
Progress on Reachability Analysis of Hybrid

Systems using Predicate Abstraction?

Rajeev Alur1, Thao Dang2, and Franjo Ivan�ci�c1

1 University of Pennsylvania
2 VERIMAG

Abstract. Predicate abstraction has emerged to be a powerful tech-
nique for extracting �nite-state models from in�nite-state systems, and
has been recently shown to enhance the e�ectiveness of the reachability
computation techniques for hybrid systems. Given a hybrid system with
linear dynamics and a set of linear predicates, the veri�er performs an
on-the-y search of the �nite discrete quotient whose states correspond
to the truth assignments to the input predicates. To compute the tran-
sitions out of an abstract state, the tool needs to compute the set of
discrete and continuous successors, and �nd out all the abstract states
that this set intersects with. The complexity of this computation grows
exponentially with the number of abstraction predicates. In this paper we
present various optimizations that are aimed at speeding up the search in
the abstract state-space, and demonstrate their bene�ts via case studies.
We also discuss the completeness of the predicate abstraction technique
for proving safety of hybrid systems.

1 Introduction

Automated veri�cation of hybrid systems o�ers the promise of revealing subtle
errors in high-level models of embedded controllers [1, 6, 9, 14, 17, 19]. Veri�ca-
tion tools compute symbolic representations of the set of reachable states of a
model. Dealing with continuous dynamics is a major computational challenge.
Contemporary tools for veri�cation of hybrid systems, such as CheckMate [9]
and d/dt [6], approximate the set of reachable states by polyhedra. Recently, we
have shown that e�ectiveness of these techniques can be enhanced using predi-
cate abstraction [4], a powerful technique for extracting �nite-state models from
complex, potentially in�nite state, discrete systems (see, for instance, [8, 11, 16]).
This paper presents various optimizations to the abstraction and search strategy,
discusses completeness of the technique, and presents experimental results.

The input to our veri�cation tool consists of the concrete system modeled
by a hybrid automaton, the safety property to be veri�ed, and a �nite set of
predicates over system variables to be used for abstraction. We require that all

? This research is also presented in [3] and was supported in part by ARO URI award
DAAD19-01-1-0473, DARPA Mobies award F33615-00-C-1707, NSF award ITR/SY
0121431, and European IST project CC (Computation and Control).



invariants, switching guards, and discrete updates of the hybrid automaton are
speci�ed by linear expressions, the continuous dynamics is linear, possibly with
bounded input, and the property as well as the abstraction predicates are linear.
An abstract state is a valid combination of truth values to the predicates corre-
sponding to a polyhedral set of the concrete state-space. The veri�er performs an
on-the-y search of the abstract system by symbolic manipulation of polyhedra,
where the computation of continuous successors of abstract states uses strate-
gies inspired by the techniques used in CheckMate and d/dt. There are two
signi�cant bene�ts of postulating the veri�cation problem as a search problem in
the abstract system compared to the traditional approach of computing approx-
imations of reachable sets of hybrid systems. First, the continuous reachability
computation is applied only to an abstract state, instead of intermediate sets of
arbitrary complexity generated during �xpoint computation. Second, while tools
such as d/dt are designed to compute a \good" approximation of the continuous
successors, we are interested only in checking if this set intersects with a new
abstract state, permitting many optimizations. If the initial choice of predicates
is too coarse, the search �nds abstract counter-examples that are infeasible in
the original hybrid system. We have also shown how to analyze such counter-
examples to discover new predicates that will rule out related spurious counter-
examples [5]. This strategy of iterative re�nements of abstractions guided by
counter-examples has also been incorporated in our veri�cation tool, which is an
integrated component of the modeling and analysis toolkit Charon [2].

After reviewing the previous work in Section 2, we present a variety of op-
timizations of the abstraction and search strategy in Section 3. If the original
hybrid system has m locations and we are using k predicates for abstraction, the
abstract state-space has at most m � 2k states. To compute the abstract succes-
sors of an abstract state A, we need to compute the discrete and the continuous
successor-set of A, and check if this set intersects with any of the abstract states.
This can be expensive as the number of abstraction predicates grows, and our
heuristics are aimed at speeding up the search in the abstract space. The �rst
optimization implements a search constraint based on the additivity of ows of
hybrid systems. A second optimization uses the BSP (Binary space partition)
technique to impose a tree structure on abstract states so that invalid states
(that is, inconsistent combinations of truth values to linear predicates) can be
detected easily. A third optimization implements a guided search strategy. Since
initial abstraction is typically coarse, the abstract search is likely to reach the
target (i.e. unsafe states). During depth-�rst search, after computing the ab-
stract successors of the current state, we choose to examine the abstract state
whose distance to the target is the smallest according to an easily computable
metric. We have experimented with a variety of natural metrics that are based
on the shortest path in the discrete location graph of the hybrid system as well as
the Euclidean distance between the polyhedra corresponding to abstract states
and the target. Such a search improves the eÆciency signi�cantly in the initial
iterations. Another optimization allows a location-speci�c choice of predicates
for abstraction. Instead of having a global pool of abstraction predicates, each



location is tagged with a relevant set of predicates, thereby reducing the size of
the abstract state-space. The �nal optimization uses qualitative analysis of vec-
tor �elds to rule out reachability of certain abstract states from a given abstract
state a priori before applying the continuous reachability computation.

