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Abstract

Compositional reinforcement learning is a
promising approach for training policies to per-
form complex long-horizon tasks. Typically, a
high-level task is decomposed into a sequence of
subtasks and a separate policy is trained to per-
form each subtask. In this paper, we focus on
the problem of training subtask policies in a way
that they can be used to perform any task; here, a
task is given by a sequence of subtasks. We aim
to maximize the worst-case performance over
all tasks as opposed to the average-case perfor-
mance. We formulate the problem as a two agent
zero-sum game in which the adversary picks the
sequence of subtasks. We propose two RL al-
gorithms to solve this game: one is an adapta-
tion of existing multi-agent RL algorithms to our
setting and the other is an asynchronous version
which enables parallel training of subtask poli-
cies. We evaluate our approach on two multi-task
environments with continuous states and actions
and demonstrate that our algorithms outperform
state-of-the-art baselines.

1. Introduction
Reinforcement learning (RL) has proven to be a promising
strategy for solving complex control tasks such as walk-
ing (Fujimoto et al., 2018), autonomous driving (Ivanov
et al., 2021), and dexterous manipulation (Akkaya et al.,
2019). However, a key challenge facing the deployment of
reinforcement learning in real-world tasks is its high sam-
ple complexity—solving any new task requires training a
new policy designed to solve that task. One promising so-
lution is compositional reinforcement learning, where in-
dividual options (or skills) are first trained to solve sim-
ple tasks; then, these options can be composed together to
solve more complex tasks (Lee et al., 2018; 2021; Ivanov
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et al., 2021). For example, if a driving robot learns how to
make left and right turns and to drive in a straight line, it can
then drive along any route composed of these primitives.

A key challenge facing compositional reinforcement learn-
ing is the generalizability of the learned options. In partic-
ular, options trained under one distribution of tasks may no
longer work well if used in a new task, since the distribu-
tion of initial states from which the options are used may
shift. An alternate approach is to train the options sepa-
rately to perform specific subtasks, but options trained this
way might cause the system to reach states from which fu-
ture subtasks are hard to perform. One can overcome this
issue by handcrafting rewards to encourage avoiding such
states (Ivanov et al., 2021), in which case they generalize
well, but this approach relies heavily on human time and
expertise.

We propose a novel framework that addresses these chal-
lenges by formulating the option learning problem as an ad-
versarial reinforcement learning problem. At a high level,
the adversary chooses the task that minimizes the reward
achieved by composing the available options. Thus, the
goal is to learn a set of robust options that perform well
across all potential tasks. Then, we provide two algorithms
for solving this problem. The first adapts existing ideas
for using reinforcement learning to solve Markov games
to our setting. Then, the second shows how to leverage
the compositional structure of our problem to learn options
in parallel at each step of a value iteration procedure; in
some cases, by enabling such parallelism, we can reduce
the computational cost of learning.

We validate our approach on two benchmarks: (i) a rooms
environment where a point mass robot must navigate any
given sequence of rooms, and (ii) a simulated version of
the F1/10th car, where a small racing car must navigate any
given racetrack that is composed of several different prede-
fined track segments. In both environments, our empirical
results demonstrate that robust options are critical for per-
forming well on a wide variety of tasks.

In summary, our contributions are: (i) a game theoretic for-
mulation of the compositional reinforcement learning prob-
lem, (ii) an algorithm for solving this problem in the finite-
state setting with guaranteed convergence in the limit, (iii)
two learning algorithms for continuous-state systems, and
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Figure 1. F1/10th Environment. The entry and exit regions for the right and sharp right segments are shown in green and blue respec-
tively.

(iv) an empirical evaluation demonstrating the effective-
ness of our approach.

Motivating example. Let us consider a small scale au-
tonomous racing car shown in Figure 1 (a). We would
like to train a controller that can be used to navigate the
car through all tracks constructed using five kinds of seg-
ments; the possible segments are shown in Figure 1 (b)
along with an example track. A state of the car is a vec-
tor s = (x, y, v, θ) where (x, y) is its position on the track
relative to the current segment, v is its current speed and
θ is the heading angle. At any state s, the controller ob-
serves the measurements o(s) ∈ R1081 of a LiDAR sen-
sor and outputs an action (a, ω) ∈ R2 where a is the
throttle input and ω is the steering angle. In this envi-
ronment, completing each segment is considered a subtask
and a task corresponds to completing a sequence of seg-
ments (which may describe a track)—e.g., straight →
right → left → sharp-right. Upon completion
of a subtask, the car enters the next segment and a change-
of-coordinates1 is applied to the car’s state which is now
relative to the new segment. The goal here is to learn one
option for each subtask such that the agent can perform any
task using these options.

If one trains the options independently with the only goal
of reaching the end of each segment (e.g., using distance-
based rewards), it might (and does) happen that the car
reaches the end of a segment in a state that was not part
of the initial states used to train the policy corresponding
to the next segment. Therefore, one should make sure that
the initial state distribution used during training includes
such states as well—either manually or using dataset ag-
gregation (Ross et al., 2011). Furthermore, it is possible
that the car reaches a state in the exit region of a segment
from which it is challenging to complete the next subtask—
e.g., a state in which the car is close to and facing towards a
wall. Our algorithm identifies during training that, in order
to perform future subtasks, it is better to reach the end of a

1The change-of-coordinates is assumed for simpler modelling
and does not affect the LiDAR measurements or the controller.

segment in a configuration where the car is facing straight
relative to the next segment. Finally, we want the trained
options to be such that they compose well for every se-
quence of segments—i.e., track geometry. Therefore, we
are interested in maximizing the worst case performance
with respect to the choice of high-level task.

Our framework is broadly applicable in many real-world
scenarios. For instance, the F1/10th example can be seen
as a miniature version of an autonomous driving scenario
where the agent needs to learn to perform maneuvers such
as turning left/right, changing lanes etc. Here, the policies
for performing these maneuvers need to ensure that the car
is in a safe and controllable state for future maneuvers. An-
other interesting scenario is when a household robot has to
perform multiple tasks such as cleaning, cooking etc., but
needs to ensure that the policies for performing these tasks
leave the house in a favorable state for future tasks—e.g.,
learning to cook without making the place too dirty (as it
might be hard to perform the cleaning task later).

2. Problem Formulation
A multi-task Markov decision process (MDP) is a tu-
ple M = (S,A, P,Σ, R, F, T, γ, η, σ0), where S are the
states, A are the actions, P (s′ | s, a) ∈ [0, 1] is the prob-
ability of transitioning from s to s′ on action a, η is the
initial state distribution, and γ ∈ (0, 1) is the discount fac-
tor. Furthermore, Σ is a set of subtasks and for each subtask
σ ∈ Σ, Rσ : S × A → R is a reward function2, Fσ ⊆ S
is a set of final states where the subtask is considered com-
pleted and Tσ : Fσ × S → [0, 1] is the jump probability
function; upon reaching a state s in Fσ the system jumps
to a new state s′ with probability Tσ(s′ | s). For the sake
of clarity, we assume3 that Tσ(s′ | s) = 0 for any s′ with
s′ ∈ Fσ′ for some σ′. Finally, σ0 ∈ Σ is the initial subtask

2We can also have a reward function Rσ : S×A×S → R that
depends on the next state but we omit it for clarity of presentation.

3This assumption can be removed by adding a fictitious copy
of Fσ to S for each σ ∈ Σ.
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which has to be completed first4. A multi-task MDP can
be viewed as a discrete time variant of a hybrid automaton
model (Ivanov et al., 2021).

