
On Omega-Languages Defined
by Mean-Payoff Conditions

Rajeev Alur1, Aldric Degorre2, Oded Maler2, Gera Weiss1

1 Dept. of Computer and Information Science, University of Pennsylvania, USA
{alur, gera}@cis.upenn.edu

2 CNRS - Verimag, University of Grenoble, France
{aldric.degorre, oded.maler}@imag.fr

Abstract. In quantitative verification, system states/transitions have associated
payoffs, and these are used to associate mean-payoffs with infinite behaviors. In
this paper, we propose to define ω-languages via Boolean queries over mean-
payoffs. Requirements concerning averages such as “the number of messages lost
is negligible” are not ω-regular, but specifiable in our framework. We show that,
for closure under intersection, one needs to consider multi-dimensional payoffs.
We argue that the acceptance condition needs to examine the set of accumulation
points of sequences of mean-payoffs of prefixes, and give a precise characteriza-
tion of such sets. We propose the class of multi-threshold mean-payoff languages
using acceptance conditions that are Boolean combinations of inequalities com-
paring the minimal or maximal accumulation point along some coordinate with a
constant threshold. For this class of languages, we study expressiveness, closure
properties, analyzability, and Borel complexity.

1 Introduction

In algorithmic verification of reactive systems, the system is modeled as a finite-state
transition system (possibly with fairness constraints), and requirements are captured as
languages of infinite words over system observations [8, 9]. The most commonly used
framework for requirements is the class of ω-regular languages. This class is expressive
enough to capture many natural requirements, and has well-understood and appealing
theoretical properties: it is closed under Boolean operations, it is definable by finite au-
tomata (such as deterministic parity automata or nondeterministic Büchi automata), it
contains Linear Temporal Logic LTL, and decision problems such as emptiness, lan-
guage inclusion are decidable [10, 11].

The classical verification framework only captures qualitative aspects of system
behavior, and in order to describe quantitative aspects, for example, consumption of
resources such as CPU and energy, a variety of extensions of system models, logics, and
automata have been proposed and studied in recent years [1,3,5,7]. The best known, and
the most relevant to our work, approach is as follows: a payoff (or a cost) is associated
with each state (or transition) of the model, the mean-payoff of a finite run is simply
the average of the payoffs of all the states in the run, and the mean-payoff of an infinite
run is the limit, as n goes to infinity, of the mean-payoff of the prefix of length n. The
notion of mean-payoff objectives was first studied in classical game theory, and more

recently in verification literature [5, 6, 12]. Most of this work is focused on computing
the optimal mean-payoff value, typically in the setting of two-player games, and the
fascinating connections between the mean-payoff and parity games.

In this paper, we propose and study ways of defining languages of infinite words
based on the mean-payoffs. As a motivating example, suppose 1 denotes the condition
that “message is delivered” and 0 denotes the condition that “message is lost.” A behav-
ior of the network is an infinite sequence over {0, 1}. Requirements such as “no mes-
sage is ever lost” (always 1), “only finitely many messages are lost” (eventually-always
1), and “infinitely many messages are delivered” (infinitely-often 1), are all ω-regular
languages. However, the natural requirement that “the number of lost messages is neg-
ligible” is not ω-regular. Such a requirement can be formally captured if we can refer
to averages. For this purpose, we can associate a payoff with each symbol, payoff 0
with message lost and payoff 1 with message delivered, and require that mean-payoff
of every infinite behavior is 1. As this example indicates, using mean-payoffs to de-
fine acceptance conditions can express meaningful, non-regular, and yet analyzable,
requirements.

The central technical question for this paper is to define a precise query language
for mapping mean-payoffs of infinite runs into Boolean answers so that the resulting
class of ω-languages has desirable properties concerning closure, expressiveness, and
analyzability. The obvious candidate for turning mean-payoffs into acceptance criteria
is threshold queries of the form “is mean-payoff above (or below) a given threshold
t”. Indeed, this is implicitly the choice in the existing literature on decision problems
related to mean-payoff models [5,6,12]. A closer investigation indicates that this is not
a satisfactory choice for queries.

First, closure under intersection requires that we should be able to model multi-
ple payoff functions. For this purpose, we define d-payoff automata, where d is the
dimension of the payoffs, and each edge is annotated with a d-dimensional vector of
payoffs. We prove that expressiveness strictly increases with the dimension. From the
applications point of view, multi-payoffs allow to model requirements involving multi-
ple quantities. Because we allow unbounded dimensions, one can also add coordinates
that model weighted sums of the quantities, and put bounds on these coordinates too.

Second, the limit of the mean-payoffs of prefixes of an infinite run may not exist.
This leads us to consider the set of accumulation points corresponding to a run. For
single-dimensional payoffs, the set of these points is an interval. For multi-dimensional
payoffs, we are not aware of existing work on understanding the structure of accumu-
lation points. We establish a precise characterization of the structure of accumulation
points: a set can be a set of accumulation points of a run of a payoff automaton if and
only if it is closed, bounded, and connected.

Third, if we use mp to refer to the mean-payoff of a run, and consider four types
of queries of the form mp < t, mp ≤ t, mp > t, and mp ≥ t, where t is a constant, we
prove that the resulting four classes of ω-languages have incomparable expressiveness.
Consequently acceptance condition needs to support combination of all such queries.

