
Branching Pushdown Tree Automata ⋆

Rajeev Alur and Swarat Chaudhuri

University of Pennsylvania

Abstract. We observe that pushdown tree automata (PTAs) known in
the literature cannot express combinations of branching and pushdown
properties. This is because a PTA processes the children of a tree node
in possibly different control states but with identical stacks. We propose
branching pushdown tree automata (BPTAs) as a solution. In a BPTA,
a push-move views its matching pops as an unbounded, unordered set of
successor moves and can assert existential and universal requirements on
them, just the way finite automata on unranked, unordered trees pass
requirements to the children of a tree node. We show that BPTAs can
express some natural properties and are more expressive than PTAs.
Using a small-model theorem, we prove their emptiness problem to be
decidable. The problem becomes undecidable, however, if push-moves
are allowed to specify the ordering of matching pops.

1 Introduction

Regular languages of trees [1] have been studied extensively in the literature [10]
and found a number of applications. Automata accepting such languages can
reason about paths in a tree existentially (“a symbol a is seen along some path
from the current node”) and universally (“a is seen on all paths”). Concretely,
while reading a node in a binary tree, a nondeterministic, top-down tree au-
tomaton can nondeterministically pick pairs of different states to be sent to the
children of the current node. Such “branching” of the finite control permits tree
automata to specify properties of trees such as: “every node labeled a has a
descendant labeled b and another descendant labeled c.”

Above the class of regular tree languages in the hierarchy of expressiveness
lies the class of context-free tree languages [7, 1]. Such languages are accepted
by nondeterministic pushdown tree automata (PTAs) [3, 9, 8, 4, 6], which aug-
ment tree automata with pushdown stores. PTAs are expressively equivalent
to context-free tree grammars [1, 7], and their emptiness problem is in EXP-
TIME [11, 6]. Their usual operational definition runs as follows: while reading a
tree node, a PTA A assumes a configuration of the form (q, w), where q is a state
and w is a stack. At any point, A may push or pop the stack, or it may fork copies
to be sent to the children of the current node. The essence of the expressiveness
of PTAs, however, lies in the fact that they allow information stored on the stack

⋆ This research was partially supported by ARO URI award DAAD19-01-1-0473 and
NSF award CCR-0306382.

at a push-transition to be retrieved at “matching” pop-transitions arbitrarily far
away. Another way to view this is: a push-move in a PTA A can constrain its
matching pops—for instance, it may require q′ to be the only state reached via
the latter. This is analogous to the way a transition in a tree automaton can
constrain the automaton’s state at the children of a tree node.

We note, however, that in existing definitions of PTAs, copies of the automa-
ton forked by a branch-transition have identical stacks, even though they may
differ in control state (in some definitions, the stacks may differ, but only in a
bounded way). If a push stores γ on the stack, then at every matching pop, it
is the same γ that must be popped. Thus, while γ may be used to require that
every matching pop leads to state q′, a push-move cannot assert properties such
as: “there exists a unique matching pop leading to state q1, and every other
matching pop leads to state q2.” Intuitively, a PTA can only express universal
(as opposed to universal and existential) matching requirements. On the other
hand, tree automata can reason universally and existentially about the children
of a tree node—for unranked trees, MSO-complete tree automata [5] have tran-
sitions asserting requirements such as: “there exists a unique child to which state
q1 is passed, and every remaining child gets state q2.” Thus, PTAs do not re-
ally combine the way tree automata specify branching properties with the way
pushdown automata express matching requirements.

To see how this prevents PTAs from capturing the interplay of matching
and tree branching, consider a basic pushdown language: that of words over
brackets [,]1 and]2 where every bracket [has a matching instance of]1 or]2.
Now consider the language L of trees labeled by the above brackets where: (1)
each node labeled [has a single descendant labeled]1 such that the path from
the former to the latter is “matched,” and (2) every other “matched descendant”
is labeled]2. A push-transition taken by a PTA at a node labeled [(or within a
bounded distance from it) can check that all matching brackets reachable from
the point of push are of a certain type. However, no PTA can accept L.