In the case of our motivating example, the set of sub-
tasks is given by Σ = {left,right,straight,
sharp-left,sharp-right} with Fσ denoting the
exit region of the segment corresponding to subtask σ.
We use the jump transitions T to model the change-
of-coordinates performed upon reaching an exit region.
The reward function Rσ for a subtask σ is given by
Rσ(s, a, s

′) = −∥s′ − cσ∥22 + B · 1(s′ ∈ Fσ) where cσ
is the center of the exit region and the subtask completion
bonus B is a positive constant.

A task τ is defined to be an infinite sequence5 of subtasks
τ = σ0σ1 . . ., and T denotes the set of all tasks. For any
task τ ∈ T , τ [i] denotes the ith subtask σi in τ . In our set-
ting, the task is chosen by the environment nondeterminis-
tically. Given a task τ , a configuration of the environment
is a pair (s, i) ∈ S × Z≥0 with s /∈ Fτ [i] denoting that the
system is in state s and the current subtask is τ [i]. The ini-
tial distribution over configurations ∆ : S × Z≥0 → [0, 1]
is given by ∆(s, i) = ητ [0](s) if i = 0 and 0 otherwise.
The probability of transitioning from (s, i) to (s′, j) on an
action a is given by Pr((s′, j) | (s, i), a) =

∑
s′′∈Fτ[i]

P (s′′ | s, a)Tτ [i](s′ | s′′) if j = i+ 1

P (s′ | s, a) if j = i & s′ /∈ Fτ [i]
0 otherwise.

Intuitively, the system transitions to the next subtask if the
current subtask is completed and stays in the current sub-
task otherwise. A (deterministic) policy is a function π :
S → A, where a = π(s) is the action to take in state s. Our
goal is to learn one policy πσ for each subtask σ such that
the discounted reward over the worst-case task τ is maxi-
mized. Formally, given a set of policies Π = {πσ | σ ∈ Σ}
and a task τ , we can define a Markov chain over configura-
tions with initial distribution ∆ and transition probabilities
given by PΠ((s

′, j) | (s, i)) = Pr((s, j′) | (s, i), πτ [i](s)).
We denote byDΠ

τ the distribution over infinite sequences of
configurations ρ = (s0, i0)(s1, i1) . . . generated by τ and
Π. Then, we define the objective function as

J(Π) = inf
τ∈T

Eρ∼DΠ
τ

[ ∞∑
t=0

γtRτ [it](st, πτ [it](st))
]
.

These definitions can be naturally extended to stochastic
policies as well. In our motivating example, choosing

4When there is no fixed initial subtask, we can add a fictitious
initial subtask.

5A finite sequence can be appended with an infinite sequence
of fictitious subtasks with zero reward.

a large enough completion bonus B guarantees the dis-
counted reward to be higher for runs in which more sub-
tasks are completed. Our aim is to compute a set of poli-
cies Π∗ ∈ argmaxΠ J(Π). Each subtask policy πσ defines
an option (Sutton et al., 1999) oσ = (πσ, Iσ, βσ) where
Iσ = S \ Fσ and βσ(s) = 1(s ∈ Fσ). Here, the choice of
which option to trigger is made by the environment rather
than the agent.

3. Reduction to Stagewise Markov Games
The problem statement naturally leads to a game theo-
retic view in which the environment is the adversary. We
can formally reduce the problem to a two-agent zero-sum
Markov game G = (S̄, A1, A2, P̄ , R̄, γ̄, η̄) where S̄ =
S × Σ is the set of states, A1 = A are the actions of agent
1 (the agent representing the options) and A2 = Σ are the
actions of agent 2 (the adversary). The transition probabil-
ity function P̄ : S̄ × A1 × A2 × S̄ → [0, 1] is given by
P̄ ((s′, σ′) | (s, σ), a1, a2) =

P (s′ | s, a1) if s /∈ Fσ & σ = σ′

Tσ(s
′ | s) if s ∈ Fσ & σ′ = a2

0 otherwise.

We observe that the states are partitioned into two sets
S̄ = S1 ∪ S2 where S1 = {(s, σ) | s /∈ Fσ} is the set
of states where agent 1 acts (causing a step in M) and
S2 = {(s, σ) | s ∈ Fσ} is the set of states where agent
2 takes actions (causing a change of subtask); this makes G
a stagewise game. The reward function R̄ : S̄ × A1 → R
is given by R̄((s, σ), a) = Rσ(s, a) if s /∈ Fσ and 0 other-
wise. The discount factor depends on the state and is given
by γ̄(s, σ) = γ if s /∈ Fσ and 1 otherwise; this is because a
change of subtask does not invoke a step inM. The initial
state distribution η̄ is given by η̄(s, σ) = η(s)1(σ = σ0).
A run of the game is a sequence ρ̄ = s̄0a

1
0a

2
0s̄1a

1
1a

2
1 . . .

where s̄t ∈ S̄ and ait ∈ Ai.

A (deterministic) policy for agent i is a function πi : S̄ →
Ai. Given policies π1 and π2 for agents 1 and 2, respec-
tively and a state s̄ ∈ S̄ we denote by DG

s̄ (π1, π2) the dis-
tribution over runs generated by π1 and π2 starting at s̄.
Then, the value of a state s̄ is defined by

V π1,π2(s̄) = Eρ̄∼DG
s̄ (π1,π2)

[ ∞∑
t=0

( t−1∏
k=0

γ̄(s̄k)
)
R̄(s̄t, a

1
t )
]
.

We are interested in computing a policy π∗
1 maximizing

JG(π1) = Es̄∼η̄[min
π2

V π1,π2(s̄)].

Given a policy π1 for agent 1, we can construct a policy
πσ for any subtask σ given by πσ(s) = π1(s, σ); we de-
note by Π(π1) the set of subtask policies constructed this
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way. The following theorem connects the objective of the
game with our multi-task learning objective; all proofs are
in Appendix A.

Theorem 3.1. For any policy π1 of agent 1 in G, we have
J(Π(π1)) ≥ JG(π1).

Therefore, JG(π1) is a lower bound on the objective
J(Π(π1)) which we seek to maximize. Now, let us
define the optimal value of a state s̄ by V ∗(s̄) =
maxπ1

minπ2
V π1,π2(s̄). The following theorem shows

that it is possible to construct a policy π∗
1 that maximizes

JG(π1) from the optimal value function V ∗.

Theorem 3.2. For any policy π∗
1 such that for all

(s, σ) ∈ S1, π∗
1(s, σ) ∈ argmaxa∈A

{
R̄((s, σ), a) +

γ ·
∑
s′∈S P (s

′ | s, a)V ∗(s′, σ)
}
, we have that π∗

1 ∈
argmaxπ1 JG(π1).

3.1. Value Iteration

In this section, we briefly look at two value iteration algo-
rithms to compute V ∗ which we later adapt in Section 4 to
obtain learning algorithms. Let V = {V : S1 → R} de-
note the set of all value functions over S1. Given a value
function V ∈ V we define its extension to all of S̄ using
JV K(s, σ) ={

minσ′∈Σ

∑
s′∈S Tσ(s

′ | s)V (s′, σ′) if s ∈ Fσ
V (s, σ) otherwise.

