
Case Study: Verifying the Safety of an Autonomous Racing Car
with a Neural Network Controller
Radoslav Ivanov, Taylor J. Carpenter, James Weimer,

Rajeev Alur, George J. Pappas, Insup Lee
University of Pennsylvania
Philadelphia, Pennsylvania

{rivanov,carptj,weimerj,alur,pappasg,lee}@seas.upenn.edu

ABSTRACT
This paper describes a verification case study on an autonomous
racing car with a neural network (NN) controller. Although several
verification approaches have been recently proposed, they have
only been evaluated on low-dimensional systems or systems with
constrained environments. To explore the limits of existing ap-
proaches, we present a challenging benchmark in which the NN
takes raw LiDAR measurements as input and outputs steering for
the car. We train a dozen NNs using reinforcement learning (RL)
and show that the state of the art in verification can handle systems
with around 40 LiDAR rays. Furthermore, we perform real experi-
ments to investigate the benefits and limitations of verification with
respect to the sim2real gap, i.e., the difference between a system’s
modeled and real performance. We identify cases, similar to the
modeled environment, in which verification is strongly correlated
with safe behavior. Finally, we illustrate LiDAR fault patterns that
can be used to develop robust and safe RL algorithms.

CCS CONCEPTS
• Software and its engineering → Formal methods; • Com-
puting methodologies → Neural networks; • Computer sys-
tems organization → Robotic autonomy.

KEYWORDS
Neural Network Verification, Learning for Control, F1/10 Racing
ACM Reference Format:
Radoslav Ivanov, Taylor J. Carpenter, James Weimer, Rajeev Alur, George J.
Pappas, Insup Lee. 2020. Case Study: Verifying the Safety of an Autonomous
Racing Car with a Neural Network Controller. In 23rd ACM International
Conference on Hybrid Systems: Computation and Control (HSCC ’20), April
22–24, 2020, Sydney, NSW, Australia. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3365365.3382216

This material is based upon work supported by the Air Force Research Laboratory
(AFRL) and the Defense Advanced Research Projects Agency (DARPA) under Contract
No. FA8750-18-C-0090. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect
the views of the AFRL, DARPA, the Department of Defense, or the United States
Government.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HSCC ’20, April 22–24, 2020, Sydney, NSW, Australia
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7018-9/20/04. . . $15.00
https://doi.org/10.1145/3365365.3382216

1 INTRODUCTION
Neural networks (NNs) have shown great promise in multiple ap-
plication domains, including safety-critical systems such as au-
tonomous driving [5] and air traffic collision avoidance systems [16].
At the same time, widespread adoption of NN-based autonomous
systems is hindered by the fact that NNs often fail in seemingly
unpredictable ways: slight perturbations in their inputs can result
in drastically different outputs, as is the case with adversarial exam-
ples [27]. Such issues might lead to fatal outcomes in safety-critical
systems [4] and thus underscore the need to assure the safety of
NN-based systems before they can be deployed at scale.

One way to reason about such systems is to formally verify safety
properties of a NN’s outputs for certain sensitive inputs, as proposed
in several NN verification and robustness works [10, 11, 17, 29, 30].
However, safety of the NN does not immediately imply safety of
the entire autonomous system. A more exhaustive approach is to
consider the interaction between the NN and the physical plant
(e.g., a car), trace the evolution of the plant’s states (e.g., position,
velocity) and ensure all reachable states are safe. A few such meth-
ods were developed to verify safety of autonomous systems with
NN controllers [9, 15, 26, 28]. These techniques combine ideas from
classical dynamical system reachability [7, 18, 28] (e.g., view the
NN as a hybrid system) with NN verification approaches (e.g., trans-
form the NN into a mixed integer linear program). However, these
approaches have so far been evaluated on fairly simple systems: ei-
ther systems with low-dimensional NN inputs (i.e., the plant states
such as position and velocity [9, 15, 28]) or with constrained envi-
ronments (e.g., LiDAR orientation does not change over time [26]).

Two main challenges remain in verifying realistic systems. The
first one is scalability, with respect to (w.r.t) both plant dynamics
and NN complexity. Since reachability is undecidable for general
hybrid systems [3], existing approaches can only approximate the
reachable sets. The NN adds complexity not only due to size but also
due to the number of inputs to the NN – it is muchmore challenging
to compute reachable sets for multivariate functions, even for small
NNs. Having the capability to verify high-dimensional systems is
crucial, however, since NNs are most useful exactly in such settings.

The second verification challenge is the sim2real gap, i.e., the
difference between a system’s modeled and real performance [6].
Analyzing the sim2real gap is essential as it allows us to explore
the benefit of verification w.r.t. the real system. Overcoming this
challenge would enable developers to design and test approaches
in simulation with the assurance that safety properties that hold in
simulation would carry over to the real world.

