their width covers the part of the input stream

used in the computation.For example, “8/10 Short Intervals” uses

the ten intervals above its box, while Stability uses all intervals in

the Duration window. Downward blue arrows indicate when a

quantity is computed; e.g., the BD marker is computed every 14

intervals. SO and BD are added to stream V1 to obtain stream V2.

The A channel is not shown, though it enters in the calculation of AV

Rate Comparison discriminator.

Vol. 106, No. 9, September 2018 | PROCEEDINGS OF THE IEEE 1605

Abbas et al.: Real-Time Decision Policies With Predictable Performance

Remark: Because a QRE describes a streaming algo-
rithm, each of the above stages operates continuously and
issues an output with every new data item (including ⊥
if the string so far does not match). So for example, it
is possible for Stage 2 to declare the start of Duration
several times in a row, i.e., to output BD = 1 several times.
See Fig. 14 for an example. The first Duration to end
in a Therapy decision in Stage 3 will cause therapy to
be scheduled, and the other Durations in progress are
aborted. On the other hand, if the first Duration does
not end in therapy, the subsequent ones continue to be
monitored to their conclusion. Thus, one important con-
sequence of this streaming implementation is that it is pos-
sible for the QRE to track multiple simultaneous potential
arrhythmias. In this way, no potentially fatal arrhythmia is
missed.

We will explain now each stage in detail, and present the
precise implementation in the StreamQRE language. Recall
the QRE constructs of Section IV and the type of the input
data items (1). Some computations are performed in the
same way both on the atrial and the ventricular channel.
In such cases we will only give the queries that describe
the processing of the ventricular channel for the sake of
brevity.

B. Stage 0: Annotate Interval Lengths

This stage annotates the stream with heartbeat interval
lengths, that is, the lengths of the sequences between two
consecutive heartbeats. So, the length of an interval of
the form 100 · · · 001 is the number of 0s between the 1s.
This computation is performed both for the ventricular
and atrial channel. The regular expression that describes
a signal that has a single heartbeat at the end is 0∗1. The
query for computing the ventricular interval lengths is the
following:

lincr = (x, y) −>x+ 1, of type N × N → N

intV = iterUntil(¬isV, isV, 0, lincr)
allIntV = iterLast(intV) // rate ((¬isV)∗ · isV)+
annt0V = annt(allIntV, x−>x, (x, c) −>x[IV := c])

stage0 = annt0V� annt0A.

The query intV iterates over the 0s of the ventricular chan-
nel (predicate ¬isV) while incrementing a counter until it
encounters a 1 (predicate isV). The query allIntV iter-
ates intV over consecutive nonoverlapping subsequences,
thus processing all ventricular intervals. The query annt0V
annotates the input elements with the interval values IV

calculated by allIntV, and annt0A does the same with the
atrial channel. See Fig. 8. Therefore, the output stream
s0 from this stage consists of data items of the following
form:

s0 = (V, IV , A, IA, t) ∈ D0 = (B × N)2 × N. (6)

C. Stage 1: Sudden Onset and Short Intervals

The input stream for this stage consists of items of the
form shown in (6). In this state, we first calculate the
sum of interval lengths over a sliding window that consists
of ten intervals, and we annotate the stream with this
information (see Fig. 9)

blockV = split(match((¬isV)∗), isV, (x, y) −>y.IV)

wndSumV = wnd(blockV, 10, 0, (x, y) −>x+ y)

stg1SumV = annt(wndSumV, x−>x, (x, c)−>x[SumV :=c]).

The query blockV matches 0∗1 in the ventricular channel
and returns the length of the interval that ends with the
matched 1. The query wndSumV executes blockV over a slid-
ing window of size 10 and accumulates the interval lengths
by summing them up. The query stg1SumV annotates the
stream with all these sliding-window sums.

In the second part of this stage we also calculate the
number of short ventricular intervals over a sliding win-
dow of size 10, where “short” is defined as being of length
less than T6/10

shortV = apply(blockV,

x−>if (x ≤ T6/10) then 1 else 0)

wndShortV = wnd(shortV, 10, 0, (x, y) −>x+ y)

stg1ShortV = annt(wndShortV, x−>x,
(x, y) −>x[ShrtV := c]).

The query shortV applies a thresholding operator to the
output of blockV. As before, shortV is run in a sliding-
window fashion using the wnd construct, and the output is
annotated onto the stream using annt.

The same two computations are performed on the
atrial channel, but with a different threshold, Tafib, for
stg1ShortA. The final query for this state is the streaming
composition of the above channel-specific computations

stage1 = stg1SumV� stg1ShortV� stg1SumA
� stg1ShortA.

The output stream s1 of this stage consists of items (with
rearrangement) of the following form:

s1 = (V, IV , SumV, ShrtV,A, IA, SumA,ShrtA, t)

∈ D1 = (B × N
3)2 × N. (7)

D. Stage 2: Sudden Onset and Begin Duration

This stage computes the Sudden Onset discriminator
and Begin Duration (BD) marker at every ventricular beat.
In order to do this, the last 14 ventricular intervals I1,
I2, . . . , I14 have to be considered, as shown in Fig. 10.

1606 PROCEEDINGS OF THE IEEE | Vol. 106, No. 9, September 2018

Abbas et al.: Real-Time Decision Policies With Predictable Performance

Fig. 11. EGM during a VF. Top panel shows the atrial EGM. Bottom panel shows the ventricular EGM. The middle panel shows the sensed

Boolean signal that is part of the input stream s to the AMA. Spikes above the x-axis indicate atrial beats, and spikes below it are the

ventricular beats.

• The first four intervals I1, I2, I3 and I4 are used for
Step I of “Sudden Onset,” defined in (4).

• The next four intervals I5, I6, I7 and I8 are used for
Step II of “Sudden Onset,” defined in (5).

• The intervals I5, I6, I7 are used for the “Three Con-
secutive Intervals” discriminator, defined in (2).

• The last ten intervals I5, I6,..., I14 are used for the
“8/10 Short Intervals” discriminator, defined in (3).

This stage splits the stream into consecutive intervals,
and evaluates all the relevant discriminators over the last
14 intervals using the operation opStage2 : N

14 → B × B.
The input to opStage2 is a vector of 14 ventricular interval
lengths, and the output is a pair of Boolean values: the first
component indicates the presence of “Sudden Onset” (SO),
and the second component indicates the presence of BD.

sobd = split(blockV, . . . , blockV,

(x1, . . . , x14) −>opStage2(x1, . . . , x14))

wndsobd = split(match(R(blockV)∗), sobd, π2)

stage2 = annt(wndsobd, x−>x,
(x, 〈c1, c2〉) −>x[SO := c1, BD := c2]).

