
Specification and Analysis of Network Resource
Requirements of Control Systems

Gera Weiss1, Sebastian Fischmeister2, Madhukar Anand1, and Rajeev Alur1

1 Dept. of Computer and Information Science, University of Pennsylvania, USA
2 Dept. of Electrical and Computer Engineering, University of Waterloo, Canada

Abstract. We focus on control systems in which sensors send data to actuators
via a bus shared with other applications. An approach is proposed for specify-
ing and implementing dynamic scheduling policies for the bus with performance
guarantees. Specifically, we propose an automata-based scheduler which we au-
tomatically generate from a model of the controlled plant and the controller. We
show that, in addition to ensuring performance, our approach allows adjustments
to dynamic conditions such as varying disturbances and network load. We present
a full development path from performance specifications (exponential stability) to
a control design and its implementation using Controller Area Network (CAN).

1 Introduction

As control systems grow in both size and complexity, so does the need to spatially
distribute control equipment such as sensors, actuator and computational devices. In
recent years, implementations of distributed control systems are shifting from tradi-
tional hard-wired architectures, where each device is connected via a dedicated wire,
to networked architectures, where control data is sent via shared communication buses
(e.g., in the automotive [12] and aviation [21] industries, and for process control [25]).
While, shared communication buses reduce costs and allow flexible architectures, they
also introduce the problem of resource contention and require scheduling mechanisms
to resolve them [20, 26].

Existing approaches to bus scheduling in control applications rely on static (peri-
odic) schedules designed to assure performance in worst-case conditions [10, 19, 24].
The main disadvantage of static schedules, in our context, is that they lack a mechanism
to adopt to changing conditions. This often leads to trading off average for worst-case
performance.

In this paper, we propose a mechanism for generating schedules for shared buses
such that a specified stability rate is guaranteed. We use guarded automata as a tool
for formalizing the effect of bus scheduling on performance and as a mechanism for
scheduling the network such that stability is guaranteed.

A scheduling approach is proposed that provides good performance both in average
and worst-case conditions. We show that automata based scheduling allows the sched-
ule to react to dynamic conditions such as the output of the plant or the load on the
network and still guarantee high-level requirements such as stability. In particular, we
demonstrate how, with our approach, the bus is only used when needed and, by that,
good average performance can be obtained together with worst-case guarantees.

2 Gera Weiss, Sebastian Fischmeister, Madhukar Anand, and Rajeev Alur

While our approach applies to more general architectures, we concentrate on sys-
tems where one control loop shares a communication bus with background applications
that use it for non–real-time communication. In this architecture, the network sched-
uler needs to assign communication bandwidth to the background applications while
maintaining the specified stability performance. Focusing on this architecture allows us
to present a holistic approach that begins with stability specification and ends with an
implementation.

The remaining of the paper consists of the following parts: in Section 2 we formally
define the technical problem that this paper is about and sections 3-6 detail the steps
towards its solution. Section 7 puts our work in context with related work. And, in
Section 8, we draw conclusions from the results and outline potential next steps.

2 Shared Bus for Control and Background Traffic

Consider the system depicted in Figure 1 below.

Communication BusPlant
Background
Applications

Sensor

Actuator

Real-Time Traffic Non Real-Time Traffic

disturbance

disturbance

Fig. 1. A bus shared by a control loop and non real-time traffic.

In this system, a communication bus is used both to close a control loop and for
non real-time background applications. We assume TDMA (time division multiple ac-
cess) arbitration, where messages are transmitted in separated time slots of fixed length,
and time-triggered message generation, where the control loop can be modeled by a
discrete-time control system where the sampling interval is the time slot of the network.
To simplify notations and avoid orthogonal complications, we consider a single-input,
single-output linear time-invariant plant.

Assume that the Sensor has priority over the bus, i.e., when it decides to send data,
all other messages are preempted. Suppose a time-varying number λ ∈ (0, 1) is fed to
the Sensor such that the bandwidth left to the non real-time traffic should be at least
λ. The main problem addressed in this paper is how should Sensor decide when to
send data, taking both λ and the output of the plant into account. Since decisions are
taken online by devices with low computational power, we are especially interested in
decision procedures with low online computational demands.

The scheduling problem can be solved by a static, time-triggered cyclic executive
that assigns resources to either the control loop or the background applications [16, 10,

Specification and Analysis of Network Resource Requirements of Control Systems 3

13]. This approach is depicted in Figure 2. Figure 2(a) shows an implementation of
the approach using dispatch tables. The table describes, for specific time slots, which
consumer uses the resource. This particular schedule shows that the background appli-
cations use the resource for the first three steps and the control loop uses the resource
in the fourth step.