In order to illustrate these difficulties and to provide a challeng-
ing benchmark for future work, this paper presents a verification

https://doi.org/10.1145/3365365.3382216
https://doi.org/10.1145/3365365.3382216

HSCC ’20, April 22–24, 2020, Sydney, NSW, Australia Radoslav Ivanov, Taylor J. Carpenter, James Weimer, Rajeev Alur, George J. Pappas, Insup Lee

Figure 1: Navigation scenario. There are three regions de-
pending on how many walls can be reached by LiDAR.

case study on a realistic NN-controlled autonomous system. In par-
ticular, we focus on the F1/10 autonomous racing car [1], which
needs to navigate a structured environment using high-dimensional
LiDAR measurements. This case study has two goals: 1) assess the
capabilities of existing verification approaches and highlight aspects
that require future work; 2) investigate conditions under which the
verification translates to safe performance in the real world.

To perform the verification, we first identify a dynamics model of
the car, as well as an observation model mapping the car state to the
LiDAR measurements. To obtain the observation model, we assume
the car operates in a structured environment (i.e., a sequence of
hallways) such that each LiDAR ray can be calculated based on the
car’s state and the surrounding walls. Given these models, we train
an end-to-end NN controller using reinforcement learning (RL) [20].
The NN takes LiDAR measurements as input and produces steering
as output (assuming constant throttle). Once the NN is trained, we
aim to verify that the car does not crash in the hallway walls.

We evaluate the scalability of existing verification tools by vary-
ing the NN size, the number of LiDAR rays as well as the training
algorithm. Note that the complexity of verification grows exponen-
tially with the number of rays since, depending on the uncertainty,
a ray could reach different walls, which correspond to different
paths in the hybrid observation model – all such paths need to be
verified simultaneously. We use the state-of-the-art tool Verisig [15]
to verify the dozen setups that were trained; we could not encode
the LiDAR model in the other existing tools. In our evaluation,
Verisig could handle NNs containing two layers with 128 neurons
each and LiDAR scans with around 40 rays. This highlights the
challenge presented by this case study: verifying a full LiDAR scan
with 1081 rays, together with a corresponding NN that can process
such a scan, remains beyond the capabilities of existing tools.

Finally, we perform experiments, using the verified controllers,
to evaluate the system’s sim2real gap. This gap is especially pro-
nounced with LiDAR, since laser rays could provide an erroneous
distance if they are reflected. We first perform experiments in an
ideal setting with all reflective surfaces covered – all NNs performed
similarly in this setup, resulting in safe behavior roughly 90% of
the time, where the crashes were still caused by LiDAR faults that

Figure 2: Overview of the closed-loop system and the prob-
lem considered in this paper.

could not be completely eliminated. More crashes were observed in
the unmodified environment, as caused by consistently bad LiDAR
data. Interestingly, we identified patterns of LiDAR faults that repro-
duce the unsafe behavior in simulations as well – however, training
(and verifying) a robust controller is left for future work, since
state-of-the-art RL algorithms cannot easily handle these faults.

This paper has three contributions: 1) a challenging benchmark
for verification and RL in NN-controlled autonomous systems with
high-dimensional measurements; 2) an exhaustive evaluation of a
state-of-the-art verification tool; 3) real experiments that illustrate
the benefits and limitations of verification w.r.t. the sim2real gap.

2 SYSTEM OVERVIEW
This section summarizes the different parts of the F1/10 case study.
We first describe the F1/10 platform, followed by a high-level intro-
duction to reinforcement learning and hybrid system verification.

2.1 The F1/10 Autonomous Racing Car
The case study considered in this paper is inspired by the F1/10
Autonomous Racing Competition [1], where an autonomous car
must navigate a structured environment (i.e., the track) as fast as
possible. The F1/10 car is shown in Figure 1. It is built for racing
purposes and can reach up to 40mph. The car is controlled by an
onboard chip such as the NVIDIA Jetson TX2 module.

A diagram of the closed-loop system is shown in Figure 2. The car
operates in a hallway environment; without loss of generality, we
assume all turns are 90-degree right turns such that the “track” is a
square. Although in the competition the car has access to a number
of sensors, in this case study the controller only has access to LiDAR
measurements. The measurements are sent to a NN controller that
outputs a steering command to the vehicle. We assume that the
car operates at constant throttle, in order to keep the dynamics
model and the verification task manageable. The car’s dynamic and
observation models are described in Section 3.