After establishing a number of properties of the accumulation points of multi-
dimensional payoff automata, we propose the class of multi-threshold mean-payoff lan-
guages. For this class, the acceptance condition is a Boolean combination of constraints

2

of the form “is there an accumulation point whose ith projection is less than a given
threshold t”. We show that the expressive power of this class is incomparable to that of
the class of ω-regular languages, that this class is closed under Boolean operations and
has decidable emptiness problem. We also study its Borel complexity.

2 Definitions

2.1 Multi-payoff automata

Multi-payoff automata are defined as automata with labels, called payoffs, attached to
transitions. In this paper, payoffs are vectors in a finite dimensional Euclidean space.

Definition 1 (d-Payoff automaton) A d-payoff automaton, with d ∈ N, is a tuple
〈A,Q, q0, δ,w〉 where A and Q are finite sets, representing the alphabet and states of the
automaton, respectively; q0 ∈ Q is an initial state; δ ∈ Q × A → Q is a total transition
function (also considered as a set of transitions (q, a, δ(q, a))) and w : δ → Rd is a
function that maps each transition to a d-dimensional vector, called payoff.

Note that we consider only deterministic complete automata.

Definition 2 The following notions are defined for payoff automata:

– A finite run of an automaton is a sequence of transitions of the following type:
(q1, a1, q2)(q2, a2, q3) . . . (qi, ai, qi+1). An infinite run is an infinite sequence of tran-
sitions such that any prefix is a finite run.

– We denote by λ(r) the word of the symbols labelling the successive transitions of
the run r, i.e. λ((q1, a1, q2) · · · (qn, an, qn+1)) = a1 · · · an.

– A run is initial if q1 = q0.
– By runA(u) we denote the initial run r in A such that u = λ(r)
– A cycle is a run (q1, a1, q2)(q2, a2, q3) . . . (qi, ai, qi+1) such that q1 = qi+1. A cycle is

simple if no proper subsequence is a cycle.
– For a word or run u, u�n denotes the prefix of length n of u, and u[n] the nth element

of u.
– The payoff of a finite run r is payoff(r) =

∑|r|
i=1 w(r[i]).

– The mean-payoff of a run r is mp(r) = payoff(r)/|r|.
– A subset of the states of an automaton is strongly connected if, for any two elements

of that subset, there is a path from one to the other.
– A strongly connected component (SCC) is a strongly connected subset that is not

contained in any other strongly connected subset.
– A SCC is terminal if it is reachable and there is no path from the SCC to any other

SCC.

3

2.2 Acceptance

In the literature, the mean-payoff value of a run is generally associated to the “limit”
of the averages of the prefixes of the run. As that limit does not always exist, standard
definitions only consider the lim inf of that sequence (or sometimes lim sup) and, more
specifically, threshold conditions comparing those quantities with fixed constants [2,
4, 5, 12]. As that choice is arbitrary, and more can be said about the properties of that
sequence than the properties of just its lim inf or even lim sup, in particular when d > 1,
we choose to consider the entire set of accumulation points of that sequence.

A point x is an accumulation point of the sequence x0, x1, . . . if, for every open set
containing x, there are infinitely many indices such that the corresponding elements of
the sequence belong to the open set.

Definition 3 We denote by Acc(xn)∞n=1 the set of accumulation points of the sequence
(xn)∞n=1. If r is a run of a d-payoff automaton A, AccA(r) = Acc(mp(r�n))∞n=1, and for a
word w, AccA(w) = AccA(run(w)).

Example 1. Consider the 2-payoff automaton

b/
(
0, 0
)

a/
(
0, 0
)

b/
(
1, 0
)

a/
(
1, 0
)

b/
(
1, 1
)

a/
(
1, 1
)

where edges are annotated with expression of the form σ/v meaning that the symbol σ
triggers a transition whose payoff is v. Let w =

∏∞
i=0 a2i−1b be an infinite word where b’s

are isolated by sequences of a’s with exponentially increasing lengths. The set AccA(w)
is the triangle

(6/7, 4/7)

(3/7, 2/7)

(5/7, 1/7)

as we show next. By direct calculation we get that limn→∞mp(w�
∑3n

i=0 2i) = (6/7, 4/7),
limn→∞mp(w�

∑3n+1
i=0 2i) = (3/7, 2/7), and limn→∞mp(w�

∑3n+2
i=0 2i) = (5/7, 1/7). Fur-

thermore, for every n ∈ N, j ∈ {0, 1, 2} and k ∈ {0, . . . , 23n+ j+1}, the vector mp(w �
k +
∑3n+ j

i=0 2i) is in the convex hull of mp(w�
∑3n+ j

i=0 2i) and mp(w�
∑3n+ j+1

i=0 2i) and the

4

maximal distance between points visited on this line goes to zero as n goes to infin-
ity. Together, we get that the points to which the mean-payoff gets arbitrarily close
are exactly the points on the boundary of the above triangle. Similarly, if we choose
the word w′ =

∏∞
i=0 a3i−1b, we get that AccA(w′) is the boundary of the triangle

(4/13, 3/13), (10/13, 1/13), (12/13, 9/13). ut

We say that a word or run is convergent, whenever its set of accumulation points is a
singleton, i.e. when its sequence of mean payoffs converges. For instance, periodic runs
are convergent because the mean-payoffs of the prefixes r�n of an infinite run r = r1rω2
converge to the mean-payoff of the finite run r2, when n goes to infinity.

