
Representation Dependence Testing using
Program Inversion

Aditya Kanade
Indian Institute of Science

kanade@csa.iisc.ernet.in

Rajeev Alur
University of Pennsylvania
alur@cis.upenn.edu

Sriram Rajamani G. Ramalingam
Microsoft Research India

{sriram,grama}@microsoft.com

ABSTRACT
The definition of a data structure may permit many differ-
ent concrete representations of the same logical content. A
(client) program that accepts such a data structure as input
is said to have a representation dependence if its behavior
differs for logically equivalent input values. In this paper,
we present a methodology and tool for automated testing
of clients of a data structure for representation dependence.
In the proposed methodology, the developer expresses the
logical equivalence by writing a normalization program f
that maps each concrete representation to a canonical one.
Our solution relies on automatically synthesizing the one-
to-many inverse function of f : given an input value x, we
can generate multiple test inputs logically equivalent to x by
executing the inverse with the canonical value f(x) as input
repeatedly. We present an inversion algorithm for restricted
classes of normalization programs including programs map-
ping arrays to arrays in a typical iterative manner. We
present a prototype implementation of the algorithm, and
demonstrate how our methodology reveals bugs due to repre-
sentation dependence in open source software such as Open
Office and Picasa using the widely used image format Tiff.
Tiff is a challenging case study for our approach.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation; D.2.5 [Software Engineering]: Testing and De-
bugging; F.3.1 [Logics and Meanings of Programs]:
Specifying and Verifying and Reasoning about Programs

General Terms
Experimentation, Reliability, Verification

Keywords
Data Structures, Program Inversion, Testing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FSE-18, November 7–11, 2010, Santa Fe, New Mexico, USA.
Copyright 2010 ACM 978-1-60558-791-2/10/11 ...$5.00.

1. INTRODUCTION
In this paper, we address data representation dependence,

a class of bugs that is a common source of incompatibility
between programs. We describe a new testing technique
that we call representation fuzzing to identify such bugs.

Data Representation Dependence. Consider a pro-
gram (the producer) that produces some data that is con-
sumed by another program (the client). When the client
program works correctly with one version of the producer,
but fails to do so with a latter version of the producer, we
have a version compatibility problem.

Data definition is often a key to interoperability between
programs. By “data definition”, we mean a definition of
the structure of data interchanged between programs and
its semantics (i.e., the data value a particular data instance
represents). Such a definition essentially acts as the contract
between a producer and client of data.

Such definitions often permit different representations of
the same data value. A new version of a producer program
may exploit the flexibility in the data definition contract
to produce output that looks structurally different from the
output of an earlier version of the producer, yet semantically
represents the same value. A correct client is expected to
work with the output of both versions of the producer.

Unfortunately, an implementation of a client may make
assumptions about the data definition based on the observed
output of a particular version of the producer program rather
than use an independently specified data definition. As a re-
sult, it may fail to work correctly when the implementation
of the producer evolves. We refer to such a client as having
a data representation dependence. Using examples of clients
using Windows data structures and clients using the widely
used image format Tiff, we argue that such dependence is
indeed an indicator of bugs in practice.

Representation Fuzzing. In this paper, we propose an
effective novel technique for testing a client program C for
representation dependence bugs. Given a test case (concrete
input) x, we first (automatically) produce other test cases
z that are logically equivalent to x. We then test the pro-
gram C with these different, but equivalent, inputs. If the
program exhibits different behaviors for different, but equiv-
alent, inputs, we have a representation dependence bug. Dif-
fering behaviors could take the form of successful completion
in one case and a failure (e.g., null pointer dereference) in the
other, or different (inequivalent) outputs in the two cases.

This technique, which we call representation fuzzing, works
by essentially finding alternative representations of a test
case without altering its semantics. In our methodology, the

developer (of the data definition) specifies the equivalence
relation on data representations by providing a normaliza-

tion program (the semantics function) f that maps repre-
sentations to the values they denote. In particular, f(x) can
be viewed as the canonical representation of x. Finding al-
ternative representations of x essentially requires identifying
other representations z such that f(z) = f(x).

Program Inversion. Representation fuzzing is essen-
tially a constraint solving problem: given f and x we want
to determine z such that f(z) = f(x). Our approach is to
decompose this problem into two parts. First, given f , we
automatically synthesize a program f ′ that represents the
inverse of f . The inverse will typically be a one-to-many
function realized via non-determinism. For every y and for
every z that f ′ returns on y as its input, f(z) = y must hold.
This is the correctness criterion for the inversion problem.
Second, given x, we repeatedly apply f ′ to f(x) to produce
different z that are logically equivalent to x.

This staged approach lets us do expensive (symbolic) con-
straint solving once (offline) during the program inversion
phase, when possible. However, some of the constraint solv-
ing may be hard if we treat y = f(x) symbolically as an
unknown but may be easier if the value of y is known. In
such cases, we embed these constraints in the synthesized
inverse program so that they are solved dynamically (when
f ′ is applied to a given value of y).

The key technical challenge we address in the paper is
that of synthesizing the inverse function. In the simple case
of straight-line code computing outputs (y1, · · · , ym) from
inputs (x1, · · · , xn), we generate the inversion code by sym-
bolically solving a collection of equations for (x1, · · · , xn). In
the general case, conditionals, loops, and arrays complicate
inversion. One of the essential ideas we exploit for inversion
in the general case is to synthesize an inverse program that
has a control-flow structure isomorphic to the original pro-
gram, using local inversion (via symbolic equation solving)
to invert loop-free code fragments.

TIFF Case Study. Tiff is a widely used image format
that permits multiple representations of the same image and
is known to raise compatibility issues among programs. For
instance, a Tiff image consists of an orientation flag which
determines whether the scanlines of the image bitmap are
stored from left-to-right or right-to-left and top-to-bottom
or bottom-to-top. Thus, there are multiple equivalent rep-
resentations of a Tiff image. We use Tiff as a case study
for representation dependence testing.

Figure 1 summarizes our methodology for testing a client
program C for representation dependence with Tiff images
as an example. The normalization program f converts a
Tiff representation to a canonical bitmap representation.
Our algorithm automatically synthesizes f ′, the inverse of
f . We then take a Tiff file Tiff1 and compute a bitmap
Bm = f(Tiff1). Applying f ′ to Bm produces an alternative
Tiff representation Tiff2 of the same image as the bitmap
Bm. We run C on both Tiff1 and Tiff2 and report any
difference in the behavior (or output) of C as a data repre-
sentation dependence. The non-determinism in f ′ (e.g., the
choice of orientation) means that different runs of f ′ can
produce different outputs. Thus, repeating the above pro-
cedure multiple times increases the effectiveness of testing
even when we use the same input Tiff1.

The normalization program f for Tiff consists of several
programming constructs like conditionals, nested loops, un-

Program f

Invert

Program fBitmap Tiff1 Client C

Invert

Inverse of f Tiff2 Client C

Equiv?