2.2 Reinforcement Learning
Overall, developing a robust controller for the F1/10 car is a chal-
lenging task, both due to the difficulty of analyzing LiDAR measure-
ments and to the speed and agility of the car. Thus, this is a good
application for RL [20], where no knowledge of the car dynamics or
the observation model is required. During training, the controller

Case Study: Verifying the Safety of an Autonomous Racing Car with a Neural Network Controller HSCC ’20, April 22–24, 2020, Sydney, NSW, Australia

applies a control action and observes a reward. As training pro-
ceeds, the problem is to maximize the reward by exploring the state
space and trying different controls. In recent years, deep RL (where
controllers are NNs) has shown great promise in a number of tra-
ditionally challenging problems, such as playing Atari games [21],
controlling autonomous cars [5] and playing board games [25].
Hence, RL is a natural choice for learning a controller for the F1/10
car as well; the specific training approach is described in Section 4.

2.3 Hybrid System and NN Verification
At a high level, the hybrid system verification problem is as follows:
given a hybrid model of the plant dynamics and observations, the
problem is to compute the set of reachable plant states over time
(for a set of initial conditions) and verify that no unsafe states can
be reached. Although hybrid system reachability is undecidable
except for linear systems [3, 19] (see [2, 8] for a discussion), several
approaches work well for specific non-linear systems. In particular,
reachability is δ -decidable for Type 2 computable functions [18],
which has led to the development of the tool dReach. Alternatively,
Flow* [7] constructs Taylor model (TM) approximations of the
reachable sets. While Flow* provides no decidability claims, it can
verify interesting properties for multiple non-linear systems classes
and scales well when using TMs with interval analysis.

Recently, several approaches were developed for verification of
hybrid systems with NNs controllers [9, 15, 26, 28]. As described in
Section 1, the NN introduces new challenges both due to its size
and complexity. To address this issue, the proposed approaches
borrow ideas from classical hybrid system reachability, e.g., trans-
form the NN into a mixed-integer linear program (MILP) [9], a
satisfiability modulo theory (SMT) formula [26] or an equivalent
hybrid system [15]. Although existing tools have shown promis-
ing scalability in terms of the size of the NN, they have only been
evaluated on low-dimensional systems or systems with constrained
environments. This paper provides a more challenging scenario,
with a high-dimensional hybrid observation model, in order to test
the limits of these tools and to highlight avenues for future work.

2.4 System Design and Development
In order to build and verify the system, we perform the following
steps: 1) model the car dynamics and observations; 2) train a NN on
the model using RL; 3) verify that the NN-controlled car is safe w.r.t.
the model; 4) perform real experiments to analyze the sim2real gap.
The following sections describe each of these steps in more detail.

3 PLANT MODEL
This section describes the F1/10 car’s dynamical and observation
models. These models are used to train the NN controller (Section 4)
and to perform the closed-loop system verification (Section 5).

3.1 Dynamics model
We use a bicycle model [22, 23] to model the car’s dynamics, which
is a standard model for cars with front steering. Specifically, we
use a kinematic bicycle model since it has few parameters (that
are easy to identify) and tracks reasonably well at low speeds, i.e.,
under 5 m/s [23]. In the kinematic bicycle model, the car has four
states: position in two dimensions, linear velocity and heading. The

continuous-time dynamics are given by the following equations:
ẋ = vcos (θ + β)

ẏ = vsin(θ + β)

v̇ = −cav + cacm (u − ch)

θ̇ =
Vcos (β)

lf + lr
tan(δ)

β = tan−1 *
,

lr tan(δ)

lf + lr
+
-
,

(1)

where v is the car’s linear velocity, θ is the car’s orientation, β
is the car’s slip angle and x and y are the car’s position; u is the
throttle input, and δ is the heading input; ca is an acceleration
constant, cm is a car motor constant, ch is a hysteresis constant,
and lf and lr are the distances from the car’s center of mass to
the front and rear, respectively. Since tan−1 is not supported by
most hybrid system verification tools, we assume that β = 0; this is
not a limiting assumption as the slip angle is typically fairly small
at low speeds; we did not observe significant differences in the
model’s predictive power due to this assumption. After performing
system identification, we obtained the following parameter values:
ca = 1.633, cm = 0.2, ch = 4, lf = 0.225m, lr = 0.225m. Finally, we
assume a constant throttle u = 16 (resulting in a top speed of
roughly 2.4 m/s), i.e., the controller only controls heading. We
emphasize that the plant model is fairly non-linear, thus making it
difficult to compute reachable sets for the car’s states.