The query sobd : QRE〈D1,B
2〉 matches 14 consecutive

ventricular intervals, and applies the function opStage2 to
their lengths in order to compute the Boolean flags for
“Sudden Onset” and “Begin Duration.” This computation

is executed in a sliding-window fashion and the output is
used to annotate the stream. The output stream s2 from
Stage 2 contains data items of the following form:

s2 = (s1, SO,BD) ∈ D2 = D1 × B
2.

E. Stage 3: Therapy Decision

This stage uses the four discriminators shown in Fig. 10
to make the final decision whether to apply therapy or not.
Whenever BD is detected by the previous stage, the algo-
rithm considers the window of N data items following BD,
and the discriminators are computed using the information
contained within this window. For example, if the Duration
window is programmed to be 5 s, and the sampling rate is
256 Hz, then the window contains N = 5 × 256 = 1280

items. The query

stage3 = wnd(atom(), N, 0, ins, rmv, discr)

describes a sliding-window computation that maintains a
buffer with all ventricular and atrial beats of the duration
period. The function ins adds a new item to the buffer, the
function rmv removes an expiring item from the buffer, and
the operation discr computes the discriminators and the
final therapy decision using only the items contained in the
buffer.

Fig. 12. Boolean beat stream from Fig. 11 and the streaming output of QRE stage2 (which calculates CSI, Short8outof10 and SuddenOnset).

Vol. 106, No. 9, September 2018 | PROCEEDINGS OF THE IEEE 1607

Abbas et al.: Real-Time Decision Policies With Predictable Performance

Fig. 13. AF EGMs and their Boolean beat streams.

F. Overall AMA Query

The top-level query for this AMA is the streaming com-
position of all stages (see Fig. 7)

AMA = stage0� stage1� stage2� stage3.

VII. I L L U S T R AT I V E E X A M P L E S

A. Sample Executions

Two examples will serve to illustrate the details of
the query execution. Fig. 11 shows a VF EGM sig-
nal along with the corresponding Boolean beat stream.
The results of running stage2 on this signal are pre-
sented in Fig. 12. At times 12 572 ms and 12 811
ms the start of Duration is detected (BD = 1). At the
end of the first initiated Duration (at 17572 ms),
the A/V Rate Comparison discriminator and Sliding
6/10 discriminator are satisfied and the AMA out-
puts Therapy. This is consistent with the decision tree
in Fig 5.

Fig. 14 shows an AF signal. The algorithm never outputs
therapy. Before time 15 529 ms the rhythm is not deter-
mined to be fast (Three Consecutive Short Intervals and
8/10 Short Intervals are never satisfied together). The first
time when the fast rhythm is detected is at 15 529 ms.
Therefore, the first BD = 1 flag happens at time 15 529 ms
and Duration starts. At the end of this Duration (20 529
ms), A/V Rate Comparison is not satisfied. Moreover, the
rhythm is determined to be unstable with gradual onset
and AFib Rate condition is satisfied. Therefore, no therapy
is delivered at this point. The same thing occurs for the
next ventricular beat time point (15 867 ms), and no
therapy is detected again.

B. Validation of the QRE Implementation

To validate the correctness of our QRE implementa-
tions, we created three versions of the AMA in Fig. 5.
These three versions will also be used in the power
analysis of Section VIII. The baseline version, presented
in Section V, includes all discriminators and has a Dura-
tion length of 5 s. The second version does not use
the Sudden Onset discriminator. This discriminator is

Fig. 14. Boolean beat stream from Fig. 13 and the streaming output of QRE stage2.

1608 PROCEEDINGS OF THE IEEE | Vol. 106, No. 9, September 2018

Abbas et al.: Real-Time Decision Policies With Predictable Performance

off by default when the device ships. The third version
reduces Duration length to 1 s. Accuracy is measured
using the Specificity and Sensitivity of detection, defined,
respectively, as

Specificity =
correctly detected SVTs

true SVTs
× 100%

Sensitivity =
correctly detected VTs

true VTs
× 100%

where the denominators are the number of true SVTs
and VT, respectively.

The three versions were run on a database of 960 EGMs,
equally divided into 480 SVTs and 480 VTs. The beat
timing in the EGMs (in other words, the Boolean stream s)
was generated by the heart model of [37] and [38]. Briefly,
this model can simulate beat generation and propagation
at different rates, from different locations in the heart;
e.g., it can simulate a normal sinus rhythm (NSR) which
originates in the sino-atrial node and conducts down, or a
fast ventricular rhythm that starts in the ventricles and con-
ducts up to the atria. The model can also simulate differ-
ent conduction pathways and conduction delays between
locations. In this manner, it is capable of simulating a
wide range of VTs and SVTs. These simulated arrhyth-
mia episodes are automatically labelled by the model so
that we know whether they should be treated by the
device or not, thus allowing us to compute specificity and
sensitivity.

The validity of the simulated beat stream is guar-
anteed in three complementary ways: 1) the model
implements well-known clinical principles of arrhyth-
mia generation, such as re-entrant circuits [22], and
the implementation has been reviewed by two cardi-
ologists; 2) key output stream characteristics, like the
rate, are guaranteed to fall in the clinically observed
ranges; and finally, 3) a representative sample of
model outputs has been validated as correct by two
cardiologists.

Table 1 shows the results of running these three versions
on the signals database. It also includes throughput, which
is the number of data items processed per second. First,
we note that the Sensitivity of all three algorithms is
100%, which matches the reported sensitivity of ICDs in
the literature. Indeed, missing a true VT or VF can have a
debilitating or fatal effect on the patient, so the algorithms
are programmed to err on the side of safety and guarantee
100% sensitivity. Second, we note that turning off Sudden
Onset has a negligible effect on Specificity, which justifies
its being turned off by default in real devices. Finally, short-
ening Duration further decreases Specificity, as expected:
when Duration is shorter, the algorithm is leaving less
time for the arrhythmia to terminate on its own, and is
taking a Therapy decision for signals that should not be
treated.

VIII. U P P E R B O U N D S O N Q R E C O S T

Power consumption is an important consideration when
designing the software and hardware of an implantable
medical device. Replacing an implantable device requires
surgery, and most ICD and ILR recipients are older patients
with various health issues [28], so reducing the likelihood
of a replacement by prolonging battery life is highly desir-
able [27].

It is generally true that the higher the abstraction level
at which power consumption is estimated, then the easier
it is to correlate algorithmic changes to power changes
and the more questions can be answered analytically.
However, the estimates are then less accurate in absolute
terms. Conversely, at a lower abstraction level, the power
model is more accurate, but is much harder to correlate to
algorithmic changes, especially if it is tied to a particular
target processor.