In this paper, we introduce branching pushdown tree automata (BPTAs),
a class of pushdown automata which run on trees but do not suffer from this
shortcoming in expressiveness. A push-transition in a BPTA views the tree nodes
reached via its matching pops as an unbounded, unordered set of successor nodes,
and can assert existential and universal requirements on them. More precisely,
a push-transition is of the form q → (q′, push(χ)), where q is the source state,
q′ is the destination state, and χ, a constraint on the states reached by the
matching pops, can demand a requirement such as: “state q1 is reached through
one matching pop, and the rest lead to q2.” Note how this is analogous to the
way MSO-complete finite automata on unranked, unordered trees can assert
requirements on the children of a tree node. Thus, the ability of tree automata to
reason about tree branches is combined seamlessly with the power of pushdown
automata to match brackets, letting BPTAs accept a “truly pushdown” class of
tree languages. Note also that the language L may now be accepted easily. At
nodes labeled]1 and]2, the BPTA A for L pops and moves respectively to states

q1 and q2, then continues down the tree. At a node labeled [, A pushes, asserting
the constraint χ on the matching pops, before it branches.

BPTAs enjoy closure properties similar to PTAs but are provably more ex-
pressive. The main technical result of this paper is an algorithm for their empti-
ness problem. The analogous problem for PTAs reduces to pushdown games [11];
however, such a reduction seems impossible in this case. Instead, we define a
proof system that, for states q and constraints χ, derives facts such as “starting
at state q with empty stack from the root of some tree, the automaton has a
way to reach the leaves of that tree with empty stack, at states that together
satisfy χ.” Using a small-model theorem that states that a short proof exists for
every proof in this system, we obtain a 3-EXPTIME algorithm for the emptiness
problem. Intriguingly, checking emptiness becomes undecidable if we allow BP-
TAs to reason about the order among the matching pops of a push by allowing
the constraints asserted at push-moves to be regular expressions.

The organization of this paper is as follows. In Sec. 2, we present some defi-
nitions we use in the rest of the paper. In Sec. 3, we formally define BPTAs, and
in Sec. 4, we present our main decision procedure. We study the expressiveness
of BPTAs in Sec. 5, and conclude with some discussion in Sec. 6.

2 Basics

Binary trees Our models in this paper are binary trees. LetΣ be an input alpha-
bet. A finite binary tree over Σ is a term given by the grammar T :=⊥ | a(T, T),
for a ∈ Σ. The tree ⊥ is the empty tree, and the root of a tree a(T1, T2) is the
letter a. The i-th leaf of T is the i-th instance of ⊥ in it (reading left-to-right).
The i-th composition (T ◦i T

′) of T and T ′ is the term obtained by replacing the
i-th leaf of T by T ′.

Count constraints Consider a finite set Q and a word α ∈ Q+. We denote the
length of α by |α| and the i-th symbol in α by α(i). The count of q ∈ Q in α is
the number of times q occurs in α.

We will be interested in count constraints over Q. Such a constraint χ follows
the grammar χ := (count(q) ≥ k) | (count(q) = k) | χ ∧ χ, for k ∈ N. A word α
satisfies χ (written as α |= χ) iff it satisfies each conjunct of form (count(q) ≥ k)
or (count(q) = k); the former holds iff the count N of q in α satisfies N ≥ k, and
the latter iff N = k. We assume our constraints to be in the simplest possible
form, i.e. no two conjuncts refer to count(q) for the same q.

Let us now construct an alphabet of starred elements Q∗ = {q∗|q ∈ Q}.
We will represent a count constraint χ over Q as a multiset (U ∪ U), where
U is a multiset over Q, and U ⊆ Q∗. For each q ∈ Q, let mq be the number
of occurrences of q in U; if q∗ ∈ U , then set τq = (count(q) ≥ mq), else set
τq = (count(q) = mq). Then we must have χ =

∧
q τq. Intuitively, mq copies of

q in χ guarantees any word satisfying χ to have at least mq occurrences of q;
absence of q∗ (q∗ is read as “an unspecified number of q-s”) guarantees that the

constraint is an equality. For instance, χ = {q1, q
∗
1 , q2} represents the constraint

(count(q1) ≥ 1) ∧ (count(q2) = 1) ∧
∧
i6=1,2(count(qi) = 0).

In the sequel, we denote by count(χ, q) the number of times q appears in
χ, and we define the size of χ to be Size(χ) =

∑
q count(χ, q). Also, binary

relations over constraints χ and χ′ are to be interpreted as relations over the
corresponding multisets. Now we define an “implied-by” relation 4 for count
constraints. For constraints χ and χ′, we define χ 4 χ′ iff (1) for each q ∈ Q
such that q∗ ∈ χ, we have count(χ, q) ≤ count(χ′, q), and (2) for each q ∈ Q
such that q∗ /∈ χ, we have count(χ, q) = count(χ′, q). Clearly, if χ 4 χ′, then for
every word α ∈ Q+, we have α |= χ′ ⇒ α |= χ.

