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Abstract. We consider the problem of verifying reachability properties
of stochastic real-time systems modeled as generalized semi-Markov pro-
cesses (GSMPs). The standard simulation-based techniques for GSMPs
are not adequate for solving verification problems, and existing symbolic
techniques either require memoryless distributions for firing times, or ap-
proximate the problem using discrete time or bounded horizon. In this
paper, we present a symbolic solution for the case where firing times are
random variables over a rich class of distributions, but only one event
is allowed to retain its firing time when a discrete change occurs. The
solution allows us to compute the probability that such a GSMP satis-
fies a property of the form “can the system reach a target, while staying
within a set of safe states”. We report on illustrative examples and their
analysis using our procedure.

1 Introduction

Engineering of complex systems such as hardware devices, communication proto-
cols, multimedia systems and networks requires accurate reliability modeling and
performance evaluation at many stages of development [8,10]. For such systems,
it is often the case that the event occurrence times, which determine the evolu-
tion of a system, interactions between components and between a system and
its environment can be described by probabilistic assumptions. This observation
has led to extensive research on probabilistic model checking of probabilistic and
stochastic models. The goal of probabilistic model checking is to check algorith-
mically that a model of a system satisfies a probabilistic correctness property,
for example, “every message is delivered within 1ms with probability 0.9.”

Recently, results were obtained on model checking of discrete and continu-
ous time Markov chains (DTMCs and CTMCs), with specifications written in
temporal logics such as PCTL and CSL [5, 11, 12]. While CTMCs can be used
as building blocks to approximate distributions with unbounded support [7], ap-
proximation of distributions whose support is bounded, for instance, uniform
or beta distributions, is problematic. It may be a serious restriction in mod-
eling of real-time systems with mutually exclusive events. To circumvent this
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restriction non-Markovian formalisms were proposed, but they either require
that non-exponential distributions are deterministic [13], or that at any given
moment there is at most one active event with a general distribution [6].

Our goal is to develop algorithms for the probabilistic model checking prob-
lem for systems modeled as Generalized Semi-Markov Processes (GSMPs) [8, 9,
15]. In our model of finite-state GSMPs, the system can be in one of the finitely
many states, and can have a finite number of scheduled events. When the event
with the least remaining firing time happens, the state is updated probabilis-
tically, and new events can be scheduled at times chosen randomly according
to the specified distributions. In [2], the authors show how to check qualita-
tive probabilistic properties, that is, whether a GSMP satisfies a property with
probability 0 or 1, and this analysis is based on the so-called region graph intro-
duced for analysis of non-probabilistic real-time systems modeled using timed
automata [3]. In a recent paper, we showed that if we are given a bound on the
number of events, then exact symbolic analysis for verifying quantitative prob-
abilistic properties of GSMPs is possible [1]. None of these techniques, however,
suggest a general method for symbolic analysis of GSMPs.

In this paper, we present a symbolic analysis technique for the class of GSMPs
where firing times are random variables over a rich class of distributions, but only
one event is allowed to retain its firing time when a discrete change occurs. We
call this class of processes 1GSMPs. In particular, we focus on model checking of
until properties: given a set of destination and safe locations, we wish to compute
the probability that an execution of the 1GSMP will reach a destination location
while staying within the set of safe locations.

In our solution, we first derive a system of integral equations of harmonic
functions such that each function is associated with a region of clock values in a
particular location, and gives the probability of satisfying the until property as
a function of the firing time of the stateful clock upon entry. This step can be
easily generalized to work for all GSMPs.

In [14], the integral equations of similar structure were proposed for a related
problem for semi-Markov processes. The authors cited [8], noting that solving
these equations either by using numerical methods for integral equations or by
applying Laplace transforms is not practical and works only for small models.
In this paper, we describe a novel method that directly transforms the system of
the integral equations into a system of ordinary differential equations. Each inte-
gral term in an integral equation is converted into a sum of differentials of newly
introduced unknown functions (we call such functions ‘auxiliary’) and GSMP
density functions. The original unknown functions and the auxiliary functions
are linked by differential equations. The algorithm that constructs such equa-
tions uses the characterization of the density functions as solutions of linear
homogeneous ordinary differential equations. The resulting system can then be
solved to compute the desired probability for any given initial state.