In this section, we provide a way to compute an upper
bound on the energy consumed by a QRE per data item.
The per-item consumption is the appropriate unit of mea-
surement since a stream can be arbitrarily long. Being an
upper bound, it allows the algorithm developers to com-
pare design options very early on based on worst case cost,
and hardware engineers to provision battery capacity and
electronics that are suitable for the expected worst case
energy draw. The upper bound is obtained by first measur-
ing the per-item energy consumption of all the predicates
and ops that appear in the QRE. These will be referred to
as the basic costs. Then the QRE evaluator itself is used to
combine these basic costs into the worst case cost of the
query, without any further measurements. It is possible to
do this for programs written in the StreamQRE language
because of the well-understood syntactical restrictions it
imposes, in particular, the restriction that computation
results cannot be used in predicates. Note that these
analyses apply trivially to any other additive cost, such as
processing time, and not just power.

The upper-bound energy analysis described in the pre-
vious paragraph is meant to provide only a crude estimate
of energy consumption for early design space exploration.
It is not meant to replace a more fine-grained analysis
(such as a WCET analysis) that takes the hardware and
the input data into account. Such a high-precision analysis
is useful for fine-tuning the performance of a production
implementation, but a more rough analysis is still useful in
the early design stage.

Table 1 Database-Averaged Detection Accuracy for Three Versions of

AMA. Throughput Measured on Standard Desktop With Intel i5 Processor

Running Ubuntu

Vol. 106, No. 9, September 2018 | PROCEEDINGS OF THE IEEE 1609

Abbas et al.: Real-Time Decision Policies With Predictable Performance

A. An Upper Bound Based on the Evaluator

We first need to understand roughly how the QRE eval-
uator works. The evaluator is the algorithm that evaluates
a QRE on a given stream. For a query q, the evaluator
first invokes a query-specific start routine to initialize the
internal data structures appropriately. With every new data
item that arrives, the evaluator invokes a query-specific
next routine to process it. Moreover, next might have to
pass the item to subqueries: e.g., split(f, g) will pass the
item to g every time the string seen so far matches f. In
such a case, next will need to invoke the start method
of g. Therefore, the cost of processing a data item is the
cost of calling the QRE’s next routine.

1) From Basic Cost to QRE Cost: Let cost(ϕ) and cost(op)
be the cost of evaluating the predicate ϕ and operation
op respectively. It is assumed that these costs are data-
independent, which is true for the queries that appear in
AMA. Let start(q) and next(q) be functions that return the
cost of executing start and next methods of query q. The
per-item cost of a QRE q can be upper-bounded using the
following recursion on its structure:

q = atom(ϕ, op) :

start(q) = 0

next(q) = cost(ϕ) + cost(op)

q = split(f, g, op) :

start(q) = start(f) + start(g) + cost(op)

next(q) = next(f) + next(g) + start(g) + cost(op)

q = iter(f, init, op, out) :

start(q) = start(f) + cost(out)

next(q) = next(f) + cost(op) + start(f)+cost(out)

q = iterLast(f) :

start(q) = start(f)

next(q) = next(f) + start(f)

q = iterUntil(ϕ, ψ, init, op) :

start(q) = 0

next(q) = cost(ϕ) + cost(ψ) + cost(op)

q = wnd(f, size, init, ins, rmv, out) :

start(q) = start(f)

next(q) = next(f) + cost(ins) + cost(rmv)+

cost(out) + start(f)

q = annt(f, op1, op2) :

start(q) = start(f)

next(q) = next(f) + max(cost(op1), cost(op2))

q = f� g :

start(q) = start(f) + start(g) + next(g)

next(q) = next(f) + next(g).

To understand this recursion, consider the case
q = atom(ϕ, op). Starting the evaluator does not cost
anything in this case. When the data item arrives
and it matches ϕ, then op is executed and we pay
cost(ϕ) + cost(op). Otherwise, we only pay cost(ϕ). Thus
an upper-bound on cost is cost(ϕ) + cost(op), as indicated.

For a more involved example, consider the case q =

split(f, g, op). start-ing q involves start-ing f and g,
and we pay the corresponding costs. If both of them
match the empty string, then we also pay cost(op). So
worst case cost of start is as shown. When a data item
arrives, it is passed to both f and g: f might match
the string in multiple positions, and it is not possible to
know ahead of time which will be the right split point,
so the string is always fed to f, and we pay next(f). If
the string seen so far matches f then the item is also
passed to g to see if the string suffix will match it, and we
pay start(g). g might also be in the middle of matching
a previous suffix (remember the evaluator maintains all
possible matches). In that case, it will also process the new
item using its next routine, and we pay next(g). Finally,
if both f and g match, then op([[f]]w, [[g]]w) is evaluated
and we pay cost(op). Thus in the worst case, the cost
of next(q) is next(f) + next(g) + start(g) + cost(op),
as shown.

2) Measuring the Basic Costs: To start the above recur-
sion, we need knowledge of cost(ϕ) and cost(op). For
example, consider query stage3 defined in Section VI-E
and its associated costs:

stage3 = wnd(atom(), N, 0, ins, rmv, discr)

start(stage3) = start(atom()) = 0

next(stage3) = next(atom()) + cost(ins) + cost(rmv)

+ cost(discr) + start(atom())

= cost(x−>True) + cost(x−>x)
+ cost(ins)+cost(rmv)+cost(discr).

Therefore, it is necessary to measure the following:

C1 = cost(x−>True)
C2 = cost(x−>x)
C3 = cost(ins) + cost(rmv) + cost(discr).

The costs of predicates and ops can be measured using
jRAPL [39] for example. jRAPL provides a mean to mea-
sure the energy consumption of any snippet of Java
code by enclosing it between getEnergyStats function
calls. The getEnergyStats function accesses Machine-
Specific Registers (MSRs) that store the energy consumed
since a predefined datum. Thus, we can measure the
energy consumed by a given piece of code by comparing
the register contents before and after invoking that code,

1610 PROCEEDINGS OF THE IEEE | Vol. 106, No. 9, September 2018

Abbas et al.: Real-Time Decision Policies With Predictable Performance

Table 2 jRAPL-Reported Values for Basic Costs (Obtained by Averaging

Over 20M Execution of Operation (� � Experiment), and Over 125

Experiments After 25-Experiment Warm Up

e.g. as shown in the following:

EnergyCheckUtils ec = new
EnergyCheckUtils();

double[] before = ec.getEnergyStats();
long duration =
Queries.execute(streamlength, stream,
myquery); //nano-sec

double[] after = ec.getEnergyStats();
double[] energy = after - before;
System.out.println("Consumed energy = "
+ energy).

Internally, jRAPL is a Java wrapper around the RAPL
library. Running average power limit (RAPL) is a suite
of low-level interfaces to the MSRs with the ability
to monitor and control energy and power consump-
tion of different hardware levels, widely supported in
Intel architectures. RAPL allows energy/power consump-
tion to be reported separately from the CPU core,
package (L3 cache, on-chip GPUs, and interconnects),
and DRAM.