For count constraints χ1 = U1 ∪ U1 and χ2 = U2 ∪ U2, where U1,U2 are
multisets over Q and U1, U2 ⊆ Q∗, we define the sum (χ1 + χ2) as (U1 ∪ U2) ∪
(U1 ∪U2). Note that the union of U1 and U2 is a multiset union that duplicates
states, whereas U1 ∪ U2 is a simple set union. Likewise, for q ∈ U1, we define
(χ1 − {q}) to be (U1 \ {q}) ∪ U1.

3 Branching pushdown tree automata

Syntax and semantics A (top-down) branching pushdown tree automaton
(BPTA) is a tuple A = (Q,Σ, q0, δ, F), where Q is a finite set of states, Σ
is an input alphabet, q0 ∈ Q is the initial state, and F ⊆ Q is a set of final
states. The transition relation δ consists of four kinds of transitions: (1) push-
transitions q → (q′, push(χ)), where q, q′ ∈ Q and χ is a count constraint over Q;
(2) pop-transitions q → (q′, pop), where q, q′ ∈ Q; (3) swap-transitions q → q′,

where q, q′ ∈ Q, and (4) branch-transitions q
a

−→ (q1, q2), where a ∈ Σ and
q1, q2 ∈ Q.

Intuitively, while processing a binary tree, a BPTA is able to change its
configuration using a push, pop or swap transition and process the same tree
while in the new configuration. It may also read the root of the tree, fork two
copies using a branch transition, and use them to inductively process the left
and right subtrees of the present tree. We note that the assumption that the
current input symbol is ignored during pushes, pops and swaps is only for simpler
exposition, and does not limit expressiveness. Also, observe that the transitions
of a BPTA do not manipulate a stack explicitly—indeed, we avoid the use of
a stack altogether while defining runs of BPTAs. However, we will see that our
definition can encode the usual stack-based semantics for pushdown automata.
We will also see that pushdown tree automata (PTAs) can be encoded by BPTAs
where for every constraint χ appearing in a push-transition, Size(χ) = 0.

The semantics of a BPTA A is defined inductively via predicates Run(q, α, T),
where q ∈ Q, α is a word over Q, and T is a binary tree. Intuitively, the predicate
Run(q, α, T) is true iff the automaton has a run on the tree T , starting at state
q with empty (implicit) stack and ending at the leaves of T with empty stack,
such that α is obtained by reading from left to right the states of A at the leaves
of T . Formally:

– Run(q, q,⊥) is true;

– if A has a transition q → q′, then Run(q, q′,⊥);

– if T = a(⊥,⊥) and A has a transition q
a

−→ (q1, q2), then Run(q, q1q2, T);

– assume that Run(q′, α′, T) and A has a transition q → (q′, push(χ)). Then
Run(q, α, T) holds if for some α ∈ Q∗, we have: (1) α |= χ, and (2) there is
a bijection µ : {1, 2, . . . , |α|} → {1, 2, . . . , |α|} such that A has a transition
α(i) → (α′(µ(i)), pop) for all 1 ≤ i ≤ |α|;

– if Run(q, α, T) and Run(q′, α′, T ′), and α(i) = q′, then Run(q, α′′, T ◦i T
′),

where α′′ is obtained by substituting α(i) by α′.

The BPTA A accepts a tree T if Run(q0, α, T) for some word α over F .
Informally, the acceptance condition requires the automaton to reach each leaf
of T in a final state with an empty (implicit) stack. The language L(A) of A is
the set of all trees it accepts.

Among the above, the fourth and the

[[

[

[

]1]1]1]1]1

]1

]1]1

]2]2]2

Fig. 1. A BPTA example

fifth clauses are the most interesting. The
fourth clause captures matching—if A pushes
to go from q to q′, and there is an empty-
stack-to-empty-stack run from q′ to q′′, then
a pop from q′′ to q′′′ matches the original
push. The distinguishing feature of BPTAs
is that the word obtained by reading the
q′′′’s from left to right must now satisfy a
count constraint χ. The fifth clause captures
the way a run from q and ending, among

others, at q′, can be composed with a run from q′.

To see a language recognized by a BPTA, consider binary trees over the
input alphabet Σ = {[,]1,]2}. Let nodes and paths in such trees have the natural
definitions, and let brackets [be matched by brackets]1 and]2. Call a node x′

in a tree a matching node of a node x if x is labeled [, x′ is labeled]1 or]2,
and there is a well-matched path (defined in the natural way) from x to x′. Now
consider the language L of such trees where (1) every path from the root to a
“leaf” ⊥ (not including the leaf itself) is matched, and (2) every node labeled [
has exactly two matching nodes labeled]1, and every remaining matching node
is labeled]2. The tree in Fig. 1, for instance, belongs to L (the leaves have been
omitted to keep the figure clean).