We illustrate the proposed modeling and analysis techniques using classical
examples of component failures and of a GI/G/1 queue [4].



2 Generalized Semi-Markov Processes

Let N be the set of all natural numbers, N0 be N ∪ {0}, R be the set of reals,
and R+ be the set of all non-negative reals.

We start by reviewing some facts from the theory of differential equations
and the probability theory. The solutions to the class of differential equations
that we will describe form a class of expressions that we will use later to define a
class of density functions, that, in turn, will be used in the definition of GSMPs.

2.1 Preliminaries

Linear homogeneous ordinary differential equation with constant coefficients
(LHODE) of order n is an equation of the form

an
dn

dxn
y(x) + an−1

dn−1

dxn−1
y(x) + · · · + a1

d
dx

y(x) + a0y(x) = 0,

where a0, . . . , an ∈ R.
Characteristic equation for this LHODE is anλn+an−1λ

n−1+· · ·+a1λ+a0 =
0. This equation has exactly n (complex, possibly repeated) roots and they
determine, up to constants, all solutions of the LHODE.

Specifically, if there are λ1 = · · · = λk, k ≥ 1 real repeated roots, then
LHODE has a solution y(x) = eλ1x(c1 + · · · + ckxk−1), where c1, . . . , ck ∈ R

are arbitrary constants. If λ1 = · · · = λk are complex repeated roots equal to
α + βi, α, β ∈ R and β �= 0, then the equation should also have k repeated
conjugate roots λ̄1 = · · · = λ̄k equal to α − βi. All these 2k roots correspond to
a solution y(x) = eαx(c1 + · · · + ckxk−1) sin βx + eαx(d1 + · · · + dkxk−1) cosβx,
where c1, . . . , ck, d1, . . . , dk ∈ R are arbitrary constants. Summing solutions for
such groups of roots we obtain the general solution for the LHODE.

We say that expr(x) is a DESOL expression iff it is a sum of terms, such that
each term is either of the form cxmeμx sin(αx) or of the form cxmeμx cos(αx),
where c, μ, α ∈ R and m ∈ N0. For every DESOL expression it is possible to
construct an LHODE that has this expression as its solution. This ‘encoding’ of
the DESOL expressions with LHODEs will be used later in Section 4 to convert
a system of integral equations into a system of differential equations.

Let Expr(x) be the set of all DESOL expressions. Consider a partition Ra =
∪a

i=1{(i− 1, i]} of (0, a], which consists of a unit intervals. The constant a is the
width of Ra. Let Int(x ) be a function defined for all x ∈ (0, a], such that if x ∈ (i−
1, i], then Int(x ) = i. We say that a function f(x) is piecewise DESOL function,
with finite support on Ra, if there exists a map Mf : {1, . . . , a} → Expr(x), such
that for all x ∈ (0, a], f(x) = Mf(Int(x))(x′), where x′ = x− Int(x)+1. Thus to
compute f(x), we determine the interval of Ra to which x belongs, find DESOL
expression for this interval and then evaluate this expression at x′. Notice, that
x′ ∈ (0, 1], so every expression is evaluated only in that interval. This leads
to simplifications in our algorithm. By f j(x), 1 ≤ j ≤ a we will denote the
expression of f(x) that corresponds to the interval (j − 1, j].



In a GSMP the time between scheduling an event and its occurrence (or
firing time) is modeled as a positive random variable. A random variable X is
characterized by its cumulative distribution function (cdf) distr (x) = Pr(X <
x), and if distr (x) is continuous then also by probability density function (pdf)
dens(x) defined by the equation distr(x) =

∫ x

0 dens(y) dy.
A unidimensional random variable X has a DESOL distribution of width a,

if there exists a piecewise DESOL function dens(x) ≥ 0 on Ra, such that for all
t ∈ R+, Pr(X < t) =

∫ t

0
dens(y) dy 1.