Bug

Okay

No

Yes

Figure 1: Automated Testing for Representation
Dependence (of Clients of TIFF Images)

bounded arrays, and indirection in array indexing and is a
challenging case study for inversion. We cover strip-based
Tiff images with flexibility in the choice of orientation, rows
per strip, and physical layout of strips. We test five popu-
lar Tiff clients, namely, Open Office, KView, GIMP, Fast-
Stone, and Picasa with the following conclusions:

• Even if the number of rows per strip is varied, all
clients process the image correctly for all test cases.

• If orientation is varied then Open Office and GIMP
display images incorrectly with no warning to the user.

• If logically adjacent strips are reordered physically in
conjunction with change in orientation then Picasa dis-
plays images incorrectly with no warning to the user.

2. PROPOSED METHODOLOGY
We now formulate the problem concretely with an exam-

ple of representation dependence and by specifying syntax
and semantics of normalization programs and their inverses.

In a programming language like C, the concrete represen-
tation of data can be given as a struct declaration. As an ex-
ample, consider the following simplified version of datatype
ddsurfacedesc in the Windows DirectDraw API:

typedef struct ddsurfacedesc {1

dword height, width, pitch;2

lpvoid surface;3

} ddsurfacedesc;4

A data d of type ddsurfacedesc contains two dimensional
pixel data d.surface. We assume that a pixel is stored as a
single byte. The number of rows and columns of the pixel
data are given by d.height and d.width. The field d.pitch
gives the number of bytes between a pixel and the pixel
immediately below it. A program can append slack bytes

to each row of the pixel data for internal use. The value of
(d.pitch − d.width) is intended to indicate how many slack
bytes are used by a program. In practice, slack bytes may
not be used by a producer program P .

Consider the following client program C which uses data d
of type ddsurfacedesc as input and reads the c’th column
of d.surface into an array col.

for i := 1 to d.height do1

col[i] := d.surface[d.width ∗ i + c];2

end3

It works correctly on data generated by P . However, if P
is changed independently to use slack bytes then it reads
the pixels incorrectly. In other words, C makes a stronger
assumption on the datatype (pitch = width) than the spec-
ification allows (pitch ≥ width) and it fails if pitch > width.

〈program〉 ::= 〈stmt〉+

〈stmt〉 ::= 〈smpl-stmt〉 | 〈cond-stmt〉 | 〈loop-stmt〉
〈smpl-stmt〉 ::= 〈outvar〉 := 〈exp〉 | assume(〈pred〉)
〈cond-stmt〉 ::= if (〈pred〉) then 〈stmt〉+ else 〈stmt〉+ end
〈loop-stmt〉 ::= for i := 1 to n do 〈body〉 end

〈body〉 ::= 〈smpl-stmt〉+ | 〈loop-stmt〉
〈invar〉 ::= x | x1 | . . . | x2[〈ind-exp〉]+ | . . . | m | n
〈outvar〉 ::= y | y1 | . . . | y2[〈ind-exp〉]+ | . . .
〈indvar〉 ::= i | j | k
〈ind-exp〉 ::= 〈exp〉 | 〈scalar-invar〉 ∗ 〈exp〉 | x[〈exp〉]

| ± 〈ind-exp〉 ± 〈ind-exp〉

Figure 2: The Syntax of Normalization Programs

This example of representation dependence is motivated by
a real bug involving a client of ddsurfacedesc described in
the Windows application compatibility bug database (cf. [4]).

In order to detect representation dependence of clients of a
datatype T , we need a formal specification of the equivalence
relation ≈ over T . If a client program C produces different
behaviors or outputs on data d and d′ of type T such that
d ≈ d′ then the client has representation dependence on T .
For ddsurfacedesc, d ≈ d′ iff

• d.width = d′.width, d.height = d′.height, and

• d.surface[d.pitch∗ i+ j] = d′.surface[d′.pitch∗ i+ j] for
all i, j such that 1 ≤ i ≤ d.width and 1 ≤ j ≤ d.height.

Given a data d, the goal of representation fuzzing is to
automatically generate d′ such that d′ ≈ d and test a client
with both d′ and d. Writing logical specifications like this
may be impractical for the developers. Further, analyzing
complex logical specifications seems difficult. Instead, we
propose that the developer writes a normalization program
f to capture the canonical representation of a datatype T .
This is a reasonably straight-forward task. We define d′ ≈ d
iff f(d′) = f(d). We then show how to use program analysis
to synthesize an inverse f ′ and obtain d′ by applying f ′ to
the canonical representation f(d).

Normalization Programs. Consider a datatype nform with
the fields height, width, and a two dimensional array data
as the canonical representation of ddsurfacedesc. The nor-
malization program is given below.

/* Input : d, Output : n */
n.height := d.height; n.width := d.width;1

for i := 1 to d.height do2

for j := 1 to d.width do3

n.data[i][j] := d.surface[d.pitch ∗ i + j];4

end5

end6

Figure 2 gives the syntax of normalization programs. The
input and output variables are indicated by letters x and y
respectively and for simplicity, are considered to be integer
valued. Program expressions 〈exp〉 and predicates 〈pred〉
are affine. Loop counters and bounds are named i, j, k and
m,n etc. A loop counter is initialized to 1 and incremented
by 1 in each iteration until the upper bound is reached. The
loops are required to be perfectly nested, that is, all assign-
ment and assume statements are part of the innermost loop
body which can only be straight-line code. An array index
expression can be an affine expression. To handle the Tiff

case study, we address two special cases of non-linear index

expressions: a scalar input variable to be a coefficient of an
affine expression and a single level of indirection through
another array. The index expressions of an input array can
differ only in constant terms. The RHS of an assignment
to an index variable (local variable) i contains only i and
constants. We assume that an output variable y is assigned
exactly once in the program and is not used before it is de-
fined. This also applies to every output array location y[ℓ].
This assumption is met in the Tiff case study. Though sim-
ilar to some constraints we check algorithmically for inver-
sion, presently, we verify this assumption manually. Some of
the syntactic extensions are not mentioned for brevity e.g.,
boolean connectives are allowed in predicates.

While the program semantics are as usual, we assume in-
vertibility of assignment statements: An assignment state-
ment y := e is invertible with respect to every variable x
appearing in e if the equality relation y = e can be rewrit-
ten to a logically equivalent relation x = e′. Since we assume
that an output variable y is assigned exactly once and is not
used before it is assigned, y does not appear in e. The vari-
ables of e′ can only be from (V (e) ∪ {y}) \ {x} where V (e)
is the set of input variables appearing in e.

Inverse Programs. An inverse of the normalization pro-
gram of ddsurfacedesc is given below.

/* Input:n, Output:d */
ensure(d.pitch : d.pitch ≥ n.width);1

d.height := n.height; d.width := n.width;2

for i := 1 to d.height do3

for j := 1 to d.width do4

d.surface[d.pitch ∗ i + j] := n.data[i][j];5

end6

end7

The inverse program non-deterministically assigns a value
to d.pitch such that d.pitch ≥ n.width. The values of height
and width fields of d and n are same. The control flow of the
loop in the inverse program is same as that of the normal-
ization program. It however copies n.data to d.surface. The
condition d.pitch ≥ n.width = d.width (Line 1) ensures that
every element of d.surface is assigned at most once within
the loop. Thus, if an output d of the inverse program on n
is given as the input to the normalization program, we get
back the same canonical representation n. Suppose the in-
verse chooses d.pitch = d.width+1. Since d.pitch > d.width,
there are slack bytes but they are not required to be initial-
ized by the inverse. Alternatively, we can think of the slack
bytes being assigned random values. If a client program
uses them in a computation that affects its output then it
has representation dependence on ddsurfacedesc.