(1)

For a state s ∈ Fσ , JV K(s, σ) denotes the worst-case value
(according to V ) with respect to the possible choices of
next subtask σ′. Now, we consider the Bellman operator
F : V → V defined by F(V )(s, σ) =

max
a∈A

{
R̄((s, σ), a) + γ ·

∑
s′∈S

P (s′ | s, a)JV K(s′, σ)
}

(2)

for all (s, σ) ∈ S1. Let us denote by V ∗ ↓S1
the restric-

tion of V ∗ to S1. The following lemma follows straightfor-
wardly, giving us our first value iteration procedure.

Theorem 3.3. F is a contraction mapping with respect to
the ℓ∞-norm on V and V ∗ ↓S1 is the unique fixed point of
F with limn→∞ Fn(V ) = V ∗ ↓S1

for all V ∈ V .

Asynchronous VI. Next we consider an asynchronous
value iteration procedure which allows us to parallelize
computing subtask policies for different subtasks. Given
a subtask σ and a value function V ∈ V , we define a
subtask MDP MV

σ which behaves like M until reach-
ing a final state s ∈ Fσ after which it transitions to a
dead state ⊥ achieving a reward of JV K(s, σ). Formally,

Algorithm 1 Asynchronous value iteration algorithm for
computing optimal subtask policies.

1: function ASYNCVALUEITERATION(M, V )
2: while stopping criterion is met do
3: for σ ∈ Σ do // in parallel
4: ComputeWσ(V )

5: V ← Fasync(V ) // using Equation 3

MV
σ = (Sσ, A, Pσ, R

V
σ , γ) where Sσ = S ⊔ {⊥} with ⊥

being a special dead state. The transition probabilities are

Pσ(s
′ | s, a) =

{
P (s′ | s, a) if ⊥ ≠ s /∈ Fσ
1(s′ = ⊥) otherwise.

The reward function is given by

RVσ (s, a) =


Rσ(s, a) if ⊥ ≠ s /∈ Fσ
JV K(s, σ) if ⊥ ≠ s ∈ Fσ
0 otherwise.

We denote by Wσ(V ) the optimal value function of the
MDP MV

σ . We then define the asynchronous value itera-
tion operator Fasync : V → V using

Fasync(V )(s, σ) =Wσ(V )(s). (3)

We can show that repeated application of Fasync leads to
the optimal value function V ∗ of the game G.
Theorem 3.4. For any V ∈ V , limn→∞ Fnasync(V ) →
V ∗ ↓S1

.

Since eachWσ(V ) can be computed independently, we can
parallelize the computation of Fasync giving us the algo-
rithm in Algorithm 1. We can also show that it is not neces-
sary to computeWσ(V ) exactly. Let Vσ = {V̄ : Sσ → R}
be the set of all value functions over Sσ . For a fixed V ∈ V ,
let Fσ,V : Vσ → Vσ denote the usual Bellman operator for
the MDPMV

σ given by Fσ,V (V̄ )(s) =

max
a∈A

{
RVσ (s, a) + γ ·

∑
s′∈Sσ

Pσ(s
′ | s, a)V̄ (s′)

}
for all V̄ ∈ Vσ and s ∈ Sσ . Now for any V ∈ V
and σ ∈ Σ, we define a corresponding Vσ ∈ Vσ using
Vσ(s) = JV K(s, σ) if s ∈ S and Vσ(⊥) = 0. Then, for
any integer m > 0 and V ∈ V , we can use Fmσ,V (Vσ) as
an approximation to Wσ(V ). Let us define Fm : V → V
using

Fm(V )(s, σ) = Fmσ,V (Vσ)(s).
Intuitively, Fm corresponds to performingm steps of value
iteration in each subtask MDP MV

σ (which can be paral-
lelized) starting at Vσ . The following theorem guarantees
convergence when using Fm instead of Fasync.
Theorem 3.5. For any V ∈ V and m > 0,
limn→∞ Fnm(V )→ V ∗ ↓S1

.
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4. Learning Algorithms
In this section, we present RL algorithms for solving the
game G. We first consider the finite MDP setting for which
we can obtain a modified Q-learning algorithm with a con-
vergence guarantee. We then present two algorithms based
on Soft Actor Critic (SAC) for the continuous-state setting.

4.1. Finite MDP

Assuming finite states and actions, we can obtain a Q-
learning variant for solving G which we call Robust Option
Q-learning. We assume that jump transitions T are known
to the learner; this is usually the case since jump transi-
tions are used to model subtask transitions and (potential)
change-of-coordinates within the controller. However, we
believe that the algorithm can be easily extended to the sce-
nario where T is unknown.

We maintain a function Q : S1 × A → R with Q(s, σ, a)
denoting Q((s, σ), a). The corresponding value function
VQ is defined using VQ(s, σ) = maxa∈AQ(s, σ, a) and is
extended to all of S̄ as JVQK. Note that, given aQ-function,
the extended value function JVQK can be computed exactly.
Robust Option Q-learning is an iterative process—in each
iteration t, it takes a step ((s, σ), a1, a2, (s

′, σ)) in G with
(s, σ) ∈ S1 and updates the Q-function using

Qt+1(s, σ, a1)← (1−αt)Qt(s, σ, a1)
+ αt(R̄((s, σ), a1) + γJVQt

K(s′, σ)).

where Qt is the Q-function in iteration t and JVQt
K is the

corresponding extended value function.

Under standard assumptions on the learning rates αt, sim-
ilar to Q-learning, we can show that Robust Option Q-
learning converges to the optimalQ-function almost surely.
Here, the optimal Q-function is defined by Q∗(s, σ, a) =
R̄((s, σ), a) + γ

∑
s′∈S P (s

′ | s, a)V ∗(s′, σ) for all
(s, σ) ∈ S1. Let αt(s, σ, a) denote the learning rate used in
iteration t if Qt(s, σ, a) is updated and 0 otherwise. Then,
we have the following theorem.

Theorem 4.1. If
∑
t αt(s, σ, a) = ∞ and∑

t α
2
t (s, σ, a) < ∞ for all (s, σ) ∈ S1 and a ∈ A,

then limt→∞Qt = Q∗ almost surely.

4.2. Continuous States and Actions

In the case of continuous states and actions, we can adapt
any Q-function based RL algorithm such as Deep Deter-
ministic Policy Gradients (DDPG) (Lillicrap et al., 2016) or
Soft Actor Critic (SAC) (Haarnoja et al., 2018) to our set-
ting. Here we present an SAC based algorithm that we call
Robust Option SAC (ROSAC) which is outlined in Algo-
rithm 2. This algorithm, like SAC, adds an entropy bonus
to the reward function to improve exploration.

Algorithm 2 Robust Option Soft Actor Critic.
Inputs: Learning rates αψ , αθ, entropy weight β and
Polyak rate δ.

