
Automata Based Interfaces for

Control and Scheduling

Gera Weiss and Rajeev Alur

University of Pennsylvania
{gera,alur}@seas.upenn.edu

Abstract. We propose the use of formal languages of infinite words over
the alphabet of task identifiers as an interface between control designs
and software implementations. We argue that this approach is more flex-
ible than the classical real-time scheduling framework based on periodic
tasks, and allows composition of interfaces by language-theoretic opera-
tions. We show that finite automata over infinite words offer analyzable
representation and can capture many interesting interface specifications
such as exponential stability of switched linear systems.

1 Introduction

Modern software engineering heavily relies on clearly specified interfaces for sepa-
ration of concerns among designers implementing components and programmers
using those components. The interface of a component describes the function-
ality and constraints on the correct usage in a succinct manner. For example,
the interface of a Java class describes all the methods it supports, along with
the types of input and output parameters for each method, and client code is
written based on this interface without much understanding of the implementa-
tion of these methods. The need for interfaces is evident for assembling complex
systems from components, but more so in control applications where the com-
ponents are designed by control engineers using mathematical modeling tools
and invoked by software executing on digital computers. The notion of an inter-
face for a control component must incorporate some information about timing,
and standard programming languages do not provide a way of capturing such
resource requirements (cf. [1, 2]).

In current practice, typically the real-time aspect of the interface of a con-
trol component is captured by a period, sometimes along with a deadline, which
specifies the frequency at which the component must execute. The control en-
gineer makes sure that the control objectives will be met as long as the com-
ponent is executed consistent with its period. The software (for example, the
real-time operating system) performs a worst-case execution time analysis on all
the components, followed by schedulability analysis to check whether all the tim-
ing requirements can be met (cf. [3, 4]). Using period as an interface specification
of a control component is simple and intuitive, but has some key deficiencies.
First, a specification such as “execute the component every 5ms” does not say

whether the scheduler should or should not execute it more frequently if enough
computing resources are available. Second, such specifications do not compose
in the sense that a system composed of two control components cannot be speci-
fied by a single period. These deficiencies create problems for integrating control
components, and this has led researchers to explore many variations of the basic
real-time scheduling framework [4, 3, 5].

In this paper, we propose to use formal languages as interfaces for control
components. Our approach can be best explained using an example. Consider
a control component with two tasks 1 and 2. Assuming that there is a single
processor that is allocated in discrete slots of some fixed duration, a schedule
with respect to this component can be described by an infinite word over the
alphabet {0, 1, 2}, where 0,1,2, respectively, denote that the processor executes
neither, first, second task of this component. The control engineer can express
the interface of the component as an ω-language (see [6] for an introduction to
theory of languages of infinite words) that contains all acceptable schedules. The
software must ensure, then, that the runtime allocation is in this language. The
main benefit of this approach is composability: conjoining specifications of two
components corresponds to a simple language-theoretic operation on interfaces
(for instance, renaming of alphabet symbols and intersection). Schedulability
analysis corresponds to checking the emptiness of the language of acceptable
schedules. Another benefit of this approach is predictability. A mathematical
formulation of sets of schedules allows for an analysis of the type used for static
(fixed) schedules. This may allow dynamic scheduling for safety critical control
systems [7].

More specifically, we focus on discrete-time switched linear systems, and ex-
plore the use of finite Büchi automata as interfaces. Using automata as specifi-
cations fits nicely with current trends in type systems and static analysis tools.
While control engineers may be less familiar with automata, we show that a
variety of scheduling constraints can be expressed as automata. A sample speci-
fication expressible by finite automata is the language of all schedules such that
any subsequence of length ℓ is contracting at least by ǫ, where ℓ and ǫ are pa-
rameters. Periodic schedules can be expressed using automata, and can also be
composed (for example, the set of all schedules such that 1 appears at least once
every five slots and 2 appears at least once every 6 slots). The properties studied
in this paper are, so called, safety properties. Safety properties are properties of
systems such that every violation of a property occurs after a finite execution.
Such properties can be used for online detection of violation of constraints.