In addition to the statements in Figure 2, an inverse pro-
gram may consist of the following kinds of statements:

〈ensr-stmt〉 ::= ensure(〈outvar〉+ : 〈ensr-pred〉)
〈rand-assgn〉 ::= x := ∗

where ensure() is a call to a constraint solver which solves
the constraints that are postponed to the run-time. It finds
a satisfying assignment to the list of output variables (of the
inverse program) for a given predicate. The run-time values
of the input variables (of the inverse program) are substi-
tuted in the predicates. We discuss the syntax of 〈ensr-pred〉
later on. The assignment x := ∗ assigns an arbitrary value to
x. It is used when x is unconstrained in the inverse program.

Algorithm 1: Inversion of Programs

Routine: Invert(f)
Input: A program f in the language of Figure 2
Output: A program f ′ that is semantic inverse of f
U ← X; D ← ∅; P ← ∅; σ = {x 7→⊥| x ∈ X}1

Let A denote (U,D,P, σ)2

(A, f ′) ← InvertSequence(A, f)3

f ′ ← EmitPRemaining(A, f ′)4

return EmitEnsure(f ′)5

A program f ′ is a sound inverse of a program f if for ev-
ery y and for every z that f ′ returns on y as its input, f(z)
= y holds. An inverse program may also consist of assume
statements. The presence of non-deterministic choices by en-
sure() and random assignments may invalidate assumptions
during run-time. A program f ′ is failure-free if no assume
statement fails during any of its executions. While our in-
version algorithm always synthesizes a failure-free sound in-
verse, it computes under-approximations of the inverse func-
tion of f and hence is an incomplete synthesis procedure.

3. PROGRAM INVERSION
Automatically synthesizing program inverses is a challeng-

ing task. In this section, we present an algorithm which
works by inverting program statements locally, that is, with-
out modifying the control flow of the input program except
for some reordering of statements. While allowing arbitrary
statement and control flow changes may seem more powerful,
we demonstrate that our algorithm is simple yet effective in
inverting a large class of normalization programs, including
iterative programs with arrays.

3.1 Loop-free Programs with Scalar Variables
We first illustrate various observations and techniques that

we use in inversion of loop-free programs with scalar vari-
ables using examples. Consider the following program.

y1 := x1;1

y2 := x1 + x2;2

x1 := y1;1

x2 := y2 − x1;2

(Input program) (Inverse program)

(Example 1)

To synthesize an inverse of the input program, we need to
compute the input variables x1 and x2 in terms of the output
variables y1 and y2. The first statement gives an equality
relation y1 = x1. We treat the output variables as symbolic
constants. Thus, x1 is uniquely defined by y1 and we clas-
sify x1 as determined. The statement is locally inverted to
x1 := y1 bringing the determined variable on the LHS. This
statement is logically equivalent to the original statement
and is the first statement of the inverse program. The RHS
of the second statement in the input program involves vari-
ables x1 and x2. However, x1 is already determined in the
prefix of the program. Therefore, x2 is uniquely defined in
terms of y2 (an output variable) and x1 (a pre-determined

variable) and is also classified as determined. The statement
is inverted locally as shown above.

If there are multiple variables on the RHS of an assign-
ment statement that are not determined then one of them
can be defined in terms of the others. Consider the following
variation of Example 1 with statements reordered.

Algorithm 2: Inversion of Statement Sequences

Routine: InvertSequence(A, f)
Input: A = (U,D,P, σ) and a statement sequence f
Output: Updated tuple A and inverse f ′ of f
f ′ ← []1

while f 6= [] do2

s ← Car(f)3

switch s do4

case y := e (A, s′) ← InvertAssign(A, s)5

case assume(p) (A, s′) ← InvertAssume(A, s)6

case if (p) then s1 else s2 end7

(A, s′) ← InvertConditional(A, s)8

case for i := 1 to n do body end9

(A, s′) ← InvertLoop(A, s)10

end11

f ′ ← Append(f ′, s′)12

f ← Cdr(f)13

end14

return (A, f ′)15

y2 := x1 + x2;1

y1 := x1;2

skip;3

skip;1

x2 := y2 − y1;2

x1 := y2 − x2;3

(Example 2)

At the first statement (of the input program), both x1

and x2 are not determined. Say, we define x1 in terms of
y2 and x2. However, as x2 is not determined, x1 is also not
determined. We instead classify it as a partially determined

variable and generate a skip statement in the inverse pro-
gram. We then eliminate the occurrences of x1 in the suffix
of the input program until x2 is determined or we encounter
program exit. We discuss the latter case in the sequel. In
the second statement, we substitute y2 − x2 for x1. The re-
sulting statement is inverted locally, since x2 is determined

in terms of y1 and y2. All the input variables, namely x2, in
the expression y2 − x2 to which x1 is bound are now deter-

mined. Hence, we emit x1 := y2−x2 in the inverse program.
If an input variable x is not known to be a function of

other variables at a statement of the input program then
the variable is classified as undetermined at the statement.

Let X be the set of input variables of the input program.
At every statement, the inversion algorithm computes a par-
tition (U,D,P) of X where U , D, and P are respectively un-

determined, determined, and partially determined variables.
The analysis also computes a binding function σ : X → Exp
that maps the input variables to program expressions de-
noted by Exp. If a variable x is partially determined then
σ(x) is a program expression which evaluates to the same
value as x. Otherwise, x is bound to a special expression ⊥.
Algorithm 1 inverts program statements locally by comput-
ing the partition and the binding function.

Statement Sequences. The function InvertSequence (Algo-
rithm 2) inverts a given sequence f of program statements.
The inversion is achieved through a single forward pass over
f . Each statement type is treated separately. The tuple A is
also refined by the statement specific inversion algorithms.

Assignment Statements. Given an assignment statement
s ≡ y := e, the function InvertAssign (Algorithm 3) substi-
tutes all occurrences of the partially determined variables in
e by their binding expressions (Line 2). Let Q = U ∩ V (e)
where V (e) denotes the set of variables occurring in e. If

Algorithm 3: Inversion of Assignment Statements

Routine: InvertAssign(A, s)
Let s ≡ y := e1

foreach x ∈ P do e ← subst(e, x, σ(x))2

switch U ∩ V (e) do3

case ∅ s′ ← assume(y = e)4

case {x}5

s′ ← x := LocalInvert(s, x)6

(A, s′′) ← MarkDEmitD(A, {x})7

s′ ← Append(s′, s′′)8

otherwise9

s′ ← []10

x ← Select(U ∩ V (e)); e′ ← LocalInvert(s,x)11

U ← U \ {x}; P ← P ∪ {x}; σ ← σ[x 7→ e′]12

end13

end14

return (A, s′)15

Q = ∅ then all variables in e are already determined and
assigned in the inverse of the prefix of the program ending
at the current statement. Nevertheless, their values should
conform with the equality y = e. This constraint is embed-
ded in the inverse program as an assume statement.