For the example of stage3, Table 2 shows the energy
values C1 and C2 reported by jRAPL. These operations are
extremely cheap and their measurement can be nondeter-
ministically affected by irrelevant processes running on the
hardware (like page swaps), compiler optimizations (like
discarding of unused outputs, which is why in the code
listing above we print out duration). To account for this
variability, we compute cost by running the same operation
20M times and averaging the energy over the runs. We call
this an experiment. We run 125 such experiments in a row,
and discard the first 25 experiments to take into account
background noise caused by the warm up, and average the
last 100 experiments. The final reported number is then
the energy per predicate or op.

Table 3 shows the energy valueC3, when running as part
of the three versions of AMA described in Section VII-B:
the Baseline algorithm, version with no Sudden Onset
discriminator, and version with a Duration of 1sec. The
energy consumption of discr depends on which algorithm
it is running in because, for example, a shorter Duration
implies that discr is operating on fewer items, while no
Onset means that the value of Sudden Onset is not used in
the decision making of discr.

Equipped with these numbers we can upper-bound the
per-item energy consumption of stage3 by C1 + C2 + C3.

Table 3 jRAPL-Reported Energy Values for C� � cost�ins� � cost�rmv� �

cost�discr�, for Three Versions of AMA. Obtained as Average of 100

Experiments After 25-Experiment Warm Up, Each Experiment Having 1M

Runs

On this basis, the Duration= 1s version is the cheapest in
the worst case, and Baseline is the most expensive. On
the other hand, No Onset has a per-item cost which is
only slightly smaller than that of Baseline. This can be
explained by the fact that Baseline only performs one extra
AND relative to No Onset, which is a cheap operation
(and even that is sometimes not executed, depending
on the ordering of arguments). The fact that disabling
Onset does not yield meaningful energy savings suggests
that for patients that might benefit from Sudden Onset
discrimination (like patients who have low frequency of
SVTs), it can be enabled without any loss in device
longevity.

B. Measured Energy Consumption of
Entire Algorithm

We also measured the energy consumption of the QREs
on a typical workload, namely, when processing the signals
in the EGM database. The three versions of AMA and the
signals database were described in Section VII. The energy
is measured again using jRAPL. Because the AMA is a
sufficiently costly operation whose energy measurements
will not vary significantly between repeated runs, each
experiment consists of a single run of the QRE on the
database of signals. We still run and discard some initial
warm-up experiments.

Table 4 reports the per-item energy consumption, aver-
aged over the signals in the database. The energy numbers
match expectations: the baseline version consumes the
most energy. Version No Onset is second most expen-
sive, because eliminating Sudden Onset reduces the costs
of Stage 2 (which computes the Onset decision SO—
see Fig. 10 and QRE stage2), and Stage 3 (which uses
the SO value in an AND statement). Finally, Shortening

Table 4 Database-Averaged jRAPL-Reported Energy for Three Versions

of Entire Algorithm. Obtained as Average of 40 Experiments After Warm-

Up of 10 Experiments, Each Experiment Having 1 Run

Vol. 106, No. 9, September 2018 | PROCEEDINGS OF THE IEEE 1611

Abbas et al.: Real-Time Decision Policies With Predictable Performance

Duration saves the most energy, since it implies shorter
computations for four discriminators.

C. Validating Cost Rankings

The above analysis depends on the assumption that the
ranking of queries on the basis of the upper bound will, by
and large, match the ranking we obtain for them on the
basis of actual measured energy consumption. To test this
assumption, we wrote a program that generates arbitrary
queries (StreamQRE programs) by arbitrarily composing
the split, iter and combine combinators. Using this
program we generated 2000+ queries. For each query we
generated a random set of input strings over which to mea-
sure the actual (per-item) consumed energy using jRAPL.
The basic operations were made sufficiently expensive
to eliminate measurement variability due to background
noise. For each QRE, we also computed the upper bounds.
The 2000+ queries were ordered by upper bounds and by
measurements.

To compare the two rankings, we use Spearman’s
Rank-Order Correlation, a standard statistic that measures
the strength and direction of a monotonic relationship
between two ordinal variables. A correlation close to 1
indicates a strong correlation, i.e., that the two rankings
are indeed highly correlated. The two rankings of 2000+

QREs had a correlation of 0.959, which validates our claim
about the usefulness of the upper bounds for these types of
programs.

IX. R E L AT E D W O R K

A. Medical Device Algorithms

Most of the literature on formal methods for medical
device algorithms focuses on verifying and testing the func-
tionality of the algorithm, see [40]–[43] for examples in
the specific context of implantable cardiac devices. These
concerns are orthogonal to ours; the focus of this paper is
the description of a programming language that is suitable
for arrhythmia monitoring, and the meta-functional char-
acteristics it automatically guarantees. It is worth nothing
that the U.S. Food and Drug Administration (FDA), which
regulates medical devices in the U.S., does not mandate
particular types of validation, such as model checking [44].
Rather, it describes in generic terms the kind of evidence
that should be provided. For example, it stipulates that
“Software quality assurance needs to focus on preventing
the introduction of defects into the software develop-
ment process,” and that “software developers should use
a mixture of methods and techniques to prevent soft-
ware errors and to detect software errors that do occur.”
[44, Sec. 4.2].

The FDA Guidance does not explicitly address meta-
functional properties. Works in quantitative verification,
such as [45] and [46], model the heart and pacemaker
to verify statistically or through simulations whether some

quantitative properties are satisfied. This contrasts with
our approach which is model-free and provides cost upper
bounds based on the QRE code itself, not a model of it.
An application of QREs to arrhythmia monitoring appeared
in [26] where a peak detector is coded in an early variant
of the language.

QREs are a DSL; they are meant for programming
queries on arbitrary data streams, with strong theoreti-
cal foundations [5] and a flexible programming environ-
ment [6], [18]. DSLs have been developed for medical
device development, albeit these are usually meant for
the creation of the entire device, including hardware,
and focus on capturing object-oriented aspects of the
domain (i.e., identifying the main objects in the domain
and modeling them and their relations); e.g., [47] devel-
ops a graphical language for modeling blood separator
machines, along with code generators and lock-step sim-
ulators of the model and its generated code. No work
has appeared in the literature on a DSL for ICDs or
ILR algorithms, and more generally, rhythm monitoring
algorithms.

B. Streaming Languages

There is a large body of work on streaming database
languages and systems such as Aurora [48], Borealis [49],
STREAM [50], and StreamInsight [51], [52]. The query
language supported by these systems (for example,
CQL [53]) is typically a version of SQL with additional
constructs for splitting the stream into finite windows
(e.g., tumbling or sliding windows, count-based or time-
based). This allows for rich relational queries, including
set-aggregations (e.g. sum, maximum, minimum, aver-
age, count) and joins over multiple data streams. Such
SQL-based languages are, however, limited in their abil-
ity to express properties and computations that rely
on the sequence of the events such as: sequence-based
pattern-matching, and numerical computation based on
list-iteration when the order of the data items is significant.
There are streaming engines such as IBM’s Stream Process-
ing Language (SPL) [54], [55], ReactiveX [56], Esper [57]
and Flink [58], which support user-defined types and oper-
ations, and allow for both relational and stateful sequential
computation. However, none of these engines provides
support for decomposing the stream in a regular fashion
and performing incremental computations that reflect the
structure of the parse tree, which is a central feature of the
QRE language. LOLA [59] allows arbitrary computations
on streams and incremental computation of statistics, but
does not support regular decomposition of the stream to
define the computation domains. Finally, Timed Regular
Expressions [60] allow the specification of time windows
during which the timed string must match a regular expres-
sion. As such they are a specification language rather
than a programming language and do not support the
rich computations and quantitative combinators that QREs
support.