2.2 Modeling Stochastic Processes

A finite-state generalized semi-Markov process (GSMP) with the firing distribu-
tions of width a is a tuple G = (Q, Σ, E, init , distr ,next) where:
– Q is a finite set of locations;
– Σ is a finite set of events;
– E : Q → 2Σ assigns to each location q ∈ Q a set of events that are active in

q. A location q is absorbing iff E(q) = ∅;
– init : Q → [0, 1] is a probability measure on Q, which for each location q ∈ Q

gives the probability that q is the initial location of G;
– distr : Σ → (R+ → [0, 1]) assigns to each event its firing time distribution,

which is a DESOL distribution of width a. For a cdf distr(e), dense denotes
the corresponding pdf.

– next : Q × Σ → 2Σ × (Q → [0, 1]) defines transitions between the locations
of G. This function takes as its arguments a source location q and an active
event e of q, and returns a set of events Eq,e

reset and a probability measure P q,e
next

on Q. For each location q′, P q,e
next(q

′) gives the probability that a run of G will
move from q to q′ if e fires, and Eq,e

reset is the set of events that are reset when
the transition occurs. We require that

∑
q′∈Q P q,e

next(q
′) = 1, Eq,e

reset ⊆ E(q),
and Eq,e

reset ⊆ E(q′′), for every location q′′ which can be reached with strictly
positive probability2.

Notice that since we use random variables with density functions that do not
have mass points and are discontinuous only at a finite number of points, we do
not consider the possibility that several events would fire at the same time.

It is convenient to think that a clock is assigned to each event e. The clock, de-
noted te, shows the time remaining until the next occurrence of e. Upon schedul-
ing/resetting of e we update its clock to a new value chosen independently at
random according to distr(e). All clocks of the current active events run down
with the same rate equal to 1.

Let us say that ν : Σ → R+ is a clock valuation (or simply valuation) if ν
maps events to the values of their clocks. If an event is not active in the current
location we assume that its value is undefined.
1 Assume that dens(y) is 0 for y ∈ (a, +∞).
2 Adding a possibility that some events can be reset in a transition from one location

to another does not make our model more powerful, but it is useful for modeling,
and we add it as a “syntactic sugar”.



A configuration of the GSMP G is a pair s = (q, ν), where q ∈ Q and ν is a
clock valuation. Given a configuration s = (q, ν), let t∗(s) = min{ν(e), e ∈ E(q)}
be the time until the next transition, and e∗(s) = arg min(ν(e), e ∈ E(q)) be the
event that causes the transition. For any t ≤ t∗(s) we denote by ν − t the
valuation ν′ such that for all e ∈ E(q), ν′(e) = ν(e) − t. We say that s

t−→ s′

is a timed transition between the configurations s = (q, ν) and s′ = (q, ν′) if
ν′ = ν − t. If t∗(s) = 0, and e∗ is such that ν(e∗) = 0, then s

μ−→ s′ denotes a
discrete transition between configurations s = (q, ν) and s′ = (q′, ν′), where q′

is chosen according to the probability measure μ = P q,e∗
next, and the valuation ν′

is constructed as follows:
– if an event e ∈ Einherited(q, e∗, q′), where Einherited(q, e∗, q′) = E(q′)∩ [E(q)\

{e∗} \ Ereset] is the set of events that were active in q and continue to be
active in q′, excluding e∗ and excluding the events that were reset, then
ν′(e) = ν(e);

– if e ∈ Enew(q, e∗, q′), where Enew(q, e∗, q′) = E(q′) \ Einherited(q, e∗, q′), then
valuations ν′(e) are chosen independently at random according to distr (e)
(i.e. the events in Enew(q, E∗, q′) are (re-)scheduled);

– if e ∈ Ecancelled(q, e∗, q′), where Ecancelled(q, e∗, q′) = E(q) \ E(q′) is the set
of canceled events that were active in q but no longer active in q′, then ν′(e)
is undefined.