If only one variable of e, say x, is undetermined then s is
inverted to x := e′. Given an assignment statement y := e
and a variable x appearing in e, LocalInvert returns an ex-
pression e′ such that x = e′ is logically equivalent to y = e.
LocalInvert works by algebraic rewriting of an assignment
such as y := a ∗ x+ b to x := (y − b)/a assuming that every
operator (such as + and ∗) has an inverse (such as − and /).
The variable x is removed from U and added to D by the
function MarkDEmitD (Algorithm 4). Given a set W ⊆ U
of variables, MarkDEmitD marks them as determined. If all
variables occurring in the binding expression σ(x) of a par-

tially determined variable x are now determined then x is
also determined (Line 5). The function MarkDEmitD emits
the assignment statement x := σ(x). This process is re-
peated until no partially determined variable can be marked
as determined. The bindings carried by σ, discharged as
assignment statements by MarkDEmitD, cause statement re-
ordering as discussed Example 2.

If more than one undetermined variables occur in e then
one of them, say x, is marked as partially determined and
bound to the expression LocalInvert(s, x) (Lines 11-12).

Assume Statements. Given an assume statement assume(p),
the function InvertAssume (Algorithm 5) substitutes all oc-
currences of partially determined variables in p by their bind-
ing expressions. All variables in U ∩ V (p) are marked as
determined. As explained later, we ensure that, these vari-
ables take values that conform to p at the current statement.
Some variable bindings may be discharged by MarkDEmitD.
Finally, the statement assume(p) is generated.

Conditional Statements. Given a conditional statement
s ≡ if (p) then f1 else f2 end, the function InvertConditional

(Algorithm 6) processes p similar to the predicate of an as-
sume statement and inverts the branches f1 and f2 individ-
ually. Let Ai = (Ui,Di, Pi, σi), i ∈ {1, 2}. If P1 = P2 and
σ1 = σ2 then Join(A1, A2) = (U1 ∩ U2,D1 ∪D2, P1, σ1).

A variable x ∈ D \D1 = U1 ∩D2 is marked as determined

by the join operation but is undetermined in f1. To force the
determined status, a random assignment x := ∗ is appended

Algorithm 4: Transitively Mark Partially Determined
Variables as Determined and Emit Assignment Stmts.

Routine: MarkDEmitD(A,W)
s′ ← []; U ← U \W ; D ← D ∪W1

repeat2

B ← P3

foreach x ∈ P do4

if V (σ(x)) ⊆ D then5

s′ ← Append(s′, x := σ(x))6

P ← P \ {x}; D ← D ∪ {x}; σ ← σ[x 7→⊥]7

end8

until B = P9

return (A, s′)10

to the inverse of f1 (Line 8). Similarly, for f2. This ensures
that the future uses of x can be resolved to be determined,
unconditionally, enabling local inversion. The conditional
statement for the inverse is then formed by composing the
inverses of the branches. If P1 6= P2 or σ1 6= σ2 then one of
the branches is eliminated1 (Lines 14-17).

In the following program, the variables x2 and x3 are de-

termined in the if-branch and the else-branch respectively.

skip;1

if x1 > 0 then y1 := x2;2

else y1 := x3; end3

y2 := x3 + x4;4

y3 := x2;5

ensure(x1, x2 : ϕ(x1, x2));1

if x1 > 0 then x2 := y1; x3 := ∗;2

else x3 := y1; x2 := ∗; end3

x4 := y2 − x3;4

assume(y3 = x2);5

(Example 3)

We insert random assignments x3 := ∗ and x2 := ∗ in
the if-branch and the else-branch respectively to force both
x2 and x3 to be determined along both the branches. We
discuss the predicate ϕ(x1, x2) later.

Program Exit. Once f is processed completely, the func-
tion EmitPRemaining appends random assignments to the
undetermined variables used in the binding expressions to
f ′. For each x ∈ P , x := σ(x) is then emitted.

Ensuring Failure-free Execution. The inversion algorithm
may generate random assignments to variables while pro-
cessing conditional statements (Algorithm 6, Lines 8-9). Fur-
ther, new assume statements may be added to the inverse
program if all variables on the RHS of an assignment state-
ment are already determined (Algorithm 3, Line 4).

Consider Example 3 again. If x2 gets assigned a value
6= y3 in the else-branch then the assume statement in the
inverse program fails. To avoid such failures, the function
EmitEnsure (Algorithm 1, Line 10) performs the following
operations: (1) it computes the weakest precondition wp of
assume statements, (2) emits an ensure statement at the
program entry to satisfy the precondition, and (3) removes
random assignments that may violate assume statements.

Given the antecedant Hoare triple of a wp rule in the in-
verse program f ′, EmitEnsure generates the consequent triple
to obtain a transformed version of the inverse program.

1It is possible to combine inequal sets of partially determined
variables (e.g., by unifying their binding expressions) but,
for simplicity, we restrict it to the present form.

Algorithm 5: Inversion of Assume Statements

Routine: InvertAssume(A, s)
Let s ≡ assume(p)1

foreach x ∈ P do p ← subst(p, x, σ(x))2

(A, s′) ← MarkDEmitD(A,U ∩ V (p))3

return (A,Append(s′, s))4

{ψ} x := e {ϕ}
{ψ ∧ subst(ϕ, x, e)} x := e {ϕ}

e 6= ∗
{ψ} assume(p) {ϕ}

{ψ ∧ ϕ ∧ p} assume(p) {ϕ}

{ψ} x := ∗ {ϕ}
{ψ ∧ ϕ} x := ∗ {ϕ}

x 6∈V (ϕ)
{ψ} x := ∗ {ϕ}
{ψ ∧ ϕ} skip {ϕ}

x∈V (ϕ)

{ψ} s ≡ if (p) then f1 then f2 end {ϕ}
{ψ ∧ ((p ∧ wp(ϕ, f1)) ∨ (¬p ∧ wp(ϕ, f2)))} s {ϕ}

f ′

ensure (wp (true, f ′)) ; f ′

The rule involving x := ∗ and a postcondition ϕ where
x ∈ V (ϕ) eliminates the random assignment to x as it may
violate the postcondition ϕ. Instead, x is assigned a value
that satisfies ϕ by the ensure() statement at the program
entry. The assignment x2 := ∗ in Example 3 is eliminated
by this. The last rule emits the ensure statement. The pred-
icate ϕ(x1, x2) in Example 3 is generated using these rules:
ϕ(x1, x2) ≡ (x1 > 0 ∧ y3 = y1) ∨ (x1 ≤ 0 ∧ y3 = x2). The
ensure() statement is a call to a constraint solver to find
satisfying assignments to x1 and x2 subject to the predi-
cate ϕ(x1, x2) where the run-time values of y1 and y3 are
substituted. We discuss the constraint solver in Section 4.