1612 PROCEEDINGS OF THE IEEE | Vol. 106, No. 9, September 2018

Abbas et al.: Real-Time Decision Policies With Predictable Performance

C. Power Estimation

Since QREs are aimed at high-level programming and
the cost analysis is aimed at early design exploration,
we do no review the vast literature on low-level power
estimation techniques (anything below C program level),
nor do we review analyses that focus on the impact
of particular hardware choices like [61]. Such analyses
occur later in the design cycle and require the avail-
ability of low-level artifacts like circuits. The interested
reader can consult [62] for a recent review of such
techniques.

In [62]–[64], a functional level power model is used
for estimating the power consumption of a C program
without compiling it. It requires partitioning the target
processor into functional units, and estimating some key
parameters like the cache miss rate, external data mem-
ory access rate and the processing rate. It also depends
on the user providing low-level execution details like
the data mapping. This target-specific code-level analy-
sis complements our presented bounds, which occur
earlier in the design cycle and are at the algorithm
level.

The approach in [65] estimates battery dissipation. It
treats the processor as a black box and instead decomposes
the program into types of basic instructions, similar to what
we did to obtain the upper bounds in Section VIII. How-
ever, the basic instructions in [65] are at the instruction-
set level, like integer and floating point loads and stores.
And while we exploit the fact that we have a uniform
evaluation algorithm for any QRE to infer bounds on the
entire program’s cost, the authors in [65] must establish
empirically, for a given processor and program, that the
program’s cost is the weighted sum of the dissipations for
basic instructions.

A static analysis of energy consumption of XC programs
is presented in [66].4 After building an ISA-level power
model using hardware measurements of a test suite, the
XC program is translated to Horn clauses in the Ciao
programming language [67]. The Ciao preprocessor can
then bound the power consumption as a function of input
data sizes. This technique was later extended to use a
power model at the level of the compiler’s intermedi-
ate representation rather than the ISA level [68]. This
approach applies to programs that can be translated into
a logic program. Another static analysis technique [69]
uses integer linear programming to compute the worst
case energy consumption, given estimates of dynamic and
leakage power contributions of basic blocks in a program’s
control flow graph. This is inspired by well-known Worst
Case Execution Time estimation techniques.

X. C O N C L U S I O N

This paper has argued that arrhythmia monitoring algo-
rithms are best viewed as streaming algorithms, and

4XC is a high-level C-based programming language.

that they are best programmed in the StreamQRE lan-
guage. Unlike traditional streaming applications where
throughput is a prime concern, here energy consump-
tion is the primary design factor. A program written in
StreamQRE automatically gets a baseline implementation
with a constant memory, processing time and energy con-
sumption per item. Moreover, the QRE evaluator auto-
matically provides upper bounds on the per-item cost
of the query, which can be used early in the design
cycle to guide the choice of algorithm, and to decide
whether some discriminators are worth having at all.
We showed how the StreamQRE Java Library can be
used to program and evaluate a query and to obtain
cost upper bounds, and how these bounds correlate to
actual power measurements. We believe this approach
to exploring and programming arrhythmia monitors, and
other medical device algorithms, has the potential to
greatly alleviate the device development burden. In par-
ticular, it opens the possibility of designing ILR algorithms
that collect statistics over longer time durations than
is currently done. Other applications that might benefit
from StreamQRE include glucose monitoring [70], [71],
where a mobile device periodically or continuously mea-
sures a diabetic’s blood glucose and performs various
filtering operations to predict hypo- or hyperglycemic
episodes.

The theoretical basis of StreamQRE raises the possi-
bility of performing static (formal) analysis of its per-
formance. It is already possible, for queries written in a
subset of the language, to answer questions such as “Does
the worst case peak power consumed by the algorithm
exceed some threshold?,” “Could the long-term average
power consumed by the algorithm exceed some thresh-
old?,” and “Does algorithm A consume less peak/average
power than algorithm B?” Answers to these questions
impact the choice of electronics that must withstand
the peak power draw, and the capacity of the device
battery.

On the tools side, two projects are worth exploring:
first, implementing the decision procedures that perform
the above-described static analysis. Second, creating a
compiler that compiles a QRE into C or assembly code
targeting a given hardware platform. This would complete
the path from algorithm to code to implementation, and
would allow a reliable comparison of upper-bounds to
actual energy consumption of the compiled code. In niche
areas, expert coders might be able to squeeze more
performance per Watt from hand-written code than a
compiler could from automatically generated code. How-
ever, it is to be expected in the long run that med-
ical devices will follow the arc of semiconductors, where
automation has gradually outperformed humans, or has
yielded such productivity gains that small performance
losses are more than made up for by the reduced time-
to-market, reproducibility and scalability of the design
process, and automatic guarantees of correctness and
performance. �

Vol. 106, No. 9, September 2018 | PROCEEDINGS OF THE IEEE 1613

Abbas et al.: Real-Time Decision Policies With Predictable Performance

R E F E R E N C E S
[1] E. A. Lee, “What’s ahead for embedded software?”

Computer, vol. 33, no. 9, pp. 18–26, 2000.
[2] T. Henzinger and J. Sifakis, “The embedded

systems design challenge,” in Proc. 14th Int. Symp.
Formal Methods, 2006, pp. 1–15.

[3] A. Sangiovanni-Vincentelli, “Quo vadis, SLD?
Reasoning about the trends and challenges of
system level design,” Proc. IEEE, vol. 95, no. 3,
pp. 467–506, Mar. 2007.

[4] R. Alur, Principles of Cyber-Physical Systems.
Cambridge, MA, USA: MIT Press, 2015.

[5] R. Alur, D. Fisman, and M. Raghothaman, “Regular
programming for quantitative properties of data
streams,” in Proc. 25th Eur. Symp. Program. Lang.
Syst., 2016, pp. 15–40.

[6] K. Mamouras, M. Raghothaman, R. Alur, Z. G. Ives,
and S. Khanna, “StreamQRE: Modular specification
and efficient evaluation of quantitative queries over
streaming data,” in Proc. 38th ACM SIGPLAN Conf.
Program. Lang. Des. Implement., 2017,
pp. 693–708.

[7] S. Chintapalli, “Benchmarking streaming
computation engines: Storm, flink and spark
streaming,” in Proc. IEEE Int. Parallel Distrib.
Process. Symp. Workshops (IPDPSW), May 2016,
pp. 1789–1792.