A BPTA A for L has states q, q]1 , and q]2 , the initial state being q. On
reading a node labeled]1 (similarly]2), A pops and changes state to q]1 (or q]2).
On reading a node labeled [, A pushes and sends the state q to the children
of the current node, the count constraint in the push being: “state q]1 appears
exactly twice, and q]2 occurs 0 or more times.”1 It is easy to see that A accepts L.

Pushdown tree automata A (top-down) pushdown tree automaton (PTA) P
has a finite state set H, an initial state h0, a finite stack alphabet Γ , a set of

1 While BPTAs, as defined, cannot push and branch in a “compound” transition, a
move like this can be implemented using extra “book-keeping” states.

final states, and transitions of the types h → (h1, push(γ)), h → (h1, pop(γ)),

h → h1, and h
a

−→ (h1, h2), where h, h1, h2 ∈ H, γ ∈ Γ , and a is an input
symbol. A configuration of P is of the form (h,w), where h ∈ H, and w ∈ Γ ∗ is
a stack. We define the semantics of A on an input tree T via predicates of the
type Accept((h,w), T), which intuitively means “P accepts T from configuration
(h,w),” and is true if one of the following conditions holds:

– w = ǫ, h is a final state, and T =⊥;
– there is a transition h→ h′ such that Accept((h′, w), T);

– T = a(T1, T2), and for some transition h
a

−→ (h1, h2), Accept((h1, w), T1)
and Accept((h2, w), T2);

– there is a transition h→ (h′, push(γ)) such that Accept((h′, γ.w), T);
– w = γ.w′, and for some transition h→ (h′, pop(γ)), Accept((h′, w′), T).

The automaton P accepts a tree T if Accept((h0, ǫ), T) holds; L(P) is the
language of P. Now, to see that BPTAs can encode PTAs, note that the only
way a push-transition is different from a swap transition is that it constrains the
“matching” pop transitions—if γ is pushed, then it is γ that must be popped
at every matching pop. More precisely, construct from P a BPTA A with state
set H ∪ (H × Γ)—intuitively, a pop in A to state (h, γ) simulates a move in
P that pops γ and changes state to h. Every branch and swap transition in
P is also a transition in A; A also has extra swap-transitions (h, γ) → h for
all h ∈ H, γ ∈ Γ . For every pop-transition h → (h′, pop(γ)) in P, A has a
transition h→ ((h′, γ), pop), and for every push h→ (h′, push(γ)) in P, A has a
transition h→ (h′, push(χ)), where the count constraint χ =

∧
h(count((h, γ) ≥

0)∧
∧

∀h.q 6=(h,γ)(count(q) = 0). It is not hard to see that L(A) = L(P). Now, let a
0-BPTA be a BPTA where for every constraint χ appearing in a push-transition,
we have Size(χ) = 0. We note that A is a 0-BPTA. We can also show that for
every 0-BPTA, there is an equivalent PTA. Then:

Theorem 1. The class of languages accepted by PTAs equals the class of lan-
guages accepted by BPTAs where for every constraint χ appearing in a push-
transition, we have Size(χ) = 0.

4 Emptiness

Now we present our main technical result: a decision procedure for the problem
of checking, given a BPTA A, whether L(A) is empty.

Consider a BPTA A = (Q,Σ, q0, δ, F), where Q = {q1, q2, . . . , qn}, and recall
the predicates Run(q, α, T) defined in Sec. 3. We would like to prove such predi-
cates inductively—however, since they are unboundedly many, we must quotient
them in a finite way.

We do so using predicates of the form F(q, χ), where q ∈ Q and χ is a count
constraint over Q. The predicate F(q, χ) holds iff Run(q, α, T) holds for some
tree T and some word α ∈ Q+ such that α |= χ. Then, by definition:

Lemma 1. If χ 4 χ′, then for all q, F(q, χ′) ⇒ F(q, χ).

Lemma 2. L(A) 6= ∅ iff F(q0, χF), where χF = {q∗ : q ∈ F}.