In Section 4, we address the completeness of our abstraction-based veri�ca-
tion strategy for hybrid systems. Given a hybrid system H with linear dynamics,
an initial set X0, and a target set of unsafe states B, the veri�cation problem
is to determine if there is an execution of H starting in X0 and ending in B.
If there is such an execution, then even simulation can potentially demonstrate
this fact. On the other hand, if the system is safe (i.e., B is unreachable), a sym-
bolic algorithm that computes the set of reachable states from X0 by iteratively
computing the set of states reachable in one discrete or continuous step, cannot
be guaranteed to terminate after a bounded number of iterations. Consequently,
for completeness, we are interested in errors introduced by, �rst, approximating
reachable sets in one continuous step using polyhedra, and second, due to pred-
icate abstraction. We show that if the original system stays at least Æ distance
away from the target set for any execution involving at most n discrete switches
and up to total time � , then there is a choice of predicates such that the search
in the abstract-space proves that the target set is not reached up to those limits.
This shows that predicate abstraction can be used at least to prove bounded
safety, that is, safety for all executions with a given bound on total time and a
bound on the number of discrete switches.

In Section 5, we present case studies and experimental results. Our �rst
example concerns a parametric version of Fischer's timing-based protocol for
mutual exclusion. This model has 4 continuous variables, 23 locations, and we
use 7 predicates for abstraction. We show that during initial iterations, guided
search works quite well, and improves the time and space requirements. On the
other hand, for establishing safety, location-speci�c choice of abstraction predi-
cates reduces the number of reachable abstract states from 54 to 24. Our second
example is an adaptive cruise controller that maintains a safe distance between
cars based on communicated acceleration. The model has 5 continuous variables,
8 locations, and we use 17 predicates for abstraction. It can be completely ana-
lyzed using our veri�er. We are also applying the tool to a design of an electronic
throttle controller from DARPA's MoBIES project. The model has 9 continuous
variables and 18 locations. Using all the 29 predicates mentioned in the model
for the purpose of abstraction, our tool �nds counter-examples. Since the model
is incomplete, rigorous analysis of this example was not yet possible, but its size
is a good indicator of the complexity that our tool can handle.

2 Predicate Abstraction for Hybrid Systems

In this section, we briey recap the de�nitions of predicate abstraction for hybrid
systems and the search strategy in the abstract state-space as outlined in [4].



2.1 Mathematical Model

We denote the set of all n-dimensional linear expressions l : Rn ! R with �n

and the set of all n-dimensional linear predicates � : Rn ! B , where B := f0; 1g,
with Ln. A linear predicate is of the form �(x) :=

Pn

i=1 aixi + an+1 � 0; where
�2 f�; >g and 8i 2 f1; : : : ; n + 1g : ai 2 R. Additionally, we denote the set
of �nite sets of n-dimensional linear predicates by Cn, where an element of Cn
represents the conjunction of its elements.

De�nition 1 (Linear Hybrid System). An n-dimensional linear hybrid
system is a tuple H = (X ; L;X0; I; f; T ) with the following components:

{ X � R
n is a convex polyhedron representing the continuous state-space.

{ L is a �nite set of locations. The state-space of H is X = L� X . Each

state thus has the form (l; x), where l 2 L is the discrete part of the state,

and x 2 X is the continuous part.

{ X0 � X is the set of initial states. We assume that for all locations l 2 L,
the set fx 2 X j (l; x) 2 X0g is a convex polyhedron.

{ I : L! Cn assigns to each location l 2 L a �nite set of linear predicates I(l)
de�ning the invariant conditions that constrain the value of the continuous

part of the state while the discrete location is l. The hybrid automaton can

only stay in location l as long as the continuous part of the state x satis�es

I(l), i.e. 8� 2 I(l) : �(x) = 1. We write Il for the invariant set of location

l, that is the set of all points x satisfying all predicates in I(l).
{ f : L ! (Rn ! R

n ) assigns to each location l 2 L a continuous vector
�eld f(l) on x. While at location l the evolution of the continuous variable is

governed by the di�erential equation _x = f(l)(x). We restrict our attention to

hybrid automata with linear continuous dynamics, that is, for every location

l 2 L, the vector �eld f(l) is linear, i.e. f(l)(x) = Alx where Al is an

n�n matrix. The reachability analysis can also be applied to hybrid systems

having linear continuous dynamics with uncertain, bounded input of the form:

_x = Alx+Blu.
{ T � L � L � Cn � (�n)

n is a relation capturing discrete transition jumps

between two discrete locations. A transition (l; l0; g; r) 2 T consists of an

initial location l, a destination location l0, a set of guard constraints g and

a linear reset mapping r. From a state (l; x) where all predicates in g are

satis�ed the hybrid automaton can jump to location l0 at which the continuous

variable x is reset to a new value r(x). We write Gt � Il for the guard set of

a transition t = (l; l0; g; r) 2 T which is the set of points satisfying all linear

predicates of g and the invariant of the location l.

2.2 Transition System Semantics

We de�ne the semantics of a linear hybrid system by formalizing its underlying
transition system. The underlying transition system of H is TH = fX;!; X0g.
The state-space of the transition system is the state-space of H , i.e. X = L�X .
The transition relation !� X � X between states of the transition system



is de�ned as the union of two relations !C ;!D� X � X . The relation !C

describes transitions due to continuous ows, whereas !D describes transitions
due to discrete jumps.