[8] P. Tucker, K. Tufte, V. Papadimos, and D. Maier
(2002). “NEXMark: A benchmark for queries over
data streams.” [Online]. Available:
http://datalab.cs.pdx.edu/niagara/NEXMark/

[9] Y. Yuan, D. Lin, A. Mishra, S. Marwaha, R. Alur, and
B. T. Loo, “Quantitative network monitoring with
NetQRE,” in Proc. ACM SIGCOMM Conf. Data
Commun., 2017, pp. 99–112.

[10] I. Lee, “Challenges and research directions in
medical cyber–physical systems,” Proc. IEEE,
vol. 100, no. 1, pp. 75–90, Jan. 2012.

[11] P. Ye, E. Entcheva, R. Grosu, and S. A. Smolka,
“Efficient modeling of excitable cells using hybrid
automata,” in Proc. Comput. Methods Syst. Biol.,
2005, pp. 216–227.

[12] Z. Jiang, M. Pajic, S. Moarref, R. Alur, and
R. Mangharam, “Modeling and verification of a
dual chamber implantable pacemaker,” in Proc.
18th Int. Conf. Tools Algorithms Construct. Anal.
Syst. Springer, 2012, pp. 188–203.

[13] T. Chen, M. Diciolla, M. Kwiatkowska, and
A. Mereacre, “Quantitative verification of
implantable cardiac pacemakers over hybrid heart
models,” Inf. Comput., vol. 236, pp. 87–101,
Aug. 2014.

[14] R. Alur and D. L. Dill, “A theory of timed
automata,” Theory Comput. Sci., vol. 126, no. 2,
pp. 183–235, 1994.

[15] R. Alur, “The algorithmic analysis of hybrid
systems,” Theor. Comput. Sci., vol. 138, no. 1,
pp. 3–34, 1995.

[16] G. Behrmann, A. David, K. Larsen, P. Pettersson, and
W. Yi, “Developing UPPAAL over 15 years,” Softw.
Pract. Exper., vol. 41, no. 2, pp. 133–142, 2011.

[17] The Compass—Technical Guide to Boston Scientific
Cardiac Rhythm Management Products, Boston Sci.
Corp., Marlborough, MA, USA, 2007.

[18] StreamQRE Library. [Online]. Available:http://
www.seas.upenn.edu/∼amouras/StreamQRE/
StreamQRE.jar

[19] S. Krishnamoorthi, “Simulation methods and
validation criteria for modeling cardiac ventricular
electrophysiology,” PLoS ONE, vol. 9, no. 12,
p. e114494, Dec. 2014.

[20] A. Thammanomai, M. O. Sweeney, and
S. R. Eisenberg, “A comparison of the output
characteristics of several implantable
cardioverter-defibrillators,” Heart Rhythm, vol. 3,
no. 9, pp. 1053–1059, 2017, doi:
10.1016/j.hrthm.2006.05.006.

[21] M. Rosenqvist, T. Beyer, M. Block, K. D. Dulk,
J. Minten, and F. Lindemans, “Adverse events with
transvenous implantable cardioverter-defibrillators:
A prospective multicenter study,” Circulation,
vol. 98, no. 7, pp. 663–670, 1998.

[22] K. Ellenbogen, G. N. Kay, C.-P. Lau, and
B. L. Wilkoff, Clinical Cardiac Pacing, Defibrillation
and Resynchronization Therapy E-Book. Amsterdam,
The Netherlands: Elsevier, 2011.

[23] BioMonitor Technical Manual, Biotronik, Berlin,
Germany, 2015.

[24] J. M. Nasir, “Predicting determinants of atrial
fibrillation or flutter for therapy elucidation in
patients at risk for thromboembolic events
(PREDATE AF) study,” Heart Rhythm, vol. 14,
no. 7, pp. 955–961, 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/
S1547527117304927

[25] W. Amara, “Early detection and treatment of atrial
arrhythmias alleviates the arrhythmic burden in
paced patients: The SETAM study,” Pacing Clin.
Electrophysiol., vol. 40, no. 5, pp. 527–536, 2017,
doi: 10.1111/pace.13062.

[26] H. Abbas, A. Rodionova, E. Bartocci, S. A. Smolka,
and R. Grosu, “Quantitative regular expressions for
arrhythmia detection algorithms,” in Computational
Methods in Systems Biology. Cham, Switzerland:
Springer, 2017, pp. 23–39, doi:
10.1007/978-3-319-67471-1_2.

[27] R. D. Berger, “A novel strategy to mitigate ICD
shock-related pain,” in Heart Rhythm Scientific
Sessions. 2017.

[28] F. A. Masoudi, “Longitudinal study of implantable
cardioverter-defibrillators,” Circulat.,
Cardiovascular Quality Outcomes, vol. 5, no. 6,
pp. e78–e85, 2012. [Online]. Available: http://
circoutcomes.ahajournals.org/content/5/6/e78

[29] G. Boriani, “Battery drain in daily practice and
medium-term projections on longevity of
cardioverter-defibrillators: An analysis from a
remote monitoring database,” EP Europace, vol. 18,
no. 9, pp. 1366–1373, 2016, doi:
10.1093/europace/euv436.

[30] J. Kärnä, J.-P. Tolvanen, and S. Kelly, “Evaluating
the use of domain-specific modeling in practice,” in
Proc. OOPSLA Workshop Domain-Specific Modeling,
2009. [Online]. Available: http://www.dsmforum.
org/events/dsm09/papers/karna.pdf

[31] J.-P. Tolvanen, N. Brouwers, R. Hendriksen,
G. Kahraman, and J. Kouwer, “Industrial use of
domain-specific modeling: Panel summary,” in Proc.
Domain Specific Modeling Workshop, Amsterdam,
Netherlands, 2016.

[32] Java’s Lambda Expressions. [Online]. Available:
https://docs.oracle.com/
javase/tutorial/java/javaOO/lambdaexpressions.html

[33] M. Veanes, P. De Halleux, and N. Tillmann, “Rex:
Symbolic regular expression explorer,” in Proc. 3rd
Int. Conf. Softw. Testing, Verification Validation
(ICST), Apr. 2010, pp. 498–507.

[34] R. Book, S. Even, S. Greibach, and G. Ott,
“Ambiguity in graphs and expressions,” IEEE Trans.
Comput., vol. C-20, no. 2, pp. 149–153, Feb. 1971.

[35] R. Alur, D. Fisman, and M. Raghothaman, “Regular
programming for quantitative properties of data
streams,” in Proc. 25th Eur. Symp. Program. (ESOP),
2016, pp. 15–40, doi:
10.1007/978-3-662-49498-1_2.

[36] J. Li, D. Maier, K. Tufte, V. Papadimos, and
P. A. Tucker, “Semantics and evaluation techniques
for window aggregates in data streams,” in Proc.
ACM SIGMOD Int. Conf. Manage. Data, 2005,
pp. 311–322.