3.2 Observation model
The F1/10 car has access to LiDAR measurements only. As shown
in Figure 1, a typical LiDAR scan consists of a number of rays
emanating from -135 to 135 degrees relative to the car’s heading.
For each ray, the car receives the distance to the first obstacle the
ray hits; if there are no obstacles within the LiDAR range, the car
receives the maximum range. In this case study, we consider a
LiDAR scan with a maximum of 1081 rays and a range of 5 meters.1

As shown in Figure 1, there are three regions the car can be
in, depending on how many walls can be reached using LiDAR.
We present the measurement model for Region 2 only since the
other regions are special cases of Region 2. Let α1, . . . ,α1081 denote
the relative angles for each ray with respect to the car’s heading,
i.e., α1 = −135,α2 = −134.75, . . . ,α1081 = 135. One can determine
which wall each LiDAR ray hits by comparing the αi for that ray
with the relative angles to the two corners of that turn, θl and θr
in Figure 1. The measurement model for Region 2 (for a right turn)
is presented below, for i ∈ {1, . . . , 1081}:

yik =

drk/cos (90 + θk + αi) if θk + αi ≤ θr
dbk /cos (180 + θk + αi) if θr < θk + αi ≤ −90
dtk/cos (θk + αi) if − 90 < θk + αi ≤ θl
dlk/cos (90 − θk − αi) if θl < θk + αi ,

(2)

wherek is the sampling step (the sampling rate is 10Hz),dtk ,d
b
k ,d

l
k ,d

r
k

are distances to the four walls, as illustrated in Figure 1, and can be
derived from the car’s position (x ,y). Note that computing reach-
able sets for the observation model is challenging since if a ray
1Although typical LiDARs have a longer range than 5m, we found our unit’s measure-
ments to be unreliable beyond 5m.

HSCC ’20, April 22–24, 2020, Sydney, NSW, Australia Radoslav Ivanov, Taylor J. Carpenter, James Weimer, Rajeev Alur, George J. Pappas, Insup Lee

DRL algorithm NN setup # LiDAR rays Controller index Initial interval size NN ver. time (s) Total ver. time (s) # paths
DDPG 64 × 64 21 1 0.2cm 355 4126 1.32
DDPG 64 × 64 21 2 0.5cm 437 5652 1.975
DDPG 64 × 64 21 3 DNF
DDPG 128 × 128 21 1 0.2cm 2929 16758 2.13
DDPG 128 × 128 21 2 0.2cm 2744 16308 1.48
DDPG 128 × 128 21 3 DNF
TD3 64 × 64 21 1 0.5cm 553 4731 2.2
TD3 64 × 64 21 2 0.5cm 853 8094 2.75
TD3 64 × 64 21 3 0.5cm 724 8641 2.725
TD3 128 × 128 21 1 0.5cm 4336 22994 3.025
TD3 128 × 128 21 2 0.5cm 4059 21173 2.9
TD3 128 × 128 21 3 0.5cm 2689 13573 1.775
TD3 64 × 64 41 1 0.2cm* 634 11915 2.102
TD3 128 × 128 41 1 DNF
TD3 64 × 64 61 1 DNF
TD3 128 × 128 61 1 DNF

Table 1: Verification evaluation for different NN architectures and number of LiDAR rays. The verification times and the
number of paths are averaged over all subsets for each setup. Subset sizes are decreased from 0.5cm to 0.2cm and to 0.1cm,
if verification fails. DNF setups were terminated after 10 hours on 0.1cm subsets. The notation n × n means the NN has two
hidden layers and n neurons per layer. Two out of 100 instances of the 41-ray setup were killed after 24 hours.

is almost parallel to a wall, small uncertainty in the car’s heading
results in large uncertainty in the distance travelled by that ray, as
is evident in the division by cosine in the measurement model.

4 CONTROLLER TRAINING
Asmentioned in Section 2, the F1/10 case study is a good application
domain for deep reinforcement learning (DRL) due to the high-
dimensional measurements as well as the non-trivial control policy
that is required. This section discusses the DRL algorithms used in
the case study as well as the choice of reward function.

Multiple DRL algorithms have been proposed, depending on the
learning setup. For discrete control actions, the standard approach
is to use a deep Q-network [21] in order to learn the (Q) function
that maps a state and an action to the maximum expected reward
over a horizon. In the case of continuous actions, a deep deter-
ministic policy gradient (DDPG) approach [20] was developed that
approximates the Q function using a Bellman equation. Notably,
DDPG uses two NNs, a critic that learns the Q function and an actor
that applies the controls. Once training is finished, the actor is used
as the actual controller. Multiple improvements over DDPG have
been proposed, especially in terms of training stability, e.g., using
normalized advanced functions (NAFs) [14], which are a continu-
ous version of Q functions, or using a twin delayed DDPG (TD3)
algorithm [13] that employs two critics for greater stability. Finally,
model-based DRL algorithms have also been proposed where the
NN architecture is designed so as to learn the plant model [12].