While automata-based specifications are flexible, composable, and analyz-
able, they can express only regular languages. We show, for example, that set
of all schedules that ensure stability is not regular. This fact does not necessar-
ily means that regular languages are not suitable for the purpose of specifying
scheduling constraints for control tasks. For example, the set of schedules that
ensures stability is not regular because the definition of stability allows unlimited
excursion from the control objective. This, of course, is not desirable in practical

applications. We show that some common stronger stability requirements, such
as periodic and exponential stability, are regular.

Related Work

The use of automata as formal specification is common. Frameworks such as I/O
automata [8] and interface automata [9] are focussed on capturing functionality
and interaction of individual components, while timed automata have been used
for schedulability analysis [10]. As far as we know, the idea of using formal
languages and Büchi automata as an interface to capture the set of acceptable
schedules over the alphbet of task identifiers, does not appear in the literature.

There are many approaches to scheduling safety-critical control systems [7,
11–13]. Most dynamic scheduling approaches are based on priority; that is, a
task is dynamically chosen according to a priority order. In this case, the anal-
ysis of the effect of scheduling on control performance becomes difficult and
inaccurate. The other popular approach is static scheduling - tasks are executed
in a predetermined order. Static schedules can be analyzed to verify the effect of
scheduling on control performance but they restrict the scheduling of sporadic
tasks to fixed slots [14]. The approach presented in this paper is a way in the
middle: it allows to model a set of schedules for which the effect of scheduling is
verified.

Our work also relates to the research on stability of switched systems [15–18].
Most of the stability results for switched systems are about stability under all
switching signals. This point of view regards switching as an uncontrolled signal.
We, instead, identify those switchings that render the system stable. This point
of view is appropriate for scheduling, where we have some control over switching
but need the smallest set of constraints.

The only attempt, we know of, to use automata to describe stability related
criteria for switched systems is given in [19]. For polyhedral norms, it is shown
that if a switched system satisfies ‖Ai‖ ≤ 1 for all i ∈ I then the set {σ ∈ I∗ :
‖Aσ‖ < 1} is regular. It is also shown that the language {σ ∈ I∗ : ‖Aσ‖ < ǫ}
may not be context free for ǫ < 1.

2 Problem formulation and main results

A discrete-time switched linear system is modeled by a finite set of real n × n
matrices Σ = {Ai}i∈I , |I| < ∞. Infinite words are used to describe schedules.
Given a schedule σ ∈ Iω and an initial state x0 ∈ R

n, the dynamics of the system
is given by

xk+1 = Aσk
xk. (1)

One interpretation of this model is as an abstraction of control mode schedul-
ing. In this interpretation, one assumes that the choice of a control mode induces
a linear transformation over the state variables. A schedule induces a sequence
of transformations that gives rise to the dynamics formulated in equation (1).

Given a finite word σ = σ1 · · ·σl, we will use Aσ = Aσl
· · ·Aσ1

to denote the
transformation induced by the finite schedule σ.

In the following propositions we identify some types of constraints that are
expressible by Büchi automata. A Büchi automaton is a tuple A = (Q, I, δ, q0, F),
where Q is a finite set of states with q0 ∈ Q an initial state, I is an alphabet,
δ : Q × I → 2Q is a transition function and F ⊆ Q is a set of accepting states.
A run of the automaton A on an infinite word σ ∈ Iω is an infinite sequence
q0, q1, . . . of states such that qk+1 ∈ δ(qk, σk) for every k ∈ N. The run q0, q1, . . .
is accepting if qk ∈ F for infinitely many k’s. An infinite word σ ∈ Iω is accepted
by A if there exists an accepting run for σ. The automaton is called deterministic
if |δ(q, i)| = 1 for all q ∈ Q and i ∈ I. Deterministic automata give a unique run
for every input word. In the setting of this paper, the alphabet is the set of task
identifiers.

A safety automaton is such that there is no transition from a non-accepting
state to an accepting state. Such automata specify safety properties, namely,
those properties where a violation of the property can be detected after only a
finite execution of the system.