Correctness. Each statement of the input program is con-
verted to a logically equivalent statement in synthesis of an
inverse while maintaining the control flow of the inverse pro-
gram. Given values of the output variables y, an input vari-
able x is assigned exactly once in the inverse program. This
guarantees that the value of x conforms with all its prior
relations with y. A subsequent statement s of the input
program involving x is also mapped to a logically equivalent
statement s′ in the inverse program. It can be either an
assignment to another variable x′ or an assume statement.
Further, the constraint to the ensure() statement guarantees
that no assume statement fails during run-time. The inverse
however many not be complete, in a sense, that given y it
may not produce all x’s such that y = f(x). This is because
of handling of conditionals when partially determined vari-
ables along the two branches do not match and limitations
of the constraint solver used in ensure() statements.

3.2 Iterative Programs with Arrays
We now extend the inversion algorithm to iterative pro-

grams with arrays. We use the following adaptation of Ex-
ample 1 to illustrate the basic ideas behind loop inversion.

for i := 1 to 10 do1

y1[i] := x1[i];2

y2[i] := x1[i] + x2[i];3

end4

for i = 1 to 10 do1

x1[i] := y1[i];2

x2[i] := y2[i]− x1[i];3

end4

(Example 4)

Algorithm 7 performs inversion of a loop s. It copies
the loop-structure ℓ′ of the loop s to the inverse program
(Lines 1, 9) but inverts the statements within the loop body

Algorithm 6: Inversion of Conditional Statements

Routine: InvertConditional(A, s)
Let s ≡ if (p) then f1 else f2 end1

foreach x ∈ P do p ← subst(p, x, σ(x))2

(A, s′) ← MarkDEmitD(A,U ∩ V (p))3

(A1, f
′

1) ← InvertSequence(A, f1)4

(A2, f
′

2) ← InvertSequence(A, f2)5

if P1 = P2 ∧ σ1 = σ2 then6

A ← Join(A1, A2)7

foreach x ∈ D \D1 do f ′1 ← Append(f ′1, x := ∗)8

foreach x ∈ D \D2 do f ′2 ← Append(f ′2, x := ∗)9

s′ ← Append(s′, if (p) then f ′1 else f ′2 end)10

(A, s′′) ← MarkDEmitD(A, ∅)11

s′ ← Append(s′, s′′)12

else13

A ← Select(A1, A2)14

if A=A1 then15

s′← Append(s′, if (p) then f ′1 else assume(false); end)16

else s′← Append(s′,if (p) then assume(false); else f ′2 end)17

end18

return (A, s′)19

locally as we did for loop-free programs (Line 5). We now
describe the extensions required to do this. In the sequel,
the term reference denotes either a scalar variable such as i
or an indexed array variable such as x1[i].

Consider an assignment statement y[e0] := x1[e1]+x2[e2].
A reference such as x1[e1] or x2[e2] is a top-level reference.
These are given by the function TopLevelRefs. We can rewrite
the assignment statement to express any top-level reference
as a function of other top-level references and the LHS, due
to the invertibility assumption (Section 2). The top-level ref-
erences play a role analogous to (scalar) variables in our orig-
inal algorithm. A reference occurring inside an array index
expression (such as e0, e1, e2) is a nested reference. These
are given by the function NestedRefs. They are treated dif-
ferently. In particular, they must be determined before we
can process this assignment statement. Hence, we (conser-
vatively) mark the nested references as being determined.

Symbolic Partition Representation. We extend our scheme
for partitioning a statically fixed number of (scalar) variables
into (U,D, P) to similarly partition a statically unbounded
number of (array) locations. The current iteration of a sim-
ple loop is represented symbolically by its counter i. The
status of locations that become determined or partially de-

termined in the current iteration is maintained just as in the
case of loop-free code. In Example 4, the set of locations de-

termined in the current iteration after the first and second
statement are {x1[i]} and {x1[i], x2[i]} respectively.

We utilize a symbolic representation to describe the set
D of array locations that were determined in iterations of
the loop preceding the current iteration (as a function of
the iteration index). In the above example, the symbolic
representation of D takes the form {x1[i

′], x2[i
′] | 1 ≤ i′ ≤

10∧ i′ < i}, which describes the set of determined locations
at the beginning of iteration i. In general, the symbolic
representation is of the form {S | Q} where S is a set of
symbolic input array locations with index expressions over
some free variables e.g., i, and Q is a constraint over these
free variables. Q is of the form Bi ∧ L, where Bi is the
predicate (1 ≤ i′ ≤ ni) with ni as the upper bound of i, and
L is the predicate i′ < i. This can be extended to nested
loops using the lexicographical order over iteration vectors.

Algorithm 7: Inversion of Loops

Routine: InvertLoop(A, s)
ℓ′ ← GetLoopStructure(s)1

b ← GetBody(s)2

U ← U ∪ TopLevelRefs(s) ∪ NestedRefs(s)3

D ← D ∪ {S | Q}4

(A, b′) ← InvertSequence(A, b)5

b′ ← EmitPRemaining(A, b′)6

ϕ′ ← NonAliasConstr(b′) ∧ LoopBoundConstr(b′)7

s′ ← assume(ϕ′)8

s′ ← Append(s′, InsertBody(ℓ′, b′))9

return (A, s′)10

S is a list of all array references that become determined

in a particular iteration i′. To simplify construction of S, we
conservatively treat every location referenced in a given iter-
ation as determined at the end of that iteration. This reflects
in the initialization of the set D in Line 4. Consequently, we
do not carry partially determined variables across loop itera-
tions. We therefore emit assignments to partially determined

variables at the end of the loop body (Line 6).

Generalized Assignment Inversion. Algorithm 8 shows
how an assignment statement is processed during inversion
of a loop body. If it is an assignment to a local variable, say
k, then the RHS ek has only k as a variable (Section 2). We
simply copy the statement to the inverse program (Line 1).

Otherwise, we do substitutions for partially determined

references in e, as before, but substitutions are restricted to
top-level references (Line 4). Next, we mark nested refer-
ences as determined (Lines 5-7). Assume that we want to
invert y[e0] := x[e1] into x[e1] := y[e0]. Clearly, we want ev-
ery nested reference r occurring in e0 and e1 to be assigned a
value before this inverted statement executes in the inverse
program. Marking r as determined at this point captures
this requirement. They are assigned values by the ensure()
statement by solving constraints generated by the inversion
algorithm over them as discussed shortly.

We then identify the top-level references that are undeter-

mined (Lines 8-15). Unlike in the earlier algorithm, we may
not be able to precisely categorize the status of a reference
r. In this case, we determine the condition ψ under which r
is undetermined (as explained soon) and accumulate the set
of such constraints and treat r as being undetermined.

We identify the status of a reference r, by checking whether
r became determined either earlier in the current iteration or
in some previous iteration. The latter condition is checked
as r ∈ {S | Q}. We treat r as undetermined only if we can
establish that r’s status is undetermined in every iteration.
Otherwise, we treat it as being determined. This computes
a loop-invariant partition of the top-level references and en-
ables us to invert the loop body locally (Lines 16-18).