[37] H. Abbas, Z. Jiang, K. J. Jang, M. Beccani, J. Liangy,
and R. Mangharam, “High-level modeling for
computer-aided clinical trials of medical devices,”
in Proc. IEEE Int. High Level Des. Validation Test
Workshop (HLDVT), Oct. 2016, pp. 85–92.

[38] Z. Jiang, “In-silico pre-clinical trials for implantable
cardioverter defibrillators,” in Proc. 38th Annu. Int.
Conf. IEEE Eng. Med. Biol. Soc. (EMBC), Aug. 2016,
pp. 169–172.

[39] K. Liu, G. Pinto, and Y. D. Liu, “Data-oriented
characterization of application-level energy
optimization,” in Proc. Fundam. Approaches Softw.
Eng., Apr. 2015, doi:
10.1007/978-3-662-46675-9_21.

[40] Z. Jiang, M. Pajic, R. Alur, and R. Mangharam,
“Closed-loop verification of medical devices with
model abstraction and refinement,” Int. J. Softw.
Tools Technol. Transf., vol. 16, no. 2, pp. 191–213,
2014, doi: 10.1007/s10009-013-0289-7.

[41] H. Abbas, K. J. Jiang, Z. Jiang, and R. Mangharam,
“Towards model checking of implantable

cardioverter defibrillators,” in Proc. 19th Int. Conf.
Hybrid Syst., Comput. Control, New York, NY, USA,
2016, pp. 87–92, doi: 10.1145/2883817.2883841.

[42] L. A. Tuan, M. C. Zheng, and Q. T. Tho, “Modeling
and verification of safety critical systems: A case
study on pacemaker,” in Proc. 4th Int. Conf. Secure
Softw. Integr. Rel. Improvement, Jun. 2010,
pp. 23–32.

[43] S. Andalam, H. Ramanna, A. Malik, P. Roop,
N. Patel, and M. L. Trew, “Hybrid automata models
of cardiac ventricular electrophysiology for
real-time computational applications,” in Proc. 38th
Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC),
Aug. 2016, pp. 5595–5598.

[44] General Principles of Software Validation; Final
Guidance for Industry and FDA Staff, document,
Center for Devices Radiological Health, 2002.

[45] T. Chen, M. Diciolla, M. Kwiatkowska, and
A. Mereacre, “Quantitative verification of
implantable cardiac pacemakers over hybrid heart
models,” Inf. Comput., vol. 236, pp. 87–101,
Aug. 2014. [Online]. Available:
http://www.sciencedirect.
com/science/article/pii/S0890540114000157

[46] C. Barker, M. Kwiatkowska, A. Mereacre,
N. Paoletti, and A. Patane, “Hardware-in-the-loop
simulation and energy optimization of cardiac
pacemakers,” in Proc. 37th Annu. Int. Conf. IEEE
Eng. Med. Biol. Soc. (EMBC), Aug. 2015,
pp. 7188–7191.

[47] J.-P. Tolvanen, V. Djukić, and A. Popovic,
“Metamodeling for medical devices: Code
generation, model-debugging and run-time
synchronization,” Proceedia Comput. Sci., vol. 63,
pp. 539–544, Jan. 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/
pii/S187705091502517X

[48] D. J. Abadi, “Aurora: A new model and architecture
for data stream management,” VLDB J., vol. 12,
no. 2, pp. 120–139, 2003.

[49] D. J. Abadi, “The design of the Borealis stream
processing engine,” in Proc. 2nd Biennial Conf.
Innov. Data Syst. Res. (CIDR), 2005, pp. 277–289.
[Online]. Available:
http://cidrdb.org/cidr2005/papers/P23.pdf

[50] A. Arasu, “STREAM: The Stanford data stream
management system,” Stanford InfoLab, Tech. Rep.
2004-20, 2004. [Online]. Available:
http://ilpubs.stanford.edu:8090/641/

[51] R. S. Barga, J. Goldstein, M. Ali, and M. Hong,
“Consistent streaming through time: A vision for
event stream processing,” in Proc. 3rd Biennial
Conf. Innov. Data Syst. Res. (CIDR), 2007,
pp. 363–374. [Online]. Available:
http://cidrdb.org/cidr2007/papers/cidr07p42.pdf

[52] M. Ali, B. Chandramouli, J. Goldstein, and
R. Schindlauer, “The extensibility framework in
Microsoft Streaminsight,” in Proc. 27th IEEE Int.
Conf. Data Eng. (ICDE), Apr. 2011, pp. 1242–1253,
doi: 10.1109/ICDE.2011.5767878.

[53] A. Arasu, S. Babu, and J. Widom, “The CQL
continuous query language: Semantic foundations
and query execution,” VLDB J., vol. 15, no. 2,
pp. 121–142, 2006, doi:
10.1007/s00778-004-0147-z.

[54] M. Hirzel, “IBM streams processing language:
Analyzing big data in motion,” IBM J. Res. Develop.,
vol. 57, nos. 3–4, pp. 7:1–7:11, 2013.

[55] M. Vaziri, O. Tardieu, R. Rabbah, P. Suter, and
M. Hirzel, “Stream processing with a spreadsheet,”
in Proc. 28th Eur. Conf. Object-Oriented Program.
(ECOOP), 2014, pp. 360–384, doi:
10.1007/978-3-662-44202-9_15.

[56] ReactiveX: An API for Asynchronous Programming
With Observable Streams. [Online]. Available:
http://reactivex.io/

[57] Esper for Java. [Online]. Available:
http://www.espertech.com/esper/

[58] Apache Flink: Scalable Batch and Stream Data
Processing. [Online]. Available:
https://flink.apache.org/

[59] B. D’Angelo, “Lola: Runtime monitoring of
synchronous systems,” in Proc. 12th Int. Symp.
Temporal Represent. Reasoning (TIME), Jun. 2005,
pp. 166–174.

1614 PROCEEDINGS OF THE IEEE | Vol. 106, No. 9, September 2018

Abbas et al.: Real-Time Decision Policies With Predictable Performance

[60] E. Asarin, P. Caspi, and O. Maler, “Timed regular
expressions,” J. ACM, vol. 49, no. 2, pp. 172–206,
Mar. 2002, doi: 10.1145/506147.506151.

[61] J. L. Ayala and M. López-Vallejo, “Integrating
functional and power simulation in embedded
systems design,” J. Embedded Comput., vol. 1, no. 3,
pp. 325–340, Aug. 2005. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1233748.1233752

[62] M. E. A. Ibrahim, M. Rupp, and H. A. H. Fahmy, “A
precise high-level power consumption model for
embedded systems software,” EURASIP J. Embedded
Syst., vol. 2011, pp. 1:1–1:14, Jan. 2011, doi:
10.1155/2011/480805.