A run σ of G is a sequence of alternating timed and discrete transitions:

σ = s0
t∗(s0)−−−−→ s′0

μ0−→ s1
t∗(s1)−−−−→ s′1

μ1−→ s2
t∗(s2)−−−−→ s′2

μ2−→ . . .

The run σ starts at the initial configuration s0 = (q0, ν0), q0 is the initial
location, which is chosen according to init , and ν0 is the initial valuation of the
events in E(q0), scheduled according to the corresponding firing time distribu-
tions. A run can have a finite or infinite number of transitions; a run that has
reached an absorbing location will stay in that location forever.

We say that a GSMP is normalized iff (i) for every qpred, e∗ and q, such
that P

qpred,e∗

next (q) > 0, Einherited and Enew do not depend on qpred and e∗, i.e.
Einherited(qpred, e

∗, q) = Einherited(q) and Enew(qpred, e∗, q) = Enew(q). And (ii) if
q is an initial location, i.e. init(q) > 0, then Einherited(qpred, e

∗, q) = ∅.
Condition (i) states that partition of a location’s events into sets of inherited

and new events is the same for every run that visits that location. Condition
(ii) requires that the set of inherited events for every initial location should be
empty.

We modify the definition of GSMP, and say that normalized GSMP is a
tuple G1 = (Q, Σ, Einherited, Enew, init , distr ,next) to emphasize that partition
into sets of inherited and new events is fixed for every location.

Given a GSMP G, we can, for every location, determine all possible event
partitions and then by cloning that location for every found partition and con-
necting it to the corresponding (clones of) predecessor and successor locations,
create a normalized GSMP G1.
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Fig. 1. Sample GSMP and its normalized version

G and G1 are equivalent in the sense that the answers to the questions we
are interested in this paper are the same for G and G1.

A normalized GSMP is called 1GSMP if for every location q, Einherited(q)
consists of at most one event.

In 1GSMP at most one event can retain the value of its clock upon a transi-
tion. The other active events are either reset or canceled in the transition target
location. In the sequel, we will be interested only in 1GSMPs.

We say that a clock is new if it is the clock of a new event, and it is inherited
otherwise. We know the distributions of values of all new clocks upon reaching
the current location q, but the distribution of the inherited clock is unknown
and depends on the path to q.

A history π of length n of a run σ is a sequence of locations and transitions
between them marked by the events that have fired:

q0
e∗
1−→ q1

e∗
2−→ . . .

e∗
n−→ qn.

2.3 Computing Probabilities of Until Properties

Suppose that we are given a 1GSMP G with firing time distributions of size
a. The locations of G are partitioned into three disjoint sets: Qs, Qu and Qd,
which are called the set of safe locations, the set of unsafe locations, and the
set of destination locations, respectively. We require that from every qs ∈ Qs, a
location in Qu∪Qd is reachable with probability one. This property can checked
by a method presented in [2].



Let Πn
until ⊆ Π be a set of histories of length less than or equal to n, such

that only the last location of every history in Πn
until is in Qu, while the other

locations are in Qs. Let Πuntil = ∪n≥0Π
n
until.

We consider the following model-checking problem:
– What is the probability Puntil that a run σ of G has a history π ∈ Πuntil?

In addition, our approach will enable us to determine the probability of
reaching an unsafe location before any of the destination locations from any
location q, if we specify the clock valuation of the event in Einherited(q).

2.4 Illustrative Example

We illustrate the given definitions by an example that we will use throughout the
paper. Consider a system that crucially depends on a component C. To ensure
an uninterrupted service, the system has a back-up component Cb. While C is
active, Cb is in standby mode, but if C fails, Cb is activated immediately. We
are interested to know the probability of the system failure.

The system can be modeled as a GSMP G depicted in Figure 1(a). Each
location is marked with the active events. Each transition is marked with the
event that causes this transition, and reset(e) indicates that event e was reset.