Liveness properties, on the other hand, are conditions that will eventually
hold. A typical example of a liveness property is: “task x is executed infinitely
often”. One may use such a requirement, for schedulability analysis, in early
design phases when an explicit bound is not provided. Other examples of liveness
properties involve interaction with the environment. Since this paper is focused
on scheduling, we restricted attention to automata whose alphabet is the set of
task identifier. To allow finer specifications, one may add symbols that model
observations. Then, a specification such as: “if an event is detected infinitely
often, eventually some process is invoked” may be useful.

In diagrams representing Büchi automata, we adopt the following graphical
convention: if a symbol does not decorate any transition going out of a state
then an implicit transition to a non accepting sink (a state with self loop for all
the symbols) is assumed for this symbol.

The next two propositions show that many natural requirements that appear
in control applications can be expressed using safety automata.

Proposition 1. Given a switched system, the following languages can be recog-
nized by a deterministic safety Büchi automaton:

1. Exponential stability: for 0 < ǫ < 1 and l ∈ N; the language of all schedules
such that any interval of length l is contracting by at least ǫ

ExpStab(l, ǫ) = {σ ∈ Iω : ‖Aσk+l
· · ·Aσk+1

‖ < ǫ for every k ∈ N}.

2. Directional growth: for c ∈ R
n, δ > 1 and l ∈ N; the language of all schedules

such that the projection on c grows exponentially fast,

DirG(c, δ, l) =

{σ ∈ Iω : |〈c, Aσk+l
· · ·Aσk+1

x〉| > δ|〈c, x〉| for every k ∈ N and x ∈ R
n}.

3. Cost function: for positive definite matrices Q1, . . . , Qm, horizon h ∈ R and
maximal cost J ∈ R;

Cost(Q1, . . . , Qm, h, J) =

{σ ∈ Iω :

k0+h
∑

k=k0

m
∑

i=1

xT
k Qixk < J for every k0 ∈ N and xk0

∈ R
n}.

The above languages are examples of control performance type of constraints.
These constraints refer to the model of the system. In the next proposition, we
give some languages that represent constraints that are not directly related to
the model of the plant as a switched system. These languages represent exter-
nal considerations such as sensor or actuator usage constraints. They can also
represent scheduling constraints that come from the implementation (e.g. if the
implementation can only handle periodic schedules).

Proposition 2. The following languages can be recognized by a deterministic
safety Büchi automaton:

1. Minimal separation: for i, j ∈ I and mi,j ∈ N; the language of all schedules
that separate the schedule of mode i from mode j by at least mi,j slots,

MinSep(i, j, mi,j) = {σ ∈ Iω : σk = i =⇒ j /∈ {σk+1, . . . , σk+mi,j
}}.

2. Maximal separation: for i, j ∈ I and Mi,j ∈ N; the language of all schedules
that separate the schedule of mode i from mode j by at most Mi,j slots,

MaxSep(i, j, Mi,j) = {σ ∈ Iω : σk = i =⇒ j ∈ {σk+1, . . . , σk+Mi,j
}}.

3. Periodic execution: for i ∈ I and Pi ∈ N; the language of all schedules that
execute mode i every Pi slots,

Per(i, Pi) =

{σ ∈ Iω : σk = i =⇒ σk+Pi
= i and σk+j 6= i for all j = 1, . . . , Pi − 1}.

4. Dependency: for a relation R ⊂ I × I; the language of all schedules such that
mode i executes after mode j only if (i, j) ∈ R,

Dep(R) = {σ ∈ Iω : (σk, σk+1) ∈ R for every k ∈ N}.

5. Sequential execution: for an ordered tuple (i1, . . . , il) ⊆ I l; the language of
all schedules such that modes i1, . . . , il are executed periodically in a sequence
(other modes may get in between),

Seq(i1, . . . , il) = {σ ∈ Iω : π(σ, {i1, . . . , il}) is a prefix of (i1 · · · il)
ω}.

where π(σ, S) denotes the projection of the word σ over the set S, i.e., the
word obtained by deleting from σ all the letters not in S.