1: function ROSAC(αψ , αθ, β, δ)
2: Initialize params {ψσ}σ∈Σ, {ψtargσ }σ∈Σ, {θσ}σ∈Σ

3: Initialize replay buffer B
4: for each iteration do
5: for each episode do
6: s0 ∼ η
7: σ0 ← InitialSubtask
8: for each step t do
9: at ∼ πθσt

(· | st)
10: st+1 ∼ P (· | s, a)
11: B ← B ∪ {(st, at, st+1)}
12: if st+1 ∈ Fσt then
13: st+1 ∼ Tσt

(· | st+1)
14: σt+1 ← Greedy(ε, argminσ Ṽ (st+1, σ),Σ)
15: else
16: σt+1 ← σt

17: for each gradient step do
18: Sample batch B ∼ B
19: for σ ∈ Σ do
20: ψσ ← ψσ − αψ∇ψσLQ(ψσ, B)
21: θσ ← θσ − αθ∇θσLπ(θσ, B)
22: ψtargσ ← δψσ + (1− δ)ψtargσ

We maintain two Q-functions for each subtask σ, Qψσ :
S → R parameterized by ψσ and a target function Qψtarg

σ

parameterized byψtargσ . We also maintain a stochastic sub-
task policy πθσ : S → D(A) for each subtask σ where
D(A) denotes the set of distributions over A. Given a step
(s, a, s′) inM and a subtask σ with s /∈ Fσ , we define the
target value by

yσ(s, a, s
′) = Rσ(s, a) + γJV K(s′, σ)

where the value JV K(s′, σ) is estimated using Ṽ (s′, σ) =
Qψtarg

σ
(s′, ã) − β log πθσ (ã | s′) with ã ∼ πθσ (· | s′)

if s′ /∈ Fσ . If s′ ∈ Fσ , we estimate JV K(s′, σ) us-
ing Ṽ (s′, σ) = minσ′∈Σ Ṽ (s′′, σ′) where Ṽ (s′′, σ′) =
Qψtarg

σ′
(s′′, ã) − β log πθσ′ (ã | s′′) with ã ∼ πθσ′ (· | s′′)

and s′′ ∼ Tσ(· | s′). Now, given a batch B = {(s, a, s′)}
of steps inM we update ψσ using one step of gradient de-
scent corresponding to the loss LQ(ψσ, B) =

1

|B|
∑

(s,a,s′)∈B

(Qψσ
(s, a)− yσ(s, a, s′))2

and the subtask policy πθσ is updated using the loss
Lπ(θσ, B) =

− 1

|B|
∑

(s,a,s′)∈B

Eã∼πθσ (·|s)
[
Qψσ

(s, ã)−β log πθσ (ã | s)
]
.
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Figure 2. Rooms environment

The gradient ∇θσLπ(θσ, B) can be estimated using the
reparametrization trick if, for example, πθσ (· | s) is a
Gaussian distribution whose parameters are differentiable
w.r.t. θσ . We use Polyak averaging to update the target
Q-networks {Qψtarg

σ
| σ ∈ Σ}.

Note that we do not train a separate policy for the adversary.
During exploration, we use the ε-greedy strategy to select
subtasks. We first estimate the “worst” subtask for a state
s using σ̃ = argminσ Ṽ (s, σ) where Ṽ (s, σ) is estimated
as before. Then the function Greedy(ε, σ̃,Σ) chooses σ̃
with probability 1−ε and picks a subtask uniformly at ran-
dom from Σ with probability ε. Furthermore, we can easily
impose constraints on the sequences of subtasks considered
(e.g., only consider realistic tracks in F1/10th) by restrict-
ing the adversary to pick the next subtask σt+1 from a sub-
set Σt+1 ⊆ Σ of possible substasks—i.e., by performing
argmin (in Line 14) over Σt+1 instead of Σ.

Asynchronous ROSAC. We can also obtain an asyn-
chronous version of the above algorithm which lets us train
subtask policies in parallel. Asynchronous Robust Option
SAC (AROSAC) is outlined in Algorithm 3. Here we use
one replay buffer for each subtask. We maintain an initial
state distribution η̃ over S to be used for training every sub-
task policy {πσ}σ∈Σ. η̃ is represented using a finite set of
states D from which a state is sampled uniformly at ran-
dom. The value function Ṽ : S × Σ → R is estimated as
before. To be specific, in each iteration, an estimate of any
value Ṽ (s, σ) is obtained on the fly using the Q-functions
and the subtask policies from the previous iteration.

The SAC subroutine runs the standard Soft Actor Critic al-
gorithm forN iterations on the subtask MDPMṼ

σ (defined
in Section 3)6 with initial state distribution η̃ (defaults to η
if D = ∅). It returns the updated parameters along with
states Xσ visited during exploration with Xσ ⊆ Fσ . The
states in Xσ are used to update the initial state distribu-
tion for the next iteration following the Dataset Aggrega-
tion principle (Ross et al., 2011).

6Note that it is possible to obtain samples from MṼ
σ as long

can one can obtain samples from M and membership in Fσ can
be decided.

Algorithm 3 Asynchronous Robust Option SAC.
Inputs: Learning rates α, entropy weight β, Polyak rate δ
and number of SAC iterations N .

1: function AROSAC(α, β, δ, N )
2: Initialize params Ψ = {ψσ}σ∈Σ, Θ = {θσ}σ∈Σ

3: Initialize target params Ψtarg = {ψtargσ }σ∈Σ

4: Initialize replay buffers {Bσ}σ∈Σ

5: Initialize D = {}
6: for each iteration do
7: Ṽ ← OBTAINVALUEESTIMATOR(Ψ,Θ)
8: for σ ∈ Σ do // in parallel
9: Run SAC(MṼ

σ , D, ψσ, ψ
targ
σ , θσ, α, β, δ,N)

10: Update ψσ, ψtargσ , θσ and Xσ to new values
11: for σ ∈ Σ do
12: for s ∈ Xσ do
13: s′ ∼ Tσ(· | s) and D ← D ∪ {s′}

5. Experiments
We evaluate7 our algorithms ROSAC and AROSAC on two
multi-task environments; a rooms environment and an
F1/10th racing car environment (F110).

Rooms environment. We consider the environment
shown in Figure 2 which depicts a room with walls and
exits. Initially the robot is placed in the green triangle.
The L-shaped obstacles indicate walls within the room that
the robot cannot cross. A state of the system is a position
(x, y) ∈ R2 and an action is a pair (v, θ) where v is the
speed and θ is the heading angle to follow during the next
time-step.

There are three exits: left (blue), right (yellow) and up
(grey) reaching each of which is a subtask. Upon reaching
an exit, the robot enters another identical room where the
exit is identified (via change-of-coordinates) with the bot-
tom entry region of the current room. A task is a sequence
of directions—e.g., left→ right→ up→ right in-
dicating that the robot should reach the left exit followed by
the right exit in the subsequent room and so on. Although
the dynamics are simple, the obstacles make learning chal-
lenging in the adversarial setting.

F1/10th environment. This is the environment in the
motivating example. A publicly available simulator (F110)
of the F1/10th car is used for training and testing. The poli-
cies use the LiDAR measurements from the car as input (as
opposed to the state) and we assume that the controller can
detect the completion of each segment; as shown in prior
work (Ivanov et al., 2021), one can train a separate neural
network to predict subtask completion.

7Our implementation is available online and can be found at
https://github.com/keyshor/rosac.
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Figure 3. Plots for the Rooms environment. x-axis denotes the number of sample steps and y-axis denotes either the average number of
subtasks completed or the probability of completing 5 subtasks. Results are averaged over 10 runs. Error bars indicate ± std.
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Figure 4. Plots for the F1/10th environment. x-axis denotes the number of sample steps and y-axis denotes either the average number of
subtasks completed or the probability of completing 25 subtasks. Results are averaged over 5 runs. Error bars indicate ± std.