(l; x)!C (l; y) i� 9t 2 R�0 : �l(x; t) = y ^ 8t0 2 [0; t] : �l(x; t
0) 2 Il:

(l; x)!D (l0; y) i� 9(l; l0; g; r) 2 T : x 2 Gt ^ y = r(x) ^ y 2 Il0 :

2.3 Discrete Abstraction

We de�ne a discrete abstraction of the hybrid system H = (X ; L;X0; I; f; T )
with respect to a given k-dimensional vector of n-dimensional linear predicates
� = (�1; �2; : : : ; �k) 2 (Ln)

k . We can partition the continuous state-space X �
R
n into at most 2k states, corresponding to the 2k possible boolean evaluations

of � ; hence, the in�nite state-space X of H is reduced to jLj2k states in the
abstract system. From now on, we refer to the hybrid system H as the concrete

system and its state-space X as the concrete state-space.

De�nition 2 (Abstract state-space). Given an n-dimensional hybrid system

H = (X ; L;X0; f; I; T ) and a k-dimensional vector � 2 (Ln)k of n-dimensional

linear predicates, an abstract state is a tuple (l; b), where l 2 L and b 2 B
k .

The abstract state-space is Q� := L� B
k . The concretization function C� :

B
k ! 2X for a vector of linear predicates � = (�1; : : : ; �k) 2 (Ln)

k is de�ned as

C�(b) := fx 2 X j 8i 2 f1; : : : ; kg : �i(x) = big: If C�(b) = ;, then the vector

b 2 B
k is infeasible with respect to �.

De�nition 3 (Discrete Abstraction). Given a hybrid system H = (X ; L;X0;
f; I; T ), its abstract system with respect to a vector of linear predicates � is the

transition system H� = (Q� ;
�
!; Q0) where

{ the abstract transition relation
�
! � Q� �Q� is de�ned as the union of the

following two relations
�
!D;

�
!C � Q� � Q� . The relation

�
!D represents

transitions in the abstract state-space due to discrete jumps, whereas
�
!C

represents transitions due to continuous ows:

(l; b)
�
!D (l0; b0) i� 9(l; l0; g; r) 2 T; x 2 C�(b) \ Gt :

(l; x)!D (l0; r(x)) ^ r(x) 2 C�(b
0);

(l; b)
�
!C (l; b0) i� 9x 2 C�(b); t 2 R�0 : �l(x; t) 2 C� (b

0) ^

8t0 2 [0; t] : �l(x; t
0) 2 Il;

{ the set of initial states is Q0 = f(l; b) 2 Q� j 9x 2 C� (b) : (l; x) 2 X0g:

A trace in the abstract state-space is a sequence of abstract states a0; a1; : : : ; an,

such that a0 2 Q0, and ai
�
! ai+1 for 0 � i < n.



2.4 Searching the Abstract State-Space

Given a hybrid system H we want to verify safety properties. We de�ne a prop-
erty by specifying a set of unsafe locations U � L and a convex set B � X
of unsafe continuous states. The property is said to hold for the hybrid system
H i� there is no valid trace from an initial state to some state in B while in
an unsafe location. We implemented an on-the-y DFS search of the abstract
state-space. In case we �nd an abstract state that violates the property, the cur-
rent trace stored on a stack represents a counter-example. If the abstract system
satis�es the property, then so does the concrete system. However, if a violation
is found in the abstract system, then the resulting counter-example may or may
not correspond to a counter-example in the concrete state-space.

Computing discrete successors is relatively straightforward, and involves com-
puting weakest preconditions, and checking non-emptiness of intersection of
polyhedral sets. For computing continuous successors of an abstract state A,
we compute the polyhedral slices of states reachable at �xed times r; 2r; 3r; : : :
for a suitably chosen r, and then, take convex-hull of all these polyhedra to
over-approximate the set of all states reachable from A. The search strategy as
outlined in [4] gives a priority to computing discrete successors rather than con-
tinuous successors, as the computation of discrete successors is generally much
faster. During the computation of continuous successors we abort or interrupt
the computation when a new abstract state is found. Not running the �xpoint
computation of continuous successors to completion may result in a substantial
speed-up when discovering a counter-example, if one exists. If the search of the
abstract state-space �nds that the abstract system is safe, then the concrete
system is also safe. However, if the search �nds a counter-example in the ab-
stract state-space, then this counter-example may or may not correspond to a
counter-example in the concrete state-space.

2.5 Counter-Example Analysis

If the predicate abstraction routine returns a counter-example, then this counter-
example may not correspond to a counter-example in the concrete hybrid system.
Such a counter-example is called spurious. We can analyze a counter-example
and check whether it corresponds to a concrete one. If we �nd that the counter-
example is indeed spurious, we can compute a set of new predicates based on
this counter-example that ensures that a re�ned counter-example is not possible
in the re�ned abstract state-space. Re�nement of abstract states is based on the
inclusion of the continuous concretizations, and re�nement of paths additionally
on following the same transitions. For more details about the analysis of counter-
examples we refer the reader to [5].

3 Optimizations

If the original hybrid system has m locations and we are using k predicates for
abstraction, the abstract state-space has m � 2k abstract states. To compute the



abstract successors of an abstract state A, we need to compute its discrete and
continuous successors, and check if this set intersects with the other abstract
states. This can be expensive as the number of abstraction predicates grows. We
present optimizations in this section that are aimed at speeding up the discovery
of counter-examples in the abstract state-space given a reachability property.

