
On the Feasibility of Automation for Bandwidth
Allocation Problems in Data Centers

Yifei Yuan, Anduo Wang, Rajeev Alur, and Boon Thau Loo
University of Pennsylvania

Abstract—Mapping virtual networks to physical networks
under bandwidth constraints is a key computational problem
for the management of data centers. Recently proposed heuristic
strategies for this problem work efficiently, but are not guaran-
teed to always find an allocation even when one exists. Given that
the bandwidth allocation problem is NP-complete, and the state-
of-the-art SAT solvers have recently been successfully applied
to NP-hard problems in planning and formal verification, the
goal of this paper is to study whether these SAT solvers can
be used to solve the bandwidth allocation problem exactly with
acceptable overhead. We investigate alternative ways of encoding
the allocation problem, and develop techniques for abstraction
and refinement of network graphs for scalability. We report
experimental comparisons of the proposed encodings with the
existing heuristics for typical data-center topologies.

I. INTRODUCTION

Allocating computing resources to customers’ requests is
the central task for a data center provider. The requests
submitted usually define virtual networks involving a number
of virtual machines (VMs) and also the bandwidth requirement
for virtual links between VMs. To handle such a request, the
data center provider should allocate server resources, as well as
bandwidth on the links of the data center’s physical network.

However, bandwidth allocation is a computationally hard
problem. It is NP-complete to determine whether there is
a valid allocation even for simple topologies of physical
networks and virtual networks. Current proposed techniques
focus on designing heuristic algorithms processing requests
efficiently ([1], [2], [3]). These heuristics only consider local
constraints, e.g. if there is enough link bandwidth of a server to
host a VM [1], to determine allocation. While these techniques
work efficiently, they provide no guarantee to always succeed
in finding an allocation even if one exists.

On the other hand, recent success of applying SAT/SMT
solvers [4], that is, solvers for constraint satisfaction problems,
to NP-hard problems in planning and formal verification
suggests a promising way to solve NP-hard problems in prac-
tice ([5], [6], [7], [8]). In this paper, we encode the bandwidth
allocation problem into SAT formulas and utilize state-of-
the-art SAT/SMT solvers to find the feasible allocation. We
develop abstraction and refinement for the physical networks
for scalability. Our experimental results show that the SAT
approaches work effectively with acceptable overhead for
small data center networks.

This research was partially supported by the NSF Expeditions in Computing
project ExCAPE (CCSF 1138996).

The remaining paper is organized as follows. Section II
provides a formulation of the bandwidth allocation problem,
and the hardness result of it when restricting to the topology
of trees. In Section III, we show the SAT encoding of the
bandwidth allocation problem and we develop abstraction and
refinement techniques for scalability. In Section IV, we show
the simulation results. Section V concludes this paper.

II. PROBLEM FORMULATION

In this section, we provide a formal definition of the band-
width allocation problem. Formally, we model the physical
network of a data center as a graph PN = (A∪B,L), where
A is the set of host servers, B is the set of switches. L is
the set of physical links that connect servers(switches) with
switches. Moreover, each host server s ∈ A has a capacity
c(s) that models the maximum number of virtual machines
which a server can host. Each physical link l ∈ L has a
bandwidth b(l). The virtual network is also modeled as a
graph V N = (V,E), and V is the set of virtual machines,
E is the set of virtual links connecting virtual machines. Each
virtual link e ∈ E has a bandwidth requirement r(e). The
mapping f : V → A maps a VM to a host server. Due to
the capacity of servers, f should not map VMs more than
a server’s capacity. Let P denote the set of paths in PN .
The mapping ρ : E → P defines the routing path for each
virtual link. That is ρ(v1, v2) = (f(v1), · · · , f(v2)). To meet
the bandwidth requirement, every physical link on the routing
path must have enough available bandwidth for the virtual link.

We define the bandwidth allocation problem as follows.
Given a physical network PN = (A ∪ B,L) with server

capacity c and link bandwidth b, and a virtual network
V N = (V,E), the bandwidth allocation problem seeks to find
the mapping functions f and ρ, satisfying the following two
conditions: (1) ∀s ∈ A, c(s) ≥ |{v ∈ V |f(v) = s}|, and (2)
∀l ∈ L, b(l) ≥

∑
e∈E:l∈ρ(e) r(e).