A natural question is whether it suffices to consider only predicates F(q, χ)
where χ appears in a push-transition of A. It turns out that it does not. Consider
a BPTA A that has, among others, a push-transition q → (q′, push(ψ)), where
ψ = {p∗1, p2, p

∗
2}, and pop-transitions q′′ → (p1, pop) and q′′ → (p2, pop). Now

suppose the constraint χ = {p1, p
∗
1, p

∗
2} appears in a different push-transition,

and that we want to prove F(q, χ). We note that to use the push-transition
involving ψ in such a proof, we need to prove the stronger predicate F(q, χ′′),
where χ′′ = χ + ψ = {p1, p

∗
1, p2, p

∗
2}. If we are to use this push along with the

pop-transitions from q′′, we also need to prove F(q′, χ′), where χ′ = {q′′, q′′, q′′∗}.
However, there is no reason why χ′ must appear in a transition of A.

Hence we define a proof system F for facts F(q, χ). The system derives predi-
cates F(q, χ) (designed to be the syntactic analog of F(q, χ)), and uses the rules:

1.
F(q, χ), for χ 4 {q} (Base)

2.
F(q, χ) F(q′, χ′)

F(q, χ′′)
(Compose),

if q′ is in χ and χ′′ 4 χ+ χ′ − {q′}.

3.
F(q, χ) (Swap),

if A has a transition q → q′ and χ 4 {q′}.

4.
F(q, χ) (Branch),

if A has a transition q
a

−→ (q1, q2) for some a such that χ 4 {q1, q2}.

5.
F(q′, χ′)

F(q, χ)
(Summarize),

if there are count constraints χ′′ and ψ such that: (1) χ 4 χ′′, (2) ψ 4 χ′′,
(3) A has a push-transition q → (q′, push(ψ)), and (4) there is a relation
ν ⊆ χ′ × χ′′ such that:
(a) for every v ∈ χ′′, there is some u ∈ χ′ such that ν(u, v)
(b) for each u ∈ χ′ that is a state of A, we have a unique v ∈ χ′′ such that

ν(u, v), v is a state of A, and A has a transition u→ (v, pop);
(c) for each u of form q′′∗, for q′′ ∈ Q, in χ′, every v ∈ χ′′ such that ν(u, v)

must satisfy: (i) v is of form q′′′∗ for some q′′′ ∈ Q, and (ii) A has a
transition q′′ → (q′′′, pop).

Here, the rule Base may be used to establish that F(q, {q}) is true. In
addition, this rule can prove a “weaker” fact such as F(q, {q, q∗}), implied by
F(q, {q}) according to Lemma 2. Generally, if any of our rules can derive a fact,
then it can also derive every weaker fact.

We will explain why the rule Compose is sound to demonstrate its pur-
pose. Suppose we have F(q, χ) and F(q′, χ′), for q′ ∈ χ. Inductively, we have
Run(q, α, T) for some α, T such that α |= χ; likewise, we have Run(q′, α′, T ′)

for some α′, T ′ such that α′ |= χ′. Since q′ = α(i) for some i, we have, by the
semantics of A, Run(q, α′′, T ◦i T

′), where α′′ is obtained by replacing the i-th
letter of α by α′. As α′′ |= χ+χ′ −{q′}, we can soundly derive any goal weaker
than F(q, χ+ χ′ − {q′}).

Rules Swap and Branch capture the semantics of the swap and branch
transitions of A. We will explain the rule Summarize via an example (Fig. 2).
Suppose we want to derive F(q, χ), where χ = {p1, p

∗
1, p2}. Let A have a push-

transition q → (q′, push(ψ)) that, matched by some pop-transitions and com-
bined with the true predicate F(q′, χ′), proves F(q, χ′′) for some χ′′ satisfy-
ing χ 4 χ′′. We must have ψ 4 χ′′; also, there must exist appropriate pop-
transitions from χ′ to χ′′. To be concrete, let χ′′ = {p1, p1, p1, p

∗
1, p2}, and ψ =

{p1, p1, p
∗
1, p2}, and suppose A has pop transitions q → (p1, pop), q′ → (p1, pop),

and q′ → (p2, pop). Now, every instance of p1 (or p2) in χ′′ guarantees one copy
of p1 (p2) reached in a run of A, and must be derived via a pop from a copy of
q or q′ in χ′. The element p∗1 stands for “an unspecified number (zero or more)
of p1’s,” and must be derived from “an unspecified number of states that, via a
pop, may lead to p1.” Thus, we may set χ′ = {q, q, q′, q∗, q′, q′∗} (as in the fig-
ure) or χ′ = {q, q, q, q′∗, q′}, but not, say, χ′ = {q, q, q, q∗, q}. Now, the relation
ν ⊆ χ′ × χ′′ collects the pairs (u, v) such that v is derived from u.

Let us write ⊢F F(q, χ) if F(q, χ) is derivable in F. We can prove that:

Lemma 3. F(q, χ) iff ⊢F F(q, χ).