We include an optimization technique in the search strategy. Consider a
counter-example in the concrete hybrid system. There exists an equivalent counter-
example that has the additional constraint that there are no two consecutive
transitions due to continuous ow. This is due to the additivity of ows of hy-
brid systems, namely: (l; x) !C (l; x0) ^ (l; x0) !C (l; x00) ) (l; x) !C (l; x00):
We are hence searching only for counter-examples in the abstract system that do
not have two consecutive transitions due to continuous ow. By enforcing this
additional constraint we eliminate some spurious counter-examples that could
have been found otherwise in the abstract transition system.

Another optimization concerns the construction of the abstract state-space.
Since the predicates decompose the continuous state-space into polyhedral re-
gions, instead of computing a polyhedron for each abstract state independently,
we can use the Binary Space Partition (BSP) technique to incrementally con-
struct the abstract state-space. The polyhedra resulting from partitioning the
continuous state-space by one predicate after another are stored in a BSP tree as
follows. First, the root of the tree is associated with the whole set X . A predicate
�i is chosen from � to partition X into 2 convex polyhedral subsets and create
two child nodes: a left node is used to store the intersection of X with the half-
space H(�i) (which contains all points in X satisfying �i) and a right node to
store the intersection with the half-space H(�i). Then the non-empty polyhedra
are partitioned recursively at the new nodes. Once all the predicates in � have
been considered, the non-empty polyhedra at the leaves of the tree correspond to
the closure of the concretizations of all possible consistent abstract states. This
construction is illustrated by �gure 1 where the continuous state-space X is a
rectangle in two dimensions and the vector of initial predicates � = (�1; �2; �3).
The predicate �1 partitions X into 2 polygons P1 and P�1. Next, splitting P1
and P�1 by the predicate �2 gives P12, P1�2 and P�12, P�1�2. Then, only the interior
of the polygon P�1�2 intersects with the hyperplane of the predicate �3 while all
other polygons in the current decomposition lie entirely inside H(�3); therefore,
only P�1�2 is split. This BSP tree provides simultaneously a geometric representa-
tion of the state-space and a search structure. Note that the amount of splitting
depends on the order of predicates and the abstract states. This order is deter-
mined by the search strategy, more precisely, the tree is built on-the-y, based
on the decision which abstract state to explore next. This BSP construction al-
lows fast detection of combinations of predicates that give inconsistent abstract
states and thus saves a signi�cant amount of polyhedral computations.

3.1 Guided Search

The predicate abstraction implementation performs an on-the-y depth-�rst
search. Since an abstract state has many successors, the performance of the



P1

P1�2 P1�2

P12 P12

P�1�2�3

P�1�23

P�1�2

P�1

P�12
P�12

H(�3)H(�2)

H(�1)

Fig. 1. BSP-based construction of the abstract state-space

search depends on which successor is examined next to continue the search at
every step. We present three guided search strategies that we have recently im-
plemented in our tool. In each case, we de�ne a priority function � : Q� ! R

that tells us how \close" each abstract state is to the set of unsafe states. As we
are trying to minimize the time it takes to discover a counter-example, we prefer
states that are \closer" to the set of unsafe states.

Given a hybrid system H = (X ; L;X0; I; f; T ), we can de�ne a graph GH =
(V;E) such that V = L and (l; l0) 2 E i� 9(l; l0; g; r) 2 T: Given the set of unsafe
locations U � L, we de�ne a priority function �D : L! N on locations as:

�D(l) =

8<
:

0 : l 2 U;
shortest path length from l to U in GH : l =2 U ^ path exists;

1 : otherwise:

It is clear that 8l 2 L : �D(l) 6= 1 ) 0 � �D(l) � jLj � 1. We use �D in all
three guided search strategies that we introduce in the following.

Mask Priority. The mask priority guided search strategy is based on the
boolean vector representation of the continuous part of an abstract state. We
de�ne a mask m 2 T

k that represents a compact description of the continuous
part of all abstract states that intersect with the set of unsafe continuous states
B. Given a predicate �, H(�) denotes the half-space de�ned by � and H(�)
denotes the complement of H(�). Then we de�ne m = (m1; : : : ;mk) as:

mi =

8<
:
1 : B � H(�i);

0 : B � H(�i);
� : otherwise:

We then de�ne a comparator function Æ : B � T! B as

Æ(b; t) =

�
1 : t = 1 ^ b = 0 _ t = 0 ^ b = 1;
0 : otherwise;



and a priority function �1 : B k ! N as Clearly, 8b 2 B
k : 0 � �1(b) � k. The

value �1(b) represents the number of positions in the vector representation b

that contradict the corresponding position in the mask m. To combine �1 with
�D to form a priority function �M : Q� ! N over abstract states we de�ne

�M (l; b) =

�
1 : �D(l) =1;

(k + 1)�D(l) + �1(b) : otherwise:

Euclidean Distance Priority. The Euclidean distance priority guided search
strategy di�ers from the mask priority one because it does not rely on the
boolean vector representation enforced by the chosen predicates for the abstrac-
tion. Instead, it measures the Euclidean distance from the continuous part of
the abstract state to the set of unsafe states. To do so, we de�ne the distance
between two non-empty convex polyhedral sets P � X and Q � X as follows:
d(P;Q) = inffd(p�q) j p 2 P^q 2 Qgwhere d(�) denotes the Euclidean distance.
Then the priority function �2 : B

k ! R can be computed as �2(b) = d(C� (b);B):
As X is bounded, we can compute the limit for any two non-empty convex sub-
sets of X , and we denote that value with dX . We can then combine �2 with �D
to form the priority function �E : Q� ! R by de�ning:

�E(l; b) =

�
1 : �D(l) =1;

(dX + 1)�D(l) + �2(b) : otherwise:

Reset Distance Priority. The Euclidean distance priority does not consider
the e�ects of resets of the continuous variable x enforced by switches in the con-
crete system. The reset distance priority guided search strategy favors abstract
states in any location which are close to the set of unsafe states in an unsafe
location after appropriate resets are taken into consideration. Appropriate resets
are those that lead the current abstract state to an unsafe location. We de�ne
the reset distance priority function �R : Q� ! R by �R(l; b) = �3(l; C�(b)) and
�3 : L� 2X ! R by

�3(l; X) =

(
d(X;B) : �D(l) = 0;

min (l;l0;g;r)2T

�D(l0)=�D(l)�1

�3(l
0; r(X)) : otherwise:

The reset distance represents the smallest Euclidean distance of the current
abstract state to the unsafe set in a shortest path to an unsafe location, if no
more transitions due to continuous ow occur.

3.2 Generalized Predicate Abstraction

We present a formal framework of abstractions of predicate abstraction {ge-
neralized predicate abstraction, which allows clustering of abstract states. For
illustrative purposes, we use a location-speci�c predicate abstractor: The main
idea of the location-speci�c predicate abstraction routine is the fact that certain



predicates are only important in certain locations. Consider for example guards
and invariants. A speci�c predicate representing an invariant may be important
in one location of the hybrid automaton, but may not be relevant in the other
locations. Considering this predicate only in the location it is really needed,
may reduce the number of reachable abstract states considerably. This is similar
to optimizations in predicate-abstraction based tools for model checking of C
programs, such as Cartesian predicate abstraction [7]. We de�ne a tri-valued

domain T := f0; 1; �g, and a function c : Tk ! 2B
k

as c(t) = fb 2 B
k jti 6= � )

bi = tig:

De�nition 4. The generalized predicate abstract state-space is de�ned as Q̂� :=

L� T
k; such that (l; t) !G (l0; t0) i� 9b 2 c(t); b0 2 c(t0) : (l; b)

�
! (l0; b0): The

set of initial abstract states is Q̂0 := f(l; t) 2 Q̂� j9b 2 c(t) : (l; b) 2 Q0g:

The above de�nition allows a concrete state (l; x) 2 X , as well as an abstract
state (l; b) 2 Q� , to be represented by many states in Q̂� . Hence, we restrict
our attention to a subset of Q̂� that is both a partition and a cover of B k .

De�nition 5. A subset of abstract states Q � Q̂� is called location-speci�c,
i� 8l 2 L; b 2 B

k9t 2 T
k : b 2 c(t) ^ (l; t) 2 Q, and 8(l; t1); (l; t2) 2 Q : t1 6=

t2 ) c(t1) \ c(t2) = ;. The set of transitions for a location-speci�c Q is the

restriction of !G to Q. The set of initial states is the restriction of Q̂0 to Q.

The search in the generalized abstract state-space needs only slight modi�ca-
tions. The computation of the continuous successor-set of a generalized abstract
state does not need any alteration, as transitions due to continuous ow do
not change the location of the states and, therefore, the set of predicates re-
mains the same. On the other hand, we need to modify the computation of the
discrete successor-set. The weakest precondition computation for a particular
discrete switch needs to accommodate for the fact that the set of predicates in
the locations before and after the switch are not necessarily the same anymore.
The following theorem stating the soundness of this approach is based on the
soundness of the predicate abstraction algorithm [4].

Theorem 1. If the generalized predicate abstraction routine terminates and re-

ports that the system is safe, then the corresponding concrete system is also safe.

3.3 Vector Field Analysis

In order to construct the discrete abstraction of a hybrid system, we need to
compute the continuous successors of an abstract state, and check if this set
intersects with the other abstract states. In this section we present a method,
based on a qualitative analysis of the vector �elds, that avoids the test for feasi-
bility of some transitions. This allows to obtain a �rst rough over-approximation
of the transition relation which is then re�ned using reachability computations.
Similar ideas of qualitative analysis of vector �elds have been used in [18].



Geometrically speaking, the concretizations C�(b) for all b 2 B
k form a con-

vex decomposition of the concrete state-space X . Hence, for any two non-empty
abstract states (l; b) and (l; b0), the closures of their concretizations cl(C�(b))
and cl(C�(b

0)) are either disjoint or have only one common facet. We now focus
on the latter case and denote by F the common facet. We assume that F is a
(n� 1)-dimensional polyhedron. Let nF be the normal of F which points from
C�(b

0) to C�(b). If for all points on the face F the projection of fl on nF is
non-negative, that is,

8x 2 F hfl(x);nF i � 0; (1)

then there exists a trajectory by continuous dynamics fl from C� (b
0) to C�(b).