Definition 4 An infinite run r is accepted by a d-payoff automaton A with condition F,
where F is a predicate on 2R

d
, if and only if F(AccA(r)). An infinite word u is accepted

if and only if run(u) is accepted. We denote by L(A, F) the language of words accepted
by A with condition F. In the following, we call mean-payoff language, any language
accepted by a d-payoff automaton with such a condition. If d is one and F(S) is of the
form extr S ./ C where extr ∈ {inf, sup}, ./ ∈ {<,≤, >,≥}, and C is a real constant; we
say that F is a threshold condition.

Example 2. For the 1-payoff automaton

a/1 b/0

let the acceptance condition F(S) be true iff S = {0}. This defines the language of words
having negligibly many a’s. ut

3 Expressiveness

3.1 Comparison with ω-regular languages

Before proving specific results on the class of mean-payoff languages, we show that it
is incomparable with the class of ω-regular languages. In this context, we call specifi-
cation types incomparable if each type of specification can express properties that are
not expressible in the other type. Incomparability of mean-payoff and ω-regular speci-
fications is, of course, a motivation for studying mean-payoff languages.

We will need the following ad-hoc pumping lemma for ω-regular languages.

Lemma 1 (Pumping lemma) Let L be an ω-regular language. There exists p ∈ N
such that, for each w = u1w1u2w2 . . . uiwi · · · ∈ L such that |wi| ≥ p for all i, there are
sequences of finite words (xi)i∈N, (yi)i∈N, (zi)i∈N such that, for all i, wi = xiyizi, |xiyi| ≤ p
and |yi| > 0 and for every sequence of pumping factors (ji)i∈N ∈ N

N, the pumped word
u1x1y j1

1 z1u2x2y j2
2 z2 . . . uixiy

ji
i zi . . . is in L.

Proof. Similar to the proof of the pumping lemma for finite words. ut

5

Proposition 1 There exists a mean-payoff language, defined by a 1-payoff automaton
and a threshold acceptance condition, that is not ω-regular.

Proof. Consider the 1-payoff automaton

a/2 b/ − 1

We show that L = {w| inf mpA(w) ≤ 0} is not regular. For any p, the word w = (apb2p)ω

is in that language. Assuming, towards contradiction, that the language is regular and
using the pumping Lemma 1 on w, we can select as factors wi the sequences of a an
choose ji = 2 to obtain a word w′ that should be in L. But since mpA(w′) is a singleton
bigger than zero, w′ does not satisfy the acceptance condition and therefore is not in L,
a contradiction. ut

Proposition 2 There exists an ω-regular language that is not a mean-payoff language.

Proof. Let L = (a∗b)ω. We will show that, in any payoff automaton, we can find two
words u1 and u2, u1 having infinitely often b and u2 having eventually only a, and such
that Acc(u1) = Acc(u2). Then obviously no general mean-payoff acceptance condition
can distinguish those two words although u1 ∈ L and u2 < L.

Let us construct the counter-example. Suppose A is a payoff automaton recognizing
L with some predicate F. Let ca be a cycle such that λ(ca) contains only a’s and cb a
cycle such that λ(cb) contains at least one b, both starting in some state q in a terminal
strongly connected component of A, and let p be an initial run leading to q.

The mean-payoffs of the run r = p
∏∞

i=1 ci
acb, which should be accepted, converge

to mpA(ca), which is also the mean-payoff of pcωa , which should be rejected but has to
be accepted by A, since it has the same mean-payoff as r. ut

3.2 Topology of mean-payoff accumulation points

In this section we discuss the structure of the set of accumulation points. In particular we
characterize the sets that are the accumulation points of some run of a payoff automaton.

If S is a strongly connected component of an automaton, and C is the set of simple
cycles in S , then we denote by ConvHull(S) the convex hull of {mp(c)|c ∈ C}.

Theorem 1 Let r be an infinite run of a d-payoff automaton, then Acc(r) is a closed,
connected and bounded subset of Rd.

Proof.
Closed: True for any set of accumulation points: let (an) be a sequence in a topological
space, and (xn) ∈ Acc(an)∞n=1 be a sequence of accumulation points converging to a
point x. For any xi, we can choose a sub-sequence (ain) converging to xi. Now we
can construct a sub-sequence of elements that converges to x: for every i, take the first
element ai f (i) of ain which is at a distance smaller than 2−i from xi such that f (i) > f (i−1).
Then the sequence (ai f (i))i∈N converges to x.

6

Bounded: As we are speaking of a sequence of averages of the (finite) set of payoffs, it
is clear that the sequence of mean-payoffs remains in the convex hull of that set, which
is bounded.
Connected: Proof by contradiction. Suppose there exists two disjoint open sets O1 and
O2 such that Acc(r) ⊆ O1 ∪ O2. Let d be the distance between O1 and O2. As those
sets are open and disjoint, d > 0. But the vector between two successive averages is
payoff(r� n)/n − payoff(r� n − 1)/n − 1 = (1/n)(payoff(r� n − 1)) + w(r[n]) − n/(n −
1) payoff(r�n−1)) = (1/n)(w(r[n])−mp(r�n)), whose norm is smaller than ∆/n, where
∆ = max{‖w(t) − w(t′)‖|t, t′ ∈ δ}. If a run has accumulations points in both O1 and O2,
then there exist n > ∆/d such that the nth step is in O1 and the (n + 1)th in O2. The
distance between those two points has to be both greater than d and smaller than ∆/n,
which is not possible. ut

As a remark, we can say more than boundedness: indeed a run eventually comes
into a SCC it never leaves. The contribution of the payoffs of the SCC becomes then
dominant as n goes to the infinity. Even better, actually, the contribution of the simple
cycles of that SCC is dominant. Thus the set of accumulation points is included in the
convex hull of the simple cycles of the SCC.