Now take a proof tree for F(q0, χF),

q

q

q

q′q′

q′

q′∗
q∗

p1p1p1

p1 p2

p2

p∗1

p∗1

push(ψ)
ψ = {p1, p1, p

∗
1, p2}

χ

χ′

χ′′

pop

Fig. 2. The rule Summarize

where χF is as in Lemma 2. We show
that for every such tree, there is a proof
for the same predicate involving a small
number of predicates. Consider a path in
this tree from the root (the target predi-
cate F(q0, χF)) to a leaf (a predicate de-
rived without a premise). For predicates
P and P

′ that lie on such a path, let us
write P ⊳ P

′ if P is derived using P
′ in

one step. We write P ⊳+
P
′ if P is ob-

tained via a positive number of deriva-
tions from P

′. Call a proof tree S min-
imal if it cannot be further reduced by
any of the following two operations: (1)

replace the proof for a predicate P in S by a proof tree with fewer vertices, and
(2) if F(q, χ)⊳F(q′, χ′) in S, then replace F(q′, χ′) by a predicate F(q′, χ′′), where
χ′′ 4 χ′ and χ′′ 6= χ′, such that F(q, χ) can be derived from F(q′, χ′′) (and the
other predicates used to derive F(q, χ) in S). Note that in the above, a proof for
F(q′, χ′′) follows directly from the proof for F(q′, χ′)).

Let S be a minimal proof tree. We note that if χ 4 χ′ for some χ and χ′,
and F(q, χ) ⊳+

F(q, χ′) for some q in Q, then by Lemma 1, we can compact S
by replacing the proof of F(q, χ) by the (stronger) proof for F(q, χ′). Since S is
minimal, this is a contradiction, so that:

Lemma 4. In a minimal proof tree, we cannot have F(q, χ)⊳+
F(q, χ′) if χ 4 χ′.

Now note that if F(q, χ)⊳F(q′, χ′) in a minimal proof tree, then we can have
Size(χ) < Size(χ′) only if the rule Summarize is used for this derivation. Now
consider a state p such that p∗ ∈ χ, and let cmax = maxψ maxq (count(ψ, q))
be the maximum count of a state in a count constraint that appears in a push-
transition of A. Because we must have ψ 4 χ′′, it may not suffice to have
count(χ′′, p) = count(χ, p), but the number of extra copies of p that we may
need to add is at most cmax (we may also have to add elements of the form
q∗, but recall that they do not figure in the size of a constraint). At the same
time, for states p′ for which p′∗ /∈ χ, we cannot have count(χ, p′) > cmax —this
is because count(χ, p′) = count(χ′′, p′) = count(ψ, p′), which contradicts the
definition of cmax . Setting k = θ(ncmax) for the rest of this section, we have
Size(χ′) ≤ Size(χ) + k. Then:

Lemma 5. If F(q, χ)⊳F(q′, χ′) in a minimal proof, then Size(χ′) ≤ Size(χ)+k.

Now we abstract the problem fur-

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

(m0
1,m

0
2)

m1 = m0
1 + (m0

2 −m2)k

m2 = m0
2 + (m0

1 −m1)k

m1 = 1

m2 = 1

Fig. 3. Bound on constraint size

ther. From now on, only consider count
constraints χ where q ∈ χ ⇒ q∗ ∈
χ. Call a sequence of such count con-
straints ϕ = χ1χ2 . . . χl a proof witness
if it satisfies the conditions: (1) for all i,
Size(χi+1) ≤ Size(χi) + k, (2) if j > i,
then we cannot have χi 4 χj , and (3)
χ1 = χF , where χF is as in Lemma 2.
Let us denote by λ(ϕ) the maximum
size of a constraint in a proof witness ϕ.
We ask the question: what is the max-

imum value of λ(ϕ) over all proof witnesses ϕ? The answer is an upper bound
on the maximum size of a count constraint χ appearing in a predicate F(q, χ) in
a minimal proof tree.

Define the basis of a count constraint χ as the set of states q such that q∗ ∈ χ.
The total number of bases is bounded by 2n. Using the facts that the ordering 4

only relates count constraints over the same basis and that we assume nothing
about the specific counts of states in a constraint, we observe:

Lemma 6. For any proof witness ϕ = χ1χ2 . . . χl, there are 2n sequences of
count constraints ϕ1, ϕ2,. . . ,ϕ2n , such that (1) each constraint appearing in a
particular ϕi has the same basis, (2) constraints in different ϕi’s have different
bases, and (3) the concentenation ϕ′ of the ϕi’s is a proof witness satisfying
λ(ϕ) ≤ λ(ϕ′).