Moreover, any trajectory from C� (b) to C� (b
0) by fl, if one exists, must cross

another polyhedron C�(b
00). In the context of predicate abstraction, this means

that the transition from (l; b) to (l; b0) is feasible. Furthermore, we need not con-
sider the transition by fl from (l; b) to (l; b0) because this transition, if possible,
can be deduced from the transitions via some other intermediate states. Note
that when the dynamics fl is aÆne, in order for the condition (1) to hold, it
suÆces that hfl(x);nF i is non-negative at all the vertices of F .

On the other hand, if the dynamics fl is stable, we can use the standard
Lyapunov technique for linear dynamics to rule out some abstract states that
cannot be reached from (l; b) as follows. Let P be the solution of the Lyapunov
equation of the dynamics fl and E be the smallest ellipsoid of the form E =
fx j xTPx � �g that contains the polyhedron C�(b). We know that E is invariant
in the sense that all trajectories from points inside E remain in E . Consequently,
all the abstract states (l; b0) such that C�(b

0) \ E = ; cannot be reached from
(l; b) by continuous dynamics fl.

4 Bounded Completeness

Given a hybrid system H with linear dynamics, an initial set X0, and a target
set B � X , the veri�cation problem is to determine if there is an execution of
H starting in X0 and ending in B. If there is such an execution, then even sim-
ulation can potentially demonstrate this fact. On the other hand, if the system
is safe (i.e., B is unreachable), a complete veri�cation strategy should be able to
demonstrate this. However, a symbolic algorithm that computes the set of reach-
able states from X0 by iteratively computing the set of states reachable in one
discrete or continuous step, cannot be guaranteed to terminate after a bounded
number of iterations. Consequently, for completeness, we focus on errors intro-
duced by approximating reachable sets in one continuous step using polyhedra,
as well as due to predicate abstraction. We show that predicate abstraction is
complete for establishing bounded safety; that is, unreachability of unsafe states
for a speci�ed number of discrete switches and time duration.

4.1 Completeness for Continuous Systems

We can present a completeness result if we focus on purely continuous systems
�rst. We use two additional assumptions for this result. We only consider systems



that exhibit a separation of the reachable state-space and the unsafe states. In
addition we use the knowledge of the optimization of the search strategy which
prohibits multiple successive continuous successors.

We assume a purely continuous system such that we can specify the initial
convex region X0 := fx 2 Xj(l0; x) 2 X0g and the set of unsafe states B re-
spectively using the conjunction of a �nite set of predicates. In addition, assume
a separation of the set Post(X0) of continuous states reachable from X0, and
BX , the projection of B onto X , that is d(Post(X0);BX ) � �. Following [12],
we know that we can �nd a small enough time-step that ensures that the over-
approximation error due to the computation of convex hulls will not result in an
overlap of the over-approximation of Post(X0) with BX . Additionally, we assume
that the set of predicates used for predicate abstraction entails all the predicates
corresponding to the linear constraints needed to specify the polyhedral sets
X0 and BX . Given the optimization of our search strategy it is clear that any
abstract re�nement of B will not be declared reachable by the search.

4.2 (n; �; Æ)-Safety

We can prove that our predicate abstraction model checker is complete to estab-
lish safety up to a �xed number of discrete switches and time duration. Note that
the recent research on bounded model checking [10] can be viewed as establishing
safety of discrete systems up to a �xed number of transitions. We �rst de�ne
this notion of bounded safety for hybrid systems formally. For this purpose, we
de�ne a distance function d : X �X ! R�0 on X as

d((l; x); (l0; x0)) =

�
d(x; x0) : l = l0;

1 : else;

and generalize over sets of states by d(S; S0) = min(l;x)2S;(l0;x0)2S0 d((l; x); (l
0; x0)).

De�nition 6. A hybrid system H = (X ; L;X0; I; f; T ) is called (n; �; Æ)-safe for

the unsafe set B, i� the set of states R(n;�)(X0) that is reachable using at most n
discrete switches and combined ow of at most � time-units from the initial states

X0 has a distance of at least Æ to the set of unsafe states B: d(R(n;�)(X0);B) > Æ:

The proof, which is omitted here for the sake of brevity, shows that if the original
system stays at least Æ distance away from the target set for the �rst n discrete
switches and up to total time � , then there is a choice of predicates such that
the search in the abstract space proves that the target set is not reached up to
those limits. This shows that predicate abstraction can be used at least to prove
bounded safety, that is, safety for all execution with a given bound on total time
and a bound on discrete switches.

Theorem 2 (Bounded Completeness). The predicate abstract model checker

is complete for the class of (n; �; Æ)-safe hybrid systems.



IDLE

ACCESS CHECK

REQUEST IDLE

ACCESS CHECK

REQUEST

turn := 1

_x = 1

x := 0
x � Æ
^ turn 6= 1

x � Æ^ turn = 1

x � �

_x = 1

turn = 0 ! x := 0

y := 0
y � Æ
^ turn 6= 2

y � Æ^ turn = 2

y � �

_y = 1

turn := 2

_y = 1
turn = 0 ! y := 0turn := 0 turn := 0

turn := 0 turn := 0

Fig. 2. The two processes for the mutual exclusion example

5 Implementation and Experimentation

The optimizations discussed in this paper have been incorporated in our veri�-
cation tool. The current prototype implementation of the predicate abstraction
model checking tool is implemented in C++ using library functions of the hy-
brid systems reachability tool d/dt [6]. We implemented a translation procedure
from Charon [2] source code to the predicate abstraction input language which
is based on the d/dt input language. A detailed overview of a veri�cation case
study starting from Charon source code is given in [15]. Our tool uses the poly-
hedral libraries CDD and QHull. It also includes a counter-example analysis and
predicate discovery tool as described in more detail in [5].