Baselines. We compare our approach to four baselines.
The baseline NAIVE trains one controller for each subtask
with the only aim of completing the subtask, similar to the
approach used by Ivanov et al. (2021), using a manually
designed initial state distribution. DAGGER is a similar ap-
proach which, instead of using a manually designed initial
state distribution for training, infers the initial state distri-
bution using the Dataset Aggregation principle (Ross et al.,
2011). In other words, DAGGER is similar to AROSAC ex-
cept thatM is used instead ofMṼ

σ (Line 9 of Algorithm 3)
for training the options in each iteration. The MADDPG
baseline solves the game G using the multi-agent RL algo-
rithm proposed by Lowe et al. (2017) for solving concur-
rent Markov games with continuous states and actions. We
use the open-source implementation of MADDPG by the
authors. The PAIRED baseline refers to the unsupervised
environment design approach proposed by Dennis et al.
(2020) in which the multi-task RL problem is viewed as
a two-agent zero-sum game similar to our approach (but
is not designed for long-horizon and compositional tasks).
We implemented PAIRED with PPO as the base algorithm
to train the policies of the protagonist and the antagonist
which consist of one NN policy per subtask. The adversary
is parameterized by the probabilities (logits) of choosing

various subtasks at different timesteps and is trained using
REINFORCE updates.

Evaluation. We evaluate the performance of these algo-
rithms against two adversaries. One adversary is the ran-
dom adversary which picks the next subtask uniformly at
random from the set of all subtasks. The other adver-
sary estimates the worst sequence of subtasks for a given
set of options using Monte Carlo Tree Search algorithm
(MCTS) (Kocsis and Szepesvári, 2006). The MCTS adver-
sary is trained by assigning a reward of 1 if it selects a sub-
task which the corresponding policy is unable to complete
within a fixed time budget and a reward of 0 otherwise. For
the Rooms environment, we consider subtask sequences of
length atmost 5 whereas for the F1/10th environment, we
consider sequences of subtasks of length at most 25. We
evaluate both the average number of subtasks completed
as well as the probability of completing the set maximum
number of subtasks.

Results. The plots for the rooms environment are shown
in Figure 3 and plots for the F1/10th environment are
shown in Figure 4. We can observe that ROSAC and
AROSAC outperform other approaches and learn robust op-

7



Robust Subtask Learning for Compositional Generalization

0.0 0.5 1.0 1.5 2.0 2.5
×104

0.0
0.2
0.4
0.6
0.8
1.0
1.2 ROSAC

ROSAC_a

(a) Success probability against
random adversary

0.0 0.5 1.0 1.5 2.0 2.5
×104

0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2 ROSAC

ROSAC_a

(b) Success probability against
MCTS adversary

0.0 0.5 1.0 1.5 2.0 2.5
×104

0
1
2
3
4
5
6 ROSAC

ROSAC_a

(c) Number of subtasks completed
against MCTS adversary

Figure 5. Ablation study in the Rooms environment. x-axis denotes the number of sample steps and y-axis denotes either the average
number of subtasks completed or the probability of completing 5 subtasks. Results are averaged over 10 runs. Error bars indicate ± std.

tions. AROSAC performs worse as compared to ROSAC;
however, it has the added benefit of being parallelizable.
DAGGER and NAIVE baselines are unable to learn policies
that can be used to perform long sequences of subtasks;
this is mostly due to the fact that they learn options that
cause the system to reach states from which future sub-
tasks are difficult to perform—e.g., in the rooms environ-
ment, the agent sometimes reaches the left half of the exits
from where it is difficult to reach the right exit in the sub-
sequent room. Although MADDPG uses the same reduc-
tion to two-player games as ROSAC, it ignores all the struc-
ture in the game and treats it as a generic Markov game.
As a result, it learns a separate NN policy for each player
which leads to the issue of unstable training, primarily due
to the non-stationary nature of the environment observed
by either agent. As shown in the plots, this leads to poor
performance when applied to the problem of learning ro-
bust options. Similarly, PAIRED is unable to learn good
options and is likely due to two reasons. Firstly, it does not
use a compositional or a hierarchical approach for training
the options, which causes it to scale poorly to long-horizon
tasks. Secondly, it relies on “on policy” algorithms (such
as PPO) for training which are less efficient than SAC for
our environments.

Random vs MCTS adversary. Given that the number of
subtasks is small in our benchmarks, the random adversary
is able to select difficult sequences of subtasks often (eg.,
a right after a left in the Rooms environment), which ex-
plains the similarity in the observed performance against
the two different adversaries. Nonetheless, even when the
performance is measured against a random adversary, our
approach significantly outperforms all baselines. An abla-
tion study in the Rooms environment shows that selecting
subtasks randomly during training is not as effective as the
ε-greedy approach. In Figure 5, ROSACa denotes the abla-
tion in which ε is set to 1 in line 14 of Algorithm 2. As the
plots show, although this ablation is able to learn good sub-
task policies, it requires more samples than ROSAC. Note

that the ablation still uses the worst-case target value esti-
mate over future subtasks Ṽ for training the Q-networks.

6. Related Work
Options and Hierarchical RL. The options frame-
work (Sutton et al., 1999) is commonly used to model sub-
task policies as temporally extended actions. In hierarchi-
cal RL (Nachum et al., 2018; 2019; Kulkarni et al., 2016;
Dietterich, 2000; Bacon et al., 2017; Tiwari and Thomas,
2019), options are trained along with a high-level controller
that chooses the sequence of options (plan) to execute in or-
der to complete a specific high-level task. In contrast, our
approach aims to train options that work for multiple high-
level plans. There is also work on discovering options—
e.g., using intrinsic motivation (Machado et al., 2017),
entropy maximization (Eysenbach et al., 2018), semi-
supervised RL (Finn et al., 2017), skill chaining (Konidaris
and Barto, 2009; Bagaria and Konidaris, 2019; Bagaria
et al., 2021a), expectation maximization (Daniel et al.,
2016) and subgoal identification (Stolle and Precup, 2002).
Our approach is complementary to option discovery meth-
ods since our algorithm can be used to learn robust policies
corresponding to the options which can be used in mul-
tiple contexts. There has also been a lot of research on
planning using learned options (Abel et al., 2020; Jothimu-
rugan et al., 2021; Precup et al., 1998; Theocharous and
Kaelbling, 2004; Konidaris et al., 2014). Some hierarchi-
cal RL algorithms have also been shown to enable few-shot
generalization (Jothimurugan et al., 2021) to unseen tasks.
Closely related to our work is the work on compositional
RL in the multi-task setting (Ivanov et al., 2021) in which
the subtask policies are trained using standard RL algo-
rithms in a naive way without guarantees regarding worst-
case performance.

Multi-task RL. There has been some work on RL for
zero-shot generalization (Vaezipoor et al., 2021; Oh et al.,
2017; Sohn et al., 2018; Kuo et al., 2020; Andreas et al.,

8



Robust Subtask Learning for Compositional Generalization

2017); however, in these works, the learning objective is
to maximize average performance with respect to a fixed
distribution over tasks as opposed to the worst-case. Most
closely related to our work is the line of work on mini-
max/robust RL (Pinto et al., 2017; Campero et al., 2020;
Dennis et al., 2020), which aims to train policies to maxi-
mize the worst-case performance across multiple tasks/en-
vironments. However, there are a few key differences be-
tween existing work and our approach. Firstly, existing
methods train a single NN policy to perform multiple tasks
as opposed to training composable options for subtasks. As
shown in the experiments, training a single policy does not
scale well to complex long-horizon tasks. Secondly, these
approaches do not provide strong convergence guarantees
whereas we provide convergence guarantees in the finite-
state setting. Finally, we utilize the structure in the prob-
lem to infer an adversary directly from the value functions
instead of training a separate adversary as done in previous
approaches.