A feasible allocation can be checked in polynomial time
and thus the bandwidth allocation problem is in the class NP.
It is also proved in [1] that the bandwidth allocation problem
is NP-hard in a general physical network.

In data centers, the tree structure is widely deployed for the
physical network topology. Even though the routing path in a
tree between any two servers is unique, the bandwidth con-
straint is still the bottleneck for solving the problem efficiently.
We show that even when restricting the physical network
topology to be a tree, the bandwidth allocation problem is

still strongly NP-hard, i.e., NP-hard even when the numerical
parameters are encoded in unary.

Theorem 1 (NP-hardness for Trees). Given a physical net-
work PN in the tree structure, and a virtual network V N ,
finding the mappings f and ρ is strongly NP-complete.

Proof. Membership in NP is evident. For the NP-hardness,
we show the reduction from a strongly NP-complete problem,
namely, the 3-partition problem: given a multiset S of 3m
positive numbers {x1, ..., x3m}, partition S into m subsets
S1, ...Sm, such that each subset has 3 numbers and the sum of
the numbers in each subset is equal. We construct the physical
network as a 1-level tree with m + 1 servers s1, ..., sm+1.
Each server si connects to a switch s. For i = 1, ...,m, set
the bandwidth of the link connecting si and s to be t, which
is the desired sum of each subset in the 3-partition problem,
and the bandwidth of link (sm+1, s) to be 3t, which is the
sum of all the numbers. Let the capacity of each server be 3.
We construct a virtual network as a 1-level tree with 3m+ 1
virtual machines. Suppose the leaves are v1, .., v3m and the
root is v3m+1. The bandwidth requirement for the virtual link
(vi, v3m+1) is xi. Since the virtual machine v3m+1 can only
be mapped to the server sm+1, it is evident that there is a one-
to-one mapping between these two instances. Therefore, the
bandwidth allocation problem for trees is also NP-hard.

III. SAT APPROACH

In this section, we provide an alternative solution to the
bandwidth allocation problem using SAT/SMT solvers. First,
we show how to encode the bandwidth allocation problem into
SAT formulas with integers. Second, we develop abstraction
and refinement of physical network topologies for scalability.

A. SAT Encoding

In this section, we show how to encode a bandwidth
allocation problem into SAT formulas that work for any
physical network topology and virtual network topology. For
each virtual machine v ∈ V , and server s ∈ A, let X(v, s)
be an integer variable indicating f(v) = s, i.e. X(v, s) = 1
if f(v) = s, and X(v, s) = 0, otherwise. To ensure that each
virtual machine gets mapped, and only mapped to one server,
we have the constraint that

αs :
∧
v∈V

(∑
s

X(v, s) = 1

)
.

To encode the routing path for each pair of virtual machines,
we define the variable R(l, e, k) to indicate that the physical
link l is the k’th link of the routing path that is allocated to the
virtual link e. The following formula encodes the constraint
that there is no more than 1 physical link as the k’th one:

αr :
∧
e,k

(∑
l∈L

R(l, e, k) ≤ 1

)
.

The following constraint ensures that R(l, e, k) indeed encodes
a path in the physical network.

αc :
∧
e,k

 ∨
l1,l2:l1,l2 are adjacents

R(l1, e, k) ∧R(l2, e, k + 1)

 .

The constraint
∨
l1,l2:l1,l2 are adjacents R(l1, e, k)∧R(l2, e, k+1)

means that the k’th and the k + 1’th physical link on the
routing path assigned for the virtual link e should be adjacent.
For each physical link l ∈ L and virtual link e ∈ E, let Y (l, e)
be an integer variable indicating the bandwidth of l reserved
for virtual link e. We have the following constraint:

αy : Y (l, e) = r(e)⇔
∨
k

R(l, e, k) = 1.

To encode the constraint that for each virtual link, there is a
routing path between the host servers to which the two VMs
of the virtual link are mapped, we have:

αv :
∧

(v1,v2)∈E,
s1,s2∈A,s1 6=s2

(
(X(v1, s1) = 1 ∧X(v2, s2) = 1)→

∨
l1:s1∈l1
l2:s2∈l2

(Y (l1, e) = r(e) ∧ Y (l2, e) = r(e))

)
.