Time Consumer
1 background
2 background
3 background
4 control loop

(a) Dispatch table

0 0

01

(b) Automaton

Fig. 2. Two ways for encoding a static schedule.

We can also encode such a cyclic executive using automata (see Figure 2(b)). The
language of this automaton is the set of all sequences over {0, 1} with 1 at every fourth
position. The symbol 1 means that the control loop gets the network resource and
0 means that any of the background applications get it. Note that implementing the
scheduling policy of an automaton or a dispatch table can be done with a lightweight
decision procedure requiring low (constant) time and memory.

This type of static scheduling is a common practice but it is also often wasteful.
Static scheduling via dispatch tables and static automata is useful because of analyzabil-
ity and ease of implementation. However, static scheduling often uses more resources
than necessary, because many applications do not require a fixed sampling frequency to
assure performance. For example, consider a system with sporadic disturbance bursts.
In this case, a periodic sensor update often provides no additional information to the
Actuator block and therefore is a waste of network resources. An improved version will
only send measurements if the plant’s output exceeds some threshold discrepancy of
the Actuator block, as we show in the following paragraph.

On the other extreme, bus arbitration could also be decided by a tailored, fully
dynamic software. The main problem with the latter approach is that it is not clear how
to analyze and systematically design such software. In this paper, we propose a mid-way
between fully dynamic code and dispatch tables. Using guarded automata, we propose
a scheduling mechanism that allows analyzability and lightweight implementation (as
static scheduling) with adaptability and efficiency (as dynamic scheduling).

The following example illustrates how guarded automata can be used for schedul-
ing. Note that, while the example is an ad hoc (manually designed) automaton, the
methodology we are proposing is automatic generation of automata using the construc-
tion described in this paper.

For the system depicted in Figure 1, assume that the Sensor maintains an estimate
of the plant state denoted by xsen, and the actuator maintains its own estimate (based on

4 Gera Weiss, Sebastian Fischmeister, Madhukar Anand, and Rajeev Alur

the information available to it) that we denote by xact. Consider the scheduling scheme
depicted in Figure 3. In words: the scheduling decision is based on the difference |xsen−
xact|. If it lies above 1, then the sensor will transmit data. If it lies bellow .5, then the
sensor will not transmit and leave the slot for the background applications. If |xsen −
xact| lies between .5 and 1, the sensor will transmit a reading once and then pause in
the next step.

.5 ≤ |xsen − xact| ≤ 1

1

1 < |xsen − xact|
1

|xsen − xact| < .5

0
always

0

Fig. 3. A guarded (dynamic) schedule.

Clearly, this scheduling scheme is more expressive than cyclic scheduling using
dispatch tables or unguarded automata. Still, unlike general dynamic techniques, the
model is formal and analyzable. In this paper we focus on generating guarded automata
of the form depicted in Figure 1 that guarantee high-level requirements of the control
application. Specifically, we investigate automata generation for exponential stability
requirements.

In the following sections we propose steps towards synthesizing a scheduler that
guarantees exponential stability and uses the bus only when needed or when the pa-
rameter λ is small (low background traffic). The proposed methodology is described in
four steps, each described in a separate section and summarized as follows. The first
step, described is Section 3, is a construction of an automaton that specifies unstable
runs of the control loop. The second step, described in Section 4, is to transform the
specification automaton to an executable state machine that identifies when using the
bus is critical for ensuring stability. The third step, described in Section 5, is to imple-
ment the scheduling scheme with a distributed bus arbitration mechanism. The fourth
step, described in Section 6, is to test and validate the mechanism by implementing a
switched control strategy and a scheduling scheme that combines the parameter λ with
the executable state machine.

3 Step I: Specification Automaton

As a first step towards solving the problem presented in Section 2, we propose an au-
tomaton that specifies unstable runs, as follows.

We use switched systems (see e.g. [14]) to model the system depicted in Figure 1.
The switched system has two modes: (1) a mode that models the transformation of the
state variables when Sensor is using the bus and (2) a mode that models the transforma-

Specification and Analysis of Network Resource Requirements of Control Systems 5

tion when the bus is not used by Sensor. See [1, 2] and the examples given in Section 6
for more details about this modeling approach.

Formally, let A0, A1 ∈ Rn×n and c0, c1 ∈ R1×n be such that

x(t+ 1) = Aw(t)x(t);
y(t) = cw(t)x(t),

(1)

models the dynamics of the control loop depicted in Figure 1, where x(t) ∈ Rn, y(t) ∈
R are the state and the observation at time t, respectively and infinite word w ∈ {0, 1}ω
(called the switching sequence) is such that Sensor sends data to the Actuator at time t
iff w(t) = 1. A run o the system is a solution of the equations.