The following theorem is a converse to Theorem 1.

Theorem 2 For every non-empty, closed, bounded and connected set D ⊂ Rd, there is
a d-payoff automaton and a run r of that automaton such that Acc(r) = D.

Proof. Take any automaton with a reachable SCC such that D is contained in the convex
hull of the cycles of the SCC.

For every integer n > 0, let {Oi,n : i = 1, . . . , ln} be a finite coverage of D by open
sets of diameter smaller than 1/n. Such a coverage exists, for example, by covering D
by spheres of diameter 1/n.

Suppose p is a finite initial run going into the SCC. For every n and every i, we can
prolong p with a suffix c such that mp(pc) ∈ On,i and pc is in the SCC (form the end
of p onwards). For that, we need c to be long enough and have the right proportions of
simple cycles. Furthermore, as mp(pc� l + 1) −mp(pc� l) becomes smaller when l goes
to infinity, we can make the distance of mp(pc� l) from D converge to zero when l goes
to infinity.

As the set (On,i)n,i∈N×N is countable, we can construct recursively the successive
suffixes c1,1, c1,2, . . . , c2,1, c2,2, . . . such that mp(pc1,1c1,2 . . .2,1 c2,2 . . . cn,i) is in On,i, and
such that for every l, mp(p

∏
ji∈N×N c ji� l) is at a distance smaller than K/l from D.

Let x ∈ D. Then for every n, x ∈ On,i for some i, thus for every n, the sequence
of mean-payoffs comes within a radius 1/n from x, which means x is an accumulation
point. Conversely, if y < D, as D is closed, it is at a distance δ > 0 from D, moreover
there exist a l such that mp(pc� l) never exits a radius ε < δ around D and therefore
the sequence of mean-payoff will never come in a radius δ − ε from y. So y is not an
accumulation point. We conclude that AccA(r) is exactly D. ut

Actually, like for Theorem 1, a careful examination of the proof reveals that a stronger
statement is true. Specifically, it is easy to verify that any closed, bounded and connected
set contained in any of the SCC of an automaton is the set of accumulation points of
some run of that automaton.

7

3.3 Comparison of threshold mean-payoff languages

We study mean-payoff languages where the minimum and maximum of the set of ac-
cumulation points are compared with a given threshold. We assume, without loss of
generality, that the threshold is zero because changing the threshold is equivalent to an
affine transformation of the payoffs. We show that the different threshold languages are
incomparable in expressive power.

Definition 5 We denote by L./ the class of mean-payoff languages accepted by a 1-
payoff automaton with the condition min Acc(w) ./ 0, where ./ is <, >,≤ or ≥.

Note that these languages are the winning conditions used to define mean-payoff
games, e.g. in [12], because min Acc(w) = lim infn→∞mpA(w� n). We do not need to
discuss the class of languages defined as complements of these conditions because L>
is co L≤ and L≥ is co L<, where co L./ is the set of languages defined as sets of words
that do not satisfy min Acc(w) ./ 0 for some automaton.

Theorem 3 The classes L<, L≤,L≥ and L> are incomparable.

Proof. We begin by showing that L< and L≤ are incomparable. Consider the automaton

a/ − 1 b/0

and the language L = {w|min Acc(w) < 0}. Suppose, towards contradiction, that there
exists an automaton A′ accepting L with a L≤ condition. Consider ca and cb two cycles
in A′, labelled respectively with a word in a(a + b)i and with b j for some integers i
and j, and start from a same reachable state q (two such cycles exist at least in any
terminal strongly connected component). Let p be a finite initial run ending at q. As
pcωa is a run of A′ which should be accepted, it is necessary that payoffA′ (ca) ≤ 0, and
as pcωb should not be accepted, it is necessary that payoffA′ (cb) > 0. For all k, the run
p(cack

b)ω should be accepted. So it is necessary that for all k, payoffA′ (cack
b) ≤ 0. Thus

payoffA′ (ca)+ k payoffA′ (cb) ≤ 0, which is possible if and only if payoffA′ (cb) ≤ 0 and
contradicts payoffA′ (cb) > 0. Thus L cannot be accepted by a L≤ condition.

Conversely, consider the automaton

a/1 b/0

with the language L defined by the L≤ acceptance condition. Towards contradiction,
assume that A′ is an automaton accepting L with the L< acceptance contradiction. If
ca, cb and p are defined in A′, the same way as before, we should have payoffA′ (ca) ≥ 0
and payoffA′ (cb) < 0. For all k, the run p(cack

b) should be rejected, so it is necessary that
payoffA′ (cack

b) ≥ 0. Thus for all k, payoffA′ (ca) + k payoffA′ (cb) ≥ 0, which is possible
if and only if payoffA′ (cb) ≥ 0 and contradicts payoffA′ (cb) < 0. Therefore L cannot be
expressed by a L< condition.