5.1 Fischer's Mutual Exclusion

We �rst look at an example of mutual exclusion which uses time-based synchro-
nization in a multi-process system. We want to implement a protocol that allows
a shared resource to be used exclusively by at most one of two processes at any
given time. The state machines for the two processes are shown in Figure 2. The
possible execution traces depend on the two positive parameters � and Æ. If the
parameters are such that � � Æ is true, we can �nd a counter-example that
proves the two processes may access the shared resource at the same time. On
the other hand, if Æ > �, then the system preserves mutual exclusive use of the
shared resource. We present a attened version of the two-process protocol in
Table 1. We use the at model in the following sections to illustrate the mask
priority guided search strategy and the generalized predicate abstraction.

Mask Priority. We consider Fischer's two-process protocol example for the
case that � � Æ. As the set of unsafe states corresponds to any continuous state
in location 22 (see Table 1), we have �M (l; b) = �D(l). Starting in the abstract
state \l = 0; 0 � x < Æ � �; 0 � y < Æ" with priority 6, the guided search tries
to �nd a path that leads to a state with priority 0 by reducing the priority as
much as possible at each step. In this example, this means that the search tries
to reduce the priority of the next abstract state by exactly one at each step. In
the case that this is not possible, a continuous transition is considered as this
does not a�ect the priority. It can easily be seen that a valid counter-example



l 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

P1 I R C A I R C A I R C A C I R C I C C A C R A

P2 I I I I R R R R C C C C C A A A C I A C R C A

turn 0 0 1 1 0 0 1 1 2 2 2 2 1 2 2 2 0 0 1 1 0 0 |

�D(l) 6 5 8 7 5 4 3 2 8 3 9 1 9 7 2 8 7 7 1 8 6 6 0
Table 1. The two-process Fischer's protocol as a at model: The locations l are num-
bered from 0 to 22. P1 speci�es the local location of the �rst process: I represents the
Idle location, R the Request location, C the Check location, and A the Access loca-
tion. P2 speci�es the location of the second process, whereas turn speci�es the value of
the turn variable in the composed system. Location 0 is the initial location. Location
22 violates the mutual exclusion property regardless of the value of the turn variable.

can be constructed just by following this decrease of �D. This is in contrast
to our previous search algorithm, which always prefers discrete transitions over
continuous ones. This leads the search away from a shortest path to a counter-
example. Even in this small example, the previous search �nds more than 10
other abstract states �rst.

Generalized Predicate Abstraction. We also consider the veri�cation of
Fischer's protocol to illustrate the advantage of the location-speci�c predicate
abstraction routine. The veri�cation using the regular predicate abstraction tech-
nique �nds 54 reachable abstract states (see [4]), whereas, if we use the location-
speci�c predicates as described in Table 2, we only reach 24 abstract states.

l � l � l �

0 | 8 y � Æ 16 y � Æ

1 x � � 9 x � �; y � Æ; x � y 17 x � Æ

2 x � Æ 10 x � Æ; y � Æ; x � y 18 x � Æ

3 | 11 y � Æ 19 y � Æ

4 y � � 12 x � Æ; y � Æ; x � y 20 x � Æ; y � �

5 x � �; y � � 13 | 21 x � �; y � Æ

6 x � Æ; y � �; x � y 14 x � � 22 |

7 y � � 15 x � Æ

Table 2. Location-speci�c predicates for the 2-process Fischer's protocol example. The
predicates 0 � �; 0 � Æ; 0 � x; 0 � y;� < Æ are supposed to be present in all locations.

5.2 Coordinated Adaptive Cruise Control

We have also successfully applied our predicate abstraction technique to verify a
model of the Coordinated Adaptive Cruise Control mode of a vehicle-to-vehicle
coordination system. This case study is provided by the PATH project. Let us



�rst briey describe the model (see [13] for a detailed description). The goal
of this mode is to maintain the car at some desired speed vd while avoiding
collision with a car in front. Let x and v denote the position and velocity of the
car. Let xl, vl and al denote respectively the position, velocity and acceleration
of the car in front. Since we want to prove that no collision happens regardless
of the behavior of the car in front, this car is treated as disturbance, more
precisely, the derivative of its acceleration is modeled as uncertain input ranging
in the interval [dalmin; dalmax]. The dynamics of the system is described by
the following di�erential equations: _x = v; _v = u; _xl = vl; _vl = al; _al 2
[dalmin; dalmax]; where u is the input that controls the acceleration of the car. In
this mode, the controller consists of several modes. The control law to maintain
the desired speed is as follows:

u1 =

8<
:

0:4"v : acmin � 0:4 "v � acmax;
acmin : 0:4 "v < acmin;
acmax : 0:4 "v > acmax;

where "v = v � vd is the error between the actual and the desired speed; acmin
and acmax are the maximal comfort deceleration and acceleration.