Skill Chaining. Research on skill chaining (Bagaria and
Konidaris, 2019; Bagaria et al., 2021b;a; Lee et al., 2021)
has led to algorithms for discovering and training options
so that they compose well. However, in these approaches,
the aim is to compose the options to perform a specific task
which corresponds to executing the options in specific or-
der(s). In contrast, our objective is independent of specific
tasks and seeks to maximize performace across all tasks.
Also, such approaches, at best, only provide hierarchical
optimality guarantees whereas our algorithm converges to
the optimal policy with respect to our game formulation.
There has also been work on skill composition using tran-
sition policies (Lee et al., 2018); this method assumes that
the subtask policies are fixed and learns one transition pol-
icy per subtask which takes the system from an end state to
a “favourable” initial state for the subtask. However, poorly
trained subtask policies can lead to situations in which it is
not possible to achieve such transitions. In contrast, our ap-
proach trains subtask policies which compose well without
requiring additional transition policies.

Multi-agent RL. There has been a lot of research on
multi-agent RL algorithms (Lowe et al., 2017; Hu and
Wellman, 2003; Hu et al., 1998; Littman, 2001; Perolat
et al., 2017; Prasad et al., 2015; Akchurina, 2008) includ-
ing algorithms for two-agent zero-sum games (Bai and Jin,
2020; Wei et al., 2017; Littman, 1994). In this paper, we
utilize the specific structure of our game to obtain a sim-
ple algorithm that neither requires solving matrix games
nor trains a separate policy for the adversary. Furthermore,
we show that we can obtain an asynchronous RL algorithm
which enables training options in parallel.

7. Conclusions
We have proposed a framework for training robust options
which can be used to perform arbitrary sequences of sub-
tasks. We first reduce the problem to a two-agent zero-
sum stagewise Markov game which has a unique structure.
We utilized this structure to design two algorithms, namely
ROSAC and AROSAC, and demonstrated that they outper-
form existing approaches for training options with respect
to multi-task performance. One potential limitation of our
approach is that the set of subtasks is fixed and has to be
provided by the user. An interesting direction for future
work is to address this limitation by combining our ap-
proach with option discovery methods.
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Joshua B Tenenbaum, Tim Rocktäschel, and Edward
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A. Proofs
In this section, we prove the theorems presented in the paper through a series of lemmas. The proofs here are adaptations
of proofs of similar results for zero-sum concurrent games with a single discount factor (Patek, 1997).

A.1. Definitions

We first introduce some notation and definitions. Recall that we defined S1 = {(s, σ) | σ /∈ Fσ}, S2 = {(s, σ) | σ ∈ Fσ}
and S̄ = S1 ∪ S2. V = {V : S1 → R} denotes the set of value functions over S1 and V̄ = {V : S̄ → R} denotes the set
of value functions over S̄. We use ∥·∥ to denote the ℓ∞-norm. For any V ∈ V , (s, σ) ∈ S2 and any σ′ ∈ Σ, define

JV Kσ′(s, σ) =
∑
s′∈S

Tσ(s
′ | s)V (s′, σ′).

Note that for any (s, σ) ∈ S2, we have JV K(s, σ) = minσ′∈Σ JV Kσ′(s, σ). Similarly, for any V ∈ V , (s, σ) ∈ S1 and
a ∈ A, let us define

Fa(V )(s, σ) = R̄((s, σ), a) + γ ·
∑
s′∈S

P (s′ | s, a)JV K(s′, σ)

with F(V )(s, σ) = maxa∈A Fa(V )(s, σ). Given any policy π1 : S̄ → A1 for agent 1 in G, we define the resulting MDP
G(π1) = (S̄, A2, Pπ1

, Rπ1
, γ) with states S̄ and actionsA2 = Σ as follows. The transition probability function is given by

Pπ1((s
′, σ′) | (s, σ), a2) =

{
P̄ ((s′, σ′) | (s, σ), π1(s, σ), a2) if (s, σ) ∈ S1∑
s′′∈S Tσ(s

′′ | s)P̄ ((s′, σ′) | (s′′, a2), π1(s′′, a2), a2) if (s, σ) ∈ S2

and the reward function is given by

Rπ1((s, σ), a2) =

{
−R̄((s, σ), π1(s, σ)) if (s, σ) ∈ S1

−
∑
s′∈S Tσ(s

′ | s)R̄((s′, a2), π1(s′, a2)) if (s, σ) ∈ S2.

Intuitively, the MDP G(π1) merges every step of G in which a change of subtask occurs with the subsequent step in the
environment, while using π1 to choose actions for agent 1. For any s̄ ∈ S̄, let DG(π1)

s̄ (π2) denote the distribution over
infinite trajectories generated by π2 starting at s̄ in G(π1). Then we define the value function for the MDP G(π1) using

V π2

G(π1)
(s̄) = E

ρ∼DG(π1)
s̄ (π2)

[ ∞∑
t=0

γtRπ1(s̄t, at)
]

for all π2 : S̄ → A2 and s̄ ∈ S̄.

A.2. Necessary Lemmas

We need a few intermediate results in order to prove the main theorems. We begin by analyzing the operators J·K : V → V̄
and F : V → V defined in Section 3.1.

Lemma A.1. For any V1, V2 ∈ V , we have ∥JV1K− JV2K∥ = ∥V1 − V2∥.

Proof. For any (s, σ) ∈ S1, we have |JV1K(s, σ)− JV2K(s, σ)| = |V1(s, σ)− V2(s, σ)|. For any (s, σ) ∈ S2 and σ′ ∈ Σ
we have

|JV1Kσ′(s, σ)− JV2Kσ′(s, σ)| = ∥
∑
s′∈S

Tσ(s
′ | s)V1(s′, σ′)−

∑
s′∈S

Tσ(s
′ | s)V2(s′, σ′)∥

≤
∑
s′∈S

Tσ(s
′ | s)|V1(s′, σ′)− V2(s′, σ′)|

≤ ∥V1 − V2∥.

Now we have |JV1K(s, σ)− JV2K(s, σ)| = |minσ′ JV1Kσ′(s, σ)−minσ′ JV2Kσ′(s, σ)| ≤ ∥V1 − V2∥ which concludes the
proof.

12
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Now we are ready to show that F is a contraction.

Lemma A.2. F : V → V is a contraction mapping w.r.t the norm ∥·∥.

Proof. Let V1, V2 ∈ V . Then for any (s, σ) ∈ S1 and a ∈ A,

|Fa(V1)(s, σ)−Fa(V2)(s, σ)| = |γ
∑
s′∈S

P (s′ | s, a)JV1K(s′, σ)− γ
∑
s′∈S

P (s′ | s, a)JV2K(s′, σ)|

≤ γ
∑
s′∈S

P (s′ | s, a)|JV1K(s′, σ)− JV2K(s′, σ)|

≤ γ∥V1 − V2∥

where the last inequality followed from Lemma A.1. Therefore, for any (s, σ) ∈ S1, we have
|F(V1)(s, σ)−F(V2)(s, σ)| = |maxa Fa(V1)(s, σ)−maxa Fa(V2)(s, σ)| ≤ γ∥V1 − V2∥ showing that F is a contrac-
tion.

Now we connect the value function of the game G with that of the MDP G(π1).
Lemma A.3. For any π1 : S̄ → A1, π2 : S̄ → A2 and s̄ ∈ S̄, V π1,π2(s̄) = −V π2

G(π1)
(s̄).