8

These counter examples can be adapted for proving that any class with strict in-
equality symbol is incomparable to any class with a weak inequality symbol. It remains
to prove the incompatibility of L< and L> and that of L≤ and L≥.

Consider the language L defined by the automaton

a/ − 1 b/1

(denoted by A) with the L≤ acceptance condition. Suppose, towards contradiction, that
A′ is an automaton defining the same language with a L≥ condition. Choose two cy-
cles ca and cb starting from two states qa and qb in a same terminal strongly con-
nected component of A′, such that ca is labelled by al and cb is labelled by bm for
some l and m, an initial run p going to qb and two runs uab and uba going from qa

to qb and from qb to qa, respectively. Because pubacωa should be accepted and pcωb
should be rejected, we must have payoffA′ (cb) < 0 and payoffA′ (ca) ≥ 0. Consider
r = p

∏
i∈N c2il

b ubac2im
a uab. Then mpA(λ(p

∏n
i=0 c2il

b ubac2im
a uab)) converges to 0 as n goes

to infinity, thus λ(r) ∈ L, and therefore r should be accepted by A′ with the L≥ con-
dition. But mpA′3

(word(p
∏n

i=0 c2il
b ubac2im

a uabc2n+1l
b)) converges to a negative limit, thus r

cannot be accepted by A′3 with the L≥ condition, leading to contradiction.
Conversely, consider the language L, defined with the same automaton, but with

the L≥ condition. Suppose A′ is an automaton defining the same L with the L≤ con-
dition. We can choose two cycles ca and cb starting from two states qa and qb in a
same terminal strongly connected component of A′ such that ca is labelled by al and
cb is labelled by bm for some l and m, an initial run p going to qb and two runs uab

and uba going from qa to qb and from qb to qa. Then we should have payoffA′ (cb) ≤ 0
and payoffA′ (ca) > 0 (because pubacωa should be rejected and pcωb should be accepted).
Consider r = p

∏
i∈N ubac2im

a uabc2il
b . Then mpA3

(λ(p(
∏n

i=0 ubac2im
a uabc2il

b)ubac2n+1m
a)) con-

verges to a negative limit as n goes to infinity, thus λ(r) < L, and therefore r should
be rejected by A′ with the L≤ condition. But mpA′ (λ(p

∏n
i=0 ubac2im

a uabc2il
b)) converges

to 0, thus r is accepted by A′ with the L≤ condition, which contradicts the fact that it
recognizes L.

We have thus established the incomparability of L≥ and L≤. As L< and L> are the
classes of the complements of languages in respectively L≥ and L≤, it also implies the
incomparability of the latter pair. ut

The incompatibility of threshold classes shows how arbitrary the choice of only one
of them as a standard definition would be. This suggests definition of a larger class
including all of them.

3.4 Mean-payoff languages in the Borel hierarchy

For a topological space X, we denote by Σ0
1 the set of open subsets by and Π0

1 the set
of closed subsets. The Borel hierarchy is defined inductively as the two sequences (Σ0

α)
and (Π0

α), where Σ0
α = (

⋃
β<α Π

0
β)σ, and Π0

α = (
⋃
β<α Σ

0
β)δ, where α and β are ordinals

and (•)σ, (•)δ denote closures under countable intersections and unions, respectively.

9

We consider the standard topology over Aω with the base {wAω : w ∈ A∗}, i.e. a
subset of Aω is open if and only if it is a union of sets, each set consists of all possible
continuations of a finite word.

Theorem 4 The following facts hold: L≤ ⊂ Π
0
2 , L≤ * Σ

0
2 , L< ⊂ Σ

0
3 and L< * Π

0
3 .

Proof. – Let L ∈ L≤, then there exists d ∈ N, a 1-payoff automaton A such that
L = {w ∈ Aω|min(AccA(w)) ≤ 0}. Therefore we can write L as

L =
⋂
N∈N

{w ∈ Aω|∀m ∈ N∃n > m mpA(w�n) < 1/N)}

=
⋂

N∈N,m∈N

⋃
n>m

{w ∈ Aω|mpA(w�n) < 1/N)}.

For any N and m the condition mpA(w�n) < 1/N) is independent of the suffix past
the nth symbol of w and therefore the set {w ∈ Aω|mpA(w� n) < 1/N)} is clopen.
We get that L≤ ∈ Π

0
2 .

– We prove L> * Π
0
2 , which is the same as L≤ * Σ

0
2 because L> = co L≤. Let L be the

set of words on alphabet A = {a, b} having more than negligibly many b. We already
demonstrated that L ∈ L>. Suppose L ∈ Π0

2 . Then L =
⋂

i∈N LiAω for some family
of languages of finite words Li. We can assume without loss of generality that the
words of Li have all length i. For all m, the word wm = (

∏m−1
j=1 a2 j

b)(a2m
b)ω ∈ L

(as it is ultimately periodic with a period where the proportion of b is not 0). For
the word w =

∏∞
j=1 a2 j

b, it means that any prefix w� i of length i is in Li. This is a
contradiction, because w < L.

– For the two last items of the theorem: Chatterjee exhibited in [2] a Π0
3 -hard lan-

guage in L≥. He also established that this class is included in Π0
3 . As L≥ = co L<,

that proves what we need.
ut

3.5 Dimensionality

In this section we analyze closure properties of mean-payoff languages defined by au-
tomata with a fixed dimension.

The following lemma shows that, for any d, the class of mean-payoff languages
definable by d-payoff automata is not closed under intersection.