Finally, the server capacity condition can be encoded as

βserver :
∧
s∈A

(∑
v

X(v, s) ≤ c(s)

)
, and the link capacity condition is encoded as

βlink :
∧
l∈E

(∑
e

Y (l, e) ≤ b(l)

)
.

Putting all the pieces together, we have the encoding
ΦPN,V N for the bandwidth allocation problem:

ΦPN,V N = αs ∧ αr ∧ αc ∧ αy ∧ αv ∧ βserver ∧ βlink.

The following theorem easily follows.

Theorem 2. Given any physical network PN = (A ∪ B,L)
and virtual network V N = (V,E), there exists mappings f
and ρ satisfying the requirements of the bandwidth allocation
problem, if and only if the formula ΦPN,V N is satisfied.

B. Abstraction and Refinement

We use 2-level tree as an example topology for the data
centers to demonstrate how to abstract and refine the network
topology. In the tree topology, all the leaves are host servers,
and there are two levels of switches. On the first level, the
switches connect with the host servers, and the root switch
sitting on the second level connects with the switches on the
first level. For notation brevity, let T denote the physical tree
topology. We denote the root of the 2-level tree as r, and its
children as w1, ..., wk, and si,j as the jth children of wi.

The routing path for any two servers in a tree is unique,
therefore, the encoding involving R(l, e, k) can be omitted.

For each pair of host servers u, v, let p(u, v) be the unique
path between them. The constraint αv can be simplified as:

αv :
∧

(v1,v2)∈E,
s1,s2∈A,s1 6=s2

(
(X(v1, s1) = 1 ∧X(v2, s2) = 1)→

∧
l∈p(s1,s2)

(Y (l, e) = r(e))

)
.

Therefore, the whole formula is:

ΦPN,V N = αs ∧ αv ∧ βserver ∧ βlink.

a) Abstraction: In the abstraction phase, we “compress”
T into a 1-level tree Tabs, which has a single root r with its
children w1, ..., wk. By abstracting the subtree rooted at wi,
we set the capacity of wi to be the sum of capacities of all
its children. That is, c(wi) =

∑
j c(si,j). Using the encoding

technique above, we build the constraint ΦTabs,V N and solving
the constraint gives us a solution for the allocation problem
for the abstracted tree and the original virtual network.

b) Refinement: In the refinement phase, we need to solve
for the subtree Ti with root wi and its children si,1, ...si,m. By
solving the abstracted tree Tabs in the first phase, we know
the set of virtual machines that are mapped to this subtree.
The virtual network V Ni that are mapped to the subtree Ti
is a subgraph of the original virtual network. Suppose the set
of VMs that are mapped to the subtree is Vi, then V Ni =
(Vi, Ei), and here (v1, v2) ∈ Ei if and only if v1, v2 ∈ Vi and
(v1, v2) ∈ E. The formula ΦTi,V Ni encodes the constraint for
mapping the virtual network V Ni to the subtree Ti. However,
this is not sufficient to ensure that the mapping is feasible for
the original virtual network. In fact, there may be a virtual link
of which only one end is mapped to the subtree. To handle
this situation, we need to establish a route for the server which
the virtual machine is mapped to and the root switch in the
subtree. That is,

αv′ :
∧

(v1,v2)∈E,v1∈Vi,
v2 6∈Vi,s1∈Ti

(
X(v1, s1) = 1→

Y ((s1, wi), e) = r(e)

)
.

Therefore, the formula for the refinement is

ΦTi,V Ni,V N = ΦTi,V Ni
∧ αv′ .

The algorithm for the abstraction and refinement approach is
shown as algorithm 1. The algorithm first solves the formula of
the abstracted tree (line 4), and then refines each subtree (line
5-7). To facilitate the search, if the refinement phase of some
subtree fails, we stop refining the next subtree and return back
to solve the first phase. To force the SMT solver to provide
a different solution, we add the counter-example that makes
the refinement fail. That is αcounter : ¬

(∧
v∈Vi

X(v, wi) = 1
)

(line 8-11). If all the subtrees can be refined, the algorithm
finds a feasible solution (line 13-17). Otherwise, the formula
Φ for the abstracted tree is unsatisfied after a number of

iterations, in which case, there is no feasible solution (line
19).