6. Cyclic schedules: for P ∈ N; the set of cyclic schedules with cycle length C

Cyc(C) = {σ ∈ Iω : σk+C = σk for all k ∈ N}

Since the set of languages expressible by deterministic safety Büchi au-
tomata is closed under finite intersections and unions, disjunctions and conjunc-
tions of the above constraints are also expressible. For example, we can express
that modes i and j should interlace every 10 execution slots by the formula
Per(i, 20) ∩ Per(j, 20) ∩ MinSep(i, j, 10) ∩ MaxSep(i, j, 10). Of course, finite
automata can model many other languages. The above list is only a collection
of examples, put together in order to convince the reader that many typical
specifications are expressible using automata.

The above propositions, together with the succeeding example, show that
control engineers do not have to construct automata manually. We envision a
tool that accepts specifications in a language tailored to allow easy scheduling
specifications for control systems. The tool may take specifications of the form
exhibited in the proposition, allowing to combine them using logical operators.
The output of this tool can be a finite automaton representing all acceptable
schedules for the system.

From the software engineering perspective, a representation of scheduling
constraints by finite automata lets a scheduling mechanism use all the flexibility
allowed by the control system. This gives the flexibility of dynamic schedul-
ing with the predictability of static scheduling. Assume, for example, that we
want to control several systems by the same computer. Each system poses some
scheduling constraints. If these constraints are expressed by automata, the in-
tersection can be easily computed. If the intersection is not empty, the system
is schedulable. In this setting, each subsystem has a distinct matrix A0 that
models the behavior of the system when the processor is assigned to control
another subsystem. In other settings, it can be that controlling one system has
an affect on the other systems. Such dependencies can be easily incorporated
into the automata composition algorithm using an adequate renaming of the al-
phabet. This approach also allows to schedule non-control tasks more efficiently.
The automaton that represents the intersection can also be used as an admission
control mechanism (if we want to allow online registration of new subsystems).

For completeness, we exhibit some limitations of using automata to express
scheduling constraints for control systems. In the following proposition, we iden-
tify a type of constraint not expressible using automata. A language of finite
words is called regular if it can be accepted by a finite automaton.

Proposition 3. For a switched system, if there exits i ∈ I such that Ai is not
stable (one of its eigenvalues is not in the complex unit disc) then the language

L = {σ ∈ I∗ : ‖Aσ‖ < 1}

is either empty or not regular.

This result implies that we cannot model the set of all finite schedules, σ ∈ I∗,
such that ‖Aσx‖ < ‖x‖ for every x ∈ R

n. This language corresponds to the set
of periodic schedules for which every period is contracting.

Intuitively, the reason this language is not regular is because a contracting
word may begin with an arbitrarily long expanding prefix. The only way to check
that an expansion is compensated is to count arbitrarily high (a formal proof
is given in Section 5 below). We argue that the key property that makes this
language irregular, also makes it inadequate for scheduling specifications of con-
trol modes. Requiring that the transformation be contracting does look natural
at the first glance, since it means that perturbations are steered to equilibrium.
However, allowing an arbitrarily long expansion is not usually acceptable be-
cause it means that perturbations may explode before they are cleared. To fix
this problem we offer constraints of the type given in Proposition 1, where an
explicit bound on the maximal length of an excursion is given. Such requirements
capture practical control constraints and are describable by finite automata.

3 Compositional schedulability analysis

Consider a control system composed of l subsystems of dimensions n1, . . . , nl

(the state space of the ith subsystem is R
ni , i = 1, . . . , l, and the state space of

the whole system is R
n = R

n1 ×· · ·×R
nl). Assume that the system is controlled

by a single computer and that the control engineer designed m control tasks.
In each computation slot, the states of the subsystems are transformed, de-

pending on the task scheduled for execution in this slot. Assuming that the
transformations are linear and time invariant, we can model this dependency by
a map

A : {1, ..., m} → R
n1×n1 × · · · × R

nl×nl

that takes a task identifier to a list of matrices. The ith matrix in A(j) models
the transformation of the state of the ith subsystem when task j is scheduled
for execution.