Location qC is the initial location, and it models the configuration in which C
is operating and Cb is in standby mode. Location qCb

represents the configuration
when C has failed and Cb is active. There are two absorbing locations qs and
qf , the former is the destination location, it models successful completion of the
task, the latter is the unsafe location of G and it models the state of the system
when both components have failed.

Two events eu and ec are active in qC . The event eu, which is scheduled only
upon the first visit to qC , models the time interval the system should be up.
Firing of this event indicates that the system has completed its task successfully
and has reached qs; eu is scheduled using a random variable whose density func-
tion is denseu(x) = 1

1−e−1 e−x on (0, 1] and 0 otherwise3. On (0, 1] this density

function is a solution of the differential equation d
dx denseu(x) + denseu(x) = 0.

The second active event of qC is ec, it is scheduled every time a run reaches
qC , and it models a crash event of C. If it fires a run of G moves to qCb

. The
event ec is scheduled using a random variable with the beta density function
densec(x) = 1

2x on (0, 1], LHODE for densec(x) is d2

dx2 densec(x) = 0.
Every time location qCb

is reached, two events er and ec are scheduled. The
firing time of er is determined by a random variable with the uniform density
function denser (x) = 1 on (0, 1] and 0 otherwise (its LHODE is d

dx denser (x) =
0), and firing of this event indicates that C was replaced and the run returns to
qC . But if in qCb

the event ec fires before er, it means that Cb had failed before
C was replaced, the system failed and the run moves to the location qf .

3 The densities in this example are chosen to make clear our approach and not to
model accurately a real system.



G is not a normalized GSMP — upon the first visit to qC both eu and ec are
scheduled, but upon every subsequent visit ec is reset, but the clock of eu keeps
its value. The normalized GSMP G1 constructed from G is shown in figure 1(b).
Location qC of G was split into two locations qC and q′C , and, as in G, qC is the
only initial location of 1GSMP G1.

3 System of Integral Equations for Harmonic Functions

To solve the model-checking problem we will use a method similar to the “first
step analysis” for the Markov chains. For every location we introduce a set of
harmonic functions. If a location q does not have an inherited clock, then its set
consists of one constant function that we denote by Hq, otherwise it consists of
a functions H1

q (t), . . . , Ha
q (t).

Each Hi
q(t) is defined on (0, 1]. The interpretation of the functions is the

following — if location q was reached at the moment when the value of the
inherited clock t satisfies i − 1 < t ≤ i, then the probability to reach an unsafe
location before any of the destination locations is Hi

q(t − (i − 1)) 4. If there is
no inherited clock in q, then all clocks are rescheduled (or reset) upon reaching
q and the constant Hq is the desired probability.

Our method constructs integral equations that express dependence between
harmonic functions of a location and all its immediate successor locations. This is
a general method and it works not only for 1GSMPs but also for all normalized
GSMPs, however restriction to 1GSMPs allows us a transformation from the
system of constructed integral equations into a system of ordinary differential
equations.

Before describing our algorithm we need to introduce a class of partitions of
clock valuations that we will use. The same class of partitions was used in [1]
for solving bounded model-checking problem.

3.1 Diagonal Mesh Partitions

For a set of variables t1, . . . , tn, an n-dimensional diagonal mesh partition
Ra(t1, . . . , tn) of width a ∈ N is a partition of R

n
+ into regions such that each

region is described by:
– mesh constraints: for each variable t, by a constraint of the form b−1 < t ≤ b,

where b ∈ N and 1 ≤ b ≤ a;
– diagonal constraints: for every pair of distinct variables t and t′ by an order-

ing on the fractional parts of the variables, i.e. by a constraint of the form
(t − �t�) ∼ (t′ − �t′�), where ∼∈ {<, >}, and �s� denotes the largest integer
not greater than s.

For a region r and a variable t, let Intr(t) be the function that returns the
mesh constraint constant of t in r.
4 The reason for all harmonic functions to be defined on the same interval (0, 1] will

become clear later when we present the algorithm that constructs integral equations.



Given a region r we consider a (total) region ordering ≺r of fractional parts
of t1, . . . , tn, i.e. ti ≺r tj iff (ti − �ti�) < (tj − �tj�). Thus, each region r in Ra

can be described by the order ≺r, and the unit intervals for every variable.