Algorithm 1 Abstraction&Refinement SAT solving.
1: build the formula ΦTabs,V N for the abstracted tree Tabs;
2: Φ = ΦTabs,V N ;
3: while Φ is satisfied do
4: solve Φ;
5: for all i do
6: let V Ni = (Vi, Ei) be the virtual network that

needs to be mapped to the subtree Ti;
7: build the formula ΦTi,V Ni,V N ;
8: if ΦTi,V Ni,V N is unsatisfiable then
9: Φ = Φ ∧ ¬

(∧
v∈Vi

X(v, wi) = 1
)
;

10: break;
11: end if
12: end for
13: if all subtrees can be refined then
14: set f(v) = s if X(v, s) = 1;
15: compute ρ using the unique routing path in T ;
16: return f and ρ;
17: end if
18: end while
19: return no solution;

IV. SIMULATION RESULTS

In this section, we show some empirical evaluation of our
SAT solution. The topology of the physical network in our
evaluation is a 2-level tree and the leaves denote the host
servers and there are 2-levels of switches. There are 200
servers and each server can host 4 VMs and we set the
bandwidth of the lower level link to be 20, while the higher
level links’ bandwidth is set to be 200. We use the topology
generated by connecting 3 complete graph with 3 links as
the topology of the virtual network. This topology is used to
model the distributed storage systems that have 3 identical
replicas, and each replica communicates with one another.
We use two different size of replicas, namely 3 VMs and 5
VMs in one replica, and thus 9 VMs and 15 VMs in the
virtual network respectively. In each replica, the bandwidth
requirement for each virtual link ranges from 0 to 2 at random,
and the bandwidth of the links connecting each replica is
always 1. That is, each virtual link requires 5% to 10%
bandwidth of that of the lower level links in the physical
network. For comparison, we run the SAT encoding algorithm
without abstraction and refinement (referred as sat), as well as
the SAT encoding with the abstraction and refinement (referred
as sat abs). In addition, we compare the algorithm proposed
in [1] (referred as secondnet). For each virtual network, we
try to map as many copies of the virtual network as possible
to the physical network using the allocation algorithms. We
run 3 times for each virtual network, and compare the server
utilization, link utilization and the running time of the 3
algorithms. All the evaluations are run on a server with quad-
core 2.67GHz Intel Xeon CPU, 4GB of RAM, and we use

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

9	 vms	 15	 vms	

A
vg
.	 s
er
ve
r	
u*

liz
a*

on
	

#	 of	 VMs	 in	 the	 virtual	 network	

secondnet	
sat	
sat_abs	

9	 VMs	 	 	 	 	 	 	 	 	 	 	 	 	 	 15	 VMs	 	 	

(a) Average Server Utilization.

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

9	 vms	 15	 vms	

A
vg
.	 l
in
k	
u+

liz
a+

on
	

#	 of	 VMs	 in	 the	 virtual	 network	

secondnet	
sat	
sat_abs	

9	 VMs	 	 	 	 	 	 	 	 	 	 	 	 	 	 15	 VMs	 	 	

(b) Average Link Utilization.

0.01	

0.1	

1	

10	

100	

9	 vms	 15	 vms	

Ru
nn

in
g	
'
m
e	
pe

r	
V
N
	

(s
ec
on

ds
)	

#	 of	 VMs	 in	 the	 virtual	 network	

secondnet	
sat	
sat_abs	

9	 VMs	 	 	 	 	 	 	 	 	 15	 VMs	 	 	

(c) Running Time.

Fig. 1: Simulation Results.