As a performance measure we choose exponential stability. The standard defini-
tion of exponential stability requires that behaviours converge to the origin faster than a
given exponentially decaying function. In [1], a system is defined to be (ρ, l)-exponentially-
stable if in every l time units the distance to the origin (norm) decreases by a fac-
tor of ρ. In this paper we add two more parameters. Specifically, for the parameters
0 < ρ ≤ 1, l ∈ N and 0 < ε < δ,

Definition 1. A run of the system (1) is (ρ, l, ε, δ)-exponential-stable if ε < |x(t)| <
δ =⇒ |x(t+ l)| < ρ|x(t)| for every t ∈ N.

Namely, a run is exponentially stable if any state, in the δ-ball and not in the ε-ball
around the origin, gets closer to the origin by a factor ρ, every l steps.

In the following definition, a regular language (over infinite alphabet) is used to
specify runs of the system that are not exponentially stable.

Definition 2. A language over the alphabetΣ = {0, 1}×R is a (ρ, l, ε, δ)-safe-monitor
for the system (1) if for every run that is not (ρ, l, ε, δ)-exponentially-stable there exists
k ∈ N such that the word 〈σ(1), y(1)〉 · · · 〈σ(k), y(k)〉 is in the language.

In the rest of this section, we give a construction of a non-deterministic automaton
whose accepted language is a (ρ, l, ε, δ)-safe-monitor called (ρ, l, ε, δ)-specification-
automaton (because it specifies (ρ, l, ε, δ)-exponentially-stable runs). Note that, while
we propose a specific construction, it is not the only (ρ, l, ε, δ)-specification-automaton.
Furthermore, we are not assuming the specific construction in the rest of the paper (only
the properties given in Definition 2).

Construction 3. Let 0 < ρ ≤ 1, l ∈ N and 0 < ε < δ be the required exponential
stability parameters. Towards a description of the automaton, we define, for each word
σ = σ(1) · · ·σ(l) ∈ Σl, the sets B1

σ, . . . , B
p
σ ⊂ Rn and, for each k ∈ {1, . . . , p}, a

sequence of intervals Y kσ (1), . . . , Y kσ (l) as follows.
LetBσ be the set of all x ∈ Rn such that |Aσ(l) · · ·Aσ(1)x| ≥ ρ|x| and ε ≤ |x| ≤ δ.

In words, Bσ is the set of all vectors, in the δ–ball but not in the ε–ball, whose distance
to the origin does not shrink by a factor of ρ when the transformation Aσ(l) · · ·Aσ(1) is
applied. We focus on this set because, when the current state is in Bσ , we need to make
sure that the next l values of the switching signals are not σ. Let B1

σ, . . . , B
p
σ be a finite

cover of Bσ by compact convex sets.
Next, we identify the set of observations that we expect in the next l steps, if the

current state is in Bσ . Let o(k) := cσ(k)Aσ(k−1) · · ·Aσ(1) and Y jσ (k) := {o(k)x : x ∈

6 Gera Weiss, Sebastian Fischmeister, Madhukar Anand, and Rajeev Alur

Bjσ}. In words, Y jσ (k) is the set of possible outputs that we may observe at time t+k−1
if x(t) is in Bjσ and w(t) · · ·w(t + l − 1) = σ. Note that Y jσ (k) is an interval whose
bounds can be effectively computed, because Bjσ is compact and convex.

Let σ1, . . . , σm be the set of words of length l such that |Aσi(l) · · ·Aσi(1)| ≥ ρ,
i.e. the words such that Bσi

6= ∅. We are now ready to give the construction of the
automaton. The main idea is to “guess” non-deterministically, for each i = 1, . . . ,m
at any time, that the next l steps are σi and that the current state is in Bσi

, and get
to an accepting state if the guess is correct. Similar ideas are used in model predictive
control [18].