Lemma 2 If d1 and d2 are two integers, then there exists L1 and L2, two mean-payoff
languages of dimensions d1 and d2 such that L1 and L2 contain only convergent words
and L1 ∩ L2 is not definable as a dimension d mean-payoff language with d < d1 + d2.

Proof. Let A = {a1, . . . , ad1 } and B = {b1, . . . , bd2 } be two disjoint alphabets. Let A1
be the one-state d1-payoff automaton on alphabet A ∪ B, such that the payoff of the
transition (q0, ai, q0) is 1 on the ith coordinate and 0 in the other coordinates and the
payoff of the transition (q0, bi, q0) is 0. And let A2 be the d2-payoff one-state automaton
defined similarly by swapping a and b.

10

Let Li be the language defined on Ai by predicate Fi, testing equality with the sin-
gleton {li}, where li is in the simplex defined by the di + 1 different payoffs of the
transitions of Ai. In the proof of Theorem 2 we establish that the Li are not empty.

Let w ∈ (A + B)ω, then w is in L1 if and only if the proportion of ai in every prefix
tends to the ith coordinate of l1, and it is in L2 if and only if the proportion of bi in every
prefix tends to the ith coordinate of l2.

Then for w to be in L1 ∩ L2, it is necessary that the proportion of every symbols
tends to either a coordinate of l1, if that symbol is a ai, or a coordinate of l2, if it is a bi.

Now suppose L1∩L2 is recognized by a d-payoff automaton with d < d1+d2. Choose
one terminal strongly connected component of A and consider for every symbol a of
the alphabet a cycle labeled by a word in a∗, starting at some state qa. Let also be p an
initial run going to qa and for every pair of symbols a, b a path uab going from qa to qb.

Only looking at the runs in the language p{ua1ac∗auaa1 |a ∈ A ∪ B}ω, it is possible to
converge to any proportion of the symbols of A ∪ B, and thus have runs whose labeling
word is in L. But as the payoffs are in dimension d, and the number of symbols is
d1+d2 > d, that language also contains runs converging to different symbol proportions
but still having the same mean-payoff limit. Those runs are accepted by A but are not
labeled by a word in L. ut

Next, we prove that the intersection of two languages of dimensions d1 and d2 is
a language of dimension d1 + d2. This will be proved constructively, by showing that
the intersection language is the language defined on the product automaton with the
“product” condition. Before going to the statement of the lemma, we need to define
what those products are.

Definition 6 If F1 and F2 are predicates on 2R
d1 and 2R

d2 , we denote by F1 e F2 the
predicate on 2R

d1+d2 which is true for X ⊆ Rd1+d2 if and only if F1(p1(X)) and F2(p2(X)),
where p1 is the projection on the d1 first coordinates and p2 on the d2 last.

Definition 7 (Weighted automata product) If A1 = 〈A,Q1, q1
0, δ1,w1〉 is a d1-payoff

automaton and A2 = 〈A,Q2, q2
0, δ2,w2〉, a d2-payoff automaton, then we define A1 ⊗

A2 = 〈A,Q1 × Q2, (q1
0, q

2
0), δ1⊗2,w1⊗2〉, the product of A1 and A2, a (d1 + d2)-payoff

automaton such that

– δ1⊗2 = {((q1, q2), a, (q′1, q
′
2))|(q1, a, q′1) ∈ δ1 ∧ (q2, a, q′2) ∈ δ2 ∧ a ∈ A},

– w1⊗2 : δ1⊗2 → R
d1+d2 is such that if w1(q1, a, q′1) = (x1, . . . xd1) and w2(q2, a, q′2) =

(y1, . . . yd2), then w((q1, q2), a, (q′1, q
′
2)) = (x1, . . . xd1 , y1, . . . yd2).

But before we state the theorem, we need the following lemma:

Lemma 3 If r is a run of a d-payoff automaton A and p is a projection from Rd to Rd′ ,
with d′ < d, then Acc(p(mpA(r�n))) = p(Acc(mpA(r�n)))

Proof. Let x′ ∈ Acc(p(mpA(r�n))). For any i ∈ N, p(mpA(r�n)) eventually comes into
a distance 1/i from x′, for some index ni. For j > i mpA(r�n j) remains in B(x′, 1/i)×K
(where K is a compact of Rd−d′), as this product is compact, it has at least one accumula-
tion point. Thus the distance from x′ to p(Acc(mpA(r�n))) is 0. But Acc(mpA(r�n)) is

11

a closed set and p, being a projection, is continuous, so p(Acc(mp(r�n))) is closed too,
which means x′ ∈ p(Acc(mpA(r�n))), and so Acc(p(mp(r�n))) ⊆ p(Acc(mpA(r�n))).

Conversely, if x′ ∈ p(Acc(mpA(r� n))) a sub-sequence mpA(r� ni) converges to
a x such that x′ = p(x), and thus p(mpA(r� ni)) converges to x′, which means x′ ∈
Acc(p(mp(r�n))). We conclude that Acc(p(mpA(r�n))) = p(Acc(mpA(r�n))). ut

Now we have all the needed tools, we can characterize the intersection of two mean-
payoff languages as another mean-payoff language defined on an automaton whose di-
mension is known.