Given a requirements specification for each subsystem, based on the propo-
sitions in Section 2, we can compute a Büchi automaton for every subsystem.
This automaton specifies the sequences of task executions that will not violate
the specification of the subsystem.

Since there are efficient algorithms to find an automaton recognizing the in-
tersection of the languages recognized by a finite set of automata, there is an
efficient way to get the set of schedules that keep all subsystems within their
requirements. An empty intersection means that the system is not schedulable.
A nonempty intersection can be used for dynamic or static scheduling mecha-
nisms, or serve for further schedulability analysis (by intersecting it with another
automaton).

When a new subsystem is added, we do not need to repeat all the computa-
tion. Once the automaton specifying the requirements for the new subsystem is
computed, it can be intersected with the product of the other subsystems.

Assume that we want to add a control task m+1 such that the ith matrix in
the list A(m + 1) is the same as the ith matrix in A(j) for some j ∈ {1, . . . , m}.
This happens when the effect of task m + 1 on the ith subsystem is the same as
the effect of the task j on that subsystem. In that case, the automaton for the

requirements of the ith subsystem can be adjusted incrementally by adding an
m + 1 transition whenever a j transition exists.

One practical example, is when each task is designed to regulate a specific
subsystem. In this case, each subsystem is assigned with a list of matrices. The
list Li = (A0, . . . , Ami

) describes the possible transformations of the state of the
ith system. The first element in this list, A0, models the response of the system
when the controller attends another subsystem. Then, task identifiers are pairs
(i, j) and the global map is

A(i, j) = (L1(0), . . . , Li(j), . . . , Ll(0)).

Namely, when the jth transformation of the ith subsystem is scheduled for exe-
cution, all other subsystems are transformed according to the first entry in their
list. In this case, schedulability analysis is completely compositional: when a new
subsystem is defined, schedulability analysis reduces to computing the product
of the automaton for the new subsystem with the automaton for the rest of the
system (in both automata, the missing alphabet symbols are identified with the
zero symbol).

4 Examples

Consider the system Σ = {A1, A2} where A1 =

(

2 − 7

4

2 −2

)

and A2 =

(

1

4

7

4
1

4
− 1

4

)

.

Both A1 and A2 are stable (their eigenvalues lie in the unit ball of the complex
plain), but their product is not stable. In particular, the schedule σ = 1212 . . .

steers the initial state
(

1, 1
)T

arbitrarily far from the origin and so does the

schedule σ = 2121 . . . to the vector
(

1, 0
)T

.

Figure 1 depicts an automaton that models the set of schedules that satisfy
ExpStab(4, 1) = {σ ∈ {1, 2}ω : ‖Aσk+4

· · ·Aσk+1
‖ < 1 for every k ∈ N}. This

automaton was constructed by first computing the set

{1112, 1121, 1211, 1212, 1222, 2111, 2121, 2122, 2212, 2221}

of the words of length four that are not contracting. Then, an automaton that
rejects any infinite word that contains one of these four letter words as a sub-
word was derived.

Assume that, in addition to the above constraint, we are not allowed to
apply the first mode consecutively more than two times. Such a constraint may
arise when A1 models the use of some sensor or actuator that needs a time to
re-calibrate after two consecutive operations. This is captured by the language
MaxCon(1, 2) whose automaton is given in Figure 2. The language that captures
both constraints together is ExpStab(4, 1)∩MaxCon(1, 2) whose automaton is
given in Figure 3.

21

1

12

2 1

2

1

2

1

2

1

2

21

Fig. 1. A deterministic Büchi automaton for ExpStab(4, 1).

1 1

2
2

2

Fig. 2. A deterministic Büchi automaton for MaxCon(1, 2).

12

12 1 2

21

1 2

2

2

1

Fig. 3. A deterministic Büchi automaton for ExpStab(4, 1) ∩ MaxCon(1, 2).

5 Proofs

In this section we give the proofs of the propositions brought in Section 2. The
proofs are constructive. In particular the proofs of Proposition 1 and Proposi-
tion 2 suggest algorithms to compute the automata representations. The con-
structions provided in the proofs will not always give the smallest possible au-
tomata. For practical use, an automata minimization algorithm may be needed
(cf. [20]).