For the switched system (1), we define a non-deterministic automaton (depicted in
Figure 4). The states of the automaton are {qi,j(k) : i = 1, . . . ,m, j = 1, . . . , p and k =
1, . . . , l − 1} ∪ {q0, ql}. The transition from q0 to every qi,j(1) is guarded by the con-
dition w(t) = σi(1). For, k = 2, . . . , l − 1, the transition from qi,j(k − 1) to qi,j(k) is
guarded by the condition w(t) = σi(k) ∧ y(t − 1) ∈ Y jσi

(k − 1). The transition from
every qi,j(l − 1) to ql is guarded by w(t) = σi(l) ∧ y(t − 1) ∈ Y jσi

(l − 1). Finally,
the self loops on states q0 and ql are unconditioned. The initial state is q0 and the only
accepting state is ql.

q0 ql

· · ·
{σ1(1)} × R {σ1(2)} × Y 1

σ1(1) {σ1(l)} × Y 1
σ1(l−1)

· · ·
{σ1(1)} × R {σ1(2)} × Y pσ1(1) {σ1(l)} × Y pσ1(l−1)

· · ·
{σm(1)} × R {σm(2)} × Y 1

σm
(1) {σm(l)} × Y 1

σm
(l−1)

· · ·
{σm(1)} × R {σm(2)} × Y pσm

(1) {σm(l)} × Y pσm
(l−1)

...
...

...

...
...

...

...
...

...

Fig. 4. A non-deterministic automaton over the alphabet {0, 1} × R such that if no prefix of
〈σ1, y1〉, 〈σ2, y2〉, . . . is accepted then any run of the system (1) with switching signal σ1, σ2, . . .
and outputs y1, y2, . . . is exponentially stable.

By construction, if no run of the automaton gets to F = {qt} at time t then the
product of the last l matrices takes x(t− l) closer to the origin by a factor of at least ρ;
assuming that ε < |x(t)| < δ. In particular, since this is true for every t, we get that the
system (1) is exponentially stable.

Specification and Analysis of Network Resource Requirements of Control Systems 7

The only non-constructive step in the above description lies in covering Bσ by a
finite number of compact convex sets (where σ = σ(1) · · ·σ(l) is an arbitrary word).
Let Aσ = Aσ(l) · · ·Aσ(1). Towards a cover, we explore the geometry of the set Bσ , as
follows. Consider the sphere Sδ = {x ∈ Rn : |x| = δ}. The linear transformation Aσ
maps this sphere onto an ellipsoid E = {Aσx : x ∈ Sδ}. The intersection Bσ ∩ Sδ
can be visualized as two symmetric arcs on the sphere (the part of the sphere that is
mapped to the part of E that is outside of the ρδ-sphere). By linearity, Bσ = {λx : λ ∈
[ε/δ, 1), x ∈ Bσ ∩ Sδ} which can be visualized as a pair of two symmetric trimmed
cones. Let a be the largest semi-axes of the ellipsoid E and h be such that Aσh = a.
Then, the cover is B1

σ = {x ∈ Bσ : hTx ≥ γ} and B2
σ = {x ∈ Bσ : hTx ≤ −γ}

where γ is the largest number such that these two sets cover Bσ . In practice, one can
compute h using singular value decomposition of Aσ .

4 Step II: Executable State Machine

The specification automaton, described in the preceding section allows to detect errors,
but is not directly applicable for scheduling. In this section we use the specification
automaton to obtain an executable state machine that identifies times where sending a
message from Sensor to Actuator is essential for keeping the control-loop stable.

Towards such an executable state machine, we define some of the states of the spec-
ification automaton as bad states. Specifically, q is marked as a bad state if there is a
path q = q(1), · · · , q(k) from q to an accepting state and a sequence y1, · · · , yk−1 ∈ R
such that q(i+ 1) ∈ δ(q(i), 〈1, yi〉) for each i = 1, . . . , k − 1 (where δ is the transition
function).

Since every accepting state is a bad state, avoiding bad states ensures exponential
stability. But, unlike the case for accepting states, we now have also the following prop-
erty: if q is not a bad state then all the states in δ(q, 〈1, y〉) are not bad, for any y. This
property is useful for scheduling because it means that we can always avoid a transition
to a bad state by scheduling mode 1. Note that we are assuming that the initial state is
not bad. This assumption makes sense because if the initial state is already bad, we will
not get the required stability even if the bus is dedicated to the control loop. Practically,
we are assuming that the control design is such that the requirements are met when the
bus is always available.

An executable state machine is obtained by simulating the automaton. For a finite
trace T = 〈w(1), y(1)〉, . . . , 〈w(t−1), y(t−1)〉 of the system (1), the state of the state-
machine, at time t, is the set δ∗(q0, T) ⊆ Q consisting of the end states of all runs of
the automaton up to time t. We say that the state-machine is in a must state if choosing
w(t) = 0 will make that state contain a bad state of the automaton. As the transition
from a state that is not bad to a bad state is conditioned on w(t) = 0 (otherwise the
source is also bad), we are guaranteed that we can avoid bad states by scheduling mode
1 whenever the executable state machine (described in the previous section) is in a must
state.