In this paper, we focus on the continuous-action-space algo-
rithms as they fit better the F1/10 car control task. For better evalu-
ation, we train controllers using two different algorithms, namely
DDPG and TD3 (we could not train good controllers using the
authors’ implementation of the NAF-based approach).2

2All training, simulation and verification code is available at https://github.com/rivapp/
autonomous_car_verification.

An important consideration in any DRL problem is the choice
of reward function. In particular, we are interested in a reward
function that not only results in better training but also in “smooth”
control policies that are easier to verify. Thus, the reward function
consists of two parts: 1) a positive gain for every step that does not
result in a crash (to enforce safe control) and 2) a negative gain
penalizing higher control inputs (to enforce smooth control):

rk = дp − дnδ
2
k , (3)

where дp = 10, дn = 0.05. A large negative reward of -100 is
received if the car crashes. Note that the negative input gain is not
applied in turns in order to avoid a local optimum while training.

Another hyper parameter in the training setup is the NN archi-
tecture. Although convolutional NNs are easier to train with high-
dimensional inputs, they are harder to verify by existing tools since
each convolutional layer needs to be unrolled in a fully connected
layer with a large number of neurons. Thus, we only consider fully
connected architectures in this case study. Scaling to convolutional
NNs is thus an important avenue for future work in NN verification.

5 VERIFICATION EVALUATION
Having described the NN controller training process, we now evalu-
ate the scalability of a state-of-the-art verification tool, Verisig [15].
As mentioned in Section 1, the other existing tools cannot currently
handle the hybrid observation model. In the considered scenario,
the car starts from a 20cm-wide range in the middle of the hallway
(as illustrated in Figure 1) and runs for 7s. This is enough time for
the car to reach top speed before the first turn and to get roughly to
the middle of the next hallway. The safety property to be verified
is that the car is never within 0.3m of either wall.

Verisig focuses on NNs with smooth activations (i.e., sigmoid and
tanh) and works by transforming the NN into an equivalent hybrid
system. TheNN’s hybrid system is composedwith the plant’s hybrid
system, thereby casting the problem as a hybrid system verification

https://github.com/rivapp/autonomous_car_verification
https://github.com/rivapp/autonomous_car_verification

Case Study: Verifying the Safety of an Autonomous Racing Car with a Neural Network Controller HSCC ’20, April 22–24, 2020, Sydney, NSW, Australia

(a) DDPG, 64 × 64, controller 1. (b) DDPG, 128 × 128, controller 2. (c) TD3, 64 × 64, controller 1. (d) TD3, 128 × 128, controller 1.

Figure 3: Simulation traces for different NN controllers from Table 1.

-2 -1 0 1 2 3 4 5

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

LiDAR Scan in Modified Environment

(a) Modified environment.
-5 -4 -3 -2 -1 0 1 2 3 4 5

-1

0

1

2

3

4

5

LiDAR Scan in Unmodified Environment

(b) Unmodified environment.

Figure 4: LiDAR scans that led to crashes in experiments. Re-
flected rays appear as if no obstacles exist in that direction.

problem that is solved by Flow*. In Verisig’s original evaluation [15],
the tool scales to NNs with about 100 neurons per layer and a dozen
layers. The high-dimensional input space considered in this case
study, however, presents a greater challenge which might also affect
the tool’s scalability in terms of the NN size.

All NNs in this case study were trained with tanh activations.
The output layer also has a tanh activation, which is scaled by
15 so that the control input ranges from -15 to 15 degrees.3 As
described in Section 4, we use both the DDPG and TD3 algorithms
to explore different aspects of the verification process. All NNs have
two hidden fully connected layers; the number of neurons per layer
is increased from 64 to 128. We also vary the number of LiDAR rays
from 21 to 41 and finally to 61 in order to evaluate the scalability in
terms of the input dimension as well.4 For repeatability purposes,
we train three controllers for each setup in the 21-ray case.

The verification times5 for all the setups are presented in Ta-
ble 1, together with other verification artifacts. Note that the initial
interval is split in smaller subsets in order to maintain the approxi-
mation error small – the verification is performed separately for
each subset. For each setup, only average statistics over all subsets
are presented. As can be seen in the table, the biggest setup that
Verisig can handle has roughly 40 LiDAR rays. The verification
complexity in terms of the number of LiDAR rays is reflected in
the last column in the table, which indicates the average number
of paths in the hybrid observation model caused by the fact that
a LiDAR ray could potentially reach different walls – note that
smaller-NN setups can take longer to verify simply due to a higher
number of paths since each path needs to be verified separately.
3The dynamics model assumes the controls are given in radians – we use degrees in
the paper for clearer presentation.
4Note that, due to hardware issues with our LiDAR unit, we only used the rays ranging
from -115 to 115 degrees (instead of the full scan ranging from -135 to 135 degrees).
5All experiments were run on a 80-core machine running at 1.2GHz. However, Flow*
is not parallelized, so the only benefit from the multicore processor is the fact that
multiple verification instances can be run at the same time.