Call a proof witness contiguous if it may be split into sub-witnesses over
particular bases in the above way. To find λ(ϕ′) for a contiguous proof wit-
ness ϕ′ = ϕ1ϕ2 . . . ϕ2n , we consider a sub-witness ϕi = χ1χ2 . . . χl, such that
count(χ1, q) = m for all q in the common basis of constraints in ϕi (in general,

the state qi can have a count mi, but we could set m = maximi without de-
creasing λ(ϕ)). We will find a bound π(m,n, k) on λ(ϕi) under this assumption.
First, note that for i1 > i2, we cannot have count(χi1 , q) > count(χi2 , q) for all q
in the basis of ϕi. Then, starting from χ1, if we decrease the count of one of the
states to 1, then the other counts can grow at most to (m+ (m− 1)k) = O(mk)
(the situation is illustrated in Fig. 3-(b) for basis size 2; here, allowed pairs
(m1,m2) of counts are depicted as points in a 2-dimensional space, and can
only lie in its shaded part—(m0

1,m
0
2) is the “initial” point). In this way we

can show that π(m,n, k) ≤ π(O(mk), n − 1, k), and using this inequality, that
λ(ϕi) = O(mnkn). Now note that in ϕi+1, the first constraint has the form

(m′,m′, . . . ,m′), where m′ = O(mnkn), so that λ(ϕi+1) = O(mn2

kn
2+n). Also,

in the first constraint in ϕ1, the count of each state is 0. From all this and using

induction, we obtain that λ(ϕ) = O(kn
2

n

).
Now note that the total number of multisets over a basis of size n where

each element can have at most r copies is rn. Therefore, the total number of

predicates F(q, χ) is O(kn
2

n

). Since every derivation step in F derives at least
one new predicate, we have:

Theorem 2. The emptiness problem of BPTAs is in 3-EXPTIME.

5 Expressiveness

Basic properties In this section, we study the expressiveness of BPTAs fur-
ther. First, note that on word models, a push in a run of a BPTA has a single
matching pop, so that the count constraints in push-transitions applicable in this
setting can be simplified to: “one of the states in Q′ ⊆ Q appears once, and the
other states do not occur.” This can be encoded by nondeterministic pushdown
word automata, proving (along with Theorem 1) that BPTAs on words accept
precisely the class of context-free languages.

As for closure properties of BPTAs, closure under union is trivial. Some
“hardness” results follow from Theorem 1 and results for pushdown automata:

Theorem 3. BPTAs are closed under union, but not under intersection or com-
plementation. The problems of checking the emptiness of (1) the complement of
a BPTA and (2) the intersection of two BPTAs are undecidable.

We show that BPTAs are more

a1 a2
an $

bm1 bm2 bmn

b21 b22

b11

b1n

b2n

b12

Fig. 4. Expressiveness of BPTAs

expressive than PTAs by consid-
ering trees as in Fig. 4 (the leaves
have been omitted). Here, the in-
put alphabet is Σ = {0, 1, $},
and the symbols ai, bij are in Σ
for all i, j (while these trees are
not binary, we can always en-
code them by such). Now let L

be the language of trees of the above form where for all i ≤ n, there is exactly one

k ≤ m such that an−i+1 = bki. This language is recognized by a BPTA that has
states q0 and q1 (along with a couple of other states needed for “book-keeping”)
corresponding to the input symbols 0 and 1. While reading each ai, it executes
a push-transition that enforces the following count constraint χ on its matching
pops: “state qai

appears exactly once, and state qj , where j 6= ai ∈ {0, 1} can
appear an unspecified number of times.” On reading a symbol bij , the BPTA
executes a pop-transition to the state qbij

.

To see why L cannot be recognized by a PTA M with N states, take a tree
as above where n = m > N . In any run, M must enter two branches of the tree
in the same configuration. Then we can replace one of these branches with the
other to get an accepting run on a tree not in L. This leads to:

Theorem 4. There is a BPTA A such that no PTA recognizes L(A).

Alternation One may wonder if BPTAs can be simulated by alternating push-
down tree automata (APTAs), which can fork copies during a run and require
that all forked copies accept the input tree. Such automata have undecidable
membership and emptiness problems and can accept languages not recognizable
by BPTAs. For instance, the non-context free word language L = {aibici : i ≥ 1},
clearly not accepted by a BPTA, can be accepted by an APTA [6].