Note that our approach can be directly generalized to any number of concurrent
control loops. Imagine, for example, a second control loop (another triplet of sensor,
actuator and plant) that shares the same bus for communicating data from sensor to

8 Gera Weiss, Sebastian Fischmeister, Madhukar Anand, and Rajeev Alur

actuator. In this case, the scheduler of each loop is going to get to a must state if it must
send in one of the next two communication slots.

5 Step III: Stateful Priority Assignment

The executable state machine, described in the previous section, detects times when
sending a message is essential (when the machine is in a must state), but it does so in
a centralized manner. In this section we discuss an implementation of it using priority
based bus arbitration.

For implementation, we propose the use of priority based bus arbitration, but, in-
stead of assigning priorities to nodes or to message types, we propose to assign prior-
ities to states of the scheduler. Specifically, the priority of a message from Sensor to
Actuator is high when the scheduler is in a must state and low otherwise.

Assigning priorities to messages based on system state has not been considered so
far, because the developer must assure that, at any point in time, each priority level is
used by at most one node. In this paper, a formal model (automaton) assist the developer
in guaranteeing this property for large, complex systems.

Using CAN. Controller Area Network (CAN) [6] is the most widespread priority based
networking technology for control applications. It provides eleven or 29 bits for encod-
ing an unsigned integer priority level for individual messages and requires two wires
for the physical communication layer. One wire implements the dominant bits while
the other implements recessive bits. Using a logical-AND between those two bits, the
bus implements a bit-wise arbitration mechanism, which allows the winning node to
continue sending its message during the arbitration.

The first step, towards applying CAN, is to annotate the transitions of the scheduler
with priorities (highest and lowest), as follows: if the scheduler is in a must state at time
t, then it will have the highest priority. All other transitions in the scheduler get assigned
some value other than the highest priority level. The second step is to assign priorities to
background applications. The specific priorities assigned the background applications
and the sensor can be tweaked to fit bandwidth defined by λ (see Section 6).

Note that implementing our approach with CAN requires no extra hardware. With
eleven bits, the control engineer can assign 2046 priority levels (one for broadcast),
which means that the control application uses the priority levels 0x07FF and 0x001.
This leaves plenty of additional priorities for background applications. Using 29 bits
raises this range even further.

6 Step IV: Testing and Validation

In this section we revisit the initial example, provide more technical details on con-
troller and scheduler designs and present some performance analysis that illustrates the
advantages and disadvantages of our approach.

Specification and Analysis of Network Resource Requirements of Control Systems 9

Controller Design. As a specific example, we examine how an LQG controller can
be implemented with the architecture depicted in Figure 1, above, where a shared com-
munication bus separates Sensor and the Actuator. The control loop is designed as a
switched system with the following two modes.

Figure 5(a) shows the feedback mode, active when Sensor sends data on the bus.
The matrices Ap, Bp, Cp model the controlled plant and the matrices Ac, Bc, Cc are
computed using a standard technique for LQG design (e.g., by MATLAB’s [17] lqg
command [17]).

x+
p = Apxp +Bpu y = Cpxp

x+
c = Acxc +Bcyu = Ccxc

Actuation Estimation

Plant Sensor

xp

y

xc

u

(a) Feedback Mode

x+
p = Apxp +Bpu

x+
c = Apxc +Bpuu = Ccxc

Actuation Simulation

Plant

xc

u

(b) Feedforward Mode

Fig. 5. Two modes of the control loop. The feedback mode, active when Sensor sends data to Ac-
tuator, is a full LQG based feedback. In the feedforward mode, data is not sent. Instead, Actuator
simulates the dynamics of the plant based on earlier data.

The second mode of the controller corresponds to times at which Sensor does not
transmit its reading. In these times, Actuator simulates the dynamics of the plant. Fig-
ure 5(b) shows this second mode. A simulation block replaces the estimation block and
the output of the plant remains unused (because data is not sent).

The composition of the system with the controller modes results in the closed-loop

switched system described by equation (1), where A0 =
(
Ap BpCc
0 Ap +BcCp

)
, A1 =(

Ap BpCc
BcCp Ac

)
and x(t) = (xTp , x

T
c)T . The switching signal w ∈ {0, 1}N is such that

w(t) is one iff Sensor sends data to Actuator at time t.

As an example, consider the plant ẋp =
(
−1 1
1 −1

)
xp +

(
1
0

)
u, y = (0, 1)xp. In

MATLAB [17], the matrices A0 and A1 can be computed as follows: (1) get a discrete-
time model using the c2d command, (2) compute an LQG compensator using the lqg
script. The closed loop matrices obtained by this procedure (using Ts = 1 andQXU =
QWV = .1) are:

A1 =


0.568 0.432 −0.357 −0.339
0.432 0.568 −0.142 −0.134

0 0.412 0.210 −0.319
0 0.461 0.291 −0.028

 and A0 =


0.568 0.432 −0.357 −0.339
0.432 0.568 −0.142 −0.134

0 0 0.210 0.094
0 0 0.291 0.433

 .