Proof. Given an infinite trajectory ρ̄ = s̄0a
1
0a

2
0s̄1a

1
1a

2
1 . . . in G we define a corresponding trajectory ρ̄2 = s̄i0a

2
i0
s̄i1a

2
i1

in
G(π1) as a subsequence where i0 = 0 and it+1 = it + 1 if s̄it ∈ S1 and it+1 = it + 2 if s̄it ∈ S2. Then for any s̄ ∈ S̄ we
have

V π1,π2(s̄) = Eρ̄∼DG
s̄ (π1,π2)

[ ∞∑
t=0

( t−1∏
k=0

γ̄(s̄k)
)
R̄(s̄t, a

1
t )
]

(1)
= Eρ̄∼DG

s̄ (π1,π2)

[ ∞∑
t=0

γtRπ1
(s̄it , a

2
it)

]
(2)
= −E

ρ∼DG(π1)
s̄ (π2)

[ ∞∑
t=0

γtRπ1
(s̄t, at)

]
= −V π2

G(π1)
(s̄)

where (1) followed from the definitions of γ̄ and Rπ1 and the fact that R̄(s̄t, a1t ) = 0 if s̄t ∈ S2, and (2) followed from the
fact that sampling a trajectory ρ by first sampling ρ̄ from DG

s̄ (π1, π2) and then constructing the subsequence ρ̄2 is the same
as sampling an infinite trajectory ρ from DG(π1)

s̄ (π2)
8.

Lemma A.2 shows that for any V ∈ V we have

lim
n→∞

Fn(V ) = Vlim

where Vlim ∈ V is the unique fixed point of F . Now we define two policies π∗
1 and π∗

2 for agents 1 and 2 respectively, as
follows. For (s, σ) ∈ S1 we have

π∗
1(s, σ) ∈ argmaxa∈A Fa(Vlim)(s, σ) (4)

and for (s, σ) ∈ S2, we have
π∗
2(s, σ) ∈ argminσ′ JVlimKσ′(s, σ). (5)

Note that the actions taken by π∗
1 in S2 and π∗

2 in S1 can be arbitrary since they do not affect the transitions of the game G.
Now we show that for any s̄ ∈ S̄, π∗

1 maximizes V π1,π
∗
2 (s̄) and π∗

2 minimizes V π
∗
1 ,π2(s̄).

Lemma A.4. For any s̄ ∈ S̄, V π
∗
1 ,π

∗
2 (s̄) = minπ2 V

π∗
1 ,π2(s̄) = JVlimK(s̄).

8This can be shown formally by analyzing the probabilities assigned by the two distributions on cylinder sets.

13
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Proof. Let G(π∗
1) = (S̄,A2, Pπ∗

1
, Rπ∗

1
, γ). For any (s, σ) ∈ S2, we have

JVlimK(s, σ) = min
σ′∈Σ

∑
s′∈S

Tσ(s
′ | s)JVlimK(s′, σ′)

(3)
= min

σ′∈Σ

∑
s′∈S

Tσ(s
′ | s)

(
R̄((s′, σ′), a) + γ ·

∑
s′′∈S

P (s′ | s, a)JVlimK(s′′, σ′)
)∣∣∣
a=π∗

1 (s
′,σ′)

(4)
= min

a2∈A2

(
−Rπ∗

1
((s, σ), a2) + γ

∑
s̄∈S̄

Pπ∗
1
(s̄ | (s, σ), a2)JVlimK(s̄)

)

where (3) followed from the definitions of Vlim and π∗
1 and (4) followed from the definitions ofRπ∗

1
and Pπ∗

1
. Since−JVlimK

satisfies the Bellman equations for the MDP G(π∗
1), the optimal value function for G(π∗

1) is given by V ∗
G(π∗

1 )
= −JVlimK.

Now, from the definition of π∗
2 we can conclude that π∗

2 is an optimal policy for G(π∗
1). Therefore, Lemma A.3 implies

that for any s̄ ∈ S̄,

min
π2

V π
∗
1 ,π2(s̄) = min

π2

−V π2

G(π∗
1 )
(s̄) = −V π

∗
2

G(π∗
1 )
(s̄) = V π

∗
1 ,π

∗
2 (s̄).

Hence, we have proved the desired result.

The following lemma can be shown using a similar argument and the proof is omitted.

Lemma A.5. For any s̄ ∈ S̄, V π
∗
1 ,π

∗
2 (s̄) = maxπ1 V

π1,π
∗
2 (s̄) = JVlimK(s̄).

The following lemma shows that it does not matter which agent picks its policy first.

Lemma A.6. For any policies π∗
1 and π∗

2 satisfying Equations 4 and 5 respectively, for all s̄ ∈ S̄,

V π
∗
1 ,π

∗
2 (s̄) = min

π2

max
π1

V π1,π2(s̄) = max
π1

min
π2

V π1,π2(s̄) = V ∗(s̄).

Proof. We have, for any s̄ ∈ S̄,

V ∗(s̄) = max
π1

min
π2

V π1,π2(s̄)

≥ min
π2

V π
∗
1 ,π2(s̄)

(1)
= V π

∗
1 ,π

∗
2 (s̄)

(2)
= max

π1

V π1,π
∗
2 (s̄)

≥ min
π2

max
π1

V π1,π2(s̄)

≥ max
π1

min
π2

V π1,π2(s̄)

= V ∗(s̄)

where the (1) followed from Lemma A.4 and (2) followed from Lemma A.5.

A.3. Proof of Theorem 3.1

Let Π(π1) = {πσ | σ ∈ Σ} be the set of subtask policies defined by π1. Let τ = σ0σ1 . . . be a task. Then we define
a history-dependent policy πτ2 in G(π1) which maintains an index i denoting the current subtask and picks σi+1 upon

14
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reaching any state in S2 while simultaneously updating the index to i+ 1. Then we have

J(Π(π1)) = inf
τ∈T

Eρ∼DΠ
τ

[ ∞∑
t=0

γtRτ [it](st, πτ [it](st))
]

(1)
= inf

τ∈T
Es̄∼η̄

[
E
ρ∼DG(π1)

s̄ (πτ
2 )

[
−

∞∑
t=0

γtRπ1
(s̄t, at)

]]
= inf
τ∈T

Es̄∼η̄[−V
πτ
2

G(π1)
(s̄)]

≥ Es̄∼η̄[− sup
τ∈T

V
πτ
2

G(π1)
(s̄)]

(2)

≥ Es̄∼η̄[−max
π2

V π2

G(π1)
(s̄)]

(3)
= Es̄∼η̄[min

π2

V π1,π2(s̄)]

= JG(π1)

where (1) followed from the definitions of πτ2 and G(π1), (2) followed from the fact that there is an optimal stationary
policy maximizing V π2

G(π1)
(s̄) and (3) followed from Lemma A.4.

A.4. Proof of Theorem 3.2

Since V ∗ = JVlimK, for all (s, σ) ∈ S̄ we have π∗
1(s, σ) ∈ argmaxa∈A Fa(Vlim)(s, σ). Now for any π∗

2 satisfying
Equation 5, we can conclude from Lemma A.6 that, for any s̄ ∈ S̄,

JG(π
∗
1) = Es̄∼η̄[min

π2

V π
∗
1 ,π2(s̄)]

= Es̄∼η̄[V π
∗
1 ,π

∗
2 (s̄)]

= Es̄∼η̄[max
π1

min
π2

V π1,π2(s̄)]

≥ max
π1

Es̄∼η̄[min
π2

V π1,π2(s̄)]

= max
π1

JG(π1)

which shows that π∗
1 maximizes JG(π1).