Z3 [5] as the SAT/SMT solver in the allocation algorithms.
Figure 1a shows the server utilization for the 3 allocation
algorithms. Server utilization measures the ratio of the number
of VMs that are mapped to the physical network and the total
capacity of the network. The larger the server utilization is, the
more effective the allocation algorithm is. As shown in Figure
1a, both algorithms based on SAT encodings achieve 99%
server utilization, while the secondnet heuristic only achieves
30% server utilization in both virtual networks with 9 VMs
and 15 VMs, respectively. The reason why secondnet can only
map a few virtual networks is that it only takes the requirement
for servers into account, and does not consider whether there
is a feasible routing path between the servers that two VMs
are mapped to. Moreover, secondnet is highly sensitive to the
order in which the VM connections are requested. Different
orderings result in large differences in server utilization. On
the other hand, the techniques based on SAT solving encode
the bandwidth allocation problem completely, and they achieve
high server utilization.

The link utilization measures the ratio between the link
bandwidth utilized and the total bandwidth. When achieving
the same server utilization, the allocation algorithm with
lower link utilization is usually better than those with higher
link utilization, because it leaves more bandwidth for future
allocation. As shown in Figure 1b, secondnet only maps a few
virtual networks and thus results in low link utilization. The
sat algorithm achieves very high link utilization. For the virtual
network with 15 VMs, the link utilization is more than 70%.
Mapping the same number of virtual networks, sat abs utilizes
the link bandwidth no more than 2/3 of that by sat. This is
due to the abstraction technique. With abstraction, VMs are
mapped more locally, and thus more communication happens
within the subtree. Without abstraction, the two VMs on a
virtual link are more likely to be mapped into two different
subtrees, and thus increases the link utilization on the links
between the root switch and other switches.

Figure 1c shows the running time of allocating 1 vir-
tual network using each allocation technique. The heuristic
of secondnet runs in polynomial time, and it is orders of
magnitude more efficient than the other two algorithms. In

particular, the sat runs for about 3 hours to map 53 virtual
networks with 15 VMs, while secondnet takes no more than
2 seconds to map 13 virtual networks. It is also shown that
abstraction reduces the running time significantly. To map a
virtual network with 15 VMs, sat takes 200 seconds, while
sat abs only uses about 2 seconds. Let’s remark that the
SAT encoding approaches and existing approaches are not
mutually exclusive. In practice, those approaches can be run in
parallel and the first outputting feasible allocation is adopted.
Moreover, SAT encoding approaches can be applied when
optimizing the data center by re-locating allocated virtual
networks. In this case, finding the optimal solution is more
critical than running time.

V. CONCLUSION

Bandwidth allocation problem is the key computational
problem in data center management. In this paper, we show
an alternative approach that encodes the problem into SAT
formulas and apply SAT/SMT solvers to solve the problem.
We report simulation results showing that by using abstraction
and refinement techniques, we are able to provide high quality
solutions within acceptable overhead.

REFERENCES

[1] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun, W. Wu, and
Y. Zhang, “Secondnet: a data center network virtualization architecture
with bandwidth guarantees,” in Proceedings of the 6th International
COnference. ACM, 2010, p. 15.

[2] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “Towards pre-
dictable datacenter networks,” in ACM SIGCOMM, 2011.

[3] Y. Zhu and M. Ammar, “Algorithms for assigning substrate network
resources to virtual network components,” in Proc. IEEE INFOCOM,
vol. 2, 2006, pp. 1–12.

[4] L. De Moura and N. Bjørner, “Satisfiability modulo theories: introduction
and applications,” Commun. ACM, vol. 54, no. 9, pp. 69–77, Sep. 2011.
[Online]. Available: http://doi.acm.org/10.1145/1995376.1995394

[5] ——, “Z3: An efficient smt solver,” in Tools and Algorithms for the
Construction and Analysis of Systems. Springer, 2008, pp. 337–340.

[6] B. Dutertre and L. De Moura, “The Yices SMT solver,” Tool paper at
http://yices. csl. sri. com/tool-paper. pdf, vol. 2, p. 2, 2006.

[7] L. De Moura, S. Owre, H. Rueß, J. Rushby, N. Shankar, M. Sorea, and
A. Tiwari, “Sal 2,” in Computer Aided Verification. Springer, 2004, pp.
496–500.

[8] T. Ball, B. Cook, V. Levin, and S. K. Rajamani, “Slam and static driver
verifier: Technology transfer of formal methods inside microsoft,” in
Integrated formal methods. Springer, 2004, pp. 1–20.