10 Gera Weiss, Sebastian Fischmeister, Madhukar Anand, and Rajeev Alur

The network is scheduled based on the difference between the output and the estimated
output, i.e., c0 = c1 = (0, 1, 0,−1).

Scheduling Scheme. As described in Section 2, the parameter λ specifies the frac-
tion of slots that the Sensor should leave for background applications. To achieve this
requirement, we propose the following scheduling scheme. The executable state ma-
chine, described in Section 4, is used in the following way. If the machine is at a must
state, Sensor sends data unconditionally. Otherwise, a Bernoulli trial with λ probability
of successes is conducted and a message is sent only if the experiment successes. The
input to state-machine is the sequence of decisions of the Sensor and the output of the
plant.

This scheduling scheme respects both λ and the needs of the control loop. The pa-
rameter λ determines the likelihood of using the bus when the conditions of the control
loop allow not to. Note that an implementation of this scheme in a distributed environ-
ment means that decisions are made at the Sensor node. This may require Sensor to also
compute the estimation as the Actuator does, to get the estimated output.

Simulation Data. To test our approach, the automaton described in Section 3 is con-
structed with the parameters l = 15, δ = 1, ε = .1, ρ = 1 and the matrices A0 and A1

above.
The graphs in Figure 6(a) show how our approach allows dynamic adaptation of

control performance. The plots demonstrate an improvement in control performance
(faster convergence) when the competition for resources is lower (smaller values of λ).
This type of adaptation is not achievable with static scheduling, when the schedule is
planned only for the worst-case scenario.

In another experiment, we executed the scheduler with the parameter λ = 0, and
injected random noise to the control system at irregular intervals. The plot in Figure 6(b)
shows that the network is only used some time after each disturbance. The upper part
shows the network bandwidth used by the control loop and the lower part shows the
introduced disturbances. Static approaches (including the one described in [1, 2]) that
do not use the output of the plant to direct scheduling decisions cannot achieve this type
of dynamic adaptation.

The conclusion from the simulations is that our approach to scheduling gives best
benefits for systems that operates in dynamic conditions. While static scheduling may
give good results for systems with constant network load and evenly distributed distur-
bances, our approach delivers better performance when varying load and disturbances
that come in irregular bursts are present.

Integration Into Simulink. Simulink is the de-facto standard for modeling and analysing
control system. We integrate our guarded automata approach into Simulink via the Net-
work Code Machine extension [9] in the TrueTime library. TrueTime [7] is a Simulink
simulator library for embedded and networked control systems. It can simulate a num-
ber of different communication arbitration mechanisms. We extended the TrueTime
library with a block for the Network Code Machine, which takes a node identifier as

Specification and Analysis of Network Resource Requirements of Control Systems 11

0

1

0 10 20 30 40 50 60 70 80 90

er
ro

r(
di

st
an

ce
to

eq
ui

lib
ri

um
)

time (simulation steps)

λ = 1

λ = .2

λ = .05

(a) Faster convergence for smaller λ.

0

50%

100%

ne
tw

or
k

lo
ad

0

100%

0 100 200 300 400 500 600

no
is

e

time (simulation steps)

(b) Higher load after noise injection.

Fig. 6. Simulation results showing how dynamic scheduling allows adjusting control performance
to network availability and adjusting network usage to control needs.

input and provide access to the network to the specified node. Our extension is available
on the project web site and is planned to be part of the next major TrueTime release.

Figure 7 provides a sample model that shows how to run the original model shown
in Figure 1 in this Simulink environment. The left part shows the control application
with the actuator, plant, and sensor blocks. The middle shows the networking part con-
sisting of the TrueTime Network, the messaging and reception blocks. The Guarded
Automaton-based Scheduler block and the Network Code Machine block also belong
to the network part. The former implements the (ρ, l, ε, δ)-specification-automaton as
a state machine and the latter is an S-function extension for TrueTime to schedule the
networked as specified in the automaton. The right side of the figure shows background
application.

7 Related Work

Methodology. The concept of automata-based scheduling was introduced in [1] and [2]
in the context of CPU scheduling. The main contribution of the current paper over the
previous work on automata based scheduling is that it studies the use of guards as a way
to direct the schedules based on dynamic data.