3.2 Algorithm

Suppose we are given a 1GSMP G = (Q, Σ, Einherited, Enew, init , distr ,next),
Qd — the set of destination locations and Qu — the set of unsafe locations.
We assume that all locations in Qd ∪ Qu are absorbing. We describe the algo-
rithm in two steps. We start by discussing the main loop, and then we describe
construction of the right-hand sides of the integral equations.

In the loop, the algorithm goes over all locations of G. For each destination
location qd it outputs equation Hqd

= 0, which states that being in a destination
location, the probability to reach an unsafe location before any of destination
locations is zero. For each unsafe location qu, the algorithm outputs Hqu = 1. If
q is neither a destination nor an unsafe location, then, in case q has an inherited
event einherited

q , the algorithm constructs a equations for each of the functions
H1

q , . . . , Ha
q of the same argument teinherited

q
. In case q does not have an inherited

event, a single equation for Hq is constructed.
Algorithm 1 returns the right-hand side for the equation that defines the

harmonic function Hi
q(teinhereted

q
), where einhereted

q is the only inherited event of q

(the algorithm for Hq, such that q has new events only is very similar).
Let us assume that the number of active events in q is n. For every non-

constant function Hj
p(t) let H̃j

p(t) = Hj
p(1 − t).

At line 2 we have the loop that goes through all regions in the diagonal
mesh partition Ra(te1 , . . . , ten) for which teinhereted

q
∈ (i − 1, i]. The restriction

is required because we are constructing RHS for Hi
q(teinhereted

q
), which implies

that teinhereted
q

∈ (i − 1, i]. At line 3 we determine the clock that should fire, i.e.
the clock which is minimal in respect to ≺r among all the clocks that have the
minimal value returned for them by Intr. At line 4 we ensure that we consider
every transition that may be caused by firing of e∗r along with its probability. At
lines 8 – 10 we create a product of all new clock densities, each enters with its
own variable. At line 11 we check if the target location has an inherited clock. If
it does then at line 15 or 18 we determine to which interval this inherited clock
belongs. This is uniquely determined by the region r. At line 22 we construct
the integrand.

From line 24 to line 37 we have the loop that goes over all active event clocks
of q. For each new clock we integrate over all possible values that this clock
can have in r. The limits of integration are constructed in such a way that they
respect ≺r. For example, suppose that in the ordering te1 ≺r te2 ≺r te3 ≺r

te4 ≺r te5 ≺r te6 ≺r · · · ≺r ten , te3 is the inherited clock and the others are new
clocks. Then we know that te1 can have values between 0 and te2 , te2 between 0
and te3 , te4 between te3 and te5 , te5 between te3 and te6 and so on. The last clock
ten can have values between te3 and 1. This idea is captured in the algorithm.



Algorithm 1 Generate RHS(q, i)
1: RHS ← 0
2: for all r : (r ∈ Ra(te1 , . . . , ten), ei ∈ E(q)) ∧ Intr(teinherited

q
) = i do

3: e∗r ← the firing clock of r
4: for all tran ∈ next(q, e∗r) do
5: qtarget ← the target location of the transition tran

6: Prob ← the probability of the transition tran which is P
q,e∗r
next (qtarget)

7: DensProduct ← 1
8: for all e ∈ Enew(q) do

9: DensProduct ← DensProduct ∗ dens
Intr(te)
e (te)

10: end for
11: if Einherited(qtarget) = ∅ then
12: HarmonicFunction ← Hqtarget

13: else
14: if e∗r ≺r einherited

qtarget then
15: index ← Intr(teinherited

qtarget
)− Intr(te∗r ) + 1

16: HarmonicFunction ← H index
qtarget (te∗r − teinherited

qtarget
)

17: else
18: index ← Intr(teinherited

qtarget
)− Intr(te∗r )

19: HarmonicFunction ← H̃ index
qtarget (te∗r − teinherited

qtarget
)