Proposition 3 For any two d1-payoff and d2-payoff automata A1 and A2 and any
two predicates F1 and F2 on respectively 2R

d1 and 2R
d2 , the following equality holds:

L(A1, F1) ∩ L(A2, F2) = L(A1 ⊗A2, F1 e F2).

Proof. Suppose u ∈ Aω, then the sequence of mean-payoffs of run r of u in A1 ⊗A2 are
the projections by p1 and p2 of the sequence of mean-payoffs of some runs r1 and r2 in
A1 and r2 in A2 whose labeling is u. And conversely, if u has runs r1 and r2 in A1 and
r2 in A2, then it has a run r in A1 ⊗A2 whose sequence of mean-payoffs projects by p1
and p2 onto those of r1 and r2.

If r, r1, and r2 are such runs (the payoffs of r projecting on those of r1 and r2), then
using lemma 3, we find that AccA(r1) = Acc(p1(mp(r� n))) = p1(Acc(mp(r� n))) and
that AccA(r2) = Acc(p2(mp(r�n))) = p2(Acc(mp(r�n))).

But by definition (F1 e F2)(Acc(mp(r� n))) holds iff F1(p1(Acc(mp(r� n)))) and
F2(p2(Acc(mp(r�n)))) hold, thus it holds iff F1(AccA1 (r1)) and F2(AccA2 (r2)) hold.

From that we deduce that a word is in L(A ⊗A, F1 e F2) if and only if it is both in
L(A1, F1) and L(A2, F2). ut

4 An analyzable class of mean-payoff languages

4.1 The class of multi-threshold mean-payoff languages

As a candidate for a class of mean-payoff languages that is closed under complementa-
tion and includes all the expected standard mean-payoff language classes, we propose
the following definition.

Definition 8 A language L is a multi-threshold mean-payoff language (denoted by L ∈
Lmt) if it is the mean-payoff language defined on some d-payoff automaton A, with a
predicate F such that F(S) is a Boolean combination of threshold conditions on pi(S)
where pi is the projection along the ith coordinate.

Example 3. Consider the automaton given in Example 1 and the multi-threshold mean-
payoff language L = {w|min p1(Acc(w)) > .1∧max p1(Acc(w)) < .9∧min p2(Acc(w)) >
.1 ∧max p2(Acc(w)) < .9}. For the word w, defined in Example 1, the set of accumula-
tion points is shown to be a triangle that is contained in the box {x|.1 < p1(x) < .9∧ .1 <
p2(x) < .9} and therefore w ∈ L.

12

Geometrically, multi-threshold acceptance conditions can be visualized as specify-
ing constraints on the maximal and minimal projection of Acc(w) on the axes. Since we
can extend the payoff vectors by adding a coordinate whose values are a linear combina-
tion of the other coordinates, also threshold constraints involving minimal and maximal
elements of the projection of Acc(w) on other lines are expressible, as shown in the
following example.

Example 4. Assume that, with the automaton given in Example 1, we want to accept the
words w such that Acc(w) is contained in the triangle (.2, .2)−(.8, .2)−(.2, .8). We can do
so by extending the dimension of the payoffs and renaming (0, 0) 7→ (0, 0, 0), (1, 0) 7→
(1, 0, 1), and (1, 1) 7→ (1, 1, 2). Namely, by adding a coordinate whose value is the sum
of the other two coordinates. Then, L = {w|min p1(Acc(w)) > .2 ∧ min p2(Acc(w)) >
.2 ∧max p3(Acc(w)) < 1} is the wanted language.

4.2 Closure under Boolean operations

We prove here that Lmt is in fact the Boolean closure of LQ , L< ∪ L≤ ∪ L> ∪ L≥.

Theorem 5 Lmt is closed under Boolean operations and any language in Lmt is a
Boolean combination of languages in LQ.

Proof. Closure by complementation: let L be a Lmt language, defined on some au-
tomaton A by a predicate P. w ∈ L iff P(AccA(w)). So w ∈ Lc iff w < L, that is iff
¬P(AccA(w)). But ¬P is also a Boolean combination of threshold conditions, thus Lc

is a Lmt language.
Closure by intersection: let L1 and L2 be two Lmt languages defined respectively on

the automata A and A by the predicates P1 and P2. Then L1 ∩ L2 = L(A ⊗A, P1 e P2)
(Theorem 3). It is easy to see that P1 e P2 is still a Boolean combination of thresholds,
and thus L(A ⊗A, P1 e P2) is in Lmt.

The other Boolean operations can be written as a combination of complementation
and intersection.

Now we show, by induction on height of the formula of a predicate, that any Lmt

language is a Boolean combination of LQ languages.
We can, without loss of generality, suppose that every threshold concerns a different

coordinate (if a coordinate has several thresholds, we can duplicate that coordinate,
keeping the same values, and the language will remain the same). We can also assume
that the predicate is written only with combinations of conjunctions and negations of
thresholds.

– If the height is 0, that means that the condition is only one threshold on a multi-
payoff automaton. The recognized language is the same as that of the automaton
projected on the tested coordinate, so it is in LQ.

– If the predicate is ¬P, then the recognized language is the complement of L(A, P),
which is a Boolean combination of Lmt languages of lesser height.