Since this paper is intended for both control theoretic and computer science
audience, we include some details that may seem trivial to some readers.

Proof (of Proposition 1).

The language ExpStab(l, ǫ) is the language of all infinite words that avoid
any word σ ∈ I l such that ‖Aσ‖ ≥ ǫ. For each such word we can construct the au-
tomaton that describes the language of infinite words that avoid it as a sub-word
(see Figure 4 for an example), and then take the intersection. Note that there
are only finite number of such words. Similarly, the language DirG(c, δ, l) is the
language of of all words such |〈c, Aσx〉| > δ|〈c, x〉| for every subword σ of length

l and any x ∈ R
n. For each σ ∈ I l, we can compute Bσ := minx∈Rn

|〈c,Aσx〉|
|〈c,x〉| .

Then, DirG(c, δ, l) is the language of infinite words in which none of the words
{σ ∈ I l : Bσ < δ} appear as a subword. Again,there is only a finite num-
ber of such words. For the language Cost(Q1, . . . , Qm, h, J), consider the set

S = {σ ∈ I l : maxx∈Rn

∑l

i=1

∑m

j=1
(Aσi

· · ·Aσ1
x)T Qj(Aσi

· · ·Aσ1
x) ≥ J}. The

language Cost(Q1, . . . , Qm, h, J) is the set of all infinite words that do not con-
tain any of the words in S as a subword. ⊓⊔

Proof (of Proposition 2).

Figure 5 depicts an automaton that accepts MinSep(i, j, mi,j). The automa-
ton counts the letters different from j after each occurrence of i and moves to a
non-accepting state when a j is too close to an i. Since we do not need to count
more than mi,j , the automaton is finite. The automaton for MaxSep(i, j, Mi,j) is
similar. We need to carry the same counting but accept only words for which the
counter does not exceed the limit. See Figure 6 for an automaton that accepts
Per(i, 3). Generalization to arbitrary period is straightforward. Figure 7 depicts
an automaton that accepts only words in which only mode j is allowed to follow
mode i. If we are given a relation, R, as a set of ordered pairs, we can construct
an automaton as in Figure 7 for each pair and take the union of the languages.
See Figure 8 for an automaton that accepts the language Seq(1, 2, 3). This ex-
ample can be easily extended to longer sequences and other indices. For the
language Cyc(C), consider the automaton depicted in Figure 9. Let L(i, m, C)
be the language of all infinite words such that, starting with the mth letter,
Cth letter is again i. This language can be accepted by an automaton similar
to the one given in Figure 9 (possibly with different initial and cycle counts).
Then, the language Cyc(C) is given as the union of L(i, m, C) over all i ∈ I and
m = 1, . . . , C. ⊓⊔

Proof (of Proposition 3).
Assume towards contradiction that the language is regular but not empty.

By the pumping lemma, there is p > 0 such that for every w ∈ L there are words
x, y, z ∈ I∗ such that w = xyz, |xy| ≤ p, |y| > 0 and xykz ∈ L for every k ≥ 0.
Since L is not empty there is a word u ∈ L. In particular Au is contracting. There
must be an m ∈ N such that ‖Am

u Ap
i ‖ < 1 because ‖Am

u Ap
i ‖ ≤ ‖Au‖

m‖Ai‖
p

which is smaller than one for every m larger than log‖Au‖(‖Ai‖
−p). Consider

the word w = ipum. This word is in L because ‖Am
u Ap

i ‖ < 1. By the pumping
lemma, the words ilum must also belong to L for every l ∈ N. But this leads
to a contradiction because we allow arbitrarily large expansion before a fixed
contraction which will eventually give an expanding product. ⊓⊔

1 2 1 2

2,3 1

3

2,3 1

3
1

2

Fig. 4. A deterministic Büchi automaton that accepts all infinite words that avoid the
subword 12123.

I \ {i}

i

i

I \ {i, j}

i

i

j

mi,j times

I \ {i, j}

Fig. 5. A deterministic Büchi automaton that accepts MinSep(i, j, mi,j).