However, alternation does not appear to be the source of expressiveness of
BPTAs. Consider the language L of trees as in Fig. 4 where there is a j ≤ n such
that for all i ≤ j, there is a branch k such that an−j+1 = bkj and an−i+1 = bki.
An APTA M running on such trees cannot track the universal quantifier over
i just by forking copies. Such copies would run independently and not agree on
the value of j. We conjecture that L cannot be accepted by an APTA. On the
contrary, consider a BPTA A that has a pair of states qσ, q

#
σ for each σ ∈ Σ, and

pushes on the a’s and pops on the b’s. At every ai preceding some nondetermin-
istically guessed aj , A pushes and asserts that, among the states reached via the
matching pops, “qai

appears at least once.” At aj , A demands that “q#aj
occurs

once or more” among the states reached by the matching pops. While popping
along the k-th branch of b’s, A has, in the beginning, the option to move to a
state q#σ at any point. If it does so on a symbol bkl, then it checks that σ = bkl.
Now it waits to move to a state qσ′ . If it does so on a symbol bkp, then it checks
that σ′ = bkp. We can show that A accepts a tree if and only if it belongs to L.

Regular expressions instead of count constraints? While a count con-
straint χ in a push-transition in a BPTA A can reason about state counts in the
multiset of states reached via the pops matching the push, it cannot order them
by the position of the leaves they reach. A way to let BPTAs reason about the
order of matching pops would be to let χ be a regular expression. The semantics
for push-transitions is the obvious one; pop, swap and branch transitions stay
the same.

Such automata can trivially encode BPTAs; unfortunately, their emptiness
problem is undecidable (we omit the proof). Evidently, the expressiveness of
BPTAs is quite close to the maximum permitted by decidability contraints.

6 Conclusions

In this paper, we introduced BPTAs as a new automaton model for pushdown
tree languages. Unlike pushdown tree automata studied in the literature, BPTAs
allow path quantifiers to be combined with pushdown properties satisfied along
a path. We established that BPTAs are strictly more expressive than classical
PTAs and presented a decision procedure for their emptiness problem.

There is an intriguing connection between our decidability result and known
results [2] for transition systems equipped with well-founded quasi-orders (wqo).
Using Lemma 6, we can establish that the relation 4 defines a wqo on a transition
system whose states are predicates of the form F(q, χ). We can then pose the
emptiness question for BPTAs as an alternating coverability problem on this
transition system, which can then be proved decidable by extending existing
decidability proofs for coverability in such systems.

Several questions are left open. First, we are not convinced that the upper
bound for our decision procedure is tight, and it is possible that an entirely new
approach would yield a better upper bound. Secondly, an extension of context-
free tree grammars that is equivalent to BPTAs would be interesting to study.
Finally, this paper exclusively deals with automata on finite trees, and a general-
ization to infinite trees and infinitary acceptance conditions would be of interest.

Acknowledgement: We thank P. Madhusudan for valuable discussions.

References

1. H. Comon, M. Dauchet, R. Gilleron, D. Lugiez, S. Tison, and M. Tommasi. Tree
automata techniques and applications. Draft, 2002.

2. A. Finkel and Ph. Schnoebelen. Well-structured transition systems everywhere!
Theoretical Computer Science, 256(1-2):63–92, 2001.

3. I. Guessarian. Pushdown tree automata. Math. Systems Theory, 16(4):237–263,
1983.

4. D. Harel and D. Raz. Deciding emptiness for stack automata on infinite trees.
Information and Computation, 113(2):278–299, 1994.

5. D. Janin and I. Walukiewicz. On the expressive completeness of the propositional
mu-calculus with respect to monadic second order logic. In CONCUR 1996, LNCS
1119, pages 263–277. Springer-Verlag, 1996.

6. O. Kupferman, N. Piterman, and M.Y. Vardi. Pushdown specifications. In LPAR

2002, LNCS 2514, pages 262–277. Springer, 2002.
7. W. C. Rounds. Mappings and grammars on trees. Mathematical Systems Theory,

4(3):257–287, 1970.
8. A. Saoudi. Pushdown automata on infinite trees and nondeterministic context-free

programs. International Journal of Foundations of Comp. Sci., 3(1):21–39, 1992.
9. K. M. Schimpf and J. H. Gallier. Tree pushdown automata. Journal of Computer

and System Sciences, 30(1):25–40, 1985.
10. W. Thomas. Languages, automata, and logic. Handbook of Formal Language

Theory, III:389–455, 1997.
11. I. Walukiewicz. Pushdown processes: Games and model-checking. Information and

Computation, 164(2):234–263, 2001.