In addition, in order for the car to follow its preceding car safely, another
control law is designed as follows. A safety distance between cars is de�ned as
D = maxfGc vl; Dd g where Gc is the time gap parameter; Dd is the desired
sensor range given by Dd = 0:5 v2l (�1=amin + 1=almin) + 0:02 vl ; amin and
almin are the maximal decelerations of the cars. Then, the control law allowing
to maintain the safety distance with the car in front is given by ufollow = al +
(vl � v) + 0:25 (xl � x � 5 � D). Since the acceleration of the car is limited
by its maximal breaking capacity, the control law to avoid collision is indeed
u2 = maxf amin; ufollow g: The combined switching control law is given by
u = minfu1; u2g. This means that the controller uses the control law u1 to
maintain the desired speed if the car in front is far and travels fast enough,
otherwise it will switch to u2.

The closed-loop system is modeled as a hybrid automaton with 5 continuous
variables (x, v, xl, vl, al) and 8 locations corresponding to the above described
switching control law. The invariants of the locations and the transition guards
are speci�ed by the operation regions and switching conditions of the controller
together with the bounds on the speed and acceleration. In order to prove that
the controller can guarantee that no collision between the cars can happen, we
specify an unsafe set as xl � x � 0. To de�ne initial predicates, in addition to
the constraints of the invariants and guards, we use the predicate of the unsafe
set allowing to distinguish safe and unsafe states and another predicate on the
di�erence between the speed and acceleration of the cars. The total number
of the initial predicates used to construct the discrete abstraction is 17. For an
initial set speci�ed as xl�x � 100 ^ v � 5, the tool found 55 reachable abstract
states and reported that the system is safe. For this model, in a preprocessing
step using the Binary Space Partition technique, the tool found that the chosen
set of initial predicates partitions the continuous state space into 785 polyhedral
regions, and this enables to reduce signi�cantly the computation time.



References

1. R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems.
Theoretical Computer Science, 138:3{34, 1995.

2. R. Alur, T. Dang, J. Esposito, Y. Hur, F. Ivan�ci�c, V. Kumar, I. Lee, P. Mishra,
G. Pappas, and O. Sokolsky. Hierarchical modeling and analysis of embedded
systems. Proceedings of the IEEE, 91(1), January 2003.

3. R. Alur, T. Dang, and F. Ivan�ci�c. Reachability analysis of hybrid systems using
counter-example guided predicate abstraction. Technical Report MS-CIS-02-34,
University of Pennsylvania, November 2002.

4. R. Alur, T. Dang, and F. Ivan�ci�c. Reachability analysis of hybrid systems via predi-
cate abstraction. In Hybrid Systems: Computation and Control, Fifth International

Workshop, LNCS 2289, pages 35{48, March 2002.
5. R. Alur, T. Dang, and F. Ivan�ci�c. Counter-example guided predicate abstraction

of hybrid systems. In Ninth International Conference on Tools and Algorithms for

the Construction and Analysis of Systems, April 2003.
6. E. Asarin, O. Bournez, T. Dang, and O. Maler. Approximate reachability anal-

ysis of piecewise-linear dynamical systems. In Hybrid Systems: Computation and

Control, Third International Workshop, LNCS 1790. Springer, 2000.
7. T. Ball, A. Podelski, and S. Rajamani. Boolean and Cartesian abstraction for

model checking C programs. In Tools and Algorithms for the Construction and

Analysis of Systems, LNCS 2031. Springer, 2001.
8. T. Ball and S. Rajamani. Bebop: A symbolic model checker for boolean programs.

In SPIN 2000 Workshop on Model Checking of Software, LNCS 1885. 2000.
9. A. Chutinan and B.K. Krogh. Veri�cation of polyhedral-invariant hybrid automata

using polygonal ow pipe approximations. In Hybrid Systems: Computation and

Control, Second International Workshop, LNCS 1569. Springer, 1999.
10. E.M. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded model checking using

satis�ability solving. Formal Methods in Systems Design, 19(1):7{34, 2001.
11. P. Cousot and R. Cousot. Abstract interpretation: a uni�ed lattice model for static

analysis of programs by construction or approximation of �xpoints. In Proc. of the

4th ACM Symposium on Principles of Programming Languages, 1977.
12. T. Dang. Veri�cation and Synthesis of Hybrid Systems. PhD thesis, Institut

National Polytecnique de Grenoble, 2000.
13. A.R. Girard. Hybrid System Architectures for Coordinated Vehicle Control. PhD

thesis, University of California at Berkeley, 2002.
14. T.A. Henzinger, P. Ho, and H. Wong-Toi. HyTech: the next generation. In

Proceedings of the 16th IEEE Real-Time Systems Symposium, pages 56{65, 1995.
15. F. Ivan�ci�c. Report on veri�cation of the MoBIES vehicle-vehicle automotive OEP

problem. Technical Report MS-CIS-02-02, University of Pennsylvania, March 2002.
16. C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property preserving

abstractions for the veri�cation of concurrent systems. Formal Methods in System

Design Volume 6, Issue 1, 1995.
17. I. Mitchell and C. Tomlin. Level set methods for computation in hybrid systems.

In Hybrid Systems: Computation and Control, LNCS 1790. Springer, 2000.
18. O. Stursberg, S. Kowalewski, and S. Engell. Generating timed discrete models of

continuous systems. In Proc. 2nd IMACS Symposium on Mathematical Modeling,
pages 203{209, 1997.

19. A. Tiwari and G. Khanna. Series of abstractions for hybrid automata. In Hybrid

Systems: Computation and Control, Fifth Intern. Workshop, LNCS 2289, 2002.