– If the predicate is P = P1 ∧ P2, let us call Ai, a copy of A whose payoffs are
projected on the subspace tested in Pi. Then A is isomorphic to A1 ⊗ A2. Further-
more, as the set of coordinates that are tested in P1 and P2 are disjoint, their exists

13

some P′1 and P′2 with the same heights as P1 and P2, such that P = P′1 e P′2. Thus
L = L(A1, P′1) ∩ L(A2, P′2) (Theorem 3), which is a Boolean combination of Lmt

languages of lesser height.
ut

4.3 Decidability

Theorem 6 The emptiness of a language of Lmt is decidable.

Proof. We can assume the predicate of acceptance is written in disjunctive normal form
(if not, we can find an equivalent DNF formula). Then we can see that a run is accepted
whenever its set of accumulation points satisfies at least one of the disjuncts, and in a
disjunct, every literal has to be satisfied. If we know how to check if a literal is satisfied,
then this provides an obvious decision algorithm for one run.

Then it is easy to see that there are two types of literal. Some say that there must exist
an accumulation point whose tested coordinate is greater or smaller than the threshold,
we call those existential literals. The other literals say that every accumulation point
should have the tested coordinate above or below the threshold, those we call universal
literals.

For checking the emptiness of L(A, F), we propose the following algorithm: Try,
for every a disjunct of F and every reachable SCC C of A, to compute P(C),the convex
hull of the payoffs of its transitions, then compute C′ the intersection of P(C) with every
universal literal, and finally check whether it intersects with every existential literal of
the disjunct. If it does, then return true, else loop. If you exhausted the combinations,
return false.

If this algorithm returns true, because C′ is a convex polyhedron included in C
and intersecting with every existential literal, we can construct D which is connected,
closed, included in C′, and intersects with every existential literal (take for instance
the convex hull of a family consisting in one point in every intersection of C′ with an
existential literal). We can see that F(D) holds. Then, Theorem 2 says there exist a run
r such that AccA(r) = D, and thus there exist a word which that run and therefore is in
L(A, F).

If that algorithm returns false, for every reachable SCC C, if you choose a closed
connected subset D of P(C) (as Theorem 1 says sets of accumulation points have to be),
then for every disjunct, D either is not completely included in some universal literal,
either does not intersect with some existential literal. In both case, D does not make the
disjunct true. So F holds for no set of accumulation points of a run of A, which implies
that L(A, F) is empty. ut

5 Summary and Future Directions

We proposed a definition of ω-languages using Boolean combination of threshold pred-
icates over mean-payoffs. This type of specifications allows to express requirements
concerning averages such as “no more than 10% of the messages are lost” or “the
number of messages lost is negligible”. The later is not expressible by ω-regular re-
quirements. We showed that if closure under intersection is needed, multi-dimensional

14

payoffs have to be considered. For runs of d-payoff automata, we studied acceptance
conditions that examine the set of accumulation points and characterized those sets as
all closed, bounded and connected subsets of Rd.

The class of multi-threshold mean-payoff languages was proposed, using accep-
tance conditions that are Boolean combinations of inequalities comparing the minimal
or maximal accumulation point along some coordinate with a constant threshold. We
studied expressiveness, closure properties, analyzability, and Borel complexity.

Possible direction for future include extension to non-deterministic automata, and
the study of multi-mean-payoff games.

Acknowledgments

This research was partially supported by NSF grants CNS 0524059 and CPA 0541149,
and the French M project A.

References

1. R. Alur, A. Kanade, and G. Weiss. Ranking automata and games for prioritized requirements.
In A. Gupta and S. Malik, editors, CAV, volume 5123 of Lecture Notes in Computer Science,
pages 240–253. Springer, 2008.

2. K. Chatterjee. Concurrent games with tail objectives. Theor. Comput. Sci., 388(1-3):181–
198, 2007.

3. K. Chatterjee, L. de Alfaro, and T. Henzinger. The complexity of quantitative concurrent
parity games. In Proceedings of the 17th ACM-SIAM Symposium on Discrete Algorithms,
pages 678–687, 2006.

4. K. Chatterjee, L. Doyen, and T. A. Henzinger. Quantitative languages. In Proceedings of
CSL 2008: Computer Science Logic, Lecture Notes in Computer Science. Springer-Verlag,
2008.

5. K. Chatterjee, T. Henzinger, and M. Jurdziński. Mean-payoff parity games. In Proceedings of
the 20th Annual Symposium on Logic in Computer Science, pages 178–187. IEEE Computer
Society Press, 2005.

6. H. Gimbert and W. Zielonka. Deterministic priority mean-payoff games as limits of dis-
counted games. In ICALP, pages 312–323, 2006.

7. O. Kupferman and Y. Lustig. Lattice automata. In Proc. 8th Intl. Conf. Verification, Model
Checking, and Abstract Interpretation, LNCS 4349, pages 199–213. Springer, 2007.

8. Z. Manna and A. Pnueli. The temporal logic of reactive and concurrent systems: Specifica-
tion. Springer-Verlag, 1991.

9. A. Pnueli. The temporal logic of programs. In 18th IEEE Symposium on the Foundations of
Computer Science (FOCS’77), pages 46–57, 1977.

10. W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor, Handbook of Theoreti-
cal Computer Science, volume B, pages 133–191. Elsevier Science Publishers, 1990.

11. M. Vardi and P. Wolper. Reasoning about infinite computations. Information and Computa-
tion, 115(1):1–37, 1994.

12. U. Zwick and M. Paterson. The complexity of mean payoff games on graphs. Theoretical
Computer Science, 158:343–359, 1996.

15