Consider the following example.

for i := 1 to 10 do1

y[i] := x[i] + x[i+ 3];2

end3

x := *;1

for i := 1 to 10 do2

x[i+ 3] := y[i]− x[i];3

end4

(Example 5)

The set of locations determined in iterations preceding it-
eration i is given by {S | Q}, where Q = (1 ≤ i′ ≤ 10)∧(i′ <
i), and S = {x[i′], x[i′ + 3]}. Now, consider the statement

Algorithm 8: Generalized Inversion of Assignments

Routine: InvertAssign(A, s)
if s ≡ k := ek for a local variable k then s′ ← s1

else2

s′ ← []; Let s ≡ y := e3

foreach r ∈ TopLevelRefs(e) do e ← subst(e, r, σ(r))4

foreach r ∈ U ∩ (NestedRefs(y) ∪ NestedRefs(e)) do5

(A, s′) ← MarkDEmitD(A, {r})6

end7

UV← ∅8

foreach r ∈ TopLevelRefs(e) do9

switch CheckIfUndetermined(r) do10

case true: UV← UV ∪ {r}11

case false: skip12

case Cond ψ: AddConstraint(ψ); UV← UV ∪ {r}13

end14

end15

switch UV do16

/* Similar to Algorithm 3, Lines 3-14 */
end17

end18

return (A, s′)19

y[i] := x[i] + x[i+ 3]. Intuitively, x[i] has already been ref-
erenced in iteration i − 3 using the reference x[i + 3] (for
i > 3). More precisely, since x[i] ∈ {S | Q}, x[i] is marked
as determined. Since x[i + 3] 6∈ {S | Q}, x[i+ 3] is marked
as undetermined. The statement is then inverted as shown.

The function CheckIfUndetermined decides the status of a
reference unambiguously as “true” or “false” for affine array
index expressions. Given a reference x[e], it checks whether
x[e] is determined in the current iteration or x[e] ∈ {S | Q}
which amounts to ∃i′, i · (1 ≤ i ≤ ni)∧Q ∧ (

W

x[e′]∈S
e = e′)

and is solved as an integer linear program.
In inversion of iterative programs with arrays, we, by de-

fault, initialize array locations. We use x := ∗ as a short-
hand for assignment of random values to all locations of
array x. In Example 5, x[1], x[2], and x[3] take random val-
ues assigned to them by x := ∗ whereas x[4], . . . , x[13] are
assigned to by the inverse program subsequently. Similar
to the case of loop-free code, the wp computation ensures
failure-free execution in presence of random assignments.

Exploiting Dynamic Constraint Solving. We now illus-
trate how we handle references with an ambiguous status by
collecting constraints that are solved at run-time when the
inverse program executes. Consider the following example.

for i := 1 to 8 do1

y[i] := x2[x1[i]];2

end3

ensure(x1 : ∀i · ϕ(i));1

for i := 1 to 8 do2

x2[x1[i]] := y[i];3

end4

(Example 6)

The set D of determined locations of x2 at the beginning of
iteration i is given by {x2[x1[i

′]] | (1 ≤ i′ ≤ 8) ∧ (i′ < i)}.
When processing the assignment y[i] := x2[x1[i]], in Line 10,
the algorithm tries to determine whether location x2[x1[i]]
is in the set of locations D. Unlike earlier examples, the an-
swer in this case depends on the values assigned to x1. The
function CheckIfUndetermined symbolically simplifies nega-
tion of the above membership test and returns the condition
ψ(i) = ∀i′ · ((1 ≤ i′ ≤ 8) ∧ (i′ < i)) ⇒ (x1[i

′] 6= x1[i]).
The function AddConstraint in Line 13 collects the set of

all such constraints ψ(i) generated during the processing of

the loop body for each array reference separately. Once we
finish processing the loop body, we lift the constraint ψ(i)
(on a single iteration i) into a constraint on all iterations
by quantifying over all possible values of i. In the example
above, we have ∀i · ϕ(i) = ∀i · (1 ≤ i ≤ 8) ⇒ ψ(i). We
call these constraints non-aliasing constraints. The function
NonAliasConstr inserts them as an assume statement preced-
ing the loop (Algorithm 7, Line 7). This allows us to con-
sider the reference x2[x1[i]] as undetermined, and invert the
assignment statement. The constraint is then propagated
backwards to form a part of the ensure() statement.

The non-aliasing constraints are universally quantified con-
straints involving integer arithmetic and arrays due to indi-
rection in array indexing similar to the example above. Giv-
ing a formal characterization of such constraints is beyond
the scope of this paper. We however introduce them here
since we encouter them in the Tiff case study. In Section 4,
we discuss our specific implementation to solve them.

Loop-bound Constraints. Our algorithm inverts the loop
body locally, keeping the loop-structure the same. However,
the loop bounds may be input (resp. output) variables of
the input (resp. inverse) program. An inverse is sound if
it accesses exactly those locations of an output array y that
are assigned to by the input program. To ensure this, we
require the user to specify the size of an output array. The
specification is a dependent type signature as the array size
depends on values of the input variables used as bounds of
the loops indexing over the array. We provide a function
sum(p, q) to indicate array sizes. sum(p, q) is summation of
p, q times. The arguments to sum can be input variables
including array subscripts. Consider the following program.

Input: int n,m, x[sum(n,m)];
Output: int n′,m′, y[sum(n,m)];
k := 1;1

for i := 1 to n do2

for j := 1 to m do3

y[k] = x[m ∗ (i− 1) + j]; k := k + 1;4

end5

end6

n′ := n; m′ := m; /* instrumentation */7

Consider the variable n that appears in the dependent
type signature. Its run-time value is captured as an addi-
tional output variable n′ by instrumenting the input pro-
gram. Since we are interested in equality of array sizes, we
emit what we call as loop-bound constraints in the inverse
program (Algorithm 7, Line 7). The loop-bound constraint
for the above program is sum(n,m) = sum(n′,m′). Note
that n and m are the variables here, whereas, n′ and m′ take
the values generated by the input program. In inversion, the
instrumentation code in the input program is ignored and
these constraints are solved by the ensure() statement.

Correctness. The algorithm ensures that the control flow
of the inverse program f ′ is isomorphic to that of the in-
put program f . Further, the conditional statements, loop-
structures, and assignments to local variables match syntac-
tically. Let x[n] be the output of f ′ on input y′[m′]. If f ′

takes a path p in the execution then f when executed on x[n]
also takes the same path. Let y[m] be the output of f on
x[n]. The loop-bound constraint guarantees that m′ = m.

We restrict the discussion to array locations only and ar-
gue that y[k] = y′[k], for all k, such that 1 ≤ k ≤ m. For

strip 2

strip 1

x1[2]

x1[1]

x2[2]

x2[1]

(a) Strips

x3[l][w]

strip 1

strip 2

w

l

(b) Pixels y[l][w]

strip 2

strip 1

(c) Pixels y[l][w]

Figure 3: Essentials of Strip-based TIFF Images

simplicity, let there be only one syntactic assignment to y in
f of the form y[e1] := x[e2] and the corresponding inverse
statement be x[e2] := y[e1]. Let e1 be function of a local
variable h and e2 be function of a loop counter i. Due to
the control flow matching described above, whenever i takes
the same value in both the programs, the corresponding in-
stances of h also take the same value. This implies that
whenever e2 evaluates to a value, say k′, in either program,
e1 evaluates to the same value, say k, in both the programs.
We have assumed that f assigns to an array location y[k]
exactly once (Section 2) and the inversion algorithm guaran-
tees that x[k′] is assigned exactly once. Thus, x[k′] = y′[k]
and y[k] = x[k′]. Further, as discussed in Section 3.1, the
ensure() statement guarantees failure-free execution.