I \ {i}

i I \ {i} I \ {i}

i

Fig. 6. A deterministic Büchi automaton that accepts Per(i, 3).

I \ {i}
i

j

Fig. 7. A deterministic Büchi automaton that accepts Dep({(i, j)}).

I \ {1, 2, 3}

1 2

I \ {1, 2, 3} I \ {1, 2, 3}

3

Fig. 8. A deterministic Büchi automaton that accepts Seq(1, 2, 3).

I I II I i

i

Fig. 9. A deterministic Büchi automaton that accepts words with i as the third letter
and then every fourth letters.

Acknowledgments

We thank George Pappas, Oded Maler and Truong Nghiem for fruitful discus-
sions. This research was supported by NSF grants CCR 0410662 and CSR-EHS
0509143.

References

1. Sastry, S., Sztipanovits, J., Bajcsy, R., Gill, H.: Modeling and design of embedded
software. Proceedings of the IEEE 91(1) (2003)

2. Lee, E.: What’s ahead for embedded software. IEEE Computer (2000) 18–26
3. Kopetz, H.: Real-Time Systems: Design Principles for Distributed Embedded Ap-

plications. Kluwer Academic Publishers (2000)
4. Buttazo, G.: Hard real-time computing systems: Predictable scheduling algorithms

and applications. Kluwer Academic Publishers (1997)
5. Shin, I., Lee, I.: Compsitional real-time scheduling framework. In: Proceedings of

the 25th IEEE Real-Time Systems Symposium. (2004)

6. Thomas, W.: Automata on infinite objects. In van Leeuwen, J., ed.: Handbook
of Theoretical Computer Science. Volume B. Elsevier Science Publishers (1990)
133–191

7. Balarin, F., Lavagno, L., Murthy, P., Sangiovanni-vincentelli, A.: Scheduling for
embedded real-time systems. IEEE Design and Test of Computers 15(1) (1998)
71–82

8. Lynch, N., Segala, R., Vaandrager, F.: Hybrid I/O automata. Information and
Computation 185(1) (2003) 105–157

9. de Alfaro, L., Henzinger, T.: Interface theories for component-based design. In:
Embedded Software, First International Workshop. LNCS 2211, Springer (2001)
148–165

10. Abdeddäım, Y., Maler, O.: Job-shop scheduling using timed automata. In: CAV
01: Proc. of 13th Conf. on Computer Aided Verification. LNCS 2102, Springer
(2001) 478–492

11. Balbastre, P., Ripoll, I., Crespo, A.: Control tasks delay reduction under static
and dynamic scheduling policies. rtcsa 00 (2000) 522

12. Bate, I., Burns, A.: A framework for scheduling in safety-critical embedded control
systems. In: RTCSA ’99: Proceedings of the Sixth International Conference on
Real-Time Computing Systems and Applications, Washington, DC, USA, IEEE
Computer Society (1999) 46

13. Cervin, A.: Improved scheduling of control tasks. In: Proceedings of the 11th
Euromicro Conference on Real-Time Systems, York, UK (1999) 4–10

14. Audsley, N., Tindell, K., Burns, A.: The end of the line for static cyclic scheduling?
In: Real-Time Systems, 1993. Proceedings., Fifth Euromicro Workshop on on Real-
Time Systems. (1993)

15. Blondel, V.D., Tsitsiklis, J.N.: The boundedness of all products of a pair of matrices
is undecidable. Systems Control Lett. 41(2) (2000) 135–140

16. Hespanha, J., Morse, A.: Stability of switched systems with average dwell-time
(1999)

17. Liberzon, D.: Switching in systems and control. Systems & Control: Foundations
& Applications. Birkhäuser Boston Inc., Boston, MA (2003)

18. Schultz, P.: Research Problems: Mortality of 2×2 Matrices. Amer. Math. Monthly
84(6) (1977) 463–464

19. Gurvits, L.: Stability of discrete linear inclusion. Linear Algebra Appl. 231 (1995)
47–85

20. Etessami, K., Holzmann, G.J.: Optimizing Büchi automata. Lecture Notes in
Computer Science 1877 (2000) 153+