A second important observation is that the NN verification time
is roughly 10% of the total verification time. This suggests that
plant verification remains a greatly challenging problem. Thus, the
scalability of verification needs to be greatly improved not only in
terms of the NN size but also in terms of the plant complexity.

Finally, the subset size indicates the difficulty of verifying a NN.
The subsets were decreased when the safety property could not be
verified due to high uncertainty (some NNs could not be verified
even with very small subsets). A smaller subset size means a NN is
less robust to input perturbations. As an illustration, Figure 3 shows
simulation traces for two NNs that either required reducing the
subset size or could not be verified at all and for two NNs that were
verified with the original subset size of 0.5cm. The first two NNs
are very sensitive to their inputs and produce drastically different
traces depending on the initial condition. As shown in Section 6,
these NNs also result in unsafe behavior in the real world.

6 EXPLORING THE SIM2REAL GAP
Having evaluated the scalability of current verification tools, we
now investigate the benefits and limitations of verification w.r.t the
real system. The sim2real gap arises from imperfect (dynamics and
perception) models. While the dynamics model is fairly standard
(and worst-case error bounds could be obtained using model val-
idation techniques [24]), the perception model is a major source
of uncertainty since surface reflectivity is unknown. Thus, when a
ray is reflected, it appears as if no obstacle exists in that direction.

We explore the sim2real gap in an environment that is identical to
the verified one in terms of hallway dimensions, the main difference
being that the real environment contains reflective surfaces that
sometimes greatly affect LiDARmeasurements. To assess the quality
of the LiDAR model, we first measure its accuracy for non-reflected
rays. We collect multiple scans while keeping the car stationary
(with a known state) and compare the real data with the model’s
prediction. We observe that more than 90% of the non-reflected
rays are within 5cm of the model’s prediction (the bigger errors are
likely due to errors in measuring the car’s actual orientation).

In order to assess the effect of missing rays, we perform exper-
iments in two settings: 1) an ideal environment in which most
reflective surfaces are covered and 2) the original unmodified en-
vironment.6 We perform 10 seven-second runs per NN setup in
each environment. All outcomes are reported in Table 2. As can be
seen in the table, roughly 10% of runs in the modified environment
were unsafe, uniformly spread across different NNs, thus indicating

6All data traces from the experiments are available at https://github.com/rivapp/
hscc20_data_traces.

https://github.com/rivapp/hscc20_data_traces
https://github.com/rivapp/hscc20_data_traces

HSCC ’20, April 22–24, 2020, Sydney, NSW, Australia Radoslav Ivanov, Taylor J. Carpenter, James Weimer, Rajeev Alur, George J. Pappas, Insup Lee

DRL algorithm NN architecture # LiDAR rays Controller Index Safe outcomes in EnvM Safe outcomes in EnvU
DDPG 64 × 64 21 1 9/10 0/10
DDPG 64 × 64 21 2 9/10 2/10
DDPG 64 × 64 21 3 10/10 8/10
DDPG 128 × 128 21 1 10/10 8/10
DDPG 128 × 128 21 2 7/10 4/10
DDPG 128 × 128 21 3 9/10 0/10
TD3 64 × 64 21 1 8/10 9/10
TD3 64 × 64 21 2 10/10 9/10
TD3 64 × 64 21 3 10/10 9/10
TD3 128 × 128 21 1 9/10 9/10
TD3 128 × 128 21 2 9/10 5/10
TD3 128 × 128 21 3 9/10 9/10

Table 2: Sim2real gap for the 21-ray setups from Table 1. Ten runs were performed for each setup in both the modified (EnvM)
and unmodified (EnvU) environments. A safe outcome is recorded if the car does not hit a wall during a run.

(a) DDPG, 64×64, controller 1: 24%
safe.

(b) DDPG, 128 × 128, controller 2:
51% safe.

(c) TD3, 64 × 64, controller 1: 75%
safe.

(d) TD3, 128×128, controller 1: 83%
safe.

Figure 5: Simulation traces for the NN controllers from Figure 3, with LiDAR faults added around the corner.
that the LiDAR model is fairly accurate when no reflections occur
and that the verification result is strongly correlated with safe per-
formance. We emphasize that LiDAR faults occurred even in this
environment – Figure 4a shows a LiDAR scan that caused a crash.

Table 2 also shows that more crashes were observed in the un-
modified environment, due to multiple failing LiDAR rays (one scan
that led to a crash is shown in Figure 4b). Interestingly, it is possible
to produce similar behavior in simulations as well – Figure 5 shows
the same runs as those in Figure 3, but with five LiDAR rays ran-
domly missing around the area of the turn, similar to the pattern
observed in Figure 4b. The behavior illustrated in Figure 5 is similar
to the real outcomes reported in Table 2, e.g., we observe multiple
crashes for setups DDPG 64× 64, controller 1, and DDPG 128× 128,
controller 2, while the TD3 NNs are more robust to missing rays.