20: end if
21: end if
22: Integrand = HarmonicFunction ∗DensProduct
23: LowerLimit← 0
24: for i = 1 to n do
25: ecur ← ei, where tei is the ith element in te1 ≺r te2 ≺r · · · ≺r ten

26: if ecur ∈ Einherited(q) then
27: LowerLimit ← tecur

28: else
29: if i < n then
30: UpperLimit ← tei+1 , where tei+1 is the (i + 1)th element in te1 ≺r

te2 ≺r · · · ≺r ten

31: else
32: UpperLimit ← 1
33: end if
34: Integrand =

∫ UpperLimit

LowerLimit
Integrand dtecur

35: end if
36: RHS ← RHS + Prob ∗ Integrand
37: end for
38: end for
39: end for
40: return RHS



At line 36 we add the constructed integral to RHS , and at line 40 we output
the entire constructed expression.

Let us return to our sample GSMP G1. For qCb
, for example, the algorithm

generates the following integral equation:

H1
qCb

(teu) =
∫ 1

teu

∫ teu

0

densec (tec) denser (ter ) dtec dter

+
∫ teu

0

∫ ter

0

densec (tec) denser (ter ) dtec dter

+
∫ 1

teu

∫ teu

0

H1
q′

C

(
teu

− ter

)
densec (tec) denser (ter ) dter dtec

+
∫ teu

0

∫ tec

0

H1
q′

C

(
teu

− ter

)
densec (tec) denser (ter ) dter dtec

The first term is for the region r1 with ordering tec ≺r1 teu ≺r1 ter , the
second is for r2, tec ≺r2 ter ≺r2 teu , the third is for r3, ter ≺r3 teu ≺r3 tec , and
the last is for r4, ter ≺r4 tec ≺r4 teu . The first two terms do not include harmonic
functions because Hqf

= 1. There are no terms for the orderings that start with
teu because Hqs = 0.

4 System of Differential Equations

In this section we show how to convert the system of integral equations con-
structed in the previous section into a system of differential equations such that
the solution of the former system is a solution of the latter. Compared to the
existing methods [16], our method converts every intergral term individually and
can handle equations with terms that contain multiple integrals.

Due to the lack of space, we give intuition only for the main step. The other
steps use the fact that the class of DESOL expressions is closed under addition,
multiplication, integration and differentiation [17]. The resulting system will
consist of the equations obtained after converting integral equaitons, equations
that define auxiliary functions and additional equations described in Section 4.1.

We show how to convert, for example, a term T =
∫ b

a
H(t − t′)dens(t) dt,

where the integration limits a and b can be 0, 1 or clock variables, H(t − t′) is
a harmonic function and dens(t) is a function which is a solution of a LHODE:

n∑
l=1

al
dldens(t)

dtl
+ a0dens(t) = 0, (1)

Given a harmonic function H(t − t′), we introduce an auxiliary function
A(t− t′). The differential equation that links A(t− t′) to H(t− t′) is constructed
from (1):

H(t − t′) =
n∑

l=1

(−1)lal
dl

A(t − t′)
dtl

+ a0A(t − t′).



Now replacing H(t − t′) in T with this equation, we will obtain that

T =
n∑

l=1

(−1)lal

∫ b

a

dl
A(t − t′)

dtl
dens(t) dt + a0

∫ b

a

A(t − t′)dens(t) dt. (2)

Consider the summand for l = n in the equation above. Let us apply the
integration by parts method to it:

(−1)n
an

∫ b

a

dn
A(t − t′)
dtn

dens(t) dt = (−1)n
an

∫ b

a

dens(t) d

(
dn−1

A(t − t′)
dtn−1

)

= (−1)nan

(
dens(b)

dn−1
A(t − t′)

dtn−1

∣∣∣∣∣
t=b

− dens(a)
dn−1

A(t − t′)
dtn−1

∣∣∣∣∣
t=a

)

− (−1)n
an

∫ b

a

dn−1
A(t − t′)

dtn−1

ddens(t)
dt

dt

Next we apply the integration by parts method n − 1 more times:

(−1)nan

(
dens(b)

dn−1
A(t − t′)

dtn−1

∣∣∣∣∣
t=b

− dens(a)
dn−1

A(t − t′)
dtn−1

∣∣∣∣∣
t=a

)

+ (−1)n
an

n−1∑
k=2

(−1)n−k

⎛
⎝ dn−kdens(t)

dtn−k

dk−1A(t − t′)
dtk−1

∣∣∣∣∣
t=b

t=a

⎞
⎠ (3)

+ an

∫ b

a

A(t − t′)
dndens(t)

dtn
dt = TDn + an

∫ b

a

A(t − t′)
dndens(t)

dtn
dt,

where TDn is a sum of differentials. Now we apply the same conversion to the
remaining summands of (2). Let consider the sum of all converted summands:

T =
n∑

l=1

TDl +
n∑

l=1

al

∫ b

a

A(t − t′)
dldens(t)

dtl
dt + a0

∫ b

a

A(t − t′)dens(t) dt

=
n∑

l=1

TDl +
∫ b

a

A(t − t′)

(
n∑

l=1

al
dldens(t)

dtl
+ a0dens(t)

)
dt =

n∑
l=1

TDl.

The last step follows from (1).

4.1 Additional Equations

Consider a product dn−kdens(t)
dtn−k

dk−1A(t−t′)
dtk−1

∣∣∣
t=b

from (3), and let us assume that
b = 1, then using the calculus chain rule:

dn−kdens(t)
dtn−k

dk−1
A(t − t′)

dtk−1

∣∣∣∣∣
t=1

= (−1)k−1 dn−kdens(t)
dtn−k

dk−1
A(t − t′)

dt′k−1

∣∣∣∣∣
t=1

= (−1)k−1
Cdens

dk−1A(1 − t′)
dt′k−1

= (−1)k−1
Cdens

dk−1Ã(t′)
dt′k−1

,
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Fig. 2. Queue

where Cdens = dn−kdens(t)
dtn−k

∣∣∣
t=1

and Ã(t) = A(1 − t).

Recall that our system may also include unknowns of the form H̃(t) = H(1−
t). To ensure that the number of unknowns coincide with the number of equations
we need to add new differential equations for H̃(t) and Ã(t). For that we take
the equation with H(t) on its left-hand side and do change of variable from t to
t′ = 1− t. For Ã(t) we do change of variables for the equation that defines A(t).
We add the equations for all such functions to our system and solve it.

5 Implementation

To demonstrate our tool we consider an example motivated by research on power-
aware devices. Suppose that a device processes requests. Unprocessed requests
can be stored in the device’s queue of a finite length n. To save power it is
preferable to accumulate as many requests as possible in the queue and then
process them in one batch until the queue is empty. We know the distribution
of the interarrival time between two successive requests, and the distribution on
the time it takes for the device to process a request. These distributions are not
exponential, so we are dealing with GI/G/1 queue.

Suppose we given the number k of requests in the queue at the moment the
device starts batch processing. We want to know what is the probability that
the queue overflows before it gets empty.

The 1GSMP for our example (when k is set to 2) is shown in Figure 2. A
numeric index of a location is also the number of requests in the queue while
a run is in that location. The firing of events ea and el indicate a new request
arrival and request completion, respectively. The density for ea is tea on (0, 1]
and tea − 1 on (1, 2]. The density for el is 2/3 on (0, 1] and 1/3 on (1, 2].

Experiments were conducted on a Windows XP computer with a Pentium D
processor running at 2.80GHz with 2 GB of RAM. The results are presented in
the table below.



Parameters Results
n k Poverflow Running time

16 1 7.5401361 × 10−8 5min. 4 sec.
16 8 0.00010769 5min. 2 sec.
16 16 0.53083234 5min. 9 sec.
32 1 7.4714055 × 10−16 47 min. 56 sec.
32 16 1.8367065 × 10−8 41 min. 38 sec.
32 32 0.53083236 42 min. 46 sec.
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