[63] E. Senn, N. Julien, J. Laurent, and E. Martin,
“Power consumption estimation of a C program for
data-intensive applications,” in Proc. 12th Int.
Workshop Integr. Circuit Design Power Timing
Modeling, Optim. Simulation (PATMOS). London,
U.K.: Springer-Verlag, 2002, pp. 332–341. [Online].

Available:
http://dl.acm.org/citation.cfm?id=646949.712708

[64] H. Blume, D. Becker, L. Rotenberg, M. Botteck,
J. Brakensiek, and T. G. Noll, “Hybrid functional-
and instruction-level power modeling for
embedded and heterogeneous processor
architectures,” J. Syst. Archit., vol. 53, no. 10,
pp. 689–702, Oct. 2007, doi:
10.1016/j.sysarc.2007.01.002.

[65] C. Krintz, Y. Wen, and R. Wolski, “Application-level
prediction of battery dissipation,” in Proc. Int.
Symp. Low Power Electron. Design, Aug. 2004,
pp. 224–229.

[66] U. Liqat, “Energy consumption analysis of programs
based on XMOS ISA-level models,” in Logic-Based
Program Synthesis and Transformation. Cham,
Switzerland: Springer, 2014, pp. 72–90, doi:
10.1007/978-3-319-14125-1_5.

[67] The Ciao System. Accessed: Jun. 17, 2017.

[Online]. Available: https://ciao-lang.org/
[68] K. Georgiou, S. Kerrison, Z. Chamski, and K. Eder,

“Energy transparency for deeply embedded
programs,” ACM Trans. Archit. Code Optim., vol. 14,
no. 1, pp. 8:1–8:26, Mar. 2017. [Online]. Available:
http://doi.acm.org/10.1145/3046679

[69] R. Jayaseelan, T. Mitra, and X. Li, “Estimating the
worst-case energy consumption of embedded
software,” in Proc. 12th IEEE Real-Time Embedded
Technol. Appl. Symp., Apr. 2006, pp. 81–90.

[70] B. W. Bequette, “Continuous glucose monitoring:
Real-time algorithms for calibration, filtering, and
alarms,” J. Diabetes Sci. Technol., vol. 4, no. 2,
pp. 404–418, 2010, doi:
10.1177/193229681000400222.

[71] Y. Leal, “Enhanced algorithm for glucose estimation
using the continuous glucose monitoring system,”
Med. Sci. Monitor, vol. 16, no. 6, pp. MT51–MT58,
2010.

A B O U T T H E A U T H O R S

Houssam Abbas (Member, IEEE) received
the B.E. degree in computer engineering
from the American University of Beirut,
Beirut, Lebanon, and the M.S. and Ph.D.
degrees in electrical engineering from Ari-
zona State University, Tempe, AZ, USA.
He was a Design Automation Engineer in

the SoC Verification group at Intel from 2006
to 2014. He is currently a Postdoctoral Fellow
in the Department of Electrical and Systems Engineering, Univer-
sity of Pennsylvania, Philadelphia, PA, USA. His research interests
are in the verification, control and conformance testing of cyber–
physical systems. His current research includes the verification
and performance analysis of life-supporting medical devices, the
verification and control of autonomous vehicles with a view towards
certifying such systems, and anytime computation and control.

Rajeev Alur (Fellow, IEEE) received the B.S.
degree in computer science from IIT Kan-
pur, India, in 1987, and the Ph.D. degree in
computer science from Stanford University,
Stanford, CA, USA, in 1991.
He is the Zisman Family Professor of Com-

puter and Information Science at the Univer-
sity of Pennsylvania, Philadelphia, PA, USA.
Before joining the University of Pennsylvania
in 1997, he was with the Computing Science Research Center, Bell
Labs. His research is focused on formal methods for system design,
and spans theoretical computer science, software verification and
synthesis, and cyber-physical systems. He is the author of the
textbook Principles of Cyber-Physical Systems (Cambridge, MA,
USA: MIT Press, 2015).
Dr. Alur is a Fellow of the American Association for the Advance-

ment of Science (AAAS), a Fellow of the Association for Computing
Machinery (ACM), an Alfred P. Sloan Faculty Fellow, and a Simons
Investigator. He was awarded the inaugural CAV (Computer-Aided
Verification) award in 2008, the ACM/IEEE Logic in Computer Sci-
ence (LICS) Test-of-Time award in 2010, and the inaugural Alonzo
Church award by ACM SIGLOG/EATCS/EACSL in 2016 for his work on
timed automata.

Konstantinos Mamouras (Member, IEEE)
completed undergraduate studies in elec-
trical and computer engineering at the
National Technical University of Athens,
Greece, and received the M.Sc. degree in
computer science from the Imperial College
London, London, U.K., and the Ph.D. degree
in computer science from Cornell University,
Ithaca, NY, USA.
He is currently a Postdoctoral Researcher in the Department

of Computer and Information Science, University of Pennsylvania,
Philadelphia, PA, USA. His research interests lie in the area of
programming languages for data stream processing, and logical
approaches for program verification.

Rahul Mangharam (Member, IEEE)
received the B.S., M.S., and Ph.D. degrees
in electrical and computer engineering from
Carnegie Mellon University, Pittsburgh, PA,
USA, in 2000, 2002, and 2008, respectively.
He is an Associate Professor in the Depart-

ment of Electrical and Systems Engineering
as well as the Department of Computer
and Information Science, University of
Pennsylvania, Philadelphia, PA, USA. He is the Director of the Real-
Time and Embedded Systems Lab and Mobility21 DoT National
University Transportation Center. His current interests are in the
application of formal methods, controls and machine learning for
safe and efficient life-critical systems in medical devices, energy
markets and autonomous systems.
Dr. Mangharam received the U.S. Presidential Early Career

Awards for Scientists and Engineers in 2016, DoE CLEANTECH Prize
(Regional) in 2016, National Science Foundation CAREER Award in
2014, IEEE Benjamin Franklin Key Award in 2013, Intel Early Faculty
Career Award in 2012 and was selected by the National Academy
of Engineering for the 2012 and 2017 Frontiers of Engineering.

Alena Rodionova (Member, IEEE) received
the B.S. and M.S. degrees in mathemat-
ics from the Siberian Federal University,
Russia, in 2012 and 2014, respectively. She
is currently working toward the Ph.D. degree
in the Department of Electrical and Sys-
tems Engineering, University of Pennsylva-
nia, Philadelphia, PA, USA.
Before joining the University of Pennsylva-

nia in 2017, she was with the Cyber-Physical Systems Group, TU
Wien. Her research is focused on formal analysis and verification
of safety-critical systems such as medical devices, and risk assess-
ment, verification and control of cyber-physical systems such as
autonomous vehicles.

Vol. 106, No. 9, September 2018 | PROCEEDINGS OF THE IEEE 1615

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [576.000 782.640]
>> setpagedevice