6.1 Robust Reinforcement Learning
Although we can reproduce the LiDAR fault model, training a NN
that is robust to such faults was not possible with the DRL algo-
rithms used in the paper.While we did use established sim2real prac-
tices (e.g., randomize initial conditions, add measurement noise [6]),
the LiDAR fault model presents great robustness challenges since
the difference between a reflected and a non-reflected ray could be
large. One potential solution is to use a different architecture, e.g.,
convolutional NNs (CNNs) or recurrent NNs which would add a
predictive aspect to the controller.

7 DISCUSSION AND FUTUREWORK
This paper presented a challenging verification case study in which
an autonomous racing car with a NN controller navigates a struc-
tured environment using LiDAR measurements only. We evaluated

a state-of-the-art verification tool, Verisig, on this benchmark and
illustrated that current tools can handle only a small fraction of
the rays in a typical LiDAR scan. Furthermore, we performed real
experiments to assess the benefits of verification in terms of the
sim2real gap. Our findings suggest that numerous improvements
are necessary in order to address all issues raised by this case study.

Verification scalability w.r.t. the plant. As illustrated in Section 5,
the verification complexity scales exponentially with the number
of LiDAR rays. Thus, it is necessary to develop a scalable approach
that addresses this issue. For example, one could use the structure of
the environment in order to develop an assume-guarantee approach
such that verifying long traces may not be required.

Verification scalability w.r.t. the NN. Quantifying scalability w.r.t.
the NN is not straightforward since a large, but smooth, NN may
be easier to verify than a small, but sensitive, one, as indicated in
Table 1. Yet, existing tools need to scale beyond a few hundred
neurons in order to handle CNNs, which are much more effective
in high-dimensional settings. While there exist tools that can verify
properties about convolutional NNs in isolation [29], achieving
such scalability in closed-loop systems remains an open problem,
partly due to the complexity of the plant model as well.

Robustness of DRL. Although DRL has seen great successes in
the last few years, it is still a challenge to train safe and robust
controllers, especially in high-dimensional problems. As shown
in Section 6, LiDAR faults can be reproduced fairly reliably in
simulation; yet, we could not train a robust controller using state-of-
the-art learning techniques. Thus, it is essential to develop methods
that focus on robustness and repeatability, with the final goal of
being able to verify the robustness of the resulting controllers.

Case Study: Verifying the Safety of an Autonomous Racing Car with a Neural Network Controller HSCC ’20, April 22–24, 2020, Sydney, NSW, Australia

REFERENCES
[1] [n.d.]. F1/10 Autonomous Racing Competition. http://f1tenth.org.
[2] Rajeev Alur. 2011. Formal verification of hybrid systems. In Embedded Software

(EMSOFT), 2011 Proceedings of the International Conference on. IEEE, 273–278.
[3] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P. H. Ho, X. Nicollin,

A. Olivero, J. Sifakis, and S. Yovine. 1995. The algorithmic analysis of hybrid
systems. Theoretical computer science 138, 1 (1995), 3–34.

[4] US National Transportation Safety Board. [n.d.]. Prelim-
inary Report Highway HWY18MH010. https://www.
ntsb.gov/investigations/AccidentReports/Reports/HWY18MH010-prelim.pdf.

[5] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat
Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller, Jiakai
Zhang, et al. 2016. End to end learning for self-driving cars. arXiv preprint
arXiv:1604.07316 (2016).

[6] Yevgen Chebotar, Ankur Handa, Viktor Makoviychuk, Miles Macklin, Jan Issac,
Nathan Ratliff, and Dieter Fox. 2019. Closing the sim-to-real loop: Adapting simu-
lation randomization with real world experience. In 2019 International Conference
on Robotics and Automation (ICRA). IEEE, 8973–8979.

[7] X. Chen, E. Ábrahám, and S. Sankaranarayanan. 2013. Flow*: An analyzer for non-
linear hybrid systems. In International Conference on Computer Aided Verification.
Springer, 258–263.

[8] Laurent Doyen, Goran Frehse, George J Pappas, and André Platzer. 2018. Verifi-
cation of hybrid systems. In Handbook of Model Checking. Springer, 1047–1110.

[9] Souradeep Dutta, Xin Chen, and Sriram Sankaranarayanan. 2019. Reachability
analysis for neural feedback systems using regressive polynomial rule inference.
In Proceedings of the 22nd ACM International Conference on Hybrid Systems:
Computation and Control. ACM, 157–168.