Theorem 1. A program f ′ synthesized by Algorithm 1 is

a sound inverse of the input program f and is failure-free.

4. EXPERIMENTAL RESULTS
We demonstrate effectiveness of our testing methodology

(Figure 1) on five popular Tiff image [5] clients. One can
find a large number of online discussions (e.g., [1, 2, 3])
about a client’s dependence on specific encoding styles used
in common Tiff producers. Due to these reasons, Tiff

which stands for “Tagged Image File Format” is also jokingly
called “Thousands of Incompatible File Formats” [27], but
in fact, the problem is representation dependence of clients.
The specification clearly states: “Where there are options,
TIFF writers can use whichever they want. Baseline TIFF
readers must be able to handle all of them.” (Section 7, [5]).

4.1 Normalization of TIFF Images
We restrict our attention to strip-based grayscale images

without compression. We cover the flexibility in the choice
of orientation, rows per strip, and layout of strips. We be-
lieve that several other variations (e.g., tile-based, colored,
etc.) and equivalences (e.g., byte and fill ordering, planar
configuration, etc.) can be analyzed with our technique.
However, compression seems beyond the scope of our current
algorithm. Without loss of generality, we take the following
definition of the Tiff data structure. We use the LibTiff
library [21] to read and write a Tiff file.

typedef struct tiff {1

int orientation, n, w, r;2

int x1[N], x2[N], x3[N][N];3

} tiff;4

int y[N][N];1

(a) Tiff data structure (b) Canonical representation

The canonical representation of a tiff data consists of a
2D bitmap y[N][N] where N is the array size. As shown in
Figure 3(a), x1[i] gives the offset of the i’th strip, x2[i] gives

Input: int n, w, r, x1[n], x2[n], x3[sum(n, x2[i])][w];
Output: int n′, w′, x′2[n′], y[sum(n, x2[i])][w];
switch orientation do1

case 1 /* left-to-right, top-to-bottom */2

m := 1;3

for i := 1 to n do4

for j := 1 to x2[i] do5

for k := 1 to w do6

assume((i < n⇒ x2[i] = r) ∧ (x2[n] ≤ r));7

y[m][k] := x3[x1[i] + j][k];8

end9

m := m+ 1;10

end11

x′2[i] := x2[i]; /* instrumentation */12

end13

n′ := n; w′ := w; /* instrumentation */14

case 2 /* right-to-left, top-to-bottom */15

. . . y[m][k] := x3[x1[i] + j][w− k] . . .16

case . . .17

end18

Figure 4: Normalization Program for TIFF Images

the number of rows in the i’th strip, and x3[x1[i]+j][k] gives
the pixel at the j’th row and k’th column of the i’th strip.

The actual number of strips is n. Generating the canonical
representation involves reading strips from 1 to n. The ori-
entation flag indicates whether the pixel data is stored from
left-to-right or right-to-left and top-to-bottom or bottom-
to-top. Figures 3(b)-(c) indicate canonical representation
of a tiff data for left-to-right top-to-bottom and right-to-
left bottom-to-top orientations respectively. We indicate the
width and the length of an image by w and ℓ respectively. ℓ
is not required to be part of the tiff data structure. The nor-
malization program for tiff is given in Figure 4. For brevity,
we use the switch-case construct and do not give code for
all 8 possible orientations which differ only in the innermost
assignment statement. We also directly refer to elements of
the tiff data structure instead of the usual struct notation.

The number of rows of all strips (except possibly the last)
should be equal to a rows per strip field r as indicated by the
assume statement within the loop. It is possible to simplify
the definition of tiff to remove array x2 and instead use
a scalar variable to indicate x2[n]. This however does not
make much difference to the overall effectiveness of inversion
and testing. Note that the dependent type signature and
instrumentation are used to specify loop-bound constraints.

4.2 Implementation and Results
Our prototype implementation inverts the normalization

program and generates the following constraint for Case 1
(Figure 4) . The constraints for other cases are similar and
solved by ensure() when the inverse program is executed.

sum(n, x2[i]) = sum(n′, x′

2[i]) ∧ w = w′ (1)

∧ (∀i · 1 ≤ i < n⇒ x2[i] = r) ∧ (x2[n] ≤ r) (2)

∧ (∀i, j, k, i′, j′, k′ · (i′, j′, k′) ≺ (i, j, k) (3)

⇒ (x1[i] + j 6= x1[i
′] + j′) ∨ (k 6= k′)) (4)

The constraints (1) are the loop-bound constraints. The
constraint (2) corresponds to the assume statements in the
input program. The constraint (3)–(4) is the non-aliasing
constraint. The relation ≺ is the lexicographic ordering.
We solve these (quantified) constraints through heuristic in-

Application Orientation Rows per strip Layout
FastStone 3.6 ✓ ✓ ✓

KView 3.5.4 ✓ ✓ ✓

GIMP 2.2.13 ✗ ✓ ✓

Open Office 2.0.4 ✗ ✓ ✓

Picasa 3.6 ✗ ✓ ✗

Figure 5: Test Results for TIFF Clients

stantiation (cf. [14, 17]). We instantiate all non-constant
quantifier bounds and a sufficient number of variables in a
non-linear constraint until it becomes linear. In particu-
lar, we instantiate n by considering three cases: n < n′,
n = n′, and n > n′. The non-aliasing inequality constraint
is strengthened to the following strict ordering constraints:

∀i ·(x1[i]+x2[i] ≤ x1[i+1])∨∀i ·(x1[i+1]+x2[i+1] ≤ x1[i])

where 1 ≤ i < n. After instantiating n to, say κ, the loop-
bound constraint sum(n, x2[i]) = sum(n′, x′

2[i]) is expanded
to x2[1]+. . .+x2[κ] = x′

2[1]+. . .+x
′

2[n
′]. Recall that x′

2 and
n′ have pre-defined values at run-time. Similarly, the univer-
sal quantification is compiled into a finite conjunction with
the array subscript i (the quantified variable) ranging from 1
to κ− 1. The resulting constraint is solved using Yices [16].
Typically, an SMT solver, including Yices, returns the same
solution every time for a constraint. To generate multiple
test cases, we solve the constraints multiple times by incre-
mentally adding a constraint to avoid the previous satisfying
assignment. One of the satisfying assignments is then picked
at random. The inverse program then executes determinis-
tically and copies the pixel data appropriately.