Another, more technical, contribution is the elimination of the need to determinize
the automaton. In [1] and [2], the proposed methodologies involve computing an au-
tomaton similar (in spirit) to the automaton depicted in Figure 4 and then determinizing
it. As determinization does not scale, this paper proposes a direct way of using the
non-deterministic automaton for scheduling. Determinization is especially problematic
with guarded automata, because they usually have more states and because the formal
language they induce is over an infinite alphabet (the real numbers).

12 Gera Weiss, Sebastian Fischmeister, Madhukar Anand, and Rajeev Alur

TrueTime Network

Sn
d

Rc
v

Sc
he

du
le

1

Time−triggered
messaging pulse

Slot size
Sensor

messaging

data snd

Sensor

In1 Out1

Plant

In
1

O
ut

1

Network Code
Machine

Node ID

Message
receiption

rc
v

da
ta

Guarded Automaton−based
Scheduler

Input 1 Node ID

Background
messaging

datasnd

Background
applications

In
1

O
ut

1

Actuator

In1Out1

Fig. 7. Guarded automaton in Simulink with TrueTime and Network Code Machine.

The concept of automata-based scheduling generalizes tree schedules [9]. The main
structural difference is that tree schedules require the underlying structure to be a tree
resulting in periodic resets to the root location. While the work on tree schedules mainly
concentrated on analyzing [3], composing [4], verifying, and implementing [9] them,
this work concentrates on the generation of schedulers.

Network Control Systems. Form the control perspective, the insertion of communi-
cation networks in the control loop is usually viewed as a source of random time delays
and information loss (see e.g., [7, 5, 11, 15, 23, 27]). For scheduling, this view leads to
mechanisms such as [19, 24], where a periodic schedule that can cope with the worst
case delays is proposed. Our approach views the network as a shared resource. Partic-
ularly, we do not view the other users of the network as introducing random delays but
as components of the system that we need to take into consideration. This perspective
allows more efficient use of the resource.

Communication Arbitration. In distributed control systems, nodes must access the
network mutually exclusively. The dominating approaches use either temporal isolation
or priority-based mechanisms. System such as the TTA [13], TTCAN [10], or FTT-
CAN [8] provide temporal isolation where each node accesses the network at predefined
time slots. Our approach follows a similar line in that it uses temporal isolation in its
TDMA scheme. However, in contrast to works such as the TTA and TT-Ethernet [22],
our approach uses temporal isolation to synchronize steps in the automata and then uses
priority-based arbitration for resource contentions instead of globally defined schedules.

Common architectures using priority-based mechanisms for resolving resource con-
tentions either assign priorities to individual nodes or to individual messages. It is
mandatory that each concurrent access must use a unique priority level, because other-
wise the collision-avoidance mechanism will fail. Thus, the common architectures such

Specification and Analysis of Network Resource Requirements of Control Systems 13

as CANopen usually use a static global database assigning each message its unique
priority. Our approach differs from such architectures in that we assign individual pri-
orities to messages based on the context of the application; meaning as a message
becomes more important to the application, its priority level changes. Although the
method sounds intuitive and simple, prior approaches had to rely on a quasi-static as-
signments of priority levels to nodes or messages, because dynamic assignment must
guarantee unique priority levels. Our system can guarantee this, because we can stat-
ically check whether two nodes on the same network will ever try to communicate
simultaneously with the same priority level.

8 Conclusions and Future Work

We proposed a dynamic scheduling scheme for network control systems. The main idea
is using automata with guards to decide resource assignments—in our case network
slots. The work contains a full walk through the development process comprising of:

1. Specifying stability parameters as high-level performance requirements.
2. Generating an automaton that specifies traces of the system implying that the re-

quirements are not met.
3. Constructing a scheduler state-machine that guarantees avoidance of the specified

traces.
4. Implementing the scheduler with priority-based congestion arbitration.

The approach is demonstrated with experiments that show its advantages compared
to standard approaches and previous work. Furthermore, the experimental data demon-
strates the unique ability of our approach to adjust the priority level to its context and
stay verifiable: after disturbances the control application requires more bandwidth to
adjust the plant and therefore uses elevated priority levels. While during calm opera-
tions the priority levels remain low. Future work can look into multiple-output systems,
more elaborate guards on the specification automaton and more sophisticated, possibly
optimal, construction algorithms for the scheduler.

References

1. R. Alur and G. Weiss. Automata based interfaces for control and scheduling. In Proc. 10th
Conference on Hybrid Systems: Computation and Control, 2007.

2. R. Alur and G. Weiss. Regular specifications of resource requirements for embedded con-
trol software. In Proc. 14th IEEE Real Time and Embedded Technology and Applications
Symposium (RTAS), 2008.