[10] S. Dutta, S. Jha, S. Sankaranarayanan, and A. Tiwari. 2018. Output Range Analysis
for Deep Feedforward Neural Networks. In NASA Formal Methods Symposium.
Springer, 121–138.

[11] R. Ehlers. 2017. Formal verification of piece-wise linear feed-forward neural
networks. In International Symposium on Automated Technology for Verification
and Analysis. Springer, 269–286.

[12] Chelsea Finn and Sergey Levine. 2017. Deep visual foresight for planning robot
motion. In 2017 IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2786–2793.

[13] Scott Fujimoto, Herke van Hoof, and David Meger. 2018. Addressing function
approximation error in actor-critic methods. arXiv preprint arXiv:1802.09477
(2018).

[14] Shixiang Gu, Timothy Lillicrap, Ilya Sutskever, and Sergey Levine. 2016. Contin-
uous deep q-learning with model-based acceleration. In International Conference
on Machine Learning. 2829–2838.

[15] Radoslav Ivanov, James Weimer, Rajeev Alur, George J Pappas, and Insup Lee.
2019. Verisig: verifying safety properties of hybrid systems with neural network
controllers. In Proceedings of the 22nd ACM International Conference on Hybrid
Systems: Computation and Control. ACM, 169–178.

[16] K. D. Julian, J. Lopez, J. S. Brush, M. P. Owen, and M. J. Kochenderfer. 2016. Policy
compression for aircraft collision avoidance systems. In Digital Avionics Systems
Conference (DASC), 2016 IEEE/AIAA 35th. IEEE, 1–10.

[17] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer. 2017. Reluplex:
An efficient SMT solver for verifying deep neural networks. In International
Conference on Computer Aided Verification. Springer, 97–117.

[18] S. Kong, S. Gao, W. Chen, and E. Clarke. 2015. dReach: δ -reachability analysis
for hybrid systems. In International Conference on TOOLS and Algorithms for the
Construction and Analysis of Systems. Springer, 200–205.

[19] G. Lafferriere, G. J. Pappas, and S. Yovine. 1999. A new class of decidable hybrid
systems. In International Workshop on Hybrid Systems: Computation and Control.
137–151.

[20] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D.
Wierstra. 2015. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971 (2015).

[21] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A.
Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. 2015. Human-level
control through deep reinforcement learning. Nature 518, 7540 (2015), 529.

[22] Philip Polack, Florent Altché, Brigitte d’Andréa Novel, and Arnaud de La Fortelle.
2017. The kinematic bicycle model: A consistent model for planning feasible
trajectories for autonomous vehicles?. In Intelligent Vehicles Symposium (IV), 2017
IEEE. IEEE, 812–818.

[23] Rajesh Rajamani. 2011. Vehicle dynamics and control. Springer Science & Business
Media.

[24] Robert G Sargent. 2010. Verification and validation of simulation models. In
Proceedings of the 2010 winter simulation conference. IEEE, 166–183.

[25] D. Silver, A. Huang, C. J. Maddison, A. Guez, et al. 2016. Mastering the game of
Go with deep neural networks and tree search. nature 529, 7587 (2016), 484.

[26] Xiaowu Sun, Haitham Khedr, and Yasser Shoukry. 2019. Formal verification
of neural network controlled autonomous systems. In Proceedings of the 22nd
ACM International Conference on Hybrid Systems: Computation and Control. ACM,

147–156.
[27] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, et al. 2013. Intriguing

properties of neural networks. arXiv preprint arXiv:1312.6199 (2013).
[28] Hoang-Dung Tran, Feiyang Cai, Manzanas Lopez Diego, Patrick Musau, Taylor T

Johnson, and Xenofon Koutsoukos. 2019. Safety Verification of Cyber-Physical
Systems with Reinforcement Learning Control. ACM Transactions on Embedded
Computing Systems (TECS) 18, 5s (2019), 105.

[29] Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. 2018.
Efficient formal safety analysis of neural networks. In Advances in Neural Infor-
mation Processing Systems. 6367–6377.

[30] Tsui-Wei Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Luca
Daniel, Duane Boning, and Inderjit Dhillon. 2018. Towards Fast Computation of
Certified Robustness for ReLU Networks. In International Conference on Machine
Learning. 5273–5282.

	Abstract
	1 Introduction
	2 System Overview
	2.1 The F1/10 Autonomous Racing Car
	2.2 Reinforcement Learning
	2.3 Hybrid System and NN Verification
	2.4 System Design and Development

	3 Plant Model
	3.1 Dynamics model
	3.2 Observation model

	4 Controller Training
	5 Verification Evaluation
	6 Exploring the sim2real Gap
	6.1 Robust Reinforcement Learning

	7 Discussion and Future Work
	References