We take a Tiff file displayed correctly by all the clients
and generate equivalent Tiff images automatically. Despite
the heuristic as well as logical simplification of the con-
straints and incompleteness in inversion and constraint solv-
ing, we were able to find several representation dependence
bugs. Figure 5 aggregates the results along various unde-

termined fields of tiff for a test run involving 40 images
generated from a single image. Layout indicates whether
the logically adjacent strips can be physically rearranged.
A ✓ indicates that the application passed all test cases and
✗ means it failed for at least one. The success of a test
is determined by whether the client is able to display the
image correctly. Picasa 3.6 fails for combinations of orien-
tation and layout changes and without code inspection, we
cannot isolate the problem to one of the fields. We therefore
conservatively mark its dependence on both.

The automated inversion offers several advantages over
manually written equivalence-preserving transformations:

• While an (equivalence-preserving) transformation for
changing orientation is easy to write manually, other
variations require constraint solving. Our inversion al-
gorithm derives the desired constraints automatically.

• Intuitively, to produce equivalent Tiff images, it is
necessary to implicitly go through the canonical repre-
sentation. For instance, to redistribute the strips, one
has to first construct the bitmap. Thus, the notions
of canonical representation and normalization program
are arguably central to this kind of testing.

• Since we can generate a large number of tests automat-
ically, the “no representation dependence” conclusions
(✓ above) are more plausible.

5. RELATED WORK
For an abstract datatype, representation exposure is said

to occur when an internal implementation of an aggregate
object is accessible for modification outside the aggregate [12,
20]. Ownership type systems [13, 9, 6], and types for refer-
ence immutability [7] have been designed to prevent this.
But these systems still allow the inner workings of the ab-
stract datatype to be seen by its users. This phenomenon is
called observational exposure [10]. Our work can be viewed
as checking both kinds of exposures using testing. We check
if a client makes stronger logical assumptions on the rep-
resentation of data than those allowed by the specification.
We are unaware of any type system that can perform the
equivalent of what we are doing.

Grammar-based testing [22, 26] is used for testing func-
tionality of grammar-driven software by enumerating test
data from a grammar definition. In our work, the explo-
ration of the syntactic space of data is driven by data equiv-
alence specification in terms of normalization programs. Ko-
rat [8] systematically enumerates data instances from a data
structure invariant specified as a Java predicate. Test case
generation for representation dependence is a technically dif-
ferent problem. Given a test suite, metamorphic testing [11,
18, 23] generates new test cases to test a program using
known relations, called metamorphic relations, between in-
puts and outputs of the program. In contrast, our test gen-
eration is based on algorithmic inversion of normalization
programs with a more specific testing objective.

Dijkstra [15] observed that program inversion can be seen
as running a program backwards to map output to input.
Ross [24] encodes relational semantics of programs and uses
logic programming to compute inverses. Our approach uses
a forward reasoning and inverts program statements locally.
We can effectively deal with imperative programs involv-
ing conditionals, loops, and arrays. Relational calculus has
been used to derive program inverses, mainly of functional
programs [19, 25]. The derivations are typically deductive
whereas we give an algorithmic solution for inversion.

6. CONCLUSIONS
Representation dependence is a frequent problem in prac-

tice. Given a normalization program as a mapping from
a data instance to its canonical representation, we invert
it algorithmically to automate generation of test cases for
detecting representation dependence. We have tested Tiff

clients effectively with this approach.
The technique of local inversion and deferring of statically

unsolvable constraints to run-time make the difficult prob-
lem of program inversion practically solvable for an interest-
ing class of programs including a class of iterative programs
with arrays. However, our approach has several limitations,
namely, imprecise join operation and syntactic restrictions
on input programs outlined in Section 2. Program inversion
thus still remains an open problem at large. Automated
testing and analysis for representation dependence appears
to be a challenging yet fruitful task ahead.

7. REFERENCES
[1] http://mail.python.org/pipermail/image-sig/1999-

may/000730.html.

[2] http://www.asmail.be/msg0055369928.html.

[3] http://www.zan1011.com/tiff.htm.

[4] www.gamedev.net/reference/articles/article538.asp.

[5] Adobe Dev. Assoc. TIFF Revision 6.0, June 1992.

[6] A. Banerjee and D. Naumann. Ownership confinement
ensures representation independence for
object-oriented programs. J. ACM, 52:894–960, 2005.

[7] A. Birka and M. D. Ernst. A practical type system
and language for reference immutability. In OOPSLA,
pages 35–49, 2004.

[8] C. Boyapati, S. Khurshid, and D. Marinov. Korat:
automated testing based on java predicates. In ISSTA,
pages 123–133, 2002.

[9] C. Boyapati, B. Liskov, and L. Shrira. Ownership
types for object encapsulation. In POPL, pages
213–223, 2003.

[10] J. Boyland. Why we should not add readonly to Java
(yet). J. of Object Tech., 5(5):5–29, June 2006.

[11] T. Y. Chen, S. C. Cheung, and S. M. Yiu.
Metamorphic testing: a new approach for generating
next test cases. Technical report, Hong Kong
University of Science and Technology, 1998.

[12] D. G. Clarke, J. Noble, and J. Potter. Overcoming
representation exposure. In Proc. of the Work. on

Object-Oriented Tech., pages 149–151, 1999.

[13] D. G. Clarke, J. Potter, and J. Noble. Ownership
types for flexible alias protection. In OOPSLA, pages
48–64, 1998.

[14] D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: a
theorem prover for program checking. J. ACM,
52(3):365–473, 2005.

[15] E. W. Dijkstra. Program inversion. In Program

Construction, volume 69 of LNCS, pages 54–57, 1978.

[16] B. Dutertre and L. De Moura. The Yices SMT solver.
Technical report, SRI, 2006.

[17] Y. Ge, C. W. Barrett, and C. Tinelli. Solving
quantified verification conditions using satisfiability
modulo theories. Ann. Math. Artif. Intell.,
55(1-2):101–122, 2009.

[18] A. Gotlieb and B. Botella. Automated metamorphic
testing. In COMPSAC, page 34, 2003.

[19] D. Gries and J. L. van de Snepscheut. Inorder traversal
of a binary tree and its inversion. Formal Development

of Programs and Proofs, pages 37–42, 1990.

[20] J. Hogg, D. Lea, A. Wills, D. deChampeaux, and
R. Holt. The Geneva convention on the treatment of
object aliasing. OOPS Mess., 3(2):11–16, 1992.

[21] http://www.libtiff.org.

[22] P. M. Maurer. Generating test data with enhanced
context-free grammars. IEEE Soft., 7(4):50–55, 1990.

[23] C. Murphy, K. Shen, and G. Kaiser. Automatic
system testing of programs without test oracles. In
ISSTA, pages 189–200, 2009.

[24] B. J. Ross. Running programs backwards: The logical
inversion of imperative computation. Formal Asp.

Comput., 9(3):331–348, 1997.

[25] B. Schoenmakers. Inorder traversal of a binary heap
and its inversion in optimal time and space. In MPC,
volume 669 of LNCS, pages 291–301, 1992.

[26] M. Sutton, A. Greene, and P. Amini. Fuzzing: Brute

force vulnerability testing. Addison-Wesley, 2007.

[27] M. Trauth. MATLAB Recipes For Earth Sciences.
Springer, 2006.