A.5. Proof of Theorem 3.3

From Lemma A.2, we can conclude that F is a contraction over V w.r.t. the ℓ∞-norm. Lemmas A.6 and A.4 gives us that
V ∗ ↓S1

= Vlim. Now the definition of Vlim implies that limn→∞ Fn(V ) = V ∗ ↓S1
for all V ∈ V .

A.6. Proof of Theorems 3.4 and 3.5

This proof is similar to the proof of convergence of asynchronous value iteration for MDPs presented in the book by Bert-
sekas and Tsitsiklis (1996). It is easy to see that, for any V ∈ V and σ ∈ Σ, the operators J·K, F , Fasync, and Fσ,V are
monotonic. Recall that, for any V ∈ V and σ ∈ Σ, we defined the corresponding Vσ ∈ Vσ using Vσ(s) = JV K(s, σ) if
s ∈ S and Vσ(⊥) = 0. Also, we have F(V )(s, σ) = Fσ,V (Vσ)(s) = F1(V )(s, σ) for all (s, σ) ∈ S1.

Now let V ∈ V be a value function such that F(V ) ≤ V . Then we have Fσ,V (Vσ) ≤ Vσ for all σ ∈ Σ. Therefore, using
monotonicity of Fσ,V , we get that Fmσ,V (Vσ) ≤ F

m−1
σ,V (Vσ) ≤ Vσ for all m > 0 which implies Fm(V ) ≤ Fm−1(V ) ≤ V .

Hence, for any (s, σ) ∈ S1,

Fasync(V )(s, σ) =Wσ(V )(s) = lim
m→∞

Fmσ,V (Vσ)(s)

≤ Fσ,V (Vσ)(s) = F(V )(s, σ).

Furthermore, letting V m = Fm(V ) we get that JV mK ≤ JV K and hence V mσ ≤ Fmσ,V (Vσ) for all σ ∈ Σ. Also, for
(s, σ) ∈ S1, F(V m)(s, σ) = Fσ,Vm(V mσ )(s) ≤ Fσ,V (V mσ )(s) ≤ Fm+1

σ,V (Vσ)(s) = V m+1(s, σ). Therefore, using
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continuity of F , we have F(Fasync(V )) = F(limm→∞ V m) = limm→∞ F(V m) ≤ limm→∞ V m+1 = Fasync(V ).
Now we can show by induction on n that, for any V ∈ V withF(V ) ≤ V and n ≥ 1, we haveF(Fnasync(V )) ≤ Fnasync(V )
and

Vlim ≤ Fnasync(V ) ≤ Fn(V ).

Taking the limit as n→∞ gives us that limn→∞ Fnasync(V ) = Vlim if F(V ) ≤ V . Using a symmetric argument, we get
that limn→∞ Fnasync(V ) = Vlim if F(V ) ≥ V .

Let I ∈ V be defined by I(s, σ) = 1 for all (s, σ) ∈ S1. For a general V ∈ V , we can find a δ > 0 such that we have
V − = Vlim − δI ≤ V ≤ Vlim + δI = V + and F(V −) ≥ V − and F(V +) ≤ V +. Therefore, using monotonicity of
Fasync we get

Fnasync(V −) ≤ Fnasync(V ) ≤ Fnasync(V +)

for all n ≥ 0. Taking the limit as n tends to∞ gives us the required result. Theorem 3.5 follows from a similar argument.

A.7. Proof of Theorem 4.1

Given a function Q : S1 ×A→ R we define a new functionH(Q) using

H(Q)(s, σ, a) = R̄((s, σ), a) + γ
∑
s′∈S

P (s′ | s, a)JVQK(s′, σ)

for all (s, σ) ∈ S1 and a ∈ A. Then, Robust Option Q-learning is of the form

Qt+1(s, σ, a) = (1− αt(s, σ, a))Qt(s, σ, a) + αt(s, σ, a)
(
H(Qt)(s, σ, a) + wt(s, σ, a)

)
where the noise factor is defined by

wt(s, σ, a) = γJVQt
K(s̃, σ)− γ

∑
s′∈S

P (s′ | s, a)JVQK(s′, σ)

with s̃ ∼ P (· | s, a) being the observed sample. Let Xt denote the measure space generated by the set of random vectors
{Q0, Q1, . . . , Qt, w0, . . . , wt−1, α0, . . . , αt}. Then, for all (s, σ) ∈ S1, a ∈ A and t ≥ 0, we have

E[wt(s, σ, a) | Xt] = 0

and
E[w2

t (s, σ, a) | Xt] ≤ 4γ2 max
s′∈S

{
JVQtK

2
(s′, σ)

}
≤ 4γ2 max

(s′,σ′)∈S1,a′∈A

{
Q2
t (s

′, σ′, a′)
}
.

Furthermore, using Lemmas A.1 and A.2 and the definition of VQ we can conclude thatH is a contraction w.r.t the ℓ∞-norm
and Q∗ is the unique fixed point of H. Therefore, the random sequence of Q-functions {Qt}t≥0 satisfies all assumptions
in Proposition 4.4 of Bertsekas and Tsitsiklis (1996) implying that Qt → Q∗ as t→∞ with probability 1.

B. Experimental Details
All experiments were run on a 48-core machine with 512GB of memory and 8 GPUs. In all approaches (ours and baselines)
except for MADDPG, the policy consists of one fully-connected NN per subtask, each with two hidden layers. MADDPG
consists of two policies, one for the agent and one for the adversary, each with two hidden layers. In the case of MADDPG,
the subtask is encoded in the observation using a one-hot vector. All hyperparameters were computed by grid search over
a small set of values.

Rooms environment. The hidden dimension used is 64 for all approaches except MADDPG for which we use 128 dimen-
sional hidden layers. For DAGGER, NAIVE and AROSAC we run SAC with Adam optimizer (learning rate of α = 0.01),
entropy weight β = 0.05, Polyac rate 0.005 and batch size of 100. In each iteration of AROSAC and DAGGER, SAC is run
for N = 10000 steps. Similarly, ROSAC is run with Adam optimizer (learning rates αψ = αθ = 0.01), entropy weight
β = 0.05, Polyac rate 0.005 and batch size of 300. The MADDPG baseline uses a learning rate of 0.0003 and batch size of
256. PAIRED uses PPO with a learning rate of 0.02, batch size of 512, minibatch size of 128 and 4 epochs for each policy
update. The adversary is trained using REINFORCE with a learning rate of 0.003.
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F1/10th environment. The hidden dimension used is 128 for all approaches. For DAGGER, NAIVE and AROSAC we run
SAC with Adam optimizer (learning rate of α = 0.001), entropy weight β = 0.03, Polyac rate 0.005 and batch size of
128. In each iteration of AROSAC and DAGGER, SAC is run for N = 10000 steps. Similarly, ROSAC is run with Adam
optimizer (learning rates αψ = αθ = 0.001), entropy weight β = 0.03, Polyac rate 0.005 and batch size of 5 × 128. The
MADDPG baseline uses a learning rate of 0.0003 and batch size of 256. PAIRED uses PPO with a learning rate of 0.001,
batch size of 512, minibatch size of 128 and 4 epochs for each policy update. The adversary is trained using REINFORCE
with a learning rate of 0.003.
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