3. M. Anand, S. Fischmeister, and I. Lee. An Analysis Framework for Network-Code Programs.
In Proc. of the 6th Annual ACM Conference on Embedded Software (EmSoft), pages 122–
131, Seoul, South Korea, Oct. 2006.

4. M. Anand, S. Fischmeister, and I. Lee. Composition Techniques for Tree Communication
Schedules. In Proc. of the 19th Euromicro Conference on Real-Time Systems (ECRTS), pages
235–246, Pisa, Italy, July 2007.

5. P. Antsaklis and J. Baillieul. Guest editorial. Special issue on networked control systems.
IEEE Trans. Automat. Control, 49(9):1421–1423, 2004.

14 Gera Weiss, Sebastian Fischmeister, Madhukar Anand, and Rajeev Alur

6. Bosch. CAN Specification, Version 2. Robert Bosch GmbH, September 1991.
7. A. Cervin, D. Henriksson, B. Lincoln, J. Eker, and K.-E. Årzén. How does control timing

affect performance? IEEE Control Systems Magazine, 23(3):16–30, 2003.
8. J. Ferreira, P. Pedreiras, L. Almeida, and J. Fonseca. The FTT-CAN protocol for flexibility

in safety-critical systems. IEEE Micro, 22(4):46–55, July-Aug. 2002.
9. S. Fischmeister, O. Sokolsky, and I. Lee. A Verifiable Language for Programming Commu-

nication Schedules. IEEE Trans. on Comp., 56(11):1505–1519, Nov. 2007.
10. T. Führer, B. Müller, W. Dieterle, F. Hartwich, R. Hugel, and M. Walther. Time Triggered

Communications on CAN (Time Triggered CAN - TTCAN). In Proceedings 7th Interna-
tional CAN Conference, Amsterdam, Netherlands, 2000.

11. D. Hristu-Varsakelis and W. S. Levine, editors. Handbook of Networked and Embedded
Control Systems. Birkhäuser, 2005.

12. S. Kawamura and Y. Furukawa. Automotive electronics system, software, and local area
network. Hardware/software codesign and system synthesis, International conference on,
0:2–2, 2006.

13. H. Kopetz. Real-time Systems: Design Principles for Distributed Embedded Applications.
Kluwer Academic Publishers, 1997.

14. D. Liberzon. Switching in systems and control. Systems & Control: Foundations & Appli-
cations. Birkhäuser Boston Inc., Boston, MA, 2003.

15. H. Lin and P. J. Antsaklis. Stability and persistent disturbance attenuation properties for
a class of networked control systems: switched system approach. Internat. J. Control,
78(18):1447–1458, 2005.

16. J. Liu. Real-Time Systems. Prentice-Hall, New Jersey, 2000.
17. http://www.mathworks.com/products/matlab.
18. M. Morari, C. Garcia, and D. M. Prett. Model predictive control: Theory and practice.

Automatica, 25(3):335–348, 1989.
19. H. Park, Y. Kim, D. Kim, and W. Kwon. A scheduling method for network-based control

systems. IEEE Trans. on Control Systems Technology, 10(3):318–330, May 2002.
20. A. Ray and Y. Halevi. Integrated communication and control systems: Part II–Design con-

siderations. ASME, 110:374–381, 1988.
21. M. A. Sánchez-Puebla and J. Carretero. A new approach for distributed computing in avion-

ics systems. In ISICT ’03, pages 579–584. Trinity College Dublin, 2003.
22. K. Steinhammer, P. Grillinger, A. Ademaj, and H. Kopetz. A Time-Triggered Ethernet (TTE)

Switch. In Proc. of the Conference on Design, Automation and Test in Europe (DATE),
pages 794–799, 3001 Leuven, Belgium, Belgium, 2006. European Design and Automation
Association.

23. G. Walsh, H. Ye, and L. Bushnell. Stability analysis of networked control systems. Control
Systems Technology, IEEE Transactions on, 10(3):438–446, 2002.

24. P. Wen, J. Cao, and Y. Li. Design of high-performance networked real-time control systems.
IET Control Theory and Applications, 1(5):p1329 – 1335, 20070901.

25. L. Yliniemi and K. Leiviskä. Process control across network. In PDCN’06, pages 168–173,
Anaheim, CA, USA, 2006. ACTA Press.

26. W. Zhang, M. Branicky, and S. Phillips. Stability of networked control systems. Control
Systems Magazine, IEEE, 21(1):84–99, Feb 2001.

27. W. Zhang and L. Yu. Output feedback stabilization of networked control systems with packet
dropouts. IEEE Trans. Automat. Control, 52(9):1705–1710, 2007